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Quantum state preparation by adiabatic evolution with custom gates
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Quantum state preparation by adiabatic evolution is currently rendered ineffective by the long implementation
times of the underlying quantum circuits, comparable to the decoherence time of present and near-term quantum
devices. These implementation times can be significantly reduced by realizing these circuits with custom gates.
Using classical computing, we model the output of a realistic two-qubit processor implementing the adiabatic
evolution of a two-spin system by means of custom gates. This modeled output is then compared with the results
of quantum simulations solving the same problem on IBM Quantum (IBMQ) systems. When used to emulate
the behavior of the IBMQ quantum circuit, our realistic model yields state fidelities ranging from 65% to 85%,
similar to the actual performance of a diverse set of IBMQ devices. When we reduced the implementation
time by using custom gates, however, the loss of fidelity was reduced by at least a factor of 4, allowing us to
accurately extract the energy of the target state. This improvement is enough to render adiabatic evolution useful
for quantum state preparation for small systems or as a preconditioner for other state preparation methods.
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I. INTRODUCTION

Quantum computing holds the key to efficiently solving
problems that are intractable on classical computers [1,2].
One such problem is that of simulating the dynamics of large
quantum systems. While the resources required to solve this
problem on classical computers grow exponentially with the
size of the system, N , its solution on a universal quantum
computer would require resources that grow only linearly in
N , provided the evolution of the system is driven by local
interactions [3,4]. Before the simulation of an interesting sys-
tem even starts, one must prepare the simulator on a state
that corresponds to that of the system at the beginning of its
evolution, often the ground state of the system’s Hamiltonian.
One method to prepare a universal quantum computer with
arbitrary precision or fidelity is through adiabatic evolution
from a state to which the device has easy access. However, the
universal quantum computer that evolves exclusively through
controlled operations or quantum gates is just an ideal sys-
tem. Preparation of present noisy intermediate-scale quantum
(NISQ) computers by adiabatic evolution remains a challenge
as the long implementation times required to achieve large
fidelities enable interactions between the device and its en-
vironment to significantly deviate the evolution from its path
to the target state.

In the digital quantum computing picture, quantum algo-
rithms are typically implemented using a fixed basis of gates
on sets of one and two qubits. Any many-qubit quantum algo-
rithm can be implemented to high precision as a finite series
of these gates [5–8]; however, the number of elementary gates
required to implement complex quantum algorithms, such as
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adiabatic evolution, becomes prohibitively large. The short
coherence times of modern devices therefore impose a harsh
limit on the total run time of an algorithm before the resulting
output is indistinguishable from noise. By extending that fixed
basis of gates with a few custom gates that are “aware” of
the details of the underlying quantum hardware and informed
by the algorithm being implemented (e.g., details such as
the time propagator between pairs of spins in a spin chain),
highly optimized algorithms can be enacted. Often gates on
physical quantum hardware are built from some analog signal
applied to that quantum device (such as microwave pulses on
superconducting transmons) and this approach can be thought
of as performing a hybrid digital-analog quantum algorithm.
Previously, this strategy has been applied successfully to sim-
ulate the real-time evolution of a system of neutron spins to
sufficient duration and fidelity to extract spectroscopic infor-
mation [9,10].

Here, we present a noise-resilient approach to the imple-
mentation of arbitrary sequences of unitary transformations
using custom quantum gates. In particular, we consider an
adiabatic evolution algorithm. We study the implementation
of the adiabatic evolution through custom two-qubit gates by
modeling a two-qubit processor as two capacitively coupled
superconducting transmons driven by microwave pulses and
solving the Lindblad master equation for its density matrix
with classical computing. We will refer to these classical-
computing calculations as “emulations” to distinguish them
from simulations performed on a physical quantum proces-
sor. In addition, we implement the same adiabatic evolution
on IBM Quantum (IBMQ) systems in terms of their native
basis set of one- and two-qubit gates. We will refer to the
results of these runs as “digital” quantum simulations. We
show that, when used to emulate a digital quantum simula-
tion with execution times similar to those achieved on IBMQ
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systems, our two-qubit processor model yields state fidelities
ranging from 65% to 85%, comparable with those reached
by the corresponding IBMQ runs. However, by reducing the
length of the microwave pulses realizing the custom gates
and, consequently, the implementation time of the adiabatic
state preparation, our emulations yield a target state with
up to 95% fidelity. We further demonstrate that this gain in
fidelity allows one to extract the energy of the target state, a
significant improvement over the experiments carried out on
IBMQ systems.

The paper is structured as follows. In Sec. II we provide
a brief review of adiabatic evolution, set up an algorithm
evolving a system of two interacting spins, and discuss the
two strategies we used to study the implementation of such an
algorithm on quantum computers. Results from both strategies
are described in Sec. III. Finally, we summarize the results of
this work and outline future research venues in Sec. IV.

II. ADIABATIC EVOLUTION

A controllable quantum system can be slowly driven from
the readily accessible ground state of an initial Hamiltonian
H0 into the ground state of an arbitrary Hamiltonian HT (en-
coding the dynamics of a desired system) by evolution with a
time-dependent Hamiltonian

H (t ) = f (t )H0 + g(t )HT , (1)

where f (t ) and g(t ) are interpolation functions such that

f (0) = 1 − g(0) = 1 and f (T ) = 1 − g(T ) = 0. (2)

This corresponds to imposing the boundary conditions
H (0) = H0 and H (T ) = HT . More in general, the adiabatic
theorem states that a quantum system initially in the kth
eigenstate of H0 will reach a state arbitrarily close to the
kth eigenstate of HT after a long enough evolution time T ,
provided the kth eigenvalue is continuous throughout the
evolution and does not cross other levels [11]. In terms of
the parameter s ≡ t/T , the time T required to prepare the
quantum device with an error bounded from above by

ε = ||P(1) − Pk (1)||, (3)

with P(s) and Pk (s) being, respectively, the projectors onto the
evolved state and the kth eigenstate of H at time s, is of order
[12–14]

T ∼ O(max
s

(||∂sH (s)||)/�2), (4)

where � = mins(|εk (s) − εk±1(s)|) is the minimum energy
gap involving the kth eigenvalue throughout the evolution.

