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Nonlocality and quantum measurement are two fundamental topics in quantum theory and their interplay
attracts intensive focuses since the discovery of Bell theorem. Recently, nonlocality sharing among multiple
observers with one entangled pair has been predicted and experimentally observed by generalized quantum
measurement—weak measurement. However, only the one-sided sequential case, i.e., one Alice and multiple
Bobs, is widely discussed and little is known about the two-sided case. Here, we theoretically and experimentally
explore the nonlocality sharing in the two-sided sequential measurements case in which one entangled pair is
distributed to multiple Alices and Bobs. We experimentally observed double Einstein-Podolsky-Rosen (EPR)
steering among four observers in a photonic system. In the case that all observers adopt the same measurement
strength of the weak measurement, it is observed that double EPR steering can be demonstrated simultaneously.
The results not only deepen our understanding of relation between sequential measurements and nonlocality but
also may find important applications in many quantum information tasks, such as randomness certification.
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I. INTRODUCTION

Nonlocality, which is the core characteristic of quantum
theory [1], plays a fundamental role in many quantum infor-
mation tasks. Bell nonlocality [2,3] and Einstein-Podolsky-
Rosen (EPR) steering [4,5] are two extensively investigated
notions that capture the quantum nonlocality in which EPR
steering is proved to be a more general form than Bell non-
locality [6]. From the perspective of quantum information,
both Bell nonlocality and EPR steering can be demonstrated
by considering two separated observers, Alice and Bob, that
perform local measurements on a shared quantum state ρAB

and quantum nonlocality is witnessed via violation of corre-
sponding inequalities. Recently, Silva et al. extended the Bell
test to include one Alice and many Bobs with intermediate
Bobs performing sequential weak measurements and showed
that Bell nonlocality can be shared among multiple observers
with one entangled pair [7]. Double Bell-Clauser-Horne-
Shimony-Holt (Bell-CHSH) [8] inequality violations among
three observers were then experimentally observed with one
entangled photon pair by two independent groups including
ours [9,10]. Based on this sequential scenario, lots of works
have been reported [11–22] and EPR steering among mul-
tiple observers is experimentally demonstrated very recently
[23].

To date, however, almost all discussions are limited to
the one-sided sequential case, i.e., one entangled pair is dis-
tributed to one Alice and multiple Bobs. As emphasized
bySilva et al. in their last sentence in Ref. [7], it would be
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interesting to investigate the two-sided sequential case, i.e.,
including multiple Alices in the setup. In this article, we theo-
retically and experimentally explore the two-sided sequential
case that one entangled pair is distributed to multiple Alices
and Bobs, in which middle Alices and Bobs perform optimal
weak measurements and the last Alice and Bob perform pro-
jective measurement. The relation between sequential weak
measurements and Bell nonlocality is explicitly derived un-
der the unbiased input condition for the case of a two-sided
sequential. It is shown that no more than two Bell-CHSH
inequality violations can be obtained in the same method
[24]. However, here the analytical forms of EPR steering are
obtained for the case of two Alices and two Bobs, show-
ing that Alice1-Bob1 and Alice2-Bob2 can demonstrate EPR
steering simultaneously. Using an entangled photon pair, we
experimentally observed double EPR steering simultaneously
with n = 6 and n = 10 measurement settings in the case of
two pairs of observers [4].

II. THEORETICAL FRAMEWORK

A. Weak measurement

Consider a two-party state ρAB distributed to Alices and
Bobs who perform sequential weak measurements as shown
in Fig. 1. For convenience of calculations and experimental
realization, we choose ρAB = |�−〉AB〈�−| with the singlet
state |�−〉AB = (|↑〉A|↓〉B − |↓〉A|↑〉B)/

√
2 and require that

optimal weak measurements are performed.
For a projective measurement {|k+〉, |k−〉} in a two-level

system with 〈k+|k−〉 = 0, the projective measurement opera-
tors are P+ = |k+〉〈k+|, P− = |k−〉〈k−|, and σ̂k = P+ − P− =
|k+〉〈k+| − |k−〉〈k−|.
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FIG. 1. Theoretical sketch. The two-sided sequential scenario in
which one entangled pair is distributed to multiple Alices and Bobs.
Here �xi, �y j represent measurement inputs and ai, bj are correspond-
ing dichotomic measurement outcomes, respectively.

