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Experimental realization of stabilizer-based quantum error correction (QEC) codes that would yield superior
logical qubit performance is one of the formidable task for state-of-the-art quantum processors. A major obstacle
toward realizing this goal is the large footprint of QEC codes, even those with a small distance. We propose
a circuit based on the minimal distance-3 QEC code, which requires only five data qubits and five ancilla
qubits, connected in a ring with iSWAP gates implemented between neighboring qubits. Using a density-matrix
simulation, we show that, thanks to its smaller footprint, the proposed code has a lower logical error rate than
SURFACE-17 for similar physical error rates. We also estimate the performance of a neural-network-based error
decoder, which can be trained to accommodate the error statistics of a specific quantum processor by training on
experimental data.
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I. INTRODUCTION

The realization of quantum error correction (QEC) codes
is an essential step toward scalable quantum computation.
Stabilizer codes [1–5] encode “logical” qubits in “physical”
qubits. If the error rate of a physical qubit is less than a certain
threshold level, then the composite logical qubit will have a
lower error rate [6]. Among the plethora of different QEC
codes that have been proposed, topological QEC codes such
as surface codes [7–9] and color codes [10,11] particularly
stand out. The topological property means that there exists
an arrangement of the physical qubits on a finite-dimensional
lattice such that only local operators need to be measured each
error correction cycle. This property is important for practical
realization on a number of physical platforms, such as su-
perconducting qubits, where high-fidelity two-qubit gates are
often only available between neighboring qubits. As a conse-
quence, many recent experiments and near-term proposals for
stabilizer codes on superconducting qubits involve small-scale
surface codes [12–19].

Performance of error correction codes depends not only on
the frequency of errors, but also on the type of errors. Simu-
lation of the performance of different QEC codes relies on an
accurate and physically motivated error model, which can be
computationally expensive but still viable for small-scale cir-
cuits, such as SURFACE-17 [20–23], the Steane code [24–26],
and cat codes [27]. For larger codes, approximate error models
have been proposed [28–30].

Furthermore, the problem of an optimal quantum er-
ror decoder remains relevant [31,32]. One of the most
reliable conventional decoding algorithms for Calderbank-
Shor-Steane (CSS) codes is the minimum weight-perfect
matching (MWPM) algorithm, which shows good perfor-

mance for different codes and in particular for surface
codes [20,21,33]. Accuracy of the MWPM decoder relies
on an approximate error model, which may or may not be
justified for real devices. The key advantage of MWPM
decoders is speed, as the runtime of the decoder scales poly-
nomially with the size of the circuit. This makes MWPM
decoders good candidates for large-scale error correction,
but questionable for early small-scale codes with qubits and
gate fidelities barely over the error correction threshold. For
non-CSS codes, such as the five-qubit code, there is no
straightforward implementation of the MWPM decoder. Ar-
tificial neural-network-based decoders are another promising
type of decoder [34,35]. Their runtime and accuracy varies,
and thanks to their architecture they can accommodate error
statistics directly from measured data [36], demonstrating bet-
ter logical error rates compared to MWPM.

Even though surface codes and color codes have numerous
important properties that make them good candidates for scal-
able universal quantum computation, they are by far not the
most efficient codes in terms of code distance per physical
qubit. Unfortunately, the stabilizers in these more efficient
codes have a complex structure, and designing a circuit to
measure them with high fidelity has proven to be a challeng-
ing task. The smallest possible distance-3 code that corrects
all possible single-qubit errors is the five-qubit ZXXZ code.
Schuch and Siewert made a proposal of a quantum circuit that
utilizes nine qubits connected in a ring topology with iSWAP

gates available on neighboring qubits [37] implementing this
code.

In this paper, we propose a quantum circuit for the
five-qubit distance-3 QEC code appropriate for experimen-
tal realization on a ring of 10 superconducting qubits. We
estimate the upper bound performance of the code using a
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FIG. 1. (a) The quantum circuit for the simulated state preservation experiment for the five-qubit code. The scheme is divided into three
stages: initialization of the data qubits, repetitive error correction cycles, and final measurement of the data qubits. During the correction cycle
there are four series of simultaneous iSWAP gates between the neighboring qubits, highlighted with the dashed purple lines. (b) Schematic
layout of computational qubit positions during the correction cycle. Qubits that are paired in the same iSWAP gate at each step are outlined with
a dashed rectangle. The numbered dashed purple lines correspond to the ones in panel (a).

time-domain density-matrix simulation of the circuit under a
realistic noise model and compare its performance to the sur-
face code of the same distance. For forthcoming experiments,
we present a neural network decoder based on long short-term
memory architecture, to be trained on only experimentally
available data.

II. METHODS

In this section, we describe the quantum circuit of the five-
qubit code and give the details of the simulated experiment.

A. Quantum circuit

The five-qubit QEC code encodes one logical qubit in five
data qubits, protecting it against arbitrary single-qubit errors.
Its four syndrome generators are

g0 = Z0X1X2Z3I4, g1 = I0Z1X2X3Z4,

g2 = Z0I1Z2X3X4, g3 = X0Z1I2Z3X4, (1)

and Pauli operators on a logical qubit are expressed by the
following single-qubit operators:

XL = X0X1X2X3X4, YL = Y0Y1Y2Y3Y4, ZL = Z0Z1Z2Z3Z4,

(2)

where Xi, Yi, Zi, Ii are Pauli operators applied to the ith qubit.
The quantum circuit for this experimental procedure is

presented in Fig. 1(a). It consists of ten physical qubits, five
of which are data qubits and the rest are ancillary qubits used
to extract the error syndromes. The circuit operation can be
divided into three stages: data qubit initialization, k repetitions

of the error correction cycle, and measurement of the data
qubits.

In the initialization stage, we assume that each qubit
can be prepared in the |0〉 state. To initialize other states,
a single-qubit gate denoted as P = X, H, ZH, SH, or ZSH
can transform the |0〉 state into |1〉, |+〉, |−〉, |i+〉, or |i−〉,
respectively.

The syndrome measurement stage consists of k cycles.
Each cycle starts with the initialization of the ancillary qubits.
The most important parts of the cycle are four series of
iSWAP gates that entangle neighboring qubits. The action of
the iSWAP gate on two qubits can be decomposed into a swap
of their computational states, a controlled-Z (CZ) gate, and
single-qubit S gates on both qubits. Thereby, it appears that
data qubits move clockwise in the ring and ancillas move
counterclockwise, as illustrated in Fig. 1(b). In this cartoon,
we schematically show the position of computational qubits
before and after each series of iSWAP gates. Qubits that are
paired in the same iSWAP gate at each step are outlined with
a dashed rectangle. At the end of the correction cycle, we
measure all ancillas and reset them for the next error correc-
tion cycle. It should be noted that one ancilla measurement
is redundant. The extra syndrome g4 = X0X1Z2I3Z4 can be
expressed as the product of the other syndromes.

Finally, after k QEC cycles we act on the data qubits with
the same gate P as in the initializing procedure and projec-
tively measure them in the Z basis.

In theory, the five-qubit code, as the other distance-3 QEC
codes, protects the logical state against one arbitrary single-
qubit error that happens to data qubit between the correction
cycles. It is vulnerable to measurement errors, initialization er-
rors, multiqubit errors, and imperfection of gates. Fortunately,
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TABLE I. Time parameters used in the density-matrix
simulation [38,41].

Parameter Symbol Value

Qubit relaxation time T1 30 μs
Qubit dephasing time T2 40 μs
Hadamard gate duration τ1 20 ns
iSWAP gate duration τ2 40 ns
Measurement time tm 300 ns
Reset time tr 300 ns
Five-qubit cycle time tc 840 ns

the impact of these unwanted errors can be significantly re-
duced by using a smart decoding algorithm that will have
access to all measured data over several sequential correction
cycles.

B. Simulated experiment

To quantify the performance of the five-qubit code we
focus on simulation of the state preservation experiment. The
experimental procedure is the following: We initialize data
qubits in one of the logical states |0〉, |1〉, |+〉, |−〉, |i+〉, |i−〉,
execute the syndrome measurement gates for k cycles, and
then measure the final state.

For the simulation, we calculate time-domain density-
matrix evolution and use operator-sum representation for
gates and error channels. In our model, we take into account
amplitude and phase damping during qubit idling and gates,
and consider the phenomenological depolarizing effect and
stochastic errors of the rotation gate phase in order to re-
semble gates implemented in Refs. [38–40]. Also, we take
into account measurement errors that are similar to the ones
observed in a real experiment [41]. The main time parameters
used in the simulation are given in Table I. We calculate the
gate fidelities with the formula [42]

Fgate = Tr(R†
idealR) + d

d (d + 1)
, (3)

where d = 2 for single-qubit gates, d = 4 for two-qubit gates,
and Rideal and R are Pauli transfer matrices corresponding to
the actions of the ideal and simulated gates. The resulting
fidelities in our simulation are 0.9995 for single-qubit rotation
gates and 0.998 for two-qubit iSWAP gates. More detailed
information about the error models is given in Appendix B.

III. RESULTS

In the current section, we estimate the best possible per-
formance of the five-qubit code, compare it to SURFACE-17
code, and present the logical error rate dependence on the
qubit coherence. Further, we suggest a budding decoder based
on an artificial neural network and test it on a problem of an
arbitrary initial state correction.

A. Upper bound performance

The decoder is a function that gets the ancilla qubit mea-
surement results as an input, and returns a unitary operator U

TABLE II. Upper bound error rates ε as obtained from least-
squares fitting of fidelity upper bounds shown in Fig. 2 with Eq. (5)
for the six different initial states in the five-qubit QEC code and
SURFACE-17. Errors estimates for ε are computed from the variance
matrix of the least squares method. “Mean” error rate corresponds to
the average over the six initial states.

Error rate ε in % per 1 μs

Initial state Five-qubit SURFACE-17

|0〉 0.644 ± 0.006 0.604 ± 0.005
|1〉 0.629 ± 0.006 0.621 ± 0.005
|+〉 0.675 ± 0.002 0.466 ± 0.007
|−〉 0.665 ± 0.004 0.442 ± 0.004
|i+〉 0.638 ± 0.003 1.143 ± 0.020
|i−〉 0.623 ± 0.005 1.123 ± 0.015
Mean 0.646 ± 0.005 0.703 ± 0.009

that should be applied to the final logical state to reconstruct
the initial state as its output. The ideal decoder returns the
unitary operator that yields the best possible fidelity of the
final state with respect to the pure initial state. This fidelity
cannot exceed the largest eigenvalue of the final density ma-
trix that gives a decoder-independent upper bound for the error
correction code performance.

Using the density matrix of the final state of the five data
qubits ρ, we construct the density matrix of the logical qubit
ρL:

ρL = I + Tr(XLρ)X + Tr(YLρ)Y + Tr(ZLρ)Z

2
. (4)

The time dependence of the recovered state fidelity is pre-
sented in Fig. 2(a). The data points are averages of upper
bound fidelities in independent runs of the density matrix
simulation with different ancilla measurement results. For
each of the six initial states |0〉, |1〉, |+〉, |−〉, |i+〉, and |i−〉
10 000 simulations have been run. The simulated points are
approximated with the function [20]

F (t ) = 1
2 + 1

2 (1 − 2ε)t−t0 , (5)

where ε is the error rate per 1 μs and t is time in μs. The
parameters ε and t0 are obtained from a the least squares fit
and their values are presented in Table II. As expected for
the five-qubit code, the state preservation fidelities of the six
select states do not differ from each other significantly.

The first point of each time dependence is excluded from
the fit, as it clearly does not lie on the same curve as the others.
The reason for the abrupt fidelity drop after the first cycle
is that our proposed logical qubit initialization procedure is
flawed. While it does prepare an eigenstate of the logical
qubit’s operators with only single-qubit gates, preparing a
state that is also an eigenstate of the stabilizers requires a
complex circuit, which is challenging to implement with high
fidelity in the proposed device topology. As a result, during
the first cycle the ancilla measurements randomly project the
system into one of the stabilizer eigenstates, and actual error
correction starts only from the second cycle.

If we numerically prepare an eigenstate of the error correc-
tion code instead of the described initialization sequence, the
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FIG. 2. Comparison of the ideal (upper bound) decoder performance of (a) the five-qubit code and (b) Surface-17 for different initial states
of the data qubits. The dashed curve is the least-squares fit of the corrected state fidelity with Eq. (5). The inset plot in panel (a) shows the
decay of the exact logical states |0〉 and |1〉 of the five-qubit code.

curve starts from the first cycle, as shown in the inset plot in
Fig. 2(a) for the |0〉L and |1〉L states. The fitted error rates ε

are 0.598 ± 0.006 and 0.588 ± 0.009% per 1 μs.
To evaluate how well the five-qubit code fares in compare

to other stabilizer codes, we simulate SURFACE-17 under the
same noise conditions (Appendix C). The time dependence
of the recovered state fidelity for SURFACE-17 averaged over
5000 independent runs per each of the six initial states is pre-
sented in Fig. 2(b) and in Table II. In contrast to the five-qubit
code it appears that different states are preserved with consid-
erably different fidelity, which leads to worse preservation of
arbitrary states on average.

Also we compare both the correction codes to the single-
qubit relaxation with times T1 and T2. In this case, the
fidelity averaged over the six initial states is given by the
formula

Fsingle(t ) = 1
6 (1 + e−t/T1 ) + 1

3 (1 + e−t/T2 ). (6)

In Fig. 3, we plot the mean state preservation fidelity of the
considered QEC codes over the six cardinal states.

A noteworthy question is the dependency of the logical
error rate on the quality of the qubits. To study this issue,
we simplify the error model and take into account only the
decoherence of qubits described by the relaxation times T1 and
T2. It is essential to note that qubits relax not only between
correction cycles, when the ancillas are being measured but
also during the whole correction procedure. We simulate the
state preservation experiment for several times T1 (the trans-
verse relaxation time T2 is chosen equal to T1) and obtain
the corresponding upper-bound logical error rate ε shown in
Fig. 4.

To approximate the data, we suggest following a simple
model. Let N qubits participate in the experiment and p is
an independent probability of a single-qubit error per unit of
time. Then the probability that more than two single-qubit
errors happen during a correction cycle can be estimated by

the following expression:

P = 1 − [(1 − p)N + N p(1 − p)N−1], (7)

and that for small p can be expressed in the series

P = (N − 1)N

2
p2 + O(p3). (8)

Since the five-qubit code protects the logical state against
one single-qubit error, then it is reasonable to approximate the
dependence of the logical error rate on time T1 by formula (7),

FIG. 3. Upper bound fidelities of the five-qubit (blue) and
SURFACE-17 (green) error correction codes, averaged over the six
initial states |0〉, |1〉, |+〉, |−〉, |i+〉, and |i−〉, calculated via the
density-matrix simulation. The gray curve corresponds to the average
state preservation fidelity in a single physical qubit.
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FIG. 4. Upper bound logical error rate ε of the five-qubit code
in the presence of only relaxation and dephasing (T1 = T2), averaged
over the three initial states |0〉, |+〉, and |i+〉. The blue points are data
calculated via the density-matrix simulation; the blue curve is their
fit with Eq. (7); and the orange line corresponds to a physical error
rate of a single qubit.

where p is intuitively proportional to p = β exp(−t/T1) with
some proportionality coefficient β. Optimizing this parameter
β (βfit = 0.44), it turns out that the theoretical curve fits well
the simulated values at T1 � 20 μs. For smaller T1, some
divergence is observed, which is explained by the fact that the
model described above can be valid only for small p.

In addition, comparing the formulas (5) and (6), one can
see that in case T1 = T2 logical error rate per 1 μs for a
single qubit is ε = 0.5 exp(−1/T1) [T1 in μs] and, therefore,
consider it as a physical error rate.

B. Neural network decoder

The upper bound is the theoretical limit of any decoder
performance for a given error model. Realizing this decoder
amounts to simulating the system’s evolution with this error
model, which can be challenging for large systems and sys-
tems with complex error statistics.

Artificial neural network decoders are an alternative ap-
proach altogether. The problem of any decoder is to find and
analyze patterns in the sequences of ancillary qubit measure-
ments. Instead of programming an algorithm that would detect
patterns that physical errors produce in the ancilla measure-
ments, one can train a neural network to detect these patterns
from a training data set. Due to the nature of the errors,
data about the ancilla measurements from all previous steps
may contain information about which logical error has which
probability on each step. This time-series-like type of feature
data can be effectively accommodated by recursive neural
network architectures, such as the long short-term memory
(LSTM) [43]. The performance of LSTM-based neural net-
work decoders has been studied for color codes [35] and
surface codes [36]; the state preservation fidelity obtained
with these decoders is on par or better than with more tra-
ditional decoders.

These inputs are fed into a five-layer LSTM network with a
hidden layer size of 256 neurons (Fig. 5). The LSTM’s outputs
are passed on to a perceptron with two hidden layers with 64
neurons, an output layer of four neurons, and a ReLU activa-
tion function. After a final softmax activation layer, the neural
network outputs are interpreted as probability predictions for
each Pauli operator error p(X ), p(Y ), p(Z ), or p(I ) (no error).
Our neural network implementation is based on the PyTorch
framework.

A training data set contains the simulated ancilla mea-
surement results and readout results of the final data qubit
states. The neural network is trained simultaneously with three
training data sets with different initialization and projection
operators P corresponding to three different cardinal points of
the Bloch sphere {|+〉, |i+〉, |0〉}, with 4 × 106 readout results
in each data set.

From formula (2), it follows that the readout result of
the logical qubit’s Pauli operators �L ∈ {XL,YL, ZL} can be
expressed as

�L =
4∏

i=0

�i. (9)

If �L = +1, then effectively the qubit has not flipped, and the
logical error operator is either I or �. Otherwise, it is one of
the other two Pauli operators. We define a loss function based

FIG. 5. Architecture of the neural network decoder. The network takes measurements of the five ancillary qubits during k cycles as an
input, processes them with five LSTM layers with hidden size 256, and then passes them through a perceptron with two hidden layers of
size 64, output size of four neurons, and ReLU activation functions. After a final softmax activation function, the outputs are interpreted as
probability predictions for each Pauli operator error p(X ), p(Y ), p(Z ) or p(I ).
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FIG. 6. Comparison of recovered logical qubit state fidelity in
the five-qubit QEC code for a perfect decoder (upper bound) and the
neural network decoder applied to |0〉, |+〉, |i+〉 initial states and to
arbitrary uniformly distributed pure states.

on the cross entropy of the experimentally measured logical
error operator and the neural network outputs over the set of
logical error operators as

L = 1

2

{log p(I ) + log p(�), if �L = +1,∑
P∈{X,Y,Z}/{�}

log p(P ), otherwise. (10)

The decoder performance is tested on 150 000 runs from
the same initial states, but as opposed to the training procedure
we do not measure the final logical state but just calculate
it from the density matrix of data qubits via the formula (4)
for better comparison with the upper bound decoder. The fi-
delity of the neural network decoder-recovered state is shown
in Fig. 6 (violet curve) and the fitted error rate is given in
Table III.

However, the goal is to correct not only the six cardinal
points on the Bloch sphere but an arbitrary state. To check
how well the decoder fares in this case, we generate a random
pure single-qubit state α|0〉 + β|1〉, uniformly distributed on
the Bloch sphere, and encode it into the state α|00000〉 +

TABLE III. Error rates ε obtained with least-squares fitting of
the fidelity time dependence for the neural network decoder shown
in Fig. 6 for different initial states. The error is computed via the
k-fold cross-validation method with k = 5.

ε, % per 1 μs
Initial state Neural network decoder

|0〉 0.88 ± 0.01
|+〉 1.03 ± 0.01
|i+〉 1.05 ± 0.01
Mean over
|0〉, |+〉, |i+〉 states 0.99 ± 0.01
Arbitrary states 0.993 ± 0.003

FIG. 7. The quantum circuit for arbitrary initial state preparation
consisting of four controlled-NOT (CNOT) gates that encodes α|0〉 +
β|1〉 state into α|00000〉 + β|11111〉.

β|11111〉 by the circuit shown in Fig. 7. We assume that the
encoding circuit is error-free. After initialization, we simu-
late the state preservation experiment and apply the neural
network decoder to the final density matrix. We repeat the
whole procedure for 17 000 different initial states and plot the
average fidelity in Fig. 6 (pink curve). Taking into account
the error, we observe approximately the nearly same ε as
for the cardinal points (see Table III).

IV. CONCLUSION

In conclusion, we propose a circuit that implements the
five-qubit quantum error correction code on a realistic topol-
ogy of superconducting qubits. The key advantage of the
scheme is that it requires only 10 qubits connected in a
ring with two-qubit iSWAP gates available between any two
neighboring qubits. The small footprint of our circuit makes it
one of the least hardware-demanding proposals for stabilizer-
based error correction. Using a density-matrix simulation
of the state preservation experiment under a realistic noise
model, we obtain estimates for logical error rates. We propose
a decoder based on an artificial neural network that can be
trained on experimentally available data, which shows satis-
factory performance close to the upper bound for preservation
of arbitrary logical states.
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APPENDIX A: DENSITY-MATRIX SIMULATION DETAILS

In order to estimate the limit of the QEC code performance,
we need to simulate the dynamics of the investigated open
quantum system, described with the density matrix ρ. The
time evolution ρ → E (ρ) can be modeled with the operator-
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TABLE IV. Parameters of error models [38–41].

Parameter Symbol Value

Qubit relaxation time T1 30 μs
Qubit dephasing time T2 40 μs
Single-qubit gate duration τ1 20 ns
Two-qubit gate duration τ2 40 ns
Measurement time tm 300 ns
Reset time tr 300 ns
In-axis rotation error paxis 10−4

In-plane rotation error pplane 5 × 10−4

Root-mean-square error φrms 0.01

sum representation [44]

E (ρ) =
∑

i

EiρE†
i , (A1)

where Ei are Kraus operators
n∑

i=0

E†
i Ei = I. (A2)

For the convenience of calculations, we use the Pauli trans-
fer matrix (PTM) representation of the superoperator E :

(RE )i j = 1
2 Tr(σiE (σ j )), (A3)

where σ0 is the identity matrix I and σ1, σ2, σ3 are Pauli
matrices X,Y, Z . In a such form the time evolution, includ-
ing quantum gates and noise channels, can be expressed as
simple multiplication of the transfer matrix (RE )i j and vector
representation of the density matrix in the Pauli basis.

The Hilbert space of the quantum system implementing the
QEC code (Fig. 1) consists of 10 qubits. The density matrix
of the system is represented as a vector of dimension 410 and
transfer matrices, acting on this vector, have the size 410 ×
410. In order to accelerate calculation we use sparse matrices,
batches, and GPUs.

APPENDIX B: ERROR MODELS

This Appendix contains the mathematical description of
the noise channels that we take into account in the density-
matrix simulation. The basic motivation of all the error models
introduced in the paper is to get the simulation closer to real
experiments [38–41]. The values of the error model param-
eters are given in Table IV, excluding measurement errors
which are listed separately.

1. Idling

In the simulation, we use the standard model of amplitude
and phase damping channels. The operation elements of these
channels are

EAD
0 =

(
1 0
0

√
1 − γ1

)
, EAD

1 =
(

0
√

γ1

0 0

)
, (B1)

and

EPD
0 =

(
1 0
0

√
1 − γφ

)
, EPD

1 =
(

0 0
0

√
γφ

)
, (B2)

where γ1 = 1 − e−t/T1 , γφ = 1 − e−2t/Tφ , 1
T2

= 1
2T1

+ 1
Tφ

. Cor-
responding Pauli transfer matrices are

READ =

⎛
⎜⎜⎜⎝

1 0 0 0
0

√
1 − γ1 0 0

0 0
√

1 − γ1 0
γ1 0 0 1 − γ1

⎞
⎟⎟⎟⎠, (B3)

REPD =

⎛
⎜⎜⎜⎝

1 0 0 0

0
√

1 − γφ 0 0

0 0
√

1 − γφ 0
0 0 0 1

⎞
⎟⎟⎟⎠. (B4)

Thus, the evolution of an idling qubit for the duration t is
described by transfer matrix

Ridle(t ) = READ REPD . (B5)

2. Single-qubit gates

There are three single-qubit gates in the circuit Fig. 1:
Hadamard (H), phase (S), and Pauli Z (Z). The last two gates
are considered to be virtual, instantaneous, and thereby ideal.
The Hadamard gate can be decomposed into rotations around
the z axis and the y axis: H = ZRy(−π/2). Therefore, it is
necessary to build an error model for the y-axis rotation. This
model should include amplitude and phase damping, depolar-
izing, and statistical error of the angle of rotation.

Processes of amplitude and phase decoherence are taken
into account with the sandwich model, where the gate transfer
matrix is expressed as the product of the two idling process
matrices interleaved with the ideal gate process matrix.

In order to have better conformity with tomography ex-
periments, we additionally introduce a depolarization channel
that geometrically corresponds to squeezing along the x and z
axes with the factor 1 − pplane and the y axis with the factor
1 − paxis. The depolarization Pauli transfer matrix is

Rdep =

⎛
⎜⎝

1 0 0 0
0 1 − pplane 0 0
0 0 1 − paxis 0
0 0 0 1 − pplane

⎞
⎟⎠. (B6)

Finally, we include the statistical error for the angle of ro-
tation φ. We consider φ to be normally distributed with mean
ϕ0 and variance σ 2. The expectation value of the exponential
function is

〈eiϕ〉 =
∫ ∞

−∞

1√
2πσ

e− (ϕ−ϕ0 )2

2σ2 eiϕdϕ = eiϕe− σ2

2 . (B7)

Using this result, we add stochastic error to the matrix el-
ements of the rotation gates. These stochastic errors can be
attributed to flux noise and long-term drift of microwave sig-
nal source phase and amplitude. Phenomenological estimates
yield an rms value in the order of σ = ϕrms ≈ 0.01 rad.

According to the model above, the Hadamard gate can be
expressed as

RH = Ridle

(τ1

2

)
RdepRRz (π )R

′
Ry(− π

2 )Ridle

(τ1

2

)
, (B8)
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TABLE V. Probabilities of different errors in measurement
procedure [20,41].

Probability Value Probability Value

ε+1,0
0 0.9985 ε+1,0

1 0.0050
ε+1,1

0 0.0000 ε+1,1
1 0.0015

ε−1,0
0 0.0015 ε−1,0

1 0.0149
ε−1,1

0 0.0000 ε−1,1
1 0.9786

where τ1 is the single-qubit gate duration and R′
Ry (− π

2 ) is the
PTM of the rotation gate with the stochastic error.

3. Two-qubit gates

The only two-qubit gate used in the present five-qubit
code is an iSWAP gate. This gate is generated by XY -type
interaction, which is natural for many platforms for quantum
computing, including superconducting qubits [37,45], and the
unitary matrix of such interaction is

U (θ, η, ζ ) =

⎛
⎜⎜⎝

1 0 0 0
0 cos θ/2 ieiη sin θ

2 0
0 ie−iη sin θ/2 cos θ/2 0
0 0 0 eiζ

⎞
⎟⎟⎠. (B9)

For iSWAP, the parameters are UiSWAP = U (π, 0, 0). Here we
assume the same stochastic error independent and equal for
both parameters θ and η as described in the section above
for the single-qubit rotation gate. The parameter ζ takes
into account the conditional phase arising in the dispersive
limit due to the |11〉 ↔ |20〉 interaction in transmon qubits.
The error for ζ is correlated with the single-qubit stochastic
rms deviation due to flux noise, such that σζ = ϕrms/2 =
0.005 rad.

The SURFACE-17 code uses the controlled-Z (CZ) gate with
the following unitary matrix: UCZ = U (0, 0, π ). For CZ, we
take into account stochastic error only for parameter ζ .

Decoherence is modeled by a sandwich structure, as de-
scribed above for single-qubit rotation gates, and the final
PTM of the two-qubit gate G is

RG = Ridle

(τ2

2

)
R′

GRidle

(τ2

2

)
. (B10)

Here τ2 is the duration of the gate, and R′
G is the PTM of the

two-qubit gate with stochastic errors.

4. Measurement

The measurement procedure is realized by the method,
described below, in order to approximated the experimental
results obtained in Ref. [41]. We use the model of back-
to-back measurements. First, we calculate from the density
matrix the probabilities of a qubit to be projected in |0〉 and |1〉

FIG. 8. Quantum circuit of the QEC cycle of SURFACE-17 code, consisting of single-qubit rotations about the y axis and eight series of
simultaneous CZ gates.
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states and then randomly with respect to these probabilities
choose the initial state i ∈ {|0〉, |1〉}. The second step is to
determine the measurement result m ∈ {+1,−1} and outcome
state o ∈ {|0〉, |1〉} of the qubit after the measurement proce-
dure. We match with initial and outcome states according to
the experimentally obtained probabilities given in Table V.

APPENDIX C: SURFACE-17

The simulated experimental procedure for the surface
code simulation is similar to the five-qubit code simulation
procedure. It can be divided into three stages: data qubit
preparation, correction cycles, and data qubit measurement.
The first and the third stages are the same as in the five-qubit
code with the only difference being the amount data qubits.
The quantum circuit for the QEC cycle of SURFACE-17 is
presented in Fig. 8 [20]. It consists of single-qubit rotations
about y axis and four series of simultaneous CZ gates (three

gates per series). The syndromes for SURFACE-17 are

SA0 = X1X2, SA1 = Z0Z3, SA2 = X0X1X3X4,

SA3 = Z1Z2Z4Z5, SA4 = Z3Z4Z6Z7, SA5 = X4X5X7X8,

SA6 = Z5Z8, SA7 = X6X7, (C1)

where the indices of Pauli X and Z operations relate to the
number of data qubit.

It is remarkable that X -ancilla measurement starts right
after the Rπ/2

y gate on qubits {A0, A2, A5, A7}, and Z-ancilla
measurement continues during the first four series of CZ gates
as it is shown in the timeline in Fig 8. Thereby, the full
correction cycle time consists of four two-qubit gates, two
single-qubit rotations, and one measurement and reset proce-
dure, totaling at 800 ns.

The circuit is simulated under the same noise models as the
five-qubit code.
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