The quadratic dependence of the total evolution time T
on the inverse of the minimum energy gap, 1/�, represents
a challenge for the use of adiabatic evolution as a method for
quantum state preparation on current quantum devices, as well
as those expected in the near future. Long evolution times re-
sulting from small energy gaps translate into implementation
times long enough for these devices to lose coherence due
to their interaction with the environment. Nevertheless, one
strong motivation for improving the performance of adiabatic
evolution is that it can serve as a preconditioner for other
eigenstate preparation methods that require significant overlap

between the initial state and the eigenstate of interest, such as
phase estimation [15] or the rodeo algorithm [16,17]. Even
noisy or incomplete adiabatic evolution can provide a large
enhancement of the initial state overlap, thereby significantly
improving the performance of the quantum state preparation
algorithm applied thereafter. For example, improving the ini-
tial state overlap probability from 0.1% to 5% would provide
a 50-fold improvement in the algorithmic efficiency.

A. Adiabatic evolution of two-spin systems

In the present study we consider the preparation of a two-
spin system in the ground state of the Hamiltonian

HT = −σ x
1 σ x

2 + σ
y
1 σ

y
2 + 1

2
σ z

1σ z
2 −

2∑
i=1

σ z
i , (5)

by initializing the system in the ground state of

H0 =
2∑

i=1

σ x
i , (6)

and performing the adiabatic evolution imposed by the time-
dependent Hamiltonian of Eq. (1) with interpolation functions

f (t ) = cos2(πt/2T ), g(t ) = 1 − f (t ). (7)

We note that the ground state of H0 is a linear combination of
the uncoupled two-spin states,

|φ(0)〉 = 1
2 (|↓↓〉 − |↓↑〉 − |↑↓〉 + |↑↑〉). (8)

The ground state of HT ,

|φ(T )〉 = N [(−1 +
√

2) |↓↓〉 + |↑↑〉], (9)

with N a normalization constant, has energy ET = −2.328.
Similarly, we can introduce the instantaneous ground state
|φ(t )〉 of H (t ) by solving the time-independent Schrödinger
equation H (t ) |φ(t )〉 = Et |φ(t )〉 at each instant t . The solu-
tion of the time-dependent Schrödinger equation i d

dt |ψ (t )〉 =
H (t ) |ψ (t )〉 will then approximate |φ(t )〉 with (instantaneous)
fidelity

F (t ) = |〈φ(t )|ψ (t )〉|. (10)

For a sufficiently long evolution time T , the state of the system
at time T will be very close to the ground state of HT [see
Fig. 1(a)]. Even for a relatively short time of T = 16, the
infidelity 1 − F (T ) at the end of the evolution is bounded
from above by 10−3. In what follows we set T = 20. This
choice is a good compromise in anticipation of minimizing,
as much as possible, the run time (and hence decoherence
error) that one would face when implementing this adiabatic
evolution on present-day quantum devices.

The adiabatically evolved state can be expressed in terms
of the unitary-time evolution operator for a time-dependent
Hamiltonian,

|ψ (T )〉 = U (0, T ) |ψ (0)〉 . (11)

To implement adiabatic evolution on a quantum device we
divide the evolution time into n steps and approximate the
evolution operator U (0, T ) as the product of n short-time
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FIG. 1. Evolution of the fidelity between the state of the device
and the ground state of H (t ) for different values of (a) the evo-
lution time T and (b) the number of time steps n as a function
of the parameter s ≡ t/T . The adiabatic evolution we implement
on quantum devices uses T = 20 and n = 20, as this combination
yields negligible infidelity 1 − F at the end of the evolution while
minimizing the number of gates required for its implementation.

propagators (for the n instantaneous Hamiltonians)

U (0, T ) ≈
n∏

k=1

U (tk ) =
n∏

k=1

e−iH (tk )�t , (12)

with �t = T/n. The error introduced by the discretization
of the evolution time increases with the variation with time
of the Hamiltonian, dH (t )/dt , and is well behaved provided
H (tk ) is a good approximation to the average of H (t ) in
the time interval [tk−1, tk] [18]. Thus, the discretization error
can be controlled by the number of steps, n, in which the
evolution time is divided [see Fig. 1(b), where the fidelity is
now evaluated with respect to the solutions |ψ (t )〉 obtained
from the unitary-time evolution of Eq. (11) in the approxi-
mation of Eq. (12)]. While larger n values guarantee smaller
discretization errors, fewer steps are preferable to minimize
the number of quantum gates (circuit depth) required to im-
plement the algorithm on NISQ devices and hence reduce loss
of coherence due to interactions with the environment. The
results shown in Fig. 1(b) indicate that the discretization error
becomes negligible with as few as 20 time steps. Therefore, in
what follows we set n = 20.

FIG. 2. Decomposition of the kth unitary transformation in the
sequence of Eq. (12) [circuit (a)] into CNOT and U3 gates [circuit (b)].
Each U3 gate depends on three Euler angles. The quantum circuit
resulting from this decomposition can be directly implemented on
IBMQ systems.