For a weak measurement, the positive-operator valued
measurement [25] can be written as Kraus operators

M̂± = cos(θ )|k±〉〈k±| + sin(θ )|k∓〉〈k∓|, (1)

where parameter θ ∈ [0, π/4] determines the strength of
measurement. When θ = 0, M̂±1|�k reduces to the projector
|k±〉〈k±| corresponding to project measurement, while θ =
π/4 gives M̂±1|�k = Î/

√
2 representing no measurement at all.

Two quantities are of particular interest in weak measurement,
which are quality factor F measuring the disturbance of mea-
surement and information gain G and they satisfy the trade-off
relation F 2 + G2 � 1 [7]. For an initial state |ψ〉, the result of
the weak measurement is

ρ± = M̂±|ψ〉〈ψ |M̂†
±/Tr(M̂±|ψ〉〈ψ |M̂†

±)

= F |ψ〉〈ψ | + (1 − F )(P+|ψ〉〈ψ |P+ + P−|ψ〉〈ψ |P−),
(2)

with probability P(±) = Tr(M̂±|ψ〉〈ψ |M̂†
±) = G〈ψ |P±|ψ〉 +

1
2 (1 − G). The meanings of factors F and G are described in
Ref. [7] and will be illustrated in the following.

For an initial two-level state |ψ〉 = α|0〉 + β|1〉, a projec-
tive measurement can be realized by coupling a pointer state
that can be written as

(α|0〉 + β|1〉)|0〉pointer → α|0〉|+〉pointer + β|1〉|−〉pointer (3)

with 〈+|−〉 = 0. However, for a weak measurement, the evo-
lution of the pointer state is

|ψ〉 = (α|0〉 + β|1〉)|0〉pointer

→ |ψ ′〉 = α|0〉|+′〉pointer + β|1〉|−′〉pointer, (4)

where |+′〉 = cos(θ )|0〉 + sin(θ )|1〉 and |−′〉 = sin(θ )|0〉 +
cos(θ )|1〉, with 〈+′|−′〉 = sin(2θ ) indicating the strength of
the weak measurement. Then a projective measurement with
the basis {|0〉, |1〉} on the pointer state is performed. Hereto
a completed weak measurement of M̂+ = cos(θ )|0〉〈0| +
sin(θ )|1〉〈1| and M̂− = cos(θ )|1〉〈1| + sin(θ )|0〉〈0| is ful-
filled. The probabilities of two outcomes are P(+) = |〈0|ψ ′〉|2
and P(−) = |〈1|ψ ′〉|2.

In our experiment, the factors F and G are defined the
same as in Refs. [7,9]. F denotes the disturbance of the
measurement, which can be written as F = 〈+′|−′〉. G de-
notes the information gain of the measurement, which can be
written as G = 1 − |〈0|−′〉|2 − |〈1|+′〉|2, where |〈0|−′〉|2 and
|〈1|+′〉|2 are error rates of the weak measurement. Here F =
sin2θ, G = cos2θ and the optimal condition, F 2 + G2 = 1, is
satisfied.

B. EPR steering in two-sided sequential measurement

The quantum nonlocality can be witnessed via violations
of corresponding inequalities. The quantitative measure-
ment of quantum correlation needs to be calculated to
see whether or not they can surpass the threshold sup-
ported by local hidden variables and local hidden states
theory [8,26]. It is shown in the following that these quan-
tities are deeply connected to the quality factor F and
information gain G of weak measurements. Bell quantity
I and EPR steering quantity S both are determined by
the two-party correlation C(�x,�y) = ∑

a,b abP(a, b|�x, �y). In or-
der to obtain a general process of calculations, we first
consider the joint conditional probability distribution of
four observers in the two-sided sequential case, which is
given as

P(a1, a2, b1, b2|�x1, �x2, �y1, �y2)

