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PT -symmetric quantum theory has attracted extensive attention in recent years because of its novel properties,
applications, and even controversial discussions. Many difficulties in applications stem from the unknown of
how to simulate the dynamics of PT -symmetric systems in conventional quantum systems. In this work, by
clarifying some common confusion in the simulation of PT -symmetric systems, we are able to naturally extend
the application scope of the original embedding simulation scheme from pure states to arbitrary mixed states.
Based on the above groundwork, we further propose a local-operations-and-classical-communication (LOCC)
protocol scheme to simulate the dynamics of a PT -symmetric system. Our LOCC protocol scheme, which needs
one ancillary qubit only, can be applied to simulate any arbitrary finite-dimensional PT -symmetric system in the
PT -unbroken phase and has several advantages over the original embedding scheme. The success probability
is increased to λmin (λmin > 1) times in general, even approaching 100% in some special cases, and has a
concise bound that makes it easier to estimate the necessary experimental resources in advance. Furthermore,
our LOCC protocol has less dependence on but more flexibility in the selection of the metric operator and more
adaptability in practical applications, and it is more consistent with the physical intuition. Finally, the physical
or philosophical meaning behind the embedding scheme and the LOCC protocol is discussed.
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I. INTRODUCTION

In conventional quantum mechanics (CQM), the
requirement that physical observables, such as the
Hamiltonians, should be Hermitian operators is considered
one of the basic postulates. This postulate is consistent with
our physical intuition that the eigenvalue spectrum and the
measured value of observables are all real. However, this
postulate has been questioned by more and more scholars in
the past three decades [1–3]. In fact, there is no assumption
that the eigenstates of an observable must form a set of
complete orthogonal bases in quantum mechanics except that
the spectrum of the observable is real [4–7], so the Hermitian
system was extended to a quasi-Hermitian system by Scholtz
et al., who introduced a nontrivial metric operator in Hilbert
space in 1992 [8] and in fact established quasi-Hermitian
quantum mechanics (QQM). Then it was proved that QQM
and CQM are equivalent and can be connected by the Dyson
map [9,10]. Bender et al. found that some non-Hermitian
Hamiltonians, which are parity-time-reversal (PT )-
symmetric, also have real eigenvalue spectrums, and
then established PT -symmetric quantum mechanics
(PT -QM) [11–14]. However, it was later recognized
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that PT symmetry is neither sufficient nor necessary for
the real spectrum of the Hamiltonian [15–17], and in fact
either the eigenvalues of the PT -symmetric Hamiltonian
are real (PT -symmetry-unbroken case) or they appear
as complex conjugate pairs (PT -symmetry-broken case)
[17–19]. The PT -QM, QQM, and CQM can be proved
to be equivalent in the PT -symmetry-unbroken case [12,
20–23]. Around 2002, Mostafazadeh pointed out that all
the PT -symmetric non-Hermitian Hamiltonians belong to
the class of pseudo-Hermitian Hamiltonians and established
pseudo-Hermitian quantum mechanics (PQM) [16,17,24–
26], and then gave the necessary and sufficient condition for
the reality of the spectrum of a non-Hermitian Hamiltonian
with a complete set of biorthogonal eigenstates [17]. In
addition, time-dependent pseudo-Hermitian theory was also
developed [27]. In 2013, Brody established biorthogonal
quantum mechanics (BQM) by replacing the notion of
“complete orthogonal states” with “complete biorthogonal
states” and gave a characterization of mixed states [7].
Biorthogonal quantum mechanics incorporates all the
structures of PT -symmetric quantum mechanics models
and allows for generalizations, especially in situations where
the PT construction of the dual space fails [6].

With the increasing interest in PT -symmetric systems,
many new properties and phenomena have been gradually
discovered [23,28], such as the quantum brachistochrone
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problem [22,29–36] and the discrimination of nonorthogonal
quantum states [37,38], and even some reports seem surpris-
ing because they seem to conflict with fundamental physical
principles [39,40]. For example, Lee et al. found that lo-
cal PT symmetry violates the no-signaling principle [40],
which aroused widespread attention [35,41–43] and was then
realized by Tang et al. in experiment [44]. However, some
confusion and difficulties in applications appear to stem from
not knowing how to simulate PT -symmetric systems and
their dynamic processes in conventional quantum systems.
Huang et al. reinterpreted this phenomenon by simulating the
PT -symmetry-unbroken system with embedding technology
based on the Naimark dilation theorem (Stinespring dilation
theorem) [45–47], and proved that the phenomenon of vi-
olating the no-signaling principle stems from the fact that
some probabilities are neglected in the process of simula-
tion. In addition, some studies show that the PT -symmetric
Hamiltonian can also be regarded as part of an open system
with dissipation [48,49], and the evolution of mixed states
under an open system was also given [50,51]. Therefore, sim-
ulating PT -symmetric systems not only has very promising
practical value, but also offers basic theoretical significance
in understanding quantum mechanics [45,52–54].

The traditional method of linear combination of unitaries
(LCU) can be used to simulate various non-Hermitian systems
[55], such as PT -symmetric systems in unbroken or broken
phases [34,52,54,55], anti-PT -symmetric systems [56], and
others [57–59]. In general, at least one auxiliary qubit is
necessary. Here we simulate the dynamic process of a PT -
symmetric system with the local-operations-and-classical-
communication (LOCC) protocol based on an embedding
scheme by using only one auxiliary qubit. The embedding
scheme is a valuable approach to simulate the PT -symmetry-
unbroken system without manually adjusting the parameters
related to the dynamic process [28,44,45,60,61], which is
realized by dilating the non-Hermitian PT -symmetric Hamil-
tonian to a higher-dimensional Hermitian one and then
performing a fixed projection operation on the auxiliary qubit
for postselection, and this method can also be realized by
experiment [62]. However, the success probability of this
scheme can still be improved because some resources in fact
have been wasted, and the success probability is largely af-
fected by the special selection of the metric operator. In this
paper, we propose a LOCC protocol scheme based on an
embedding scheme to efficiently simulate the PT -symmetry-
unbroken system, and we prove that our scheme increases the
success probability of the embedding scheme to λmin times
that of the original scheme (λmin > 1, where λmin is the mini-
mum eigenvalue of the metric operator) and may even achieve
a success probability supremum of up to 100%. Furthermore,
our LOCC protocol depends less on the special selection of
the metric operator and is more in line with the physical in-
tuition. Finally, the physical or philosophical meaning behind
the embedding scheme and the LOCC protocol is discussed.

The rest of this paper is organized as follows. In Sec. II,
we review some basic concepts in PT -symmetry theory. In
Sec. III, we review the embedding theory and method, and
extend it to an arbitrary mixed state in the QQM framework;
then the success probability of the embedding scheme and
its bound are also derived. Based on the groundwork we

have done above, in Sec. IV we further propose our LOCC
protocol scheme, and then give its success probability and a
concise bound. We then further study the relation between
the lower bound of the success probability and the degree
of non-Hermiticity, and give a general lower bound that
does not depend on the specific protocol, in Sec. V. After
that, we demonstrate with an example of a two-dimensional
PT -symmetric system in Sec. VI. In Sec. VII, we give con-
clusions and discussions.

II. THEORETICAL PREPARATIONS

A. PT -symmetry theory

Consider an n-dimensional discrete quantum system H
and its Hamiltonian H , parity operator P , and time-reversal
operator T (their corresponding matrix representations can be
recorded as P and T , respectively, and P2 = I , T T̄ = I). If
PT H=HPT (equivalent to PT H̄ = HPT ; in the following,
the “operator” and “matrix” are common without causing
confusion), then the system H (H) is called PT symmetric.
In particular, the Hamiltonian (system) H is called PT -
symmetry unbroken if and only if the H is similar to a real
diagonal matrix. Otherwise, H is called PT -symmetry bro-
ken if and only if it satisfies either of these two conditions
[16,17,63]: (1) it cannot be diagonalized or (2) it has complex
eigenvalues that come in complex conjugate pairs. We only
consider the PT -symmetry-unbroken situation in this paper.

First, we introduce the concept of an η inner product:

(|ψ1〉, |ψ2〉)η ≡ 〈ψ1 | ψ2〉η := 〈ψ1|η|ψ2〉,
∀|ψ1〉, |ψ2〉 ∈ H, (1)

where η is the metric operator; especially in the unbroken
phase of PT -QM, it can be a reversible positive Hermi-
tian operator [17]. According to the above definition, the
η-pseudo-Hermitian adjoint O# of the operator O, which is
different from the concept of a Hermitian adjoint, can be
obtained through

(|ψ1〉, O#|ψ2〉)η := 〈ψ1|η · O#|ψ2〉 = (O|ψ1〉, ψ2〉)η

= 〈ψ1|O† · η|ψ2〉. (2)

Thus we can obtain the relation between O# and O†:

O# = η−1 O† η. (3)

In PT -QM, the quantum observables are no longer
Hermitian, but η-pseudo-Hermitian, i.e.,

O# = O ⇒ O† = ηOη−1 �= O. (4)

The representation of the same quantum observable O under
the two different theoretical frameworks of CQM and PT -
QM can be connected by the Dyson map [9,64]:

o = η
1
2 Oη− 1

2 , (5)

where O is the observable in the PT -QM framework and o is
the corresponding observable in CQM.

In the framework of PT -QM (more generally, PQM), there
are some operators satisfying

ηH = H†η, (6)
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where η is called the metric operator of H and is the reversible
Hermitian operator mentioned above. However, the metric
operator is usually not unique; for instance, if η is a metric
operator of H , so is rη (r ∈ R).

Then according to the Schrödinger equation

i
d

dt
|ψ (t )〉 = H |ψ (t )〉, (7)

for any two evolving states |ψ1(t )〉 and |ψ2(t )〉, we have

i
d

dt
〈ψ1(t )|ψ2(t )〉η = 〈ψ1(t )|(ηH − H†η)|ψ2(t )〉 = 0, (8)

which means that probability is conserved. Note that all the
“h̄’s” have been omitted in this paper.

B. Biorthogonal representation of arbitrary quantum states

The framework of CQM defined in a d-dimensional dis-
crete Hilbert space is based on the orthogonal basis {|n, a〉}
that can usually be composed of the eigenstates of the
Hamiltonian, while the framework of PT -QM is based on the
biorthogonal basis, and we record the complete biorthogonal
basis of H as {|χn, a〉, |φn, a〉}. Then, according to the defini-
tion,

〈χm, a|φn, b〉 = δmnδab, (9a)

H |φn, a〉 = En|φn, a〉, H†|χn, a〉 = En|χn, a〉,
(9b)

∑
n

dn∑
a=1

|χn, a〉〈φn, a| =
∑

n

dn∑
a=1

|φn, a〉〈χn, a| = I, (9c)

where dn is the degree of degeneracy of the eigenvalue En, and
a and b are degeneracy labels. Then according to Eq. (9) we
have

H =
∑

n

dn∑
a=1

En|χn, a〉〈φn, a|. (10)

We set the constraint

|〈φn, a|φn, a〉|2 = 1. (11)

Then we can define a standard metric operator ηs and its
inverse η−1

s :

ηs =
∑

n

dn∑
a=1

|χn, a〉〈χn, a|, (12)

η−1
s =

∑
n

dn∑
a=1

|φn, a〉〈φn, a|. (13)

Then we know |χn, a〉 = ηs|φn, a〉. (For mathematics alone,
Eq. (6) belongs to the Sylvester-type equation “AX + XB =
C” [65], so the metric operator η can also be obtained directly
according to the standard solution of the Sylvester equation.)
For convenience, we assume the degeneracy dn = 1 in the
following paper.

In some of the literature, it is often recorded that � =
[|φ1〉, . . . , |φi〉, . . . , |φn〉], 	 = [|χ1〉, . . . , |χi〉, . . . , |χn〉], and

E = diag(E1, . . . , Ei, . . . , En); then

�−1H� = E , 	−1H†	 = E ,

η = 		†, η−1 = ��†, (14)

	 = η�, 	†� = In.

For an arbitrary pure state ψ , the associated state ψ̃ can be
defined [7]:

|ψ〉 =
∑

n

cn|φn〉 ⇔ 〈ψ̃ | =
∑

n

c∗
n〈χn| ⇒ |ψ̃〉 =

∑
n

cn|χn〉.

(15)

The pure state ψ can be expressed separately in CQM (left)
and PT -QM (right) frameworks as follows, and they are
equivalent in a physical sense in their respective theoretical
systems:

|ψ〉 =
∑

n

cn|n〉 ⇔ |ψ〉PT =
∑

n

cn|φn〉,

〈ψ | =
∑

n

c∗
n〈n| ⇔ PT 〈ψ | =

∑
n

c∗
n〈χn|, (16)

where
∑

n |cn|2 = 1.
The projection operator is

πn = |n〉〈n| ⇔ πPT n = |φn〉〈χn|. (17)

It is obvious that πmπn = δmn in both frameworks. Then we
can obtain the biorthogonal representation of arbitrary quan-
tum mixed states,

ρc =
∑
mn

ρcmn|m〉〈n| ⇔ ρPT =
∑
mn

ρcmn|φm〉〈χn|, (18)

where the left- and the right-hand sides of the symbol “⇔”
are connected by a similarity transformation, i.e., the Dyson
map mentioned above in Eq. (5), so the spectrum of the
density operator remains unchanged, and they have the same
physical meaning. It is worth nothing that in the framework
of CQM, all the density operators are Hermitian (ρc), while in
the framework of PT -QM, in general, the density operators
are all non-Hermitian (ρPT ), and the Hermitian property of
the density operator is indeed an important distinctive external
feature that distinguishes CQM from PT -QM. Then accord-
ing to Eq. (18) we know Tr(ρPT ) = Tr(ρc) ≡ 1.

Therefore, for the purpose of simulation with the embed-
ding scheme [32,50], we can take

ρS = ρPT · η−1

=
∑
mn

ρcmn|φm〉〈φn|, (19)

which can be normalized by Tr(ηρS) = 1, and it is worth not-
ing that although Tr(ρS ) < Tr(ηρS ) ≡ 1, it is still reasonable,
because it is actually an unnormalized density operator (see
Appendix B). It is worth noting that, for the purpose of simu-
lation, it is not necessary to pursue the complete equivalence
in physical meaning between the simulated PT -symmetric
system and the system performing the simulation program in
CQM, but only the suitability of its mathematical form and the
physical realizability; however, we still need to remind that the
two are actually different in the physical sense. Unfortunately,
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the existing literature rarely discusses this problem or is very
vague about it [34,38,44–46,52,54,61], and only discusses the
pure-states case. We have explained this problem clearly by
combing the developmental history of quantum mechanics
in our Introduction and the above analysis, which lays the
foundation for us to naturally extend the embedding scheme
to the mixed-states case in the following.

III. SIMULATION SCHEME OF THE DYNAMICS OF A
PT -SYMMETRIC SYSTEM WITH AN EMBEDDING

SCHEME IN ARBITRARY MIXED STATES

A. The Hermitian dilation principle of a PT -symmetric system

In 2008, Guenther et al. proposed the original simulation
scheme of a PT -symmetric system by using a Naimark di-
lation technique in a two-dimensional Hilbert space [28,32].
This scheme is valuable for understanding the relation be-
tween a PT -symmetric system and a Hermitian system in
conventional quantum mechanics; specifically, the former
can be regarded as a subsystem of a higher-dimensional
Hermitian system. At the same time, this scheme also gives an
idea of simulating the dynamics of a PT -symmetric system.
However, this original scheme is based on the special prop-
erty in a two-dimensional system where η + η−1 = t I (t ∈ R),
whereas this property does not hold in higher-dimensional
systems. In 2018, Huang et al. extended this simulation
scheme to an n-dimensional system and provided mathe-
matical completeness [45]. However, the success probability
of these schemes is usually not high enough because of a
waste of resources in actual use. Besides, these schemes
are only limited to pure states, while mixed states are not
discussed; in fact, the simulation of mixed states in a PT -
symmetric system is not so obvious. Based on the above, we
propose an efficient simulation scheme of the dynamics of a
PT -symmetric system with a LOCC protocol scheme based
on the embedding scheme.

We assume HS is a PT -symmetric operator in an
n-dimensional Hilbert space L(Hn), and ĤAS is a Hermitian
operator in L(Hm) (m > n). ρAS = (ρS ρ2

ρ3 ρ4
) is the density

operator of a quantum state, where ρAS ∈ L(Hm), ρS ∈ L(Hn),
and ρ4 ∈ L(H(m−n) ). There is a map M: L(Hm) → L(Hn)
(the symbols S, A, and AS can be understood as the main sys-
tem used to simulate the PT -symmetric system, the auxiliary
system, and the composite system, respectively). In addition,
for the convenience of expression, we define the “◦” opera-
tion like B ◦ · ≡ B · B†, so we know (B · C) ◦ ρ = (BC) · ρ ·
(C†B†) = B ◦ C ◦ ρ, where ρ can represent any operator.

Next, for the convenience of narration and understanding,
we first introduce the concept of embedding, and then elabo-
rate on its constructions in the next section. In Appendix A,
we also give more details about it.

Note that

KĤAS
= {ρAS|ρAS ∈ L(Hm),M[ĤAS ◦ ρAS]

= HS ◦ M[ρAS],M[UAS ◦ ρAS] = US ◦ M[ρAS]},
(20)

where UAS = e−it ĤAS and US = e−itHS . If M[KĤAS
] = L(Hn),

then it is said that the operator H has the embedding prop-

erty, or the operator H can be embedded into Ĥ , or Ĥ is an
expansion operator of H [45,46].

B. Simulating the dynamics of a PT -symmetric system
with an embedding scheme

1. The embedding scheme in arbitrary mixed states

The essence of the simulation of the dynamics of a PT -
symmetric system is to find a system in the CQM framework
to simulate the evolution and properties of a known PT -
symmetric system. If the non-Hermitian PT -symmetric H is
known, according to Eq. (20), we can find the corresponding
Hermitian Hamiltonian ĤAS . We assume that the composite
system ρAS consists of the auxiliary system A and the main
system S used to simulate the PT -symmetric system. We de-
fine the measurement operator, �k = |k〉A〈k| ⊗ IS, k ∈ {0, 1},
and the map Mk is defined as Mk[ρAS] = TrA[�k ◦ ρAS]; then
after the measurement, the state of the composite system will
be �k ◦ ρAS (unnormalized), and the state of the main system
will be Mk[ρAS] (unnormalized). At the same time, we assume
the Hermitian Hamiltonian of the composite system is

ĤAS =
(

H1 H2

H†
2 H4

)
, (21)

where H1 and H4 are both Hermitian, and assume

ρAS = (|0〉A ⊗ IS + |1〉A ⊗ ξ )ρS (A〈0| ⊗ IS + A〈1| ⊗ ξ )

=
(

ρS ρSξ

ξρS ξρSξ

)
,

(22)

where ξ is a Hermitian operator corresponding to η, and we
can check that ρ

†
AS = ρAS . The ρS is an arbitrary state and can

be expressed as ρS = ∑
mn ρcmn|φm〉〈φn|, where

∑
n ρcnn = 1

and {|φn〉} are the eigenstates of PT -symmetric HS and are
not usually orthogonal. The ρS is not normalized and can be
normalized by Tr(ηρS) ≡ 1 according to the PT -symmetric
inner product or TrρAS = 1. It is worth stressing that the
choices of metric operators are not unique; in fact, any metric
operator that meets this condition η > 1 is legal. We have to
mention that, in practical application, considering the balance
of noise robustness between the main system S and auxiliary
system A in practice, we usually do not choose η too large or
too small; otherwise, for example, when we choose η → IS ,
then ξ → 0, and the original entanglement state will become
almost separable, ρAS = |0〉A〈0| ⊗ ρS , which means decoher-
ence may easily occur.

According to Eq. (20), we obtain that

M0[ĤAS ◦ ρAS] = HS ◦ M0[ρAS] = HS ◦ ρS, (23a)

M0[e−it ĤAS ◦ ρAS] = e−itHAS ◦ M0[ρAS] = e−itHS ◦ ρS. (23b)

Then, substituting each quantity into Eq. (23a), we get

M0

[(
H1 H2

H†
2 H4

)
◦ [(|0〉A ⊗ IS + |1〉A ⊗ ξ )

· ρS · (A〈0| ⊗ IS + A〈1| ⊗ ξ )]

]

= M0

[(
H1 H2

H†
2 H4

)
·
(

IS

ξ

)
◦ ρS

]
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= M0

[(
H1(t ) + H2(t )ξ
H†

2 (t ) + H4(t )ξ

)
◦ ρS

]

= HS ◦ ρS. (24)

Then according to Eq. (23a), and according to Eqs. (18), (19),
and (9), we can infer that

Tr(ρAS ) = Tr[ρS (ξ 2 + IS )] = Tr[ρSη]

= Tr[ρPT ] = Tr[ρc] ≡ 1, (25a)

H1 + H2ξ = HS, (25b)

H†
2 + H4ξ = ξHS. (25c)

Since the standard metric operator ηs > 0, we can always find
a constant β that makes η = βηs > 1. According to the above
equations, and we know ξ is Hermitian, we can obtain

ξ †ξ + IS = η ⇒ ξ = (η − IS )
1
2 , (26a)

H2 = (HS − H1)ξ−1, (26b)

H4 = (ξHS − H†
2 )ξ−1. (26c)

By observing the above equations, we know that H1 is the
only free Hermitian variable, and we may further determine it
by adding more constraints.

Similar to the above, we can also assume that

ρ⊥
AS = (−|0〉A⊗ξ+|1〉A⊗IS )·ρS ·(−A〈0| ⊗ ξ + A〈1| ⊗ IS )

=
(

ξρSξ −ξρS

−ρSξ ρS

)
,

(27)

where ρ⊥
AS is defined in the orthogonal space with ρAS , and

then we can infer that

Tr(ρ⊥
AS) = (Tr)[(ξ †ξ + IS)ρS] ≡ 1, (28a)

−H1ξ + H2 = −ξHS, (28b)

−H†
2 ξ + H4 = HS. (28c)

Then according to Eqs. (26) and (28) we can infer that

ξ = (η − IS )
1
2 , (29a)

H1 = HSη
−1 + ξHSη

−1ξ

= �ES�
† + ξ · �ES�

† · ξ, (29b)

H2 = HSη
−1ξ − ξHSη

−1

= �ES�
† · ξ − ξ · �ES�

†

= −H†
2 , (29c)

H4 = HSη
−1 + ξHSη

−1ξ

= ξ−1(HSη
−1 + ηHS − HS − H†

S )ξ−1 + HSη
−1

= H1, (29d)

where ξ , ηHS , and HSη
−1 are all Hermitian, so it is easy to

verify that H1 and H4 are Hermitian, and H2 is anti-Hermitian.

Therefore, we obtain the unique Hermitian dilation of HS , i.e.,

ĤAS = IA ⊗ H1 + iσy ⊗ H2

= IA⊗(HSη
−1+ξHSη

−1ξ )+iσy⊗(HSη
−1ξ−ξHSη

−1)

= V ◦ [IA ⊗ ES],
(30)

where

V = 1√
2

[(IA + iσx ) ⊗ IS − i(σy + σz ) ⊗ ξ ] · IA ⊗ �

= 1√
2

(
�+ i�−
i�+ �−

)

= 1√
2

(
(IS − iξ )� i(IS + iξ )�
i(IS − iξ )� (IS + iξ )�

)
. (31)

Noting that V is unitary but not unique, and we record �+ =
(IS − iξ )� and �− = (IS + iξ )� here. Obviously, they are all
unitary operators; then H1 + iH2 = (IS − iξ )� ◦ ES = �+ ◦
ES , H1 − iH2 = (IS + iξ )� ◦ ES = �− ◦ ES , and they are all
Hermitian, (IS ± iξ ) · (IS ± iξ )† = η. By observing Eq. (30),
we know this embedding scheme only needs one auxiliary
qubit, and the dilated system ĤAS actually doubles the degen-
eracy of the original system HS . It is worth noting that the
dilated method given in Ref. [32] is only the special case of
two-dimensional and pure states, so it is not universal.

If we set ρS = ρS (0), ρAS = ρAS (0), then, according to the
above analysis and Eq. (23b), we can get

ρAS (t ) = UAS (t ) ◦ ρAS (0) = e−it ĤAS · ρAS (0) · eitĤAS

⇒ ρS (t ) = US (t ) ◦ ρS (0) = e−itHS · ρS (0) · eitH†
S .

(32)

Therefore, the embedding scheme is completed (see
Appendix A for details). It is worth emphasizing that ρAS (t )
is still the legal density operator, i.e., the positive-semidefinite
(i.e., Hermitian) operator with unit trace (see Appendix B for
the proof).

Reviewing the above whole embedding process, we know
the low-dimensional non-Hermitian PT -symmetry-unbroken
system HS dominated by the PT -QM can be understood as
being a result of the fixed postselection (

∏
0) of a higher-

dimensional Hermitian system ĤAS dominated by the CQM.
After the fixed postselection, the system will evolve in the way
required by PT -QM in the remaining Hilbert subspace.

2. The success probability of the embedding scheme

The success probability is the key prob-
lem in the simulation of the dynamics of a
PT -symmetric system, which largely determines the
applicability of the scheme; however, there are few
discussions about it [23], so we discuss this particular
problem in this section.

According to Eq. (32), the state ρS (t ) can be calculated as

ρS (t ) = e−itHS ρSeitH†
S

= η− 1
2 e−ithη

1
2 · ρS · η

1
2 eithη− 1

2

= η− 1
2 e−ith · �S · eithη− 1

2

= η− 1
2 �S (t )η− 1

2 , (33)
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where

�S = η
1
2 · ρS · η

1
2

=
∑
mn

ρSmn|ψm〉〈ψn|. (34)

Here �S is the density operator in the CQM framework, which
is in fact the density operator ρPT in Eq. (18), and {|ψn〉 =
η1/2|φn〉} constitutes a set of complete orthogonal eigenstates,
while {|φn〉, |χn〉} is the complete biorthogonal eigenstates of
HS . And then

�S (t ) = e−ith · �S · eith, (35)

where

h = η
1
2 · HS · η− 1

2 = W · ES · W † (36)

is the Hermitian Hamiltonian in the CQM framework corre-
sponding to the non-Hermitian Hamiltonian HS in PT -QM,
ES is the diagonal matrix consisting of the eigenvalues of h,
which has the same eigenvalues as HS , and W is the unitary
matrix in the spectral decomposition and not unique, and can
be taken as W = η

1
2 · �. The physical meanings of h and HS

are in fact similar with the corresponding operators in Eq. (5).
We will see later that writing the density operator and the
Hamiltonian with the CQM framework will provide us some
mathematical intuition. After that, we know

Tr(ηρS (t )) = Tr(�S (t )) = Tr(�S ) = Tr(ηρS ) = 1. (37)

At the same time, we can obtain the success probability of
projection measurement �0 at time t :

P0(t ) = Tr(ρS (t ))

= Tr(η−1�S (t ))

= Tr(η−1 · We−iESt · W †�SW · eiEStW †). (38)

The physical meaning of P0 is the success probability of sim-
ulating PT -symmetric systems with the embedding method,
so, in general, P0 is not unitary except for some special cases
(such as some special time for special states, which can be
seen in the Fig. 3 in the examples given in Sec. VI).

However, according to Eq. (36), we can obtain that

[η−1, h] = η−1 · η1/2HSη
−1/2 − η1/2HSη

−1/2 · η−1

= η−1/2(HS − H†
S )η−1/2

�= 0, (39)

i.e., η−1 does not commute with h, so they do not have a
set of identical complete eigenstates, and thus the state �(t )
will not always remain in the eigenstates of η−1, which means
the success probability P0(t ) will not be constant. Besides, by
observing Eq. (38), we know that P0(t ) will oscillate period-
ically. Therefore, it will be very necessary and meaningful to
estimate the upper and lower bounds of the success probability
of the simulation scheme when considering practical applica-
tions in experiments, so the amount of resources needed can
be estimated in advance when designing the experiment.

Assume that {λn} is the spectrum of the metric operator η,
according to our discussions above Eq. (26), and η > 1, so all
λn > 1, and we record the maximum and minimum as λmax

FIG. 1. The scheme of simulating the dynamics of a PT -
symmetric system with a LOCC protocol based on an embedding
scheme.

and λmin, respectively. Then according to Eq. (38), the bound
of the success probability can be obtained directly:

1

λmax
� P0(t ) = Tr(ρS (t )) � 1

λmin
, (40)

where the equal sign holds when the �S (t ) in Eq. (38) happens
to be the eigenstate of η−1 corresponding to the minimum
(maximum) eigenvalue at time t . It is particularly worth noting
that 1/λmax and 1/λmin are the infimum and supremum of
this embedding scheme, respectively, which do not depend
on any state and time but only depend on the selection of
the metric operator η [it will be seen more clearly in the
example given in Eq. (64)], and it means that the success
probability of this scheme is bounded by the system itself, and
the η has to be carefully designed in order to achieve a good
balance between the success probability of the simulation and
experimental convenience. At the same time, we know that
when the non-Hermitian degree is very small, especially when
it is small to zero, the system HS will be Hermitian (HS = H†

S )
and η can be I . Then λmax = λmin = 1, the success probability
will reach 100% exactly and be always 100%, which can
also be verified by the discussions surrounding Eq. (39), and
then ξ = 0, ρAS (t ) = |0〉A〈0| ⊗ ρS (t ), all of which completely
meet our physical intuition.

IV. SIMULATING THE DYNAMICS OF A
PT -SYMMETRIC SYSTEM WITH A LOCC PROTOCOL

BASED ON AN EMBEDDING SCHEME

A. The LOCC protocol based on an embedding scheme

However, reviewing the whole embedding scheme process,
we find that some resources are wasted because the part ξρSξ

in ρAS in Eq. (22) is thrown away in application, which will
inevitably lead to a low success probability of the simulation
scheme. In the following, we extract ρS from ξρSξ with a
LOCC protocol. The LOCC protocol can be implemented in
three steps as follows (see Fig. 1):

(1) Prepare the initial state ρAS (0) = ( ρS (0) ρS (0)ξ
ξρS (0) ξρS (0)ξ ); Al-

ice possesses the auxiliary system (a single qubit), and Bob
possesses the simulated system.

(2) Evolve the state ρAS (0) under the dilated
Hermitian Hamiltonian ĤAS for period t , and then
ρAS (t ) = ( ρS (t ) ρS (t )ξ

ξρS (t ) ξρS (t )ξ ) is obtained.
(3) Alice performs a two-outcome measurement described

by measurement operators {�0,�1} on her qubit (recalling
that �0 = |0〉A〈0| ⊗ IS,�1 = |1〉A〈1| ⊗ IS) corresponding to
the results “0” and “1”, respectively. After the measurement,
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(i) if Alice gets the result “0”, the state in Bob’s system will
become ρS (t ); then she instructs Bob to do nothing.

(ii) else if Alice gets the result “1”, the state in Bob’s system
will become ξρS (t )ξ ; then she instructs Bob to make a
recovery operation,

R = cξ−1 (0 � cξ−1 � 1), (41)

to restore it to the state ρS (t ).

B. The success probability of the LOCC protocol scheme

We now discuss the success probability of the LOCC proto-
col. In the third step of our LOCC protocol scheme, according
to Eq. (38), we have known that the success probability of the
projection (postselection) �0 is P0(t ) = Tr(ρS(t)). We next
calculate the success probability of the projection �1:

P1(t ) = Tr(ξρS (t )ξ )

= Tr[(η − IS ) · ρS (t )]

= 1 − Tr(ρS (t ))

= 1 − P0(t ). (42)

Here P1(t ) = 1 − P0(t ) can also be given directly because
{�0,�1} constitutes a set of complete measurement. When
Alice gets the result “1”, she can make an operation cξ−1 to
restore the state ρS (t ). As we know from Eq. (26a) ξ = (η −
IS )

1
2 , so the spectrum of the ξ−1 will be {1/

√
λn − 1}. Accord-

ing to the condition of quantum operations, c2ξ−1†
ξ−1 � 1,

we obtain that c � √
λmin − 1, so we can take c = √

λmin − 1
to maximize the success probability. Therefore, the total suc-
cess probability of our LOCC protocol becomes

PLOCC(t ) = Tr(ρS (t )) + Tr(cξ−1 · ξρS (t )ξ · ξ−1c)

= (c2 + 1)Tr(ρS (t )) = λminP0(t ). (43)

The physical meaning of PLOCC is the success probability of
simulating PT -symmetric systems with the LOCC protocol,
so, in general, PLOCC is not unitary except for some special
cases (such as some special time for special states, which can
be seen in Fig. 5 in the examples given in Sec. VI).

Then we can obtain the bound of the success probability of
our LOCC protocol:

λmin

λmax
� PLOCC(t ) � λmin

λmin
= 1. (44)

Here λmin/λmax and 1 are the infimum and supremum of the
success probability of our LOCC protocol, respectively. Note
that neither λmin/λmax nor 1 depends on the selection of the
metric operator η, but only on the ratio of the minimum
eigenvalue λmin to the maximum eigenvalue λmax of η, which

means that this LOCC protocol scheme has more flexibility in
the selection of the metric operators η and more adaptability
in practical applications than the embedding scheme.

Comparing Eq. (40) with Eq. (44), we can find the fact that
this LOCC protocol increases the success probability of the
original embedding scheme to λmin (λmin > 1) times, and it
is worth emphasizing that the infimum of success probability
of the original embedding scheme is only 1/λmax, while it is
λmin/λmax in our LOCC protocol; the supremum of success
probability of the original embedding method is only 1/λmin

(it cannot reach 100%, in any case), while it is 100% in our
LOCC protocol. This is one of the important proofs of the
advantage of our scheme, and can be seen more clearly in
the example given in Eq. (67). When the Hamiltonian HS is
Hermitian, the two schemes will be equal because η = IS , ξ =
0, and the density operator will be a separable state ρAS (t ) =
|0〉A〈0| ⊗ ρS (t ). Another advantage of this LOCC protocol is
that it does not depend on the special state or time, and the
recovery operation cξ−1 is time independent; therefore, this
protocol can be conveniently applied in practice.

V. FURTHER STUDY: THE RELATION BETWEEN THE
LOWER BOUND OF the SUCCESS PROBABILITY AND

THE DEGREE OF NON-HERMITICITY

As we all know, any non-Hermitian operator H (�α) can be
decomposed into

H (�α) = Hr (�α) + iHi(�α), (45)

where �α = (α1, α2, . . .) represents the set of parameters (the
metric operator can be written as η(�α); for convenience, it will
be omitted later), Hr = (H + H†)/2 and Hi = (H − H†)/2i
are both Hermitian, and Hr and iHi represent the Hermi-
tian and non-Hermitian (anti-Hermitian) parts, respectively.
We define a quantity dnh to characterize the degree of non-
Hermiticity (or anti-Hermitian) as follows:

dnh ≡ ‖Hi‖F

‖H‖F
≡ ‖H − H†‖F

2‖H‖F
� ‖H‖F + ‖H†‖F

2‖H‖F
= 1, (46)

where the subscript “F” indicates the Frobenius norm, so we
know dnh ∈ [0, 1]; when H is completely Hermitian, dnd = 0,
and when H is completely anti-Hermitian, dnd = 1.

After that, using the matrix vectorization skills mentioned
in the Appendix of Ref. [49], i.e.,

−−−−−→
A · X · B = A ⊗ BT · �X ,

where �X is constituted by stacking each row of matrix X into
a column one by one, and knowing that for any vector �X ,
‖ �X‖F = ‖ �X‖2, then, according to the property of the norm,
we can obtain that

‖H − H†‖F = ‖H − ηHη−1‖F = ‖
−−−−−−−→
H − ηHη−1‖F = ‖ �H − η ⊗ ηT−1 �H‖F = ‖(I − η ⊗ ηT−1

) �H‖F

= ‖(I − η ⊗ ηT−1
) �H‖2 � ‖(I − η ⊗ ηT−1

)‖2 · ‖ �H‖2 = ‖(I − η ⊗ ηT−1
)‖2 · ‖ �H‖F = ‖(I − η ⊗ ηT−1

)‖2 · ‖H‖F ,

(47)

where η = η(�α). Therefore, according to ‖η‖ · ‖η−1‖ � ‖η · η−1‖ = ‖I‖ and Eq. (46),

dnh � 1

2
‖η ⊗ ηT−1 − I‖2 = 1

2
‖η ⊗ η−1 − I‖2 = 1

2
‖λ(η) ⊗ λ(η−1) − I‖2 = 1

2

(
λmax

λmin
− 1

)
, (48)
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where λ(η) represents the diagonal matrix constituted by the
eigenvalue of η, and the above derivation uses the Hermitian
property of η, i.e., its eigenvalues (marked by λi) are real.
Then according to Eq. (48), we can get

λmin

λmax
� 1

2dnh + 1
,

λmax

λmin
� 2dnh + 1 ∈ [1, 3],

⇒ cprotocol

λmax
� cprotocol

λmin(2dnh + 1)
, (49)

where cprotocol is the coefficient based on the embedding
scheme optimized by a protocol; once the protocol is selected,
this coefficient will be determined. It is worth emphasizing
that the above result is general; i.e., in a PT -symmetric
system (whether broken or not), all the spectrums of its
metric operators obey this law: the ratio of the maximum
eigenvalue to the minimum eigenvalue of the metric opera-
tors must be greater than or equal to two times the degree
of non-Hermiticity dnh plus one. The above results are also
meaningful for us to understand the spectrum structure of
those legitimate metric operators in the simulation of a PT -
symmetry-unbroken system. The result of the LOCC protocol
given in Eq. (44) also obeys this law.

Therefore, according to the above analysis we can get a
conclusion: in the simulation of a PT -symmetry-unbroken
system based on the embedding method, once the metric
operator η (η > 1) and the protocol are selected, the lower
bound of the success probability will decrease with the degree
of non-Hermiticity, dnh. From the derivation process above,
we know that we did not assume specific protocols in our
derivations, so this conclusion has no dependence on the spe-
cific protocol; in other words, this conclusion also holds true
in the general protocol.

Then according to the conditions required by the em-
bedding method in the main text λi � 1, and if we choose
λmin → 1, we can get the infimum of success probability of
the embedding method according to Eq. (48) and the result of
the embedding method given in Eq. (40) in the above section:

1

λmax
� 1

2dnh + 1
. (50)

We can check that the above conclusion and the result
given in Eq. (49) are all true by comparing them with Eq. (64)
(the embedding method) and Eq. (66) (the LOCC protocol) in
the example given in the next section (for example, we can
set r = s).

VI. AN EXAMPLE: TWO-DIMENSIONAL
PT -SYMMETRIC SYSTEM

In this section, we consider a two-dimensional PT -
symmetric system,

HS =
(

reiθ s
s re−iθ

)
, r, s ∈ R, θ ∈ [−π/2, π/2],

(51)

where P (P = σx ) denotes the parity operator, T (T = I)
denotes the time reflection and complex conjugation operator,
and θ characterizes the non-Hermiticity of the Hamiltonian HS

(when θ = 0, HS will be Hermitian, and the non-Hermiticity
increases with |θ |). The eigenvalues of HS are E± = r cos θ ±

√
s2 − r2 sin2 θ , and when s2 − r2 sin2 θ > 0, HS is PT -

symmetry unbroken; otherwise, when s2 − r2 sin2 θ < 0, HS

is PT -symmetry broken, and then the two eigenvalues
are conjugate. According to Eq. (46) we can compute the
dnh of HS ,

dnh = r| sin θ |√
r2 + s2

= s| sin α|√
r2 + s2

<
r| sin θ |√

r2 + r2 sin2 θ

= | sin θ |√
1 + sin2 θ

� 1

2
, (52)

where “<” is caused by the constraint of the PT -symmetry-
unbroken condition: s2 − r2 sin2 θ > 0, and we have set
sin α = r sin θ/s, so the meaning of α is similar to θ . We
can check that when s = 0 or θ = 0, HS is Hermitian and
the corresponding dnh = 0; when s = 0 and θ = 0, HS is anti-
Hermitian and dnh=1.

The normalized standard eigenstates of HS are

|φs+〉 = 1√
2

(
eiα/2

e−iα/2

)
, |φs−〉 = i√

2

(
e−iα/2

−eiα/2

)
. (53)

Then we can get the eigenstates of H†
S though H†

S (θ ) =
HS (−θ ) so H†

S (α) = HS (−α):

|χs+〉= 1√
2 cos α

(
e−iα/2

eiα/2

)
, |χs−〉= i√

2 cos α

(
eiα/2

−e−iα/2

)
.

(54)

It can be verified that 〈χs p|φsq〉 = δpq, where p, q ∈ {+,−}.
Then according to Eq. (12), ηs will be

ηs =
∑

p={+,−}
|χs p〉〈χs p| = 1

cos2 α

(
1 −i sin α

i sin α 1

)
, (55)

where the eigenvectors of η are |η+〉 = 1/
√

2 (1, i)T and
|η−〉 = 1/

√
2 (1,−i)T , and the corresponding eigenvalues are

1/(1 − sin α) and 1/(1 + sin α), respectively, so the condition
ηs > 1 does not hold and then Eq. (26a) will have no solution.
Therefore, in order to make η > 1, we take

η = 2ηs = 2

cos2 α

(
1 −i sin α

i sin α 1

)
,

η−1 = 1

2
η−1

s = 1

2

(
1 i sin α

−i sin α 1

)
,

(56)

and then the corresponding biorthogonal eigenstates of HS

will be {|φp〉, |χp〉} = {1/
√

2|φs p〉,
√

2|χs p〉}. It is easy to
know the maximum (minimum) eigenvalue of η is λmax(min) =
2/(1 ∓ | sin α|), so η > 1, and then

ξ =
√

η − 1 = 1

cos α

(
1 −i sin α

i sin α 1

)
,

ξ−1 = 1√
η − 1

= 1

cos α

(
1 i sin α

−i sin α 1

)
, (57)

where we can see ξ = 1/2 cos α η and ξ−1 = 2/ cos α η−1 in a
two-dimensional system, and we need to note that there is usu-
ally no such simple correspondence in the higher-dimensional
cases. Thereafter, according to Eqs. (29) and (30), we can give
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the Hermitian dilation of HS directly:

ĤAS = IA ⊗ (r cos θ IA + s cos2 ασx ) − s cos α sin ασy ⊗ σz

= IA ⊗ (
√

r2 − s2 sin2 α IA + s cos2 ασx )

− s cos α sin ασy ⊗ σz

= V · IA ⊗ ES · V †,

(58)

where the matrix ES = diag(E+, E−), and V can be

V = 1√
2

⎛
⎜⎝

1 1 0 0
cos α − cos α sin α − sin α

−i sin α i sin α i cos α −i cos α

0 0 i i

⎞
⎟⎠. (59)

It is worth noting that if we rewrite r cos θ as E0, then the
Hamiltonian ĤAS in Eq. (58) will be the same as the “HS”

below Eq. (12) in Ref. [32]. After that, according to Eq. (20),
the UAS (t ) will be

UAS (t ) = V · IA ⊗ e−iESt · V †. (60)

For the convenience of calculation, we use the CQM frame-
work, and we assume �S is in one of the eigenstates of
η−1, i.e., �S = |η+〉〈η+| = 1/2 (1, i)T · (1, i)∗; then the ini-
tial state ρS = η−1/2�Sη

−1/2 = 1−sin α
4 (1 −i

i 1 ). According to
Eq. (36), we can get

h = W · ES · W †,

Uh(t ) = e−iht = W · e−iESt · W †,
(61)

where W = 1√
2
(
1 1
1 −1). Then according to Eqs. (35) and

(33) we obtain that

�S (t ) = Uh(t ) · �S · U †
h (t )

=
(

sin2 x −i sin x cos x
i sin x cos x cos2 x

)
, (62a)

ρS (t ) = η− 1
2 · �S (t ) · η− 1

2

= 1

4

(
1 − cos α cos 2x − sin α sin 2x i(sin α − sin 2x)

−i(sin α − sin 2x) 1 + cos α cos 2x − sin α sin 2x

)
, (62b)

where x = st cos α + π/4, and the parameter r is contained in
α. Thus according to Eq. (38) we get the success probability,

P0(t ) = Tr(η−1�S (t )) = 1 − cos(2st cos α) sin α

2
, (63)

where P0 is the function of α and t . Therefore, we can get the
bound

1 − | sin α|
2

� P0(t ) � 1 + | sin α|
2

, (64)

where 1−| sin α|
2 and 1+| sin α|

2 are just the infimum 1/λmax and
the supremum 1/λmin respectively derived in Eq. (40). We
can check that this result meets the result in Eq. (50). By
observing the above equation, it is obvious that when t =
kπ/s cos α, k ∈ Z, P0 = (1 − sin α)/2, which is just the in-
fimum 1/λmax (or supremum 1/λmin) in Eq. (40), and when
t = (2k + 1)π/2s cos α, k ∈ Z, P0 = (1 + sin α)/2, which is
the supremum 1/λmin (or infimum 1/λmax), and we can see
the success probability P0 oscillates periodically with time t
between the infimum and the supremum, and the oscillation
period is π/s cos α. It is worth noting that the infimum and
the supremum depend on the special selection of η, and when
α = 0, i.e., θ = 0, then the Hamiltonian HS in Eq. (51) will be
Hermitian. We intuitively know that the success probability
of the simulation should be 100%, but according to Eq. (63)
above, P0 = 1/2, which is caused by η should have been
chosen as η = I; then the infimum and the supremum will be
both 100%.

Figure 2 shows the three views of the relation between the
success probability and time t and parameter α, and Fig. 2(a)
is the overall figure. From these figures, we can clearly see

the periodic characteristics of the success probability curve.
From Fig. 2(c), we can see that when the non-Hermiticity that
can be characterized by |α| [when r, s are fixed; see Eq. (52)]
becomes smaller, the success probability of the simulation,
P0, will be more stable. This case can also be understood
from the infimum and supremum of Eq. (63), and even when
α = 0, P0 will remain unchanged; from the above analysis,
we know this phenomenon is caused by the system becoming
Hermitian. From Fig. 2(d), we can see that P0 shows a period-
ical change with time t and P0(α) is symmetric with P0(−α)
about P0 = 1/2, which can also be understood by Eq. (63).
Figure 2(b) also shows some regular structures, which can
be seen more clearly in Fig. 3. From Fig. 3, we can clearly
see that P0 oscillates with t sinusoidally, and the amplitude
decreases with the increase of |α|, but the oscillation period
increases with |α|. Next, according to Eqs. (62a) and (22),
we obtain ρAS (t ) = ( ρS (t ) ρS (t )ξ

ξρS (t ) ξρS (t )ξ ), where ξ was given in

Eq. (57). Then according to the condition c � √
λmin − 1 we

can take c = √
λmin − 1 = cos α

2 −| sin α
2 |

cos α
2 +| sin α

2 | , and then according
to Eq. (41) we can use the following recovery operation to
restore the state ρS (t ):

R =
√

λmin − 1 ξ−1

= cos α
2 − | sin α

2 |
cos α(cos α

2 + | sin α
2 |)

(
1 i sin α

−i sin α 1

)
, (65)

where R is a measurement operator.
Then according to Eqs. (43) and (63), we can obtain that

PLOCC(t ) = λminP0(t ) = 1 − cos(2st cos α) sin α

1 + | sin α| , (66)
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FIG. 2. The success probability P0 of the embedding scheme in a two-dimensional system (s, t have the energy dimension and time
dimension, respectively, and their units can be determined by st = h̄; we set s = 1 here). (a) The relation between the success probability and
time t and parameter α, (b) the front view, (c) the side view, and (d) the vertical view.

and it is easy to check that

1 − | sin α|
1 + | sin α| � PLOCC � 1 − | sin α|

1 − | sin α| = 1. (67)

We can check that this result meets Eq. (49). By comparing
Eqs. (66) and (67) with Eqs. (63) and (64), we can verify that
this LOCC protocol scheme increases the success probability
of the simulation to λmin times, which can be seen by compar-
ing Fig. 5 with Fig. 3 and Fig. 4(d) with Fig. 2(d). Comparing

Fig. 4(c) with Fig. 2(c), we can find that the infimum of the
success probability of this LOCC protocol can be increased to
100% with the decreases of |α|, but the original embedding
scheme can only be increased to 1/2, which means the LOCC
protocol scheme is more in line with physical reality than the
original embedding scheme. Meanwhile, the LOCC protocol
scheme does not depend on the special selection of the metric
operator η as seriously as the embedding scheme but on the
ratio λmin/λmax; in other words, the LOCC protocol scheme
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FIG. 3. The success probability P0 of the embedding scheme in a two-dimensional system with different α (s, t have the energy dimension
and time dimension, respectively, and their units can be determined by st = h̄; we set s = 1 here), and the corresponding infimum (green
dashed line) and supremum (red dotted line). (a–f) The cases under different parameters α.
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FIG. 4. The success probability PLOCC of the LOCC protocol scheme in a two-dimensional system (s, t have the energy dimension and
time dimension, respectively, and their units can be determined by st = h̄; we set s = 1 here). (a) The relation between the success probability
and time t and parameter α, (b) the front view, (c) the side view, and (d) the vertical view.

has less dependence on but more flexibility in the selection
of η and more adaptability in practical applications than the
embedding scheme.

VII. CONCLUSIONS AND DISCUSSIONS

In this work, by clarifying some common confusions in the
simulation of a PT -symmetric system, we naturally extend
the embedding simulation scheme of the PT -symmetry-
unbroken system from a pure-states case to a mixed-states
case, and then we analyze the key but usually neglected

problem of success probability, and give a concise bound.
Based on the above analyses and derivations, we find the
embedding scheme is usually not effective enough because
some resources are wasted. Therefore, we propose a LOCC
protocol scheme based on the embedding scheme to simulate
the PT -symmetry-unbroken system more effectively. Both
the embedding scheme and the LOCC protocol scheme need
only one qubit as an auxiliary system to simulate the dynamics
of any arbitrary finite-dimensional PT -symmetric system in
the PT -unbroken phase. Our LOCC protocol scheme has at
least three main advantages over the embedding scheme: (1) it
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FIG. 5. The success probability PLOCC of the LOCC protocol scheme in a two-dimensional system with different α (s, t have the energy
dimension and time dimension, respectively, and their units can be determined by st = h̄; we set s = 1 here), and the corresponding infimum
(green dashed line) and supremum (red dotted line). (a–f) The cases under different parameters α.
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increases the success probability to λmin (λmin > 1) times, (2)
it has less dependence on but more flexibility in the special
selection of the metric operator η and more adaptability in
practical applications, and (3) it is more in line with our phys-
ical intuition than the embedding scheme. We then further
study the relation between the lower bound of the success
probability and the degree of non-Hermiticity, and give a gen-
eral lower bound that does not depend on the specific protocol.

In addition, we also noticed the work of Huang et al. re-
garding the simulation of an arbitrary PT -symmetric system
including the broken case using the generalized embedding
scheme and weak measurement [66]. However, it seems that
this scheme cannot be directly extended to the LOCC protocol
scheme in the broken case of a PT -symmetric system because
the metric operator may not be positive.

Finally, we go back and try to discuss the physical or
philosophical meaning behind the embedding scheme and
the LOCC protocol scheme. According to the analyses of
the embedding scheme and its success probability above in
Sec. III, we can find this fact: For a low-dimensional observer
in the subspace of dilated higher-dimensional ĤAS , i.e., the
space of the PT -symmetric system HS , the event that the
state ρS (0) evolves to the state ρS (t ) will happen determi-
nately; however, from the perspective of a higher-dimensional
observer located in the higher-dimensional space of ĤAS and
dominated by the CQM, this event will happen casually.
More specifically, this event happens with probability P0(t ),
while in another branch, ρS evolves to ξρS (t )ξ with 1 − P0(t ),
while the low-dimensional observer imprisoned in the low-
dimensional space of HS and dominated by the PT -QM is
not able to discover this truth except for communicating with
the higher-dimensional observer.
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APPENDIX A: THE DETAILS OF THE EMBEDDING
PROCESS

According to the derivation process between Eq. (24) and
Eq. (30), especially Eq. (25), and recalling the operation rules
of the symbol “◦” defined above Eq. (20), i.e., (B · C) ◦ ρ =
(BC) · ρ · (C†B†) = B ◦ C ◦ ρ, we know that

ĤAS ◦ ρAS =
(

H1 H2

H†
2 H4

)
◦ (|0〉A ⊗ IS + |1〉A ⊗ ξ ) ◦ ρS

=
[(

H1 H2

H†
2 H4

)
· (|0〉A ⊗ IS + |1〉A ⊗ ξ )

]
◦ ρS

=
(

H1 + H2ξ

H†
2 + H4ξ

)
◦ ρS

=
(

HS

ξ · HS

)
◦ ρS

= [(|0〉A ⊗ IS + |1〉A ⊗ ξ ) · HS] ◦ ρS

= (|0〉A ⊗ IS + |1〉A ⊗ ξ ) ◦ HS ◦ ρS. (A1)

Repeating the above derivation process, we can obtain that

Ĥ2
AS ◦ ρAS = ĤAS ◦ ĤAS ◦ ρAS

= ĤAS ◦ [(|0〉A ⊗ IS + |1〉A ⊗ ξ ) · HS] ◦ ρS

= [(|0〉A ⊗ IS + |1〉A ⊗ ξ ) · HS · HS] ◦ ρS

= (|0〉A ⊗ IS + |1〉A ⊗ ξ ) ◦ H2
S ◦ ρS. (A2)

Therefore, we can get

Ĥn
AS ◦ ρAS = (|0〉A ⊗ IS + |1〉A ⊗ ξ ) ◦ Hn

S ◦ ρS, n ∈ N,

(A3)

if we set ρS = ρS (0), ρAS = ρAS (0). Then according to the
Taylor expansion formula

ρAS (t ) = UAS (t ) ◦ ρAS (0)

= e−it ĤAS ◦ ρAS (0)

=
(∑

n

−it Ĥn
AS

n!

)
◦ ρAS (0)

= (|0〉A ⊗ IS + |1〉A ⊗ ξ ) ◦
(∑

n

−itHn
S

n!

)
◦ ρS (0)

= (|0〉A ⊗ IS + |1〉A ⊗ ξ ) ◦ e−itHS ◦ ρS (0)

= (|0〉A ⊗ IS + |1〉A ⊗ ξ ) ◦ US (t ) ◦ ρS (0)

= (|0〉A ⊗ IS + |1〉A ⊗ ξ ) ◦ ρS (t ), (A4)

where UAS = e−it ĤAS , US (t ) = e−itHS , and ρS (t ) = US (t ) ◦
ρS (0) = US (t ) · ρS (0) · U†

S (t ). Finally, we can get

M0[ρAS (t )] = M0[(|0〉A ⊗ IS + |1〉A ⊗ ξ ) ◦ ρS (t )]

= ρS (t ). (A5)

APPENDIX B: EXPLANATIONS OF THE RATIONALITY
OF THE INTRODUCED ρS AND THE LEGITIMACY OF

THE DENSITY OPERATOR ρAS

First, we prove the rationality of the introduced ρS [ρS can
be ρS (0) or ρS (t )]. According to Eqs. (18) and (19), we can
get

ρS = ρPT · η−1

= η
1
2 · ρc · η

1
2 , (B1)

where η is the metric operator, which is always positive in
the PT -symmetry-unbroken case and in fact η > 1 in our
assumption of the main text (in the PT -symmetry-broken
case, η may not be positive [16,24,45]), and ρc is a legal
density operator as we have known in the main text, i.e., ρc is
a positive-semidefinite operator. And from Eq. (B1), we know
ρS is Hermitian. Therefore, we assume that for any vector
|x〉, which is an arbitrary state (vector), and |y〉 = η

1
2 |x〉, it is
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obvious that

〈x|ρS|x〉 = 〈y|ρc|y〉 � 0, (B2)

so ρS is a positive-semidefinite operator. However, according
to Eqs. (19) and (25a), Tr(ρS ) � Tr(ηρS ) ≡ 1, so it is actually
an unnormalized density operator (hence Hermitian opera-
tor) with Tr(ρc) ≡ 1. Note that all the density operators (ρc)
and unnormalized density operators (ρS) are Hermitian in the
framework of CQM, while the density operators (ρPT ) are
non-Hermitian in the framework of PT -QM.

Then ρS can be seen as a normalized form of the density
operator ρSnormalized:

ρSnormalized = TrA(
∏

0 ρAS )

TrAS (
∏

0 ρAS )
= ρS

Tr(ρS )
, (B3)

where Tr(ρSnormalized ) = 1, and because we have proved ρS

is a positive-semidefinite operator (and obviously Hermitian),
ρSnormalized is a legal density operator. In addition, the probabil-
ity of getting the result “0” corresponding to the measurement
�0 is P0 = TrAS (

∏
0 ρAS ) = Tr(ρS ). As we all know, in a prac-

tical experiment, both ρSnormalized and P0 can be obtained, so ρS

can also be obtained. The unnormalized density matrix ρS ac-
tually absorbs the probability P0. It is worth noting that when
ρS (0) evolves to ρS (t ), their traces are not equal in general,
and the probability P0 will change from P0(0) = Tr(ρS (0))
to P0(t ) = Tr(ρS (t )) [in the embedding method, we always
have P0(t ) � 1 according to Eq. (38)]. Therefore, replacing
the normalized state ρSnormalized with the unnormalized state ρS

will provide a lot of convenience in expressing and calculating
probability [such as Eqs. (38) and (43)] and meet the usage
requirements. On the premise of no misunderstanding, we
usually default that the two are equivalent and only strictly
distinguish them when calculating probability (the normaliza-
tion often occurs when calculating probability), and this is a
very common practice (such as Eqs. (13) and (18) in Ref. [30],
and Eqs. (36)–(38) in Ref. [31]). In particular, Eqs. (14) and
(15) in Ref. [32] are just a special case of our case (pure state
and just the two-dimensional case), and it is worth noting that
the embedding method can also be realized experimentally in
Ref. [62].

In summary, the introduction of the unnormalized density
operator ρS is not only reasonable, but also experimentally
feasible.

Next, we prove the legitimacy of ρAS [ρAS can be ρAS (0) or
ρAS (t )]. According to Eq. (19), ρS can be expressed as

ρS =
∑
mn

ρcmn|φm〉〈φn|, (B4)

where the matrix element ρcmn is also the matrix element of ρc

under its complete orthogonal bases {|n〉}, which can be seen
from Eq. (18). Then we assume |νn〉 = (|0〉A ⊗ IS + |1〉A ⊗
ξ )|φn〉, and according to Eq. (9) we know

〈νm|νn〉 = 〈φm|(〈0| ⊗ IS + 〈1| ⊗ ξ )

· (|0〉A ⊗ IS + |1〉A ⊗ ξ )|φn〉
= 〈φm|η|φn〉
= 0, (B5)

where η = ξ 2 + IS . That means {|νn〉} can form a set of or-
thogonal bases. (In fact, |φn〉 is n dimensional, but |νn〉 is 2n
dimensional, so the base {|νn〉} is incomplete; however, we
can add another n suitable bases to construct the complete
orthogonal bases. In this way, all the other matrix elements are
zero except the element occupied by ρcmn.) Then, according to
Eqs. (22) and (26a), we can get

ρAS = (|0〉A ⊗ IS + |1〉A ⊗ ξ )ρS (〈0| ⊗ IS + 〈1| ⊗ ξ )

=
∑
mn

ρcmn|νm〉〈νn|, (B6)

where the matrix elements ρcmn are just the same as the
matrix elements of ρc, which is a legal density operator, and
it is obvious Tr(ρAS ) ≡ 1 according to Eq. (25a), so ρAS is
also obviously a legal density operator. Therefore, when we
set ρAS (0) = ρAS , according to Eq. (32) and Appendix A,
ρAS (t ) = e−it ĤAS · ρAS (0) · eitĤAS is also a legal density oper-
ator, i.e., a positive-semidefinite (hence Hermitian) operator
with unit trace.
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