B. Implementation on two-qubit devices

Performing a quantum simulation of the adiabatic evolu-
tion of Sec. II A requires mapping the spin degrees of freedom
to the states of a quantum processor, and translating the
short-time propagators U (tk ) in Eq. (12) into quantum gates.
The uncoupled states of the two-spin system can be trivially
mapped to the computational states of a two-qubit system.
Specifically, we use the |00〉, |01〉, |10〉, and |11〉 states to rep-
resent, respectively, the uncoupled two-spin states |↓↓〉, |↓↑〉,
|↑↓〉, and |↑↑〉. Concerning the translation of the short-time
propagators into quantum gates, we consider two strategies:
(i) a standard decomposition of each propagator into a circuit
of elementary gates and (ii) a direct implementation as a single
custom two-qubit gate.

The first strategy exploits the fact that any unitary operation
involving two qubits, such as the short-time propagators U (tk )
in Eq. (12), can be expressed in terms of three controlled-
NOT (CNOT) gates and eight one-qubit U3 gates (constructed
from 15 x, y, or z one-qubit rotations) [5–7] as schemati-
cally shown in Fig. 2. Such a decomposition can be easily
implemented on cloud quantum computing platforms. We
studied the performance of this approach by running the
adiabatic evolution on several IBMQ systems [19]. The quan-
tum circuit implementing the corresponding algorithm was
built using the open-source quantum information software kit
(QISKIT) [20], which allowed us to decompose each short-time
propagator into elementary gates with the built-in function
quantum_info.two_qubit_cnot_decompose. The decomposi-
tion of the first short-time propagator is explicitly shown
in Appendix A as an example. The results of these digital
quantum simulations on IBMQ processors are discussed in
Sec. III A.

The second strategy employs a realistic model of a phys-
ical quantum device to realize each short-time propagator
in Eq. (12) with a single custom gate. In the present study,
we model a two-qubit processor as two capacitively coupled
superconducting transmons controlled by microwave pulses,
as schematically shown in Fig. 3(a). The dynamics of this
system is described by the Hamiltonian (see Appendix B for
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FIG. 3. Schematic representation of (a) the model two-qubit
processor, consisting of two capacitively coupled superconducting
transmons controlled with microwave pulses, and (b) the energy
spectrum of a superconducting transmon in which the lowest two
levels, shown as solid lines, are the computational qubit.

details)

HQPU(t ) = Hd + Hc(t ), (13)

where

Hd ≈ −
2∑

i=1

αa†
i aia

†
i ai − g(a†

1a2 + a†
2a1) (14)

is the drift Hamiltonian of the unperturbed device, and

Hc(t ) =
2∑

i=1

[
εi

I (t )(a†
i + ai ) − iεi

Q(t )(a†
i − ai )

]
(15)

is the time-dependent Hamiltonian describing the control of
the quantum processor by irradiation with resonant microwave
pulses. In the expressions above, a†

i and ai are the creation and
annihilation operators of transmon i, α = 200 MHz is the an-
harmonicity of both transmons, and g = 3 MHz is the strength
of the interaction or crosstalk between the transmons due
to the capacitive coupling. The time-dependent amplitudes
εi

I (t ) and εi
Q(t ) are, respectively, the in-phase and quadrature

tunable pulse sequences controlling transmon i. In the present
study, we take into account the first three energy levels of each
transmon. The subspace of states with zero and one quanta
per transmon define the computational two-qubit states. The
explicit inclusion of states with two quanta in at least one of
the transmons provides a description of higher-energy states
that can be populated due to gate error and decoherence. It
also allows our control pulses to reduce leakage by blocking
transitions to these states, as similarly done by the derivative
removal by adiabatic gate (DRAG) algorithm [21].

We compute the custom two-qubit gates realizing each of
the short-time propagators in Eq. (12) by finding the pulse
sequences εi

I (t ) and εi
Q(t ) that solve (within an acceptable

accuracy) the optimization problem

UQPU(tk ) 
 UQPU(0, τ ) (16)

= T exp

(
− i

h̄

∫ τ

0
[Hd + Hc(τ ′)]dτ ′

)
,

where UQPU(tk ) represents the short-time propagator U (tk )
embedded into the Hilbert space spanned by the considered

TABLE I. Calibration data for ibmq_belem, casablanca,
ibmq_lima, and ibmq_manila. The listed relaxation and dephasing
times, T1 and T2, are those reported for qubits 0 and 1 of the
corresponding system throughout the simulation. Implementation
times for the CNOT gate and the decomposition of the short-time
propagators are respectively listed as τCNOT and τU .

IBMQ system T1 (μs) T2 (μs) τCNOT (ns) τU (ns)

ibmq_belem 102.6 70.4 127.3 104.5 810.7 ≈2500
ibmq_casablanca 111.7 130.1 40.7 102.2 760.9 ≈2400
ibmq_lima 101.6 113.0 180.0 106.9 305.8 ≈1000
ibmq_manila 136.0 244.2 112.8 46.7 277.3 ≈900

two-transmon states and T exp denotes the time-ordered ex-
ponential. Employing the gradient ascent pulse engineering
(GRAPE) algorithm [22], the solution to Eq. (16) is found by
minimizing the objective function

� = 1 − F 2
gate

2
+ χ

exp(ε̄2n) − 1

exp(1) − 1
, (17)

where

Fgate =
∣∣∣∣∣ tr(U †

QPUUQPU)

dimQPU

∣∣∣∣∣, (18)

with dimQPU the dimension of the considered Hilbert space,
and

ε̄ = 1

εcut

√√√√ 1

τ

2∑
i=1

∑
j∈{I,Q}

∫ τ

0
εi

j (τ
′)2dτ ′ (19)

the root-mean-squared amplitude of the control pulse nor-
malized to εcut. The gate fidelity Fgate in the second term on
the right-hand side of Eq. (17) provides an indicator of the
accuracy with which the desired unitary operation is repro-
duced. The last term penalizes large amplitudes through the
parameters εcut, which describes the cutoff amplitude, and
n, which sets the harshness of the cutoff, all with relevance
dictated by the parameter χ . The introduction of this penalty
allows one to avoid high-amplitude solutions where the ap-
proximation for the Hamiltonian entering the optimization of
Eq. (16) is no longer valid, and where hardware realizing the
control pulses might not work optimally. The form of this
loss term is chosen such that a zero-amplitude pulse yields
zero contribution to the total loss and that a pulse the root-
mean-square amplitude of which is εcut contributes χ to the
total loss. Figure 4 shows the first 100 ns of control pulses
realizing the first short-time propagator in the adiabatic evolu-
tion algorithm obtained for three different pulse lengths τ of
2500, 400, and 120 ns [see Eq. (16)] and a sampling rate of
eight samples per nanosecond. The pulse length τ = 2500 ns
was chosen to approximately match the implementation time
τU of the short-time propagators on the ibmq_belem system
(see Table I), which will allow us to compare our emulated
output to runs on that system. The pulse length τ = 400 is
representative of CNOT implementation times on IBMQ sys-
tems, while pulses of length τ = 120 ns were the shortest for
which the gate infidelity, 1 − Fgate, could be kept below 10−4.
All control pulses were found by minimizing the objective
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FIG. 4. First 100 ns of the control pulses with lengths (a) τ =
2500 ns, (b) τ = 400 ns, and (c) τ = 120 ns realizing the first unitary
in the sequence of Eq. (12). The dependence of the amplitude of the
control pulse on its length sets a lower bound for the implementation
time of two-qubit gates on present-day quantum devices.

function of Eq. (17) with εcut = 30 MHz, n = 3, and χ =
10−3. Decreasing the length of the control pulse increases
the root-mean-squared amplitude as well as the influence of
its high-frequency components. This dependence of the am-
plitude of the control pulse on its length sets a lower bound
for the implementation time of two-qubit gates, and hence on
the overall implementation time for the whole evolution on
present-day quantum devices, as (i) approximations for the
Hamiltonian of a quantum computer [used to solve Eq. (16)]
and (ii) hardware employed to control it work optimally only
within some energy regime.

To study the performance of adiabatic state preparation
implemented by means of custom gates obtained through
the minimization of Eq. (17), we modeled the output of the
two-transmon processor by solving the Lindblad master equa-
tions for its density matrix using classical computing. The
results of these classical emulations are discussed in Sec. III B.

III. RESULTS

A. Adiabatic evolution of two-spin systems on IBMQ

We perform runs on IBMQ systems to assess how viable
it is to implement the adiabatic evolution of Eq. (12) on them
using circuits of elementary gates. Relevant calibration data
for the used IBMQ systems are listed in Table I. We started
each digital quantum simulation by initializing the IBMQ
processors in the ground state of the initial Hamiltonian H0

[see Eq. (6)] by applying the two-qubit Pauli X (2) = σ x
1 σ x

2 and
Hadamard H (2) = H1H2 gates to the qubits’ lowest state,

|ψ (0)〉 = H (2)X (2) |00〉 = 1
2 (|00〉 − |01〉 − |10〉 + |11〉),

(20)
and carried out the adiabatic evolution by applying the circuit
of elementary quantum gates resulting from the decomposi-
tion of the n short-time propagators discussed in Sec. II B.

For each considered IBMQ system, we performed several
runs allowing us to approximately reconstruct the evolution
of the instantaneous fidelity [see Eq. (10)] and the expectation
value of the target Hamiltonian HT [see Eq. (5)],

〈HT 〉(t ) = 〈ψ (t )| HT |ψ (t )〉 , (21)

using quantum expectation estimation (for details see Ap-
pendix C). In Fig. 5 we compare the results from runs on
IBMQ systems with the emulated output of an ideal quantum
processor that does not interact with its environment, obtained
with the QISKIT Aer simulator. This ideal output, shown as
a dotted line, demonstrates that, for two-qubit systems, gate
error does not degrade significantly the fidelity with which the
target state is reached. On the other hand, runs on ibmq_belem,
ibmq_casablanca, ibmq_lima, and ibmq_manila, shown as
color markers, deviate from the ideal evolution reaching the
target state with fidelities of 60%, 75%, 80%, and 72%, re-
spectively. The loss of fidelity throughout the evolution causes
the properties extracted from the reached state to be signif-
icantly different from those of the ground state of the target
Hamiltonian, as shown by the evolution of 〈HT 〉 in Fig. 5(b).
The energies extracted from runs on IBMQ systems range in
mean value from −1.25 to −0.25, whereas the ideal simula-
tion reaches the target value of ET = −2.328. We notice that
the rate at which fidelity is lost remains approximately con-
stant throughout the evolution. This is somehow surprising, as
our choice for the interpolation functions defining H (t ) [see
Eq. (7)] is such that the evolution is “slowest” at its beginning
and end points (see Fig. 1), where we expected small fidelity
losses. The constant rate at which fidelity is lost suggests
this effect is dominated by either the gate error accumulated
from the elementary gates realizing the short-time propagator
(for which the largest contributions come from errors in the
CNOT gates) or the loss of coherence along their combined
implementation time.
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FIG. 5. Evolution of (a) the instantaneous fidelity F (t ) and
(b) the expectation value 〈HT 〉 (t ) resulting from implementing the
sequence of unitaries of Eq. (12) on ibmq_belem (blue triangles),
ibmq_casablanca (orange diamonds), ibmq_lima (green squares),
and ibmq_manila (red circles). Large deviations from simulations on
an ideal quantum processor carried out with QISKIT’s Aer simulator
(dotted lines) result from loss of coherence due to long implementa-
tion times.

These results evince the main challenge of quantum state
preparation of NISQ devices by means of adiabatic evo-
lution: The implementation time of the quantum circuit
expressing the adiabatic evolution of Eq. (12) in terms of
elementary gates is comparable to the decoherence times of
present quantum devices. Specifically for this work, the im-
plementation times of the adiabatic evolution on ibmq_belem,
ibmq_casablanca, ibmq_lima, and ibmq_manila, respectively
approximated as 52.5, 50.4, 21, and 18.9 μs, are comparable
to the relaxation and dephasing decoherence times of these
systems, listed as T1 and T2 in Table I.

Besides errors due to loss of coherence, simulations on
NISQ devices carry measurement errors. These are mitigated
in this work by inverting the confusion matrix, extracted from
calibration experiments performed at each time step. (For
details on the measurement errors and their mitigation see
Appendix D.)

B. Classical device-level simulations with customized gates

An alternative to implementing the adiabatic evolution
through elementary gates is to find pulse sequences realizing

FIG. 6. Combination of simultaneous two U3 gates [circuit (a)]
into two-qubit U(2) gates [circuit (b)]. The CNOT and U3(2) gates
in circuit (b) are realized with control pulses for which the com-
bined lengths match the implementation time of circuit (a) on IBMQ
systems.

the short-time propagators in a single step (see Sec. II B),
aiming to reduce the depth of the corresponding circuit and,
consequently, its implementation time. To study the perfor-
mance of this alternative approach, we modeled the output
of a two-transmon processor implementing the adiabatic evo-
lution using classical computing (see Sec. II B). Specifically,
we used the Quantum Toolbox in PYTHON (QUTIP) [23,24] to
solve the Lindblad master equation

ρ̇ = − i

h̄
[HQPU, ρ]

+ 1

T1

2∑
i=1

(
aiρa†

i − 1

2
{aia

†
i , ρ}

)

+ 1

T2

2∑
i=1

(
a†

i aiρaia
†
i − 1

2
{aia

†
i a†

i ai, ρ}
)

, (22)

for the density ρ of the two-transom system. Here, HQPU is
the two-transmon Hamiltonian introduced in Eq. (13) with
control pulses optimized to realize the short-time propagators
in Eq. (12). The decoherence mechanisms considered by the
master equation, relaxation and dephasing, are parametrized
by the decoherence times T1 and T2, respectively. Our model
takes values for these parameters from calibration data of
the IBMQ devices on which we implemented the adiabatic
evolution (see Table I) to emulate the interaction of these
systems with the environment.

First, we emulated the adiabatic evolution in which each
of the short-time propagators in Eq. (12) is realized through a
single custom gate of pulse length τ = 120 ns. The emulated
output reached the target state with fidelities around 95%,
greatly improving the results from runs on IBMQ systems,
as shown in Figs. 7(a), 7(c), 7(e), and 7(g). While the pulse
length τ = 120 ns is the shortest producing gate infidelities
below 10−4, the resulting pulse amplitudes surpass the arbi-
trary threshold |εi

I,Q| < α/20 (shown as the region between
dotted lines in Fig. 4), which could make the corresponding
pulses unsuitable for implementation on present-day quantum
devices. Next, we emulated the implementation of the algo-
rithm with custom gates of length τ = 400 ns, comparable
with the implementation times of the CNOT gate on IBMQ
systems. These results still improve over the runs performed
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FIG. 7. Comparison between emulated outputs of the adiabatic evolution of Eq. (12) and those from runs on the ibmq_belem,
ibmq_casablanca, ibmq_lima, and ibmq_manila systems. [(a), (c), (e), (g)] Evolution of the instantaneous fidelity F . Classical emulations
implementing the adiabatic evolution through either a circuit of elementary gates or through custom gates of length τU (green triangles and
orange diamonds, respectively) reach the target state with fidelities comparable to those reached by IBMQ systems (blue crosses). Emulated
output using shorter gates (orange squares and circles) reached fidelities around 95%, allowing for a better extraction of the target state’s
spectroscopic information, as shown by the evolution of 〈HT 〉 in (b), (d), (f), and (h).

on IBMQ systems, reaching the target state with fidelities
around 90%. Finally, to enable a comparison with the IBMQ
results, we emulated the adiabatic evolution with custom gates
of length approximately matching the implementation time
of a short-time propagator on IBMQ systems, τU . The val-
ues used for τU are listed in Table I. The fidelities obtained
from these emulations range between 65% and 85%, in good
agreement with their IBMQ counterparts. An even more di-
rect comparison can be made by emulating the output of the
IBMQ digital quantum simulation itself, i.e., by realizing each
elementary gate in the IBMQ quantum circuit with custom

control pulses. To conduct these last sets of emulations, we
started by combining each pair of simultaneous U3 gates in
the short-time propagators into two-qubit U3(2) = U31U32

gates, as schematically shown in Fig. 6. Then, we realized
the CNOT and U3(2) gates with control pulses the combined
lengths of which approximately match the implementation
time of the short-time propagators on IBMQ systems, τU .

In Fig. 7 we compare our emulated outputs to the results
of the digital quantum simulations performed on IBMQ sys-
tems. The emulated digital quantum simulation (realized by
implementing the adiabatic evolution through CNOT and U3(2)
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gates), shown as green triangles, closely follows the IBMQ
results, shown as blue crosses. The emulated output obtained
by realizing the short-time propagators in Eq. (12) in terms of
single two-qubit gates with control pulses of lengths τ = τU ,
τ = 400 ns, and τ = 120 ns, respectively shown as orange di-
amonds, squares, and circles, make evident the improvement
that can be achieved by implementing quantum algorithms
through custom gates.

IV. CONCLUSIONS

We presented a noise-resilient approach to the imple-
mentation of arbitrary sequences of unitary transformations.
In particular, we studied the adiabatic evolution of a two-
spin system on NISQ devices. Employing a model of a
two-qubit processor consisting of two capacitively coupled
superconducting transmons, we emulated the adiabatic evolu-
tion implemented with custom two-qubit gates and compared
the resulting output with the corresponding results of digi-
tal quantum simulations on IBMQ systems. We showed that
high-fidelity custom gates for the short-time propagators can
be implemented with pulses of varying length, ranging from
2500 to 120 ns, where the lower limit is set by consider-
ations related to the validity of the adopted model and the
specifications of standard waveform generators. When the
implementation time of the short-time propagators are similar,
the state fidelities from our emulated output and IBMQ are
comparable, indicating that our two-qubit processor model
provides a realistic description of the quantum hardware. As
the length of the control pulses realizing the custom gates and,
consequently, the implementation time of the adiabatic evolu-
tion decreases, the loss of coherence due to the interaction
between the quantum computer and its environment is greatly
reduced. The fidelities achieved through custom gates greatly
improve over those resulting from implementation through
elementary gates, reaching the target state with up to 95%
fidelity for control pulses with length τ = 120 ns.

High-fidelity quantum state preparation is essential for the
subsequent accurate extraction of spectroscopic properties
from the desired state. In this study, we demonstrated the
extraction of the energy of the state by calculating the expecta-
tion value of the target Hamiltonian. The value extracted from
our best (i.e., shortest) classical emulation, 〈HT 〉 (T ) = −2.2,
is in good agreement with the exact result of ET = −2.328.
This is a large improvement over the energies extracted from
runs on IBMQ systems (ranging in mean value from −1.25 to
−0.25) and, more in general, runs on present devices imple-
menting adiabatic evolution through elementary gates. In the
future, one can envision obtaining an even higher accuracy by
employing the present approach as a preconditioner for other
quantum state preparation methods, such as the recently pro-
posed quantum imaginary-time propagation [25] and rodeo
algorithms [16].

While in this study we restricted ourselves to the simula-
tion of a simple two-spin system, requiring only two qubits,
the use of custom gates can be scaled to more complex simu-
lations involving a larger number of spins by approximating
each short-time propagator in terms of propagators for its
two-spin subsystems (two-qubit gates). Emulations for such
multiparticle systems will require more complex multiqubit

processor models with time-varying couplings to minimize
unwanted crosstalk among qubits not immediately involved
in the propagation. In the future, we plan to explore the
adiabatic evolution of linear systems of a larger number of
spins. Given the significant advantage of using custom gates
demonstrated in this study, it will be also interesting to explore
adiabatic evolution on IBMQ using the recently deployed
pulse-level access capability. Finally, the significant reduc-
tion in implementation time afforded by the proposed use
of custom short-time propagator gates opens also the way
to noise-resilient simulations of dynamical properties, such
as scattering processes, through real-time evolution following
preparation with adiabatic evolution.
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APPENDIX A: DECOMPOSITION OF
A SHORT-TIME PROPAGATOR

As mentioned in Sec. II B, any two-qubit gate can be de-
composed into three CNOT gates where the first qubit controls
the second one,

(A1)

and eight U3 gates, which can be written in terms of x and z
one-qubit rotations,

U3(θ, φ, λ) = Rz(φ)Rx

(
−π

2

)
Rz(θ )Rx

(π

2

)
Rz(λ)

=
(

cos
(

θ
2

) −eiλ sin
(

θ
2

)
eiφ sin

(
θ
2

)
ei(φ+λ) cos

(
θ
2

)). (A2)

In Fig. 8 we show the quantum circuit resulting from the
decomposition in terms of these gates of the first short-time
propagator in Eq. (12), obtained using QISKIT’s built-in func-
tion quantum_info.two_qubit_cnot_decompose.
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FIG. 8. Decomposition of the first short-time propagator in Eq. (12) [circuit (a)] into CNOT and U3 gates [circuit (b)]. Circuit (c) shows the
decomposition of the CNOT gate into elementary gates.

APPENDIX B: MODEL HAMILTONIAN

In terms of the number of Cooper pairs, n, and the flux φ,
the Hamiltonian of a superconducting transmon up to fourth
order in φ is [26]

H = 4ECn2 − EJ cos(φ)

≈ 4ECn2 − EJ + EJ

2
φ2 − EJ

24
φ4, (B1)

where EC and EJ are respectively the energies stored in the
capacitor and Josephson junction. In terms of the transmon’s
creation and annihilation operators, defined by

n = i

(
EJ

32EC

) 1
4

(a† − a), φ =
(

2EC

EJ

) 1
4

(a† + a), (B2)

the above Hamiltonian takes the form

H ≈ ωa†a − α

6
(a† + a)4, (B3)

where we defined ω ≡ (8ECEJ )1/2 and α ≡ EC/2. Using the
Baker-Campbell-Hausdorff formula, it can be shown that for
a transformation U = exp(−i�ta†a)