= Tr
[(

Ĥa1,a2|�x1,�x2 ⊗ Ĥb1,b2|�y1,�y2

)
ρAB

]
, (5)

where Ĥa1,a2|�x1,�x2 ≡ M̂†
a1|�x1


̂a2|�x2 M̂a1|�x1 where 
̂ represents the

projection operator and Ĥb1,b2|�y1,�y2 is defined in the same way.
The joint conditional probability distribution of any two ob-
servers is

P(ai, b j |�xi, �y j )

=
∑

ai′ b j′ �xi′ �y j′

P(�xi′ , �y j′ )P(ai, ai′ , b j, b j′ |�xi, �xi′ , �y j, �y j′ ) (6)

with i, i′, j, j′ ∈ {1, 2} and i �= i′, j �= j′. Since Alices and
Bobs are independent observers, P(�xi, �y j ) = P(�xi )P(�y j ) and
P(�xi ) = P(�y j ) = 1/n for unbiased inputs with n the number
of measurement settings. Defining the correlation observable
as

Ŵ(�xi,�y j ) =
∑

a1,a2,�xi′ ,b1,b2,�y j′

aib jP(�xi′ , �y j′ )Ĥa1,a2|�x1,�x2 ⊗ Ĥb1,b2|�y1,�y2 ,

(7)

we can obtain the correlation

C(�xi,�y j ) = Tr
[
Ŵ(�xi,�y j )ρAB

]
. (8)

The definition of Eq. (4) can also be used for multiple ob-
servers with the generalized definition

Ĥa1,...,aN |�x1,...,�xN

= M̂†
a1|�x1

· · · M̂†
aN−1|�xN−1


̂aN |�xN M̂aN−1|�xN−1 · · · M̂a1|�x1 (9)

and Ĥb1,...,bN |�y1,...,�yN is defined in the same way as above.
The situation of EPR steering in the two-sided sequential

case is more complicated compared to Bell nonlocality due
to the asymmetry of EPR steering. As a demonstration, here
the calculations are limited only to the case of two Alices
and two Bobs, in which we ask whether or not Alice1-Bob1
and Alice2-Bob2 can demonstrate EPR steering simultane-
ously with Alice2 and Bob2 performing projective measure-
ments. EPR steering quantity S and corresponding classical
bound B for n measurement settings [4] can be defined

032211-2



EINSTEIN-PODOLSKY-ROSEN STEERING IN TWO-SIDED … PHYSICAL REVIEW A 105, 032211 (2022)

FIG. 2. Experimental setup. (a) Polarization-entangled photon pairs are generated via the type I phase-matching spontaneous parametric
down-conversion process by pumping a joint β-barium-borate (BBO) crystal with a 404 nm semiconductor laser. Signal and idler photons are
then distributed to Alices and Bobs with Alice1 and Bob1 performing optimal weak measurements and Alice2 and Bob2 performing projective
measurements. (b) Setup for realizing optimal weak measurement. (c) Setup for realizing projective measurement. BBO: β-barium-borate;
QWP: quarter-wave plate; HWP: half-wave plate; PBS: polarization beam splitter; BD: beam displacer; SPD: single-photon detector; FC: fiber
coupler.

as [26]

Sn = 1

n

∣∣∣∣∣
n∑

m=1

C(�xm,�ym )

∣∣∣∣∣,
Bn = max

{Am}

{
λmax

(
1

n

n∑
m=1

Amσ̂ B
m

)}
, (10)

whereas Sn > Bn refutes any local hidden states theory. Here
Am ∈ {−1, 1} represents Alice’s declared result for the mth
measurement setting of Bob’s and λmax(Ô) denotes the largest
eigenvalue of Ô. Detailed calculations give

SA1−B1
n1

= GA1 GB1 . (11)

After the measurement of Alice1 and Bob1, the state becomes

ρA1−B1
�k = 1

n1

∑
�k

∑
i, j∈{+,−}

(
M̂i

�k ⊗ M̂ j
�k
)|�〉AB〈�|(M̂i

�k ⊗ M̂ j
�k
)†

,

(12)

where �k denotes the measurement direction of Alice1 and
Bob1. Then the detailed form of the steering quantity between
Alice2 and Bob2 can be obtained:

SA2−B2
n2

= 1 − 4

(
1 − 1

2
FA1 FB1

)∑
k,l |〈k+|l+〉|2|〈k−|l+〉|2

n1n2

− 2FA1 FB1

∑
k,l Re[〈l−|k+〉〈l+|k−〉〈k−|l−〉〈k+|l+〉]

n1n2
,

(13)

where
∑

k,l denotes double summation
∑n1

k=1

∑n2
l=1 where

n1 and n2 are numbers of measurement settings for Bob1
and Bob2, respectively, and {|k±〉} ({|l±〉}) is the measure-
ment basis of A1-B1 (A2-B2). Since the distributed state is
the singlet state |ψ−〉AB, the measurement directions of Alice
and Bob are chosen to be opposite to maximize Sn. When
measurement settings are settled SA2−B2

n is only determined
by FA1 FB1 . Consider the case of n = 3 in which measurement

settings are chosen as {X,Y, Z} and measurement strength θ

is the same for Alice1 and Bob1; we can obtain that SA1−B1
3 =

G2, SA2−B2
3 = 1 − 2G2/3 with G = cos2θ . The correspond-

ing classical bound is B3 = 1/
√

3 and thus Alice1-Bob1 and
Alice2-Bob2 can both demonstrate EPR steering when G ∈
(0.7598, 0.7962). In practice, larger n is needed to obtain
more violations. It should be emphasized here that in the case
in which one-sided sequential multiple EPR steering refers to
multiple Bobs aim at steering the state of one Alice, all Bobs
have to choose the same measurement settings [12,20,23] to
steer Alice simultaneously. In the two-sided sequential case,
however, Bobs aim at steering the corresponding Alices re-
spectively and their choice of measurement settings is thus
independent of each other.

III. EXPERIMENTAL REALIZATION

We now describe the experimental setup to observe nonlo-
cality sharing among four observers. As shown in Fig. 2(a),
a 404 nm semiconductor laser with 100 mW power is used
to pump a joint β-barium-borate (BBO) crystal to produce
the polarization-entangled photon pairs via the type I phase-
matching spontaneous parametric down-conversion process
[27]. By adjusting wave plates placed before the BBO crystal,
the singlet state |�−〉 = (|H〉|V 〉 − |V 〉|H〉)/

√
2 is generated

where |H〉 and |V 〉 refer to horizontal and vertical polariza-
tion states, respectively. The fidelity of the entangled pair
state is measured to be 98.76 ± 0.08% [28]. Each half of
the entangled pair is coupled into different optical fibers and
then distributed to Alices and Bobs with Alice1 and Bob1
performing optimal weak measurements and Alice2 and Bob2
performing projective measurements. Coincidence events be-
tween four detectors are registered by avalanche photodiode
single-photon detectors and a coincidence counter. The joint
probability distributions for different measurement settings
and outcomes are extracted from these coincidence counts
within 10 s integral time.

032211-3



ZHU, HU, LI, GUO, AND ZHANG PHYSICAL REVIEW A 105, 032211 (2022)

As the core part of the experimental setup, Fig. 2(b)
realizes optimal weak measurements described by Kraus op-
erators M̂±1|�k in Eq. (1). The basic idea of the setup is to
first transform the measurement basis {|k+〉, |k−〉} into basis
{|H〉, |V 〉} via the basis converter consisting of a quarter-wave
plate and a half-wave plate (HWP). The interference between
two beam displacers (BDs) then realizes optimal weak mea-
surements M̂±1|�z with σ̂�z ≡ |H〉〈H | − |V 〉〈V | [9,25]. Lastly,
another basis converter is used to transform {|H〉, |V 〉}
back into the measurement basis. To be specific, an input
state |φk〉 = α|k+〉 + β|k−〉 passes the basis converter placed
before BD1 and becomes |φz〉 = R̂|φk〉 = α|H〉 + β|V 〉. Pho-
tons with polarization |H〉 are deflected down after passing
BD, while nothing happens for |V 〉. BD1 can be used to cou-
ple the path and polarization degrees of freedom of photons
that ÛBD|φz〉 = α|H〉|d〉 + β|V 〉|u〉 with |d〉, |u〉 representing
the down and the up path between two BDs, respectively.
With operations of HWPs the state of photons before BD2
can be written as α(cosθ |V 〉 + sinθ |H〉)|d〉 + β(cosθ |V 〉 +
sinθ |H〉)|u〉. Since only the middle path out of BD2 is re-
tained, the components |V 〉|d〉 and |H〉|u〉 in state |ϕ〉 are
postselected and the path degree of freedom is eliminated.
With a HWP fixed at π/4 placed after BD2 the state of
photons becomes α cosθ |H〉 + β sinθ |V 〉 = M̂+1|�z|φz〉. With
another basis converter applied subsequently, the full setup
completes the M̂+1|�k operation corresponding to the +1 out-
come of the measurement.. By adjusting the HWP after BD1
from θ/2 to π/4 − θ/2, operation M̂−1|�k corresponding to the
−1 outcome is realized [9].

We experimentally explore nonlocality sharing in the two-
sided sequential case with two Alices and two Bobs and
the results are given in Fig. 3. We first choose n = 6 mea-
surement settings in the EPR steering scenario such that
Bn=6 = 0.5393 [26]. Then we consider the case that Alice1
and Bob1 measure with the n = 6 setting but Alice2 and Bob2
measure with the n = 10 setting. In the (θA1 , θB1 ) parameter
space we have chosen different points with equal strength
that θA1 = θB1 ∈ {π/36, π/12, 0.34, 5π/36, 7π/36}. Specifi-
cally, the double EPR steering simultaneously can be clearly
observed when θA1 = θB1 = 0.34. The measured nonlocality
quantities support theoretical predictions with errors mainly
coming from the Poisson distribution of photon counting and
the imperfection of optical elements. It is clearly shown that
while Alice1-Bob1 and Alice2-Bob2 cannot demonstrate Bell
nonlocality simultaneously (see Appendix), they can both
demonstrate EPR steering with the proper choice of mea-
surement strength. It is interesting to point out that Alice2
and Bob2 can demonstrate one-way EPR steering if Bob1
performs no measurement and Alice1 preforms proper weak
measurement [29].

IV. DISCUSSION AND CONCLUSION

In summary, we have explored theoretically and experi-
mentally nonlocality sharing in the two-sided sequential case
with one entangled pair distributed to multiple Alices and
Bobs. We obtain the explicit formula that relates sequen-
tial optimal weak measurements and Bell quantity including
the one-sided sequential case as a special situation. For the
one-sided sequential case, it has been shown there exists

FIG. 3. Experimental results. The steering quantities
SA1−B1

6 , SA2−B2
6 , and SA2−B2

10 are measured with different measurement
strengths of Alice1 and Bob1 [GA1 = cos(2θA ) and GB1 = cos(2θB)].
In the upper panel, the results, that Alice1’s and Bob1’s measurement
strengths are equal, are presented. The blue line and dots are
the theoretical prediction and experimental results of SA1−B1

6 ,
respectively. The red line represents the theoretical predictions of
SA2−B2

n with n = {6, 10}, and the corresponding experimental results
are denoted by the red rhombus and green triangle that almost
overlap. The two horizontal lines are the bounds of B6 = 0.5393
and B10 = 0.5236. The maximal simultaneous violation is observed
when θA = θB = 0.34 and the violation values are 0.0493 ± 0.0029
of SA1−B1

6 , 0.0485 ± 0.0020 of SA2−B2
6 , and 0.0636 ± 0.0023 of

SA2−B2
10 . The error bars come from the Poissonian distribution of

photon count that are too small to present in the figure. In the lower
panel, the more experimental results with different GA1 and GB1

are presented. The blue and red surfaces denote the theoretical
values of SA1−B1

6 and SA2−B2
6 , and the blue and red dots are the

corresponding experimental results. The gray plane denotes the
bound B6 = 0.5393.

measurement protocols to demonstrate arbitrarily many Bell-
CHSH inequality violations with biased inputs [7] or unequal
sharpness measurement to various Bobs [22]. It would be
interesting to investigate whether or not such measurement
protocols exist in the two-sided sequential case. Due to the
asymmetry of Alice and Bob and the freedom of choos-
ing measurement settings, it remains an open question that
whether or not there exists an elegant analytical formula for
EPR steering. Specifically, it would be interesting to inves-
tigate whether or not more than two pairs of Alice-Bob can
demonstrate EPR steering simultaneously in the two-sided
sequential case. Using an entangled photon pair, we exper-
imentally verify the case of two Alices and two Bobs in
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FIG. 4. Experimental results of the sequential Bell test. The results verified Eq. (A2) in which GA2 = GB2 = 1 due to Alice2 and Bob2
performing projective measurements. Double Bell-CHSH inequality violations are observed only when Alice1 or Bob1 perform almost no
measurement such that the situation is equivalent to the one-sided sequential case. When Alice1 and Bob1 adopt the same measurement
strength, double Bell-CHSH inequality violations cannot be obtained.

which Alice1 and Bob1 perform optimal weak measurements
and Alice2 and Bob2 perform projective measurements. For
Alice1 and Bob1 adopting the same measurement strength,
we observed double EPR steering simultaneously while it is
shown that double Bell-CHSH inequality violations cannot
be obtained. The results presented here not only shed new
light on the understanding of the interplay between quantum
measurement and nonlocality, but also may have impor-
tant applications such as unbounded randomness certification
[11,30–32], randomness access code [33,34] and one-sided
device independent quantum key distribution [35–38].

Note added. Recently, a more general conclusion about
Bell-CHSH inequality in a sequential measurement structure
has been noted in [24].
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APPENDIX A: BELL NONLOCALITY IN THE CASE
OF TWO-SIDED SEQUENTIAL MEASUREMENTS

Bell quantity I in the Bell test scenario is defined as

I = |C(�x0,�y0 ) + C(�x0,�y1 ) + C(�x1,�y0 ) − C(�x1,�y1 )|, (A1)

whereas I > 2 refutes any local hidden variables theory
(Fig. 4). Measurement settings are usually chosen as
�x0 = Z, �x1 = X, �y0 = (X − Z )/

√
2, �y1 = −(X + Z )/

√
2

to reach the Tsirelson’s bound of 2
√

2. In the case of two
Alices and two Bobs where optimal weak measurements are
performed by observers, calculations based on the method of

Ref. [7] give

IA1−B1 = 2
√

2GA1 GB1 ,

IA2−B2 =
√

2

2

(
1 + FA1

)
GA2

(
1 + FB1

)
GB2 ,

IA(B)1−B(A)2 =
√

2GA(B)1

(
1 + FB(A)1

)
GB(A)2 . (A2)

Due to symmetry configuration, the Bell quantities of Alice1-
Bob2 and Bob1-Alice2 have the same form. The results
are compatible with the one-sided sequential case obtained
by Silva et al. if Alice1 performs no measurement with
FA1 = 1, GA1 = 0 and Alice2 and Bob2 perform projective
measurements with GA2 = GB2 = 1. It can be shown from the
above equations that double Bell-CHSH inequality violations
happen only when Alice1 or Bob1 performs almost no
measurement and the situation is very close to the one-sided
case. Furthermore, Alice1-Bob1 and Alice2-Bob2 cannot
demonstrate Bell nonlocality simultaneously. For the more
general case with arbitrary N Alices and M Bobs, the explicit
analytical form of Bell quantity for arbitrary Alice and Bob
also can be derived. It is concluded that no more than double
Bell-CHSH inequality violations can be obtained in this
scenario under the unbiased input condition.

Similarly, in the case of the two-sided sequential case in
which one entangled pair is distributed to arbitrarily many
N Alices and M Bobs for sequential optimal weak measure-
ments, the Bell quantity for arbitrary Alice and Bob, under the
unbiased input condition, satisfies

IAr−Bs = 2
√

2

2(r−1) × 2(s−1)

(
1 + FA1

) · · · (1 + FAr−1

)
GAr

× (
1 + FB1

) · · · (1 + FBs−1

)
GBs (A3)

with r � N, s � M, and GAN = GBM = