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Exceptional point in a degenerate system made of a gyrator and two unstable resonators
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We demonstrate that a circuit comprising two unstable LC resonators coupled via a gyrator supports an
exceptional point of degeneracy (EPD) with purely real eigenfrequency. Each of the two resonators includes
either a capacitor or an inductor with a negative value, showing a purely imaginary resonance frequency when
not coupled to the other via the gyrator. With external perturbation imposed on the system, we show analytically
that the resonance frequency response of the circuit follows the square-root dependence on perturbation, leading
to possible sensor applications. Furthermore, the effect of small losses in the resonators has been investigated,
and we show that losses lead to instability. In addition, the EPD occurrence and sensitivity are demonstrated
by showing that the relevant Puiseux fractional power series expansion describes the eigenfrequency bifurcation
near the EPD. The EPD has the great potential to enhance the sensitivity of a sensing system by orders of
magnitude.
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I. INTRODUCTION

An exceptional point of degeneracy (EPD) is a point in pa-
rameter space at which the eigenmodes of the circuit, namely,
the eigenvalues and the eigenvectors, coalesce simultaneously
[1–9]. As the remarkable feature of an EPD is the strong
full degeneracy of at least two eigenmodes, as mentioned in
Ref. [10], the significance of referring to it as a “degeneracy”
is here emphasized, hence including “D” in the EPD. An
EPD in the system is reached when the system matrix is
similar to a matrix that contains a nontrivial Jordan block.
EPD-induced sensitivity according to the concept of parity-
time (PT) symmetry in multiple coupled resonators has been
studied [11–13]. Also, the electronic circuits with EPD based
on PT symmetry have been expressed in Refs. [14,15] and
then developed more in Refs. [16,17], where the circuits are
made of two coupled resonators with gain-loss symmetry and
a proper combination of parameters leads to an EPD. Pri-
marily, it has been confirmed that the eigenvalues bifurcation
feature at EPD can significantly increase the effect of external
perturbation; namely, the sensitivity of resonance frequency to
component value perturbations can be enhanced. Moreover,
frequency splitting happens at degenerate frequencies of the
system where eigenmodes coalesce, and this feature at EPDs
has been investigated to conceive a new generation of sensors
[18–21]. The resulting perturbation leads to a shift in the sys-
tem resonance frequency that can be recognized and measured
using the proper measurement setup [18]. When a second-
order EPD at which specifically two eigenstates coalesce is
subjected to a small external perturbation, the resulting eigen-
value splitting is proportional to the square root of the external
perturbation value, which is bigger than the case of linear
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splitting for conventional degeneracies [22]. The concept of
EPD has been employed in various sensing schemes such
as optical microcavities [13], optical microdisk [23], electron
beam devices [24], mass sensors [25], and bending curvature
sensors [26].

The gyrator is a two-terminal network in which the trans-
mission phase shift in one direction differs by π from the
transmission phase shift in the reverse direction [27]. An-
other property of the gyrator network is that of impedance
inversion. The inductance at the output of the gyrator is ob-
served as capacitance at the input port, and a voltage source
is transformed to a current source. A relevant alias for the gy-
rator might be the “dualizer” since it can interchange current
and voltage roles and turns an impedance into its dual [28].
Gyrators could be designed directly as integrated circuits
[29,30]. Also, many operational-amplifier (opamp) gyrator
circuits have been proposed [31–33], which can be classified
into two types: (i) three-terminal gyrator circuits in which
both ports are grounded [31], and (ii) four-terminal gyrator
circuits in which the output port is floating [32,33]. Because
of the availability of different realizable circuits for gyrators
and their versatility as practical circuit devices, gyrator-based
circuits may form an essential part of integrated circuit tech-
nology in a wide range of applications.

In this paper, we study the second-order EPDs in a
gyrator-based sensing circuit as shown in Fig. 1 and explore
its enhanced sensitivity (variation in the sensor’s resonance
frequencies to external perturbations) and its potential for
sensing devices in the vicinity of the EPD. At the EPD, the
degeneracy is in both the real and the imaginary parts of
the eigenvalues, as well as in the eigenvectors. Two series
LC resonators are coupled in the utilized circuit via an ideal
gyrator, as explained in Ref. [34]. Contrary to the study in
Ref. [34], this paper demonstrates the conditions to get the
EPD with real eigenfrequency by using unstable resonators.
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FIG. 1. The schematic illustration of the proposed gyrator-based
circuit with the ideal gyrator is indicated by the red dashed box. In
this circuit, two different (unstable) LC resonators are embedded in
a series configuration, coupled via an ideal gyrator.

In other words, we study the case of two unstable resonators
coupled via an ideal gyrator. A general mathematical ap-
proach for constructing lossless circuits for any conceivable
Jordan structure has been developed in Ref. [35], including
the simplest possible circuit as in Fig. 1 and other circuits
related to the Jordan blocks of higher dimensions. In addition,
important issues related to operational stability, perturbation
analysis, and sensitivity analysis are studied in Ref. [36],
whereas analysis of stability or instability by adding losses
to the circuit is not discussed. We show that the gyrator-
based circuit can achieve an EPD with real eigenfrequency
even when two unstable resonators are used in the circuit.
Hence, dispersion diagrams corresponding to perturbations
in the circuit’s parameters show the eigenfrequencies split.
Then, we show examples for different cases and analyze the
voltage signals by using time-domain simulations. We study
the impact of small losses in the circuit and explain how
they can make it unstable. Besides, we look at the sensitivity
of circuit eigenfrequencies to component variations, and we
show that the Puiseux fractional power series expansion well
approximates the bifurcation of the eigenfrequency diagram
near the EPD [3]. The sensitivity enhancement is attributed
to the second root topology of the eigenvalues in parameter
space, peculiar to the second-order EPD. Lastly, we examine
the gyrator-based circuit’s enhanced sensitivity and provide a
practical scenario to detect physical parameter variations and
material characteristics changes. This work is important for
understanding the instability in the coupled resonators circuit,
in addition to exploring EPD physics in gyrator-based circuits.
The given analysis and circuit show promising potential in
ultrahigh-sensitive sensing applications.

II. GYRATOR CHARACTERISTIC

A gyrator is a two-port component that couples an input
port to an output port by a gyration resistance value. It is a
lossless and storageless two-port network that converts cir-
cuits at the gyrator output into their duals, with respect to the
gyration resistance value [37]. For instance, this component
can make a capacitive circuit behave inductively, a series LC
resonator behave like a parallel LC resonator, and so on. This
device allows network realizations of two-port devices, which
cannot be realized by just the basic components, i.e., resis-
tors, inductors, capacitors, and transformers. In addition, the
gyrator could be considered a more fundamental circuit com-
ponent than the ideal transformer because an ideal transformer

can be made by cascading two ideal gyrators, but a gyrator
cannot be made from transformers [27]. The circuit symbol
for the ideal gyrator is represented in Fig. 1 (red dashed box),
and the defining equations are [27,38]

v2 = Rgi1, v1 = −Rgi2, (1)

where Rg is called gyration resistance and has a unit of ohm.
A gyrator is a nonreciprocal two-port network represented by
an asymmetric impedance matrix Z as [38]

Z =
[

0 −Rg

Rg 0

]
. (2)

III. EPD CONDITION IN THE LOSSLESS
GYRATOR-BASED CIRCUIT

This section provides an analysis of a gyrator-based cir-
cuit in which two series LC resonators are coupled via an
ideal gyrator as illustrated in Fig. 1. In the first step, we
consider the circuit’s components to be lossless. The circuit
resembles the one in Ref. [34], but here the two resonance
angular frequencies ω01 = 1/

√
C1L1 and ω02 = 1/

√
C2L2 of

the two uncoupled resonators are imaginary with a nega-
tive sign (also the counterpart with the positive sign is a
resonance), since we consider three cases: (i) both L1 and
L2 are negative while the capacitors have positive values,
(ii) both C1 and C2 are negative while the inductors have
positive values, and (iii) L1(C1) and C2(L2) are negative while
other elements have positive values. Then, we investigate the
conditions for an EPD to occur in the three cases just men-
tioned. In realistic sensing devices, various sensor types are
used. For instance, capacitive sensors are used to sense humid-
ity, temperature, and distance. Proximity sensors and distance
measurement sensors are available on the market, which op-
erate based on electromagnetic induction, and the variation of
inductance mutual coupling. Some other sensors are based on
a perturbation of the inductance. Therefore, both the induc-
tance and the capacitance can be used as sensing components,
and we investigate both cases in two separate subsections.

In the past years, EPDs have been found by using bal-
anced loss and gain in a PT-symmetry scheme [13,15,39].
More recently, EPDs have also been found in systems with
time-periodic modulation [40,41]. Here, we obtain EPDs by
using a negative inductance and a negative capacitance in
the gyrator-based circuit, constituting an alternative class of
EPD-based circuits.

We consider the Kirchhoff voltage law equations in the
time domain for two loops of the circuit in Fig. 1. In order to
find the solution of the circuit differential equations, it is con-
venient to define the state vector as �(t ) ≡ [Q1, Q2, Q̇1, Q̇2]T,
where T denotes the transpose operator. The state vector con-
sists of stored charges in the capacitors Qn = ∫

indt = Cnvcn ,
and their time derivative (currents) Q̇n = in, n = 1 and 2. We
utilize the Liouvillian formalism for this circuit as [34]

d�(t )

dt
= M�(t ), M =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−ω2
01 0 0 Rg

L1

0 −ω2
02 −Rg

L2
0

⎞
⎟⎟⎠,

(3)
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where M is the 4 × 4 circuit matrix. Assuming time harmonic
dependence of the form Qn ∝ e jωt , we obtain the character-
istic equation allowing us to find the eigenfrequencies by
solving det(M − jωI) = 0, where I is the identity matrix. The
corresponding characteristic equation of the circuit is

ω4 − ω2

(
ω2

01 + ω2
02 + R2

g

L1L2

)
+ ω2

01ω
2
02 = 0, (4)

where any solution ω is an eigenfrequency of the circuit. In
the case of Rg = 0, the two resonators are uncoupled, and
the circuit has two eigenfrequency pairs of ω1,3 = ±ω01 and
ω2,4 = ±ω02 that are purely imaginary (in contrast to the
case studies in Ref. [34], where the resonance frequencies
have real values). All the ω coefficients of the characteristic
equation are real, so ω and ω∗ are both roots of the char-
acteristic equation, where * indicates the complex conjugate
operator. Moreover, it is a quadratic equation in ω2; therefore,
ω and −ω are both solutions of Eq. (4). As we mentioned
before, we only consider unstable resonators, i.e., resonators
with an imaginary resonance frequency. Therefore, only one
circuit element in each resonator should have a negative value,
leading to ω2

01 and ω2
02 with negative values. After finding the

solutions of the characteristic equation, the angular eigenfre-
quencies (resonance frequencies) of the circuit are expressed
as

ω1,3 = ±√
a + b, ω2,4 = ±√

a − b, (5)

where

a = 1
2

(
ω2

01 + ω2
02 + ω2

g

)
, (6)

b2 = a2 − ω2
01ω

2
02, (7)

where it has been convenient to define ω2
g = R2

g/(L1L2), which
may be positive or negative depending on the considered case.
According to Eq. (5), the EPD condition requires

b = 0, (8)

leading to an EPD angular frequency ωe = √
a (with its neg-

ative pair −ωe). According to Eq. (7), the EPD condition
is rewritten as a2 = ω2

01ω
2
02. As in Ref. [34], we consider

positive values for a to have a real EPD angular frequency
ωe, so we have

ω2
01 + ω2

02 + ω2
g > 0. (9)

Finally, the EPD frequency is calculated by using Eqs. (6),
(7), and (8) as

ωe =
√

1
2

(
ω2

01 + ω2
02 + ω2

g

)
. (10)

The last equation can also be rewritten as ωe = 4

√
ω2

01ω
2
02,

with the quartic square root defined by taking the positive
value; in other words, if we consider that the two unstable
frequencies have the following purely imaginary expressions,
ω01 = − j/

√|C1L1| and ω02 = − j/
√|C2L2|, the EPD fre-

quency can be expressed as ωe = √−ω01ω02. We obtain the
desired value of a real EPD frequency by optimizing the
values of the components in the circuit. Theoretically, the em-
ployed optimization method is not critical, and we need to find
the solutions of Eq. (8). Obviously, practical limitations also

affect the selection of suitable constraints for optimization. In
the particular case where the two circuits are identical, one
has ω2

0 ≡ ω2
01 = ω2

02 = 1/(LC) < 0, and the EPD condition
reduces to 4ω2

0 = −ω2
g, which in turns leads to the EPD an-

gular frequency ωe =
√

−ω2
0. In the following subsections,

we analyze the circuit in three different cases, i.e., the three
different assumptions mentioned earlier.

A. Negative inductances L1 and L2

As a first case, we consider a negative value for both in-
ductances and a positive value for both capacitances; hence, in
this case ω2

g > 0. According to the required condition for EPD
expressed in Eq. (8) and by using Eq. (7), the first and second
terms in Eq. (6) are negative and the third term is positive.
Equation (10) shows that, if |ω2

01 + ω2
02| < ω2

g, we obtain a
real value for EPD frequency, and if |ω2

01 + ω2
02| > ω2

g, the
EPD frequency yields an imaginary value.

We explain the procedure for obtaining an EPD in this
circuit by presenting an example. We select L1, L2, and C2 to
have standard commercial values. Then, the calculated value
for C1 can be realized by a combination of the standard ca-
pacitors values and a trimmer capacitor. Various combinations
of values for the circuit’s components can satisfy the EPD
condition demonstrated in Eq. (8), and here as an example,
we consider this set of values: L1 = −47 μH, L2 = −47 μH,
C2 = 47 nF, and Rg = 50 �. Then, the capacitance of the
first resonator is determined by solving the resulting quadratic
equation from the EPD condition demonstrated in Eq. (8).
In this example, we consider C1 as a sensing capacitance
of the circuit, which has a positive value, and it can detect
variations in environmental parameters and transform them
into electrical quantities. According to Eq. (8), after solving
the quadratic equation, two different values for capacitance
in the first resonator are calculated, and we consider C1,e =
139.17 nF for the presented example. In this example, both
ω2

01 and ω2
02 have negative values, with ω01 = − j391 krad/s

and ω02 = − j672.82 krad/s, leading to a positive result for a
in Eq. (6) and real EPD angular frequency ωe = 512.9 krad/s.
The results in Figs. 2(a), and 2(b) show the real and imaginary
parts and the magnitude and phase of perturbed eigenfre-
quencies obtained from the eigenvalue problem when Rg of
the ideal gyrator is perturbed, revealing the high sensitivity
to perturbations. An EPD occurs when both eigenvalues and
eigenvectors coalesce. Therefore, the eigenvalues coalesce in
both the real and the imaginary parts.

To investigate the time-domain behavior of the circuit un-
der EPD conditions, we use the Keysight Advanced Design
System (ADS) circuit simulator. The transient behavior of the
coupled resonators with the ideal gyrator is simulated using
the time-domain solver with the initial condition vc1 (0) =
1 mV, where vc1 (t ) is the voltage of the capacitor in the
left resonator. Figure 2(c) shows the time-domain simulation
results of the voltage v1(t ), where v1(t ) is the voltage at the
gyrator input port (see Fig. 1). The extracted result is obtained
in the time span of 0 to 0.4 ms. The solution of the eigen-
value problem in Eq. (3) and at the EPD is different from
any other regular frequency in the dispersion diagram since
the system matrix contains repeated eigenvalues associated
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FIG. 2. The sensitivity of the (a) real and imaginary parts and (b) magnitude and phase of the eigenfrequencies to gyration resistance
perturbation, while inductances are negative. Voltage v1(t ) under the EPD condition in the (c) time domain and (d) frequency domain. The
frequency-domain result is calculated from 40 to 120 kHz by applying an FFT with 106 samples in the time window of 0 to 0.4 ms. The
three-dimensional plot of the (e) real and (f) imaginary parts of the eigenfrequencies to C1 and C2 perturbation. The real part of eigenfrequencies
for (g) higher and (h) lower values of resonance frequencies. The colormaps show the resonance frequency values. The black dashed line in
these plots shows the EPD.

with one eigenvector. Thus, the time-domain response of the
circuit at the second-order EPD is expected to be in the form
of �(t ) ∝ te jωet , as it is shown in Fig. 2(c). The envelope
of the voltage signal grows linearly with increasing time,
whereas the oscillation frequency is constant. This remarkable
feature is peculiar to an EPD, and it is the result of coalescing
eigenvalues and eigenvectors that also correspond to a double
pole in the circuit (or zero, depending on what is observed).
We take a fast Fourier transform (FFT) of the voltage v1(t )
to show the frequency spectrum, and the calculated result is
illustrated in Fig. 2(d). The result is calculated from 40 to
120 kHz by applying an FFT with 106 samples in the time
window of 0 to 0.4 ms. The numerically observed oscillation
frequency is f0 = ωo/(2π ) = 81.63 kHz, which shows the
frequency corresponds to the maximum value in Fig. 2(d).
The numerically obtained value is in good agreement with the
theoretical value calculated above.

So far, we have used the gyrator-based circuit to measure
the perturbation near the EPD by varying the gyrator resis-
tance. Next, we analyze the circuit’s sensitivity to independent
perturbations in the positive values of both capacitances. We
change the capacitance value on each resonator independently
and calculate the eigenfrequencies’ real and imaginary parts.
The three-dimensional result for the calculated eigenfrequen-
cies is illustrated in Figs. 2(e), and 2(f). The elevation value
of any point on the surface shows the eigenfrequency, and the
associated color helps us to recognize it conveniently. In these
figures, only the two solutions with Re(ω) > 0 are illustrated.
Although the resonance frequency of each resonator in this
paper is imaginary, in the specific range of C1 and C2, the EPD
frequency is purely real. To utilize these calculated results,
the flat version of the three-dimensional diagram for the real
part is provided in Figs. 2(g), and 2(h) for higher and lower
eigenfrequencies. These figures can help designers in the de-
sign procedure to select the proper value for components to

achieve the desired real resonance frequency. The intersection
of two surfaces (eigenfrequencies’ surface and the surface of
the constant z plane) is a one-dimensional curve. Therefore,
there is a different set of values for capacitances to produce
oscillation at a certain frequency. Moreover, the intersection
of the higher eigenfrequencies’ surface and the lower eigen-
frequencies’ surface indicates the possible EPD that various
combinations of capacitances values can yield. Designers can
use these figures to pick the proper value in the design steps
according to their practical limitations.

B. Negative capacitances C1 and C2

In the following section, we consider another condition
in which negative capacitances are used on both resonators;
so ω2

g > 0. Using the mentioned presumption, the first and
second terms in Eq. (6) are negative because of the imaginary
value of the resonance frequencies of resonators, and the third
term is positive. So, if the EPD condition is met, the sign of
a in Eq. (6) indicates whether the eigenfrequency is real or
imaginary. According to Eq. (10), if |ω2

01 + ω2
02| < ω2

g, we get
a real value for the EPD frequency, and if |ω2

01 + ω2
02| > ω2

g,
the EPD frequency is imaginary.

Different combinations of values for the circuit’s compo-
nents can satisfy the EPD condition demonstrated in Eq. (8),
and here as an example, we use this set of values: C1 =
−47 nF, C2 = −47 nF, L2 = 47 μH, and Rg = 50 �. The in-
ductance value on the left resonator is calculated by solving
the resulting quadratic equation from Eq. (8). In the presented
example, L1 can be a sensing inductor in a system. According
to Eq. (8), two different values for inductance in the first
resonator are calculated after solving the quadratic equation.
We consider L1,e = 15.87 μH for this example, so both ω2

01
and ω2

02 have negative values, with ω01 = − j1.16 Mrad/s
and ω02 = − j672.82 krad/s. Then, we obtain a positive value
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FIG. 3. The sensitivity of the (a) real and imaginary parts and the (b) magnitude and phase of the eigenfrequencies to gyration resistance
perturbation, while capacitances are negative. Voltage v1(t ) under the EPD condition in the (c) time domain and (d) frequency domain. The
frequency domain result is calculated from 100 to 180 kHz by applying an FFT with 106 samples in the time window of 0 to 0.2 ms. The
three-dimensional plot of the (e) real and (f) imaginary parts of the eigenfrequencies to L1 and L2 perturbation. The real part of eigenfrequencies
for (g) higher and (h) lower values of resonance frequencies. The colormaps show the resonance frequency values. The black dashed line in
these plots shows the EPD.

for a in Eq. (6), leading to a real EPD angular frequency of
ωe = 881.6 krad/s. The results in Figs. 3(a), and 3(b) show
the real and imaginary parts and the magnitude and phase of
eigenfrequencies obtained by perturbing Rg near the value that
made the EPD.

The time-domain simulation result by using the Keysight
ADS with an initial condition v1(0) = 1 mV is presented in
Fig. 3(c). The voltage v1(t ) is calculated in the time interval
of 0 to 0.2 ms. Figure 3(c) shows the envelope of v1(t ) is
growing linearly with increasing time. The growing signal
demonstrates that the circuit eigenvalues coalesce, and the
output envelope rises linearly at the second-order EPD fre-
quency. In order to evaluate the oscillation frequency from the
time-domain simulation, we take an FFT of voltage v1(t ) from
100 to 180 kHz using 106 samples in the time window of 0 to
0.2 ms. The calculated spectrum is shown in Fig. 3(d), show-
ing an oscillation frequency of f0 = ωo/(2π ) = 140.31 kHz,
which is in good agreement with the calculated theoretical
value obtained from Eq. (10).

In the following step, we investigate the circuit’s sensitivity
to independent perturbations in the value of both inductances.
The real and imaginary parts of the eigenfrequencies are cal-
culated when the values of the inductances are changed. The
three-dimensional eigenfrequency map of the two solutions
with Re(ω) > 0 is shown in Figs. 3(e) and 3(f). In order to
provide a better representation, the flat view of the three-
dimensional diagram for the real part is shown in Figs. 3(g)
and 3(h) for higher and lower eigenfrequencies.

C. Negative inductance on one side and negative capacitance on
the other side

In this last case, different constraints for components value
are considered. We assume a component with a negative value

on one side (capacitance or inductance) and the other com-
ponent with a negative value on the other side (inductance
or capacitance); hence, in this case ω2

g < 0. For instance, we
consider a negative inductance on the right resonator and a
negative capacitance on the left resonator. So, we have two
unstable resonators when they are uncoupled. When two res-
onators are coupled, EPD should satisfy Eq. (8). According
to Eq. (10), all terms inside the square root are negative, and
the sum of negative values is always negative. As a result, it is
impossible to achieve an EPD with a real eigenfrequency un-
der the assumption mentioned above. Since we focus on cases
with real EPD frequency in this paper, we skip considering
this condition in the rest of the paper.

IV. FREQUENCY-DOMAIN ANALYSIS OF THE
RESONANCES IN a LOSSLESS
GYRATOR-BASED CIRCUIT

We demonstrate how the EPD regime is associated with
a special kind of circuit’s resonance, directly observed in
frequency-domain circuit analysis. First, we calculate the
transferred impedance on the left port of the gyrator in Fig. 1,
which is

Ztrans(ω) = R2
g

Z2(ω)
, (11)

where Z2(ω) = jωL2 + 1/( jωC2) is the impedance of the LC
tank on the right side of the gyrator. The total impedance
observed from the input port (see Fig. 1) is

Ztotal(ω) � Z1(ω) + Ztrans(ω) = Z1(ω) + R2
g

Z2(ω)
, (12)

where Z1(ω) = jωL1 + 1/( jωC1) is the impedance of the
LC tank on the left side of the gyrator. The complex-valued
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FIG. 4. Root locus of zeros of Ztotal (ω) = 0 shows the real and
imaginary parts of the resonance frequencies of the circuit when
varying gyration resistance (arrows represent growing Rg values). In
these figures, we consider two cases with a negative value of (a) both
inductances and (b) both capacitances, discussed in Sec. III. At the
EPD, the system’s total impedance is Ztotal (ω) ∝ (ω − ωe)2; hence, it
exhibits a double zero at ωe.

resonance frequencies of the circuit are calculated by im-
posing Ztotal(ω) = 0. Figure 4 shows the zeros of such total
impedance Ztotal(ω) for various gyration resistance values
(arrows represent growing Rg values). When considering the
EPD gyrator resistance Rg = Rg,e = 50 �, one has Ztotal(ω) ∝
(ω − ωe)2; i.e., the two zeros coincide with the EPD angular
frequency ωe, which is also the point where the two curves
in Fig. 4 meet. For gyrator resistances Rg < Rg,e, the two
resonance angular frequencies are complex conjugate, con-
sistent with the result in Fig. 4. Also, for gyrator resistances
such that Rg > Rg,e, the two resonance angular frequencies are
purely real. In other words, the EPD frequency coincides with
the double zeros of the frequency spectrum, or double poles,
depending on the way the circuit is described.

V. EPD IN THE LOSSY GYRATOR-BASED CIRCUIT

The following section analyzes the EPD condition in the
gyrator-based circuit by accounting for series resistors R1 and
R2 in resonators as illustrated in Fig. 5. A procedure analogous
to the one discussed earlier, using the same state vector � ≡
[Q1, Q2, Q̇1, Q̇2]T, leads to [34]

d�

dt
= M�, M =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−ω2
01 0 −γ1

Rg

L1

0 −ω2
02 −Rg

L2
−γ2

⎞
⎟⎟⎠. (13)

FIG. 5. Schematic view of the lossy gyrator-based circuit, with a
resistor in each resonator.

In the presented lossy circuit matrix, γ1 = R1/L1 and γ2 =
R2/L2 determine losses in each resonator. The eigenfrequen-
cies of the circuit are calculated by solving the following
characteristic equation,

ω4 − jω3(γ1 − γ2) − ω2

(
ω2

01 + ω2
02 + γ1γ2 + R2

g

L1L2

)

+ jω
(
γ1ω

2
02 + γ2ω

2
01

) + ω2
01ω

2
02 = 0. (14)

The coefficients of the odd-power terms of the angular
eigenfrequency in the characteristic equation are imaginary;
therefore, ω and −ω∗ are both roots of the characteristic
equation. In order to obtain a stable circuit with real-valued
eigenfrequencies, the coefficients of the odd-power terms
in the characteristic equation of Eq. (14), − j(γ1 − γ2) and
j(γ1ω

2
02 + γ2ω

2
01), should vanish, otherwise a complex eigen-

frequency is needed to satisfy the characteristic equation. The
coefficient of the ω3 term is zero when γ1 = γ2, but according
to this condition, the coefficient of the ω term is nonzero be-
cause ω2

01 and ω2
02 are both negative. Moreover, the coefficient

of the ω term never vanishes when both resonators are lossy
because both ω2

01 and ω2
02 have the same sign. Consequently,

it is not possible to have all real-valued coefficients in the
characteristic polynomials, except when γ1 = γ2 = 0, which
corresponds to a lossless circuit.

A. RLC resonators with negative inductances L1 and L2

In the first case, we assume inductances with negative
values. In Figs. 6(a) and 6(b), γ1 is perturbed while we as-
sume γ2 = 0, whereas in Figs. 6(c), and 6(d), γ2 is perturbed
while γ1 = 0. These four plots present the real and imaginary
parts and the magnitude and phase of eigenfrequencies when
the resistances R1 and R2 are perturbed individually. We use
the same values for the circuit components as already used
in the lossless circuit presented in Sec. III A. The normal-
ization term ωe is the EPD angular frequency obtained when
γ1 = γ2 = 0, which is the same EPD frequency as the lossless
circuit. In this case, losses in the circuit are represented by
negative γ1 and γ2 since L1, and L2 are negative, so the right
side of the figure axes show the loss and the left side of
the axes represent the gain in the circuit through a negative
resistance. In Figs. 6(a)–6(d), we recognize the bifurcations
of the real and imaginary parts and the magnitude and phase
of the eigenfrequencies, so the circuit is extremely sensitive to
variations of resistances in the vicinity of EPD. By perturbing
γ1 or γ2 away from γ1 = γ2 = 0, the circuit becomes unsta-
ble, and it begins to self-oscillate at a frequency associated
with the real part of the unstable angular eigenfrequency. In
addition, we show the real and imaginary parts of the eigenfre-
quencies by separately perturbing the resistances on both sides
in Figs. 6(e) and 6(f). The black contour curves in these three-
dimensional figures show constant real or imaginary parts of
the eigenfrequencies. We observe that by adding either loss
or gain, the circuit becomes unstable. Instability in the circuit
is not due to the instability of the uncoupled resonators, but
rather it is unstable because of the addition of losses, as was
the case in Ref. [34] for different configurations. When γ1

or γ2 is perturbed from the EPD, the oscillation frequency
is shifted from the EPD frequency, and it could be measured
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FIG. 6. Case with negative value of the inductances on both res-
onators. Variation of (a) real and imaginary parts and (b) magnitude
and phase of the angular eigenfrequencies to a resistor perturbation
on the left resonator, i.e., when −γ1 changes and γ2 = 0. (c) and
(d) Same as in panels (a) and (b), but the resistor perturbation is
on the right resonator, i.e., −γ2 changes and γ1 = 0. Variation of
(e) real and (f) imaginary parts of the angular eigenfrequencies to
independent resistor perturbation on both sides.

for sensing applications. The eigenfrequency with a negative
imaginary part is associated with an exponentially growing
signal (instability). Considering the existence of instability,
there are a few possible ways of operation: preventing the
system from reaching saturation by switching off the circuit,
partially compensating for losses, or making the circuit an
oscillator. In the partial compensation scheme, the instability
effect due to losses in the circuit can be counterbalanced
by adding an independent series gain to each resonator. A
negative resistance can be easily implemented using the same
opamp-based circuit designed to achieve negative inductance
and capacitance. This issue is beyond the scope of this paper,
and it seems a complicated strategy for stability. We believe
that exploiting the system’s instability may be an excellent
strategy to design sensitive oscillators that work as sensors;
this could be the subject of future investigations.

B. RLC resonators with negative capacitances C1 and C2

In the second case, we consider the negative value for
capacitances. In Figs. 7(a) and 7(b), γ1 is perturbed while we
consider γ2 = 0, and in Figs. 7(c), and 7(d), γ2 is perturbed

FIG. 7. Case with negative value of the capacitances on both res-
onators. Variation of (a) real and imaginary parts and (b) magnitude
and phase of the angular eigenfrequencies to a resistor perturbation
on the left resonator, i.e., when −γ1 changes and γ2 = 0. (c) and
(d) Same as in panels (a) and (b), but the resistor perturbation is
on the right resonator, i.e., −γ2 changes and γ1 = 0. Variation of
(e) real and (f) imaginary parts of the angular eigenfrequencies to
independent resistor perturbation on both sides.

while γ1 = 0. These figures show the real and imaginary parts
of the eigenfrequencies when each resistor is perturbed indi-
vidually. We use the same values for the circuit components
as used earlier in the lossless circuit shown in Sec. III B,
and the EPD angular frequency is obtained for these circuit
parameters when γ1 = γ2 = 0, which is the same EPD fre-
quency as the lossless circuit. In Figs. 7(a)–7(d), we observe
the bifurcations of the real and imaginary parts and the magni-
tude and phase of the eigenfrequencies, so the circuit exhibits
extreme sensitivity to resistance value variations in the vicin-
ity of EPD. We show the real and imaginary parts of the
eigenfrequencies by independently changing the resistances
on both sides in Figs. 7(e) and 7(f). The black contour curves
in these three-dimensional figures show constant real or imag-
inary parts of the eigenfrequencies. Angular eigenfrequencies
are complex valued when perturbing γ1 and γ2 away from
γ1 = γ2 = 0; hence, the circuit gets unstable and it starts to
oscillate at a fundamental frequency associated with the real
part of the unstable angular eigenfrequency. In Figs. 7(a)–7(f),
both conditions γ1 > 0 and γ2 > 0 represent loss, whereas
the conditions γ1 < 0 and γ2 < 0 represent gain in the circuit
through a negative resistance.
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FIG. 8. Sensitivity of (a) real and (b) imaginary parts of the eigenfrequencies to a capacitance perturbation (solid lines), �C = (C1 −
C1,e)/C1,e, while the inductance values on both sides are negative. Dashed lines show the perturbed eigenfrequencies according to the Puiseux
expansion up to its first order. Sensitivity of (c) real and (d) imaginary parts of the eigenfrequencies to an inductance perturbation (solid lines),
�L = (L1 − L1,e)/L1,e, while the capacitance values on both sides are negative. Dashed lines show the perturbed eigenfrequencies according
to the Puiseux expansion up to its second order.

VI. HIGH-SENSITIVITY AND PUISEUX FRACTIONAL
POWER SERIES EXPANSION

Eigenfrequencies at EPDs are extremely sensitive to per-
turbations of the circuit elements, a property that is peculiar
to the EPD condition. We study the circuit under EPD per-
turbation to investigate the circuit’s sensitivity near the EPD.
We demonstrate how small perturbations in a component’s
value perturb the eigenfrequencies of the circuit. In order
to do this analysis, the relative circuit perturbation �X is
defined as

�X = X − Xe

Xe
, (15)

where X is the perturbed parameter value, and Xe is its un-
perturbed value that provides the EPD. The perturbation in
�X value leads to a perturbed circuit matrix M(�X ). We
demonstrate the extreme sensitivity to extrinsic perturbation
by resorting to the general theory of EPD and utilizing the
Puiseux fractional power series expansion [3]. Accordingly,
when a small relative perturbation in the component value
�X is applied, the resulting two different eigenfrequencies
ωp(�X ), with p = 1 and 2, are estimated using the convergent
Puiseux series. Here we provide the first two terms to estimate
the eigenfrequencies near an EPD, using the explicit formulas
given in Ref. [42]:

ωp(�X ) ≈ ωe + (−1)pα1

√
�X + α2�X , (16)

α1 =
√√√√−

∂H (�X ,ω)
∂�X

1
2!

∂2H (�X ,ω)
∂ω2

∣∣∣∣∣∣
�X =0, ω=ωe

, (17)

α2 = −α2
1

1
3!

∂3H (�X ,ω)
∂ω3 + ∂2H (�X ,ω)

∂ω∂�X

∂2H (�X ,ω)
∂ω2

∣∣∣∣∣
�X =0, ω=ωe

, (18)

where H (�X , ω) = det[M(�X ) − jωI], and α1 and α2

are first- and second-order coefficients, respectively.
Equation (16) indicates that for a tiny perturbation in
component value �X � 1 the eigenvalues change sharply
from their original degenerate value due to the square

root function, which is an essential characteristic of
second-order EPDs.

Typically, the inductor or capacitor changes in response to
an external perturbation of the parameter of interest, leading
to a shift in resonance frequency. We consider variations of
L1, or C1, one at the time, and the calculated real and imag-
inary parts of the eigenfrequencies near the EPD are shown
in Fig. 8. In the first case, the perturbation parameter is the
capacitance, �C = (C1 − C1,e)/C1,e, and a negative value for
both inductances is assumed, so the first-order Puiseux ex-
pansion coefficient is calculated as α1 = 3.228 × 105 rad/s.
To calculate the coefficients, we use the components value
utilized in Sec. III A. Figures 8(a) and 8(b) exhibit the real
and imaginary parts of the perturbed eigenfrequencies ω

obtained from the eigenvalue problem after perturbing �C .
Furthermore, green dashed lines in these figures demonstrate
that such perturbed eigenfrequencies are well estimated with
high accuracy by using the Puiseux expansion truncated at
its first order. For a negative but small value of �C , the
imaginary part of the eigenfrequencies experiences a rapid
change, and its real part remains constant. On the other hand,
a very small positive value of �C causes a sharp change in
the real part of the eigenfrequencies while its imaginary part
remains unchanged.

In the second example, the inductance value in the left
resonator is considered as a perturbed parameter, �L = (L1 −
L1,e)/L1,e, whereas the capacitance values are both nega-
tive. By using Eqs. (17) and (18) and using the components
values utilized in Sec. III B, the coefficients of the Puiseux
expansion are calculated as α1 = j5.548 × 105 rad/s and
α2 = −3.960 × 105 rad/s. The calculated results in Figs. 8(c)
and 8(d) show the two branches (solid lines) of the ex-
act perturbed eigenfrequencies evaluated from the eigenvalue
problem when the external perturbation is applied to the
circuit. These two plots show that the perturbed eigenfre-
quencies are estimated accurately by applying the Puiseux
expansion truncated at its second order (dashed lines). For a
tiny value of positive perturbation, the imaginary part of the
eigenfrequencies undergoes sharp changes, while its real part
remains approximately unchanged. However, a small negative
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perturbation in the inductance value rapidly changes the real
part of the two eigenfrequencies away from the EPD eigenfre-
quency. The bifurcation in the diagram, described by a square
root, is the most exceptional physical property associated with
the EPD. It can be employed to devise ultrasensitive sensors
for various applications [16,43–45].

VII. SENSING SCENARIO FOR LIQUID CONTENT
MEASUREMENT

In recent years various well-established techniques have
been proposed to measure the liquid level, such as light-
reflection sensors [46], chirped fiber Bragg grating [47,48],
fiber optic sensors [49–51], ultrasonic Lamb waves [52], and
capacitive sensors [53–56]. The use of a capacitive sensor is
a well-known method for liquid level measurement [57]. This
kind of sensor has been proven to be stable, can be assembled
using various materials, and can provide high resolution [58].
The principle of operation of capacitive sensors is that they
convert a variation in position, or material characteristics, into
measurable electrical signals [59]. Capacitive sensors are op-
erated by changing any of the three main parameters: relative
dielectric constant, area of capacitive plates, and distance be-
tween the plates. In conventional methods, a capacitive liquid
level detector can sense the fluid level by measuring variations
in capacitance made between two conducting plates embed-
ded outside a nonconducting tank or immersed in the liquid
[57,60]. The same concept applies when the liquid occupies a
varying volume percentage of a mixture’s components.

In order to compare the advantages of the EPD-based sen-
sors with conventional sensors based on a single LC circuit,
we use a simple ideal scheme for liquid content measure-
ment. We demonstrate that the sensitivity of a gyrator-based
circuit by operating near the EPD is much higher than the
sensitivity of a conventional LC resonator circuit. We pro-
vide the required setup and the measurement procedure to
measure the liquid volume. Here, we use the following set of
values for the components in the gyrator-based circuit: L1 =
−4.7 nH, L2 = −4.7 nH, C2 = 47 pF, and Rg = 50 �. Con-
sider a cylindrical glass with top and bottom metal plates. This
structure can serve as a variable capacitor in which the volume
of filled liquid (or a percentage of a mixture) can change
the total capacitance. A schematic structure for this scenario
is illustrated in Fig. 9(a). The designed device includes the
gyrator-based circuit (see Fig. 1) where the positive capac-
itor on the left side is the cylindrical container with height
d2 = 3.0142 cm, of which a height d1 is filled with water, and
the area of metal plate is A = 100 cm2. Pure water is assumed
to have a relative permittivity of εr = 78.7 at T = 22.0 ◦C,
and we neglect losses in this simple case [61]. Two series
variable capacitors model the structure in which the bottom
one has a capacitance of Cfilled = ε0εrA/d1 and the top one
has a capacitance of Cempty = ε0A/(d2 − d1). The total capac-
itance is Ctotal = CfilledCempty/(Cfilled + Cempty), which changes
when varying the water level. By opening the top inlet, the
height of the water will increase, so the capacitance value will
be increased. On the contrary, the water’s height decreases
when opening the bottom outlet, and the total capacitance
value will be decreased. In summary, the level of water is
related to the capacitance, and the perturbation in the value

FIG. 9. (a) Schematic illustration of a device for liquid level
measurement. (b) The EPD is designed at a given level of water
content (0 in the figure). The solid blue line in the plot shows the two
resonance frequencies of the gyrator-based circuit versus water level
variation with very high sensitivity near 0. The red dashed line shows
the resonance frequency of a single resonator when the water content
changes. The EPD-based circuit and the single LC resonator have the
same resonance frequency at 0. It is clear that the EPD-based circuit
provides much higher sensitivity to the capacitance perturbation than
the single LC resonator.

of capacitance will change a circuit’s eigenfrequencies. Using
the steps explained in Sec. III and by solving the eigenvalue
problem, the plot of resonance frequency versus water level
percentage for this specific example is illustrated in Fig. 9(b)
by the solid blue line. The measuring scheme is very sensitive
near 0 water content. The EPD can be designed for different
water contents, so the frequency variation caused by changes
in the water level around that mentioned level will be very
sensitive. We now compare the sensitivity of the EPD-based
scheme with that of a single LC resonator. We consider an
LC resonator with the resonance frequency of ω0 = ωe, i.e.,
coincident with one of the EPD systems. We assume that the
sensing capacitor is the same as the one in Fig. 9, i.e., the
same as that considered in the EPD system. The variation
in the resonance frequency by perturbing the capacitance as
described above, i.e., the level of water content, is shown in
Fig. 9(b) by the red dashed line. It is clear that the EPD-
based bifurcation in the dispersion diagram, characterized by
a square root, dramatically enhances the circuit’s sensitivity
compared to the sensitivity of the single LC resonator to the
same capacitance perturbation.

In the proposed scheme for liquid content measurement,
we assume that the gyrator-based circuit works in the stable
region where eigenfrequencies are purely real. However, when
considering the instabilities generated by losses, one eigenfre-
quency has a negative imaginary value, as explained in Sec. V.
Consequently, the circuit starts having growing oscillations.
The exponential growth rate can be controlled in two ways: ei-
ther by stopping (switching off) the circuit to reach saturation
or by letting it saturate. In this latter case, the gyrator-based
circuit should be designed as a sensor that oscillates. The
circuit can be used to sense physical or chemical parameters
changes by measuring the oscillation frequency variations.

VIII. CONCLUSIONS

A second-order EPD with a real (degenerate) eigenfre-
quency in a gyrator-based circuit is achieved using two
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unstable series LC resonators coupled via a gyrator. Each un-
stable resonator has either a negative capacitance or a negative
inductance; hence, the resonance frequency of each resonator
is purely imaginary when they are uncoupled. We have
demonstrated that coupling the two unstable resonators can
make the overall circuit marginally stable with a purely real-
valued EPD frequency. We have also shown that the system
becomes unstable when small losses or gains are considered
in the circuit. We investigated and demonstrated the enhanced
sensitivity to perturbations when operating at the EPD. In
particular, we have considered the perturbation of the gyra-
tion resistance, capacitance, and inductance. The perturbation
in physical or chemical parameters affects the circuit com-
ponent’s value in realistic applications. Such a perturbation

could be estimated by measuring the shift of resonance fre-
quencies that follow the square-root behavior typical of an
EPD perturbation. The presented results may impact sensing
technology, security systems, particle monitoring, and mo-
tion sensors. In addition, future studies using resonators with
purely imaginary frequencies like waveguides below cutoff
may help miniaturize microwave sensing devices.
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