Ua1 · · · alU
† = e(−i(m−n)�t )a1 · · · al , (B4)

where a1 · · · al is a chain of creation and annihilation op-
erators (that is, ai ∈ {a†, a}), and m and n are the number
of creation and annihilation operators in the chain, respec-
tively. Under this transformation, after dropping constant and
fast-rotating terms with |m − n| > 1, the Hamiltonian of the
transmon takes the form

H → H ′ = UHU † + iU̇U †

≈ (ω + α + �)a†a − αa†aa†a. (B5)

Now, the Hamiltonian of two capacitively coupled trans-
mons controlled by microwave pulses can be approximately

written as [27,28]

H ≈
2∑

i=1

(
4ECi n

2
i + EJi

2
φ2

i − EJi

24
φ4

i

)
+ 8EC1 EC2

ECg

n1n2

+ 2
2∑

i=1

ηi
[
εi

I (t ) sin(�it ) − εi
Q(t ) cos(�it )

]
ni

=
2∑

i=1

[
ωia

†
i ai − αi

6
(a†

i + ai )
4
]

+ g(a†
1 − a1)(a†

2 − a2)

+ 2i
2∑

i=1

[
εi

I (t ) sin(�it ) − εi
Q(t ) cos(�it )

]
(a†

i − ai ),

(B6)

where the term proportional to g ≡ 8EC1 EC2/ECgη1η2 with
ηi ≡ (32ECi/EJi )

1/4 describes the interaction or crosstalk be-
tween the transmons due to its capacitive coupling. Under the
transformation

U = exp(−i�1ta†
1a1 − i�2ta†

2a2), (B7)

with �i = −ωi − αi, the above Hamiltonian takes the form

H ≈ −
2∑

i=1

αia
†
i aia

†
i ai − g(a†

1a2 + a1a†
2)

+
2∑

i=1

[
εi

I (t )(a†
i + ai ) − iεi

Q(t )(a†
i − ai )

]
, (B8)

after dropping constant and fast-rotating terms, and assuming
that �1 ≈ �2.

APPENDIX C: QUANTUM EXPECTATION ESTIMATION

Quantum computers are generally measured in the eigen-
basis of the Pauli Z matrix. Measuring an ensemble of systems
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in the state |ψ〉 yields the occupation probabilities |cq1q2···qn |2,
where the expansion coefficients cq1q2···qn are defined by

|ψ〉 =
∑

q1,q2,...,qn∈{0,1}
cq1q2···qn |q1q2 · · · qn〉 . (C1)

The expectation value of the two-spin operator σ z
1σ z

2 in the
two-qubit state |ψ〉 can be easily extracted from experiments
due to the fact that this operator is diagonal in the measure-
ment basis:

〈ψ | σ z
1σ z

2 |ψ〉 =
∑

i, j,k,l∈{0,1}
〈ψ |i j〉 〈i j| σ z

1σ z
2 |kl〉 〈kl|ψ〉

=
∑

i, j∈{0,1}
〈i j| σ z

1σ z
2 |i j〉 |ci j |2. (C2)

Now, the expectation value of a general two-spin operator
σ a

1 σ b
2 with a, b ∈ {0, x, y, z} (σ 0

i ≡ Ii, the identity operator) in
the state |ψ〉 can also be extracted from experiments by means
of any unitary transformation U such that

Uσ a
1 σ b

2 U † = σ z
1σ z

2 , (C3)

as

〈ψ | σ a
1 σ b

2 |ψ〉 = 〈ψ |U †Uσ a
1 σ b

2 U †U |ψ〉 = 〈ψ ′| σ z
1σ z

2 |ψ ′〉
=

∑
i, j∈{0,1}

〈i j| σ z
1σ z

2 |i j〉 |c′
i j |2, (C4)

where

|ψ ′〉 = U |ψ〉 =
∑

i, j∈{0,1}
c′

i j |i j〉 . (C5)

Thus, it is possible to extract the expectation value of any
Hamiltonian of the form

H =
∑

a,b∈{0,x,y,z}
habσ

a
1 σ b

2 , (C6)

such as the two-spin Hamiltonian of Eq. (5). In this work,
we employed the transformations Ux = ux

1ux
2 and Uy = uy

1uy
2

with

ux
i = U3

(π

2
, 0, π

)
, uy

i = U3
(π

2
,
π

2
,
π

2

)
, (C7)

to extract the expectation values of σ x
1 σ x

2 and σ
y
1 σ

y
2 , respec-

tively.
To approximately extract the fidelity at time tk , F (tk ), we

take advantage of the fact that [see Eqs. (12) and (20)]

〈φ(tk )| ≈ 〈ψ (tk )| = 〈00| X (2)H (2)U†(0, tk )

≈ 〈00| X (2)H (2)
1∏

i=k

U †(ti ), (C8)

and decompose the overall unitary operator

Ũ (tk ) = X (2)H (2)
1∏

i=k

U †(ti ) (C9)

into a single circuit with QISKIT and apply it at the end of the
evolution. This yields

F (tk ) = | 〈φ(tk )|ψ (tk )〉 | ≈ | 〈00| Ũ (tk ) |ψ (tk )〉 |
= | 〈00|ψ̃ (tk )〉 |
= |̃c00|. (C10)

APPENDIX D: MEASUREMENT ERRORS

The measurement error mitigation scheme follows closely
that employed and discussed in Ref. [29]. Let the probability
to measure a qubit in the state |i〉 when it was prepared in
state | j〉 be pi j . The occupation probabilities measured in an
experiment, arranged in the vector |c2

exp〉, are related to the true
ones, |c2

true〉, through the confusion or error matrix P∣∣|c|2exp

〉 = P
∣∣|c|2true

〉
or

∣∣|c|2true

〉 = P−1
∣∣|c|2exp

〉
, (D1)

constructed from the probabilities to measure a two-qubit
system in the state |i j〉 when it was prepared in the state |kl〉,
denoted by pi j,kl . Under the assumption that the measurement
errors in qubits 1 and 2 are independent of each other, the
confusion matrix can be written in terms of the single-qubit
measurement probabilities pi j as

P ≈

⎛⎜⎝(1 − p10)1(1 − p10)2 (1 − p10)1(p01)2 (p01)1(1 − p10)2 (p01)1(p01)2

(1 − p10)1(p10)2 (1 − p10)1(1 − p01)2 (p01)1(p10)2 (p01)1(1 − p01)2

(p10)1(1 − p10)2 (p10)1(p01)2 (1 − p01)1(1 − p10)2 (1 − p01)1(p01)2

(p10)1(p10)2 (p10)1(1 − p01)2 (1 − p01)1(p10)2 (1 − p01)1(1 − p01)2

⎞⎟⎠. (D2)

At the beginning of each time step, we perform two calibration
experiments, preparing the device in the states |00〉 and |11〉.
The measurements of these experiments correspond to the first
and fourth columns of the confusion matrix. From them, we
can extract the single-qubit measurement probabilities, pi j ,
and construct the full confusion matrix.

APPENDIX E: IDENTIFICATION OF DOMINANT
ERROR SOURCES

There are several sources of error affecting the imple-
mentation of adiabatic evolution on IBMQ hardware. Among

them, in our model we account for systematic gate infidelities,
stochastic dissipative processes during the circuit execution,
stochastic measurement error during readout, and statistical
noise. The impact of these sources of error on the adiabatic
evolution can be studied by contrasting simulations based on
QISKIT’s Aer simulator, and runs on IBMQ systems. We start
running simulations with QISKIT’s Aer simulator to measure
the state H (2) |00〉 = (|00〉 + |01〉 + |10〉 + |11〉)/2, using the
AerSimulator.from_backend method. This constructs a clas-
sical simulator with an approximate noise model for any
IBMQ device that includes gate errors, readout errors, and
dissipative processes. Figure 9 shows the average deviation of
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FIG. 9. Average error in measured occupation probabilities with
the number of shots, N . Increasing the number of shots decreases
the statistical noise yielding an estimate for the quantum computer’s
measurement error. The error in the occupation probabilities yielded
by these simulations are bounded from above by δ|c|2exp = 0.016, ac-
counting for only a small fraction of the error observed in calculated
fidelities and expectation values.

the measured occupation probabilities from their ideal value,
1/4, with the number of shots, N . As N is increased, the
statistical component of the error becomes negligible and the
average error reaches a device-dependent plateau, that we
identify with the measurement error of each IBMQ system.
Results from these simulations suggest that measurement and
statistical noise are not dominant sources of error, as they
account for deviations from ideal fidelities and expectation
values (for IBMQ runs considering N = 2500 shots) of ap-
proximately δF ≈ 0.01 and δ 〈HT 〉 ≈ 0.1, much smaller from
those shown in Fig. 7.

Next, we ran simulations of the adiabatic evolution with
QISKIT’s Aer simulator choosing the “statevector” method
and saving per-shot amplitudes (this unfortunately disables
the simulation of readout error). We simulate 100 000 shots
for each circuit needed to compute the evolving instantaneous
fidelity and the instantaneous ground-state energy. Using the
stored amplitudes, we compute the energy for each simulated
shot following Eq. (C4), yielding the distribution of possible
energies, and repeat a similar process for the fidelity. To dis-
entangle the impact of dissipative processes from all other
sources of error, we construct the density matrix for each
circuit by averaging over the shots:

ρ = 1

Nshots

∑
i∈shots

|i〉 〈i| , (E1)

where |i〉 is the final state of the simulated circuits. We then
compute the singular value decomposition of the density to
find the most likely state, i.e., the state with largest singular
value, and compute the fidelity and energy using those am-
plitudes. In the presence of only gate infidelity and readout
errors, there should be one singular value very close to one;
however, the dissipative processes will produce mixed states
and the largest singular value will be significantly less that

FIG. 10. Evolution of a) the fidelity and b) expectation value
〈HT 〉 with Qiskit’s Aer simulator and a noise model based on
ibmq_belem. Solid blue lines show the expect output when including
all error sources considered by Aer, while the blue shaded regions
indicate the distributions of likely values at each time step. Dotted
black lines indicate the ideal evolution that a noiseless device would
yield. Orange triangles result from a singular value decomposition
filtering of the data underlying the blue distributions. The similarities
between dotted lines and orange triangles strongly suggest that dis-
sipative processes are by far the dominant source of noise in IBMQ
simulations, even very early in the evolution.

its ideal value, decreasing with the circuit depth. In Fig. 10
we plot the resulting distributions at each step for both the
fidelity [Fig. 10(a)] and the expectation value [Fig. 10(b)] of
the target Hamiltonian as blue violin plots showing the mean
and 1σ quantiles. The green lines show the answer expected
from an ideal evolution, while the orange dashed lines show
results using the largest singular vector of density matrices.
The difference between the dashed orange and solid blue lines
results almost entirely from dissipative noise processes, which
in contrast to the closeness of the dashed orange and solid
green lines indicates again that other errors are extremely
minor in comparison. The blue markers give a measure of the
lower bound on the total uncertainty that we can anticipate
from simulations on IBMQ systems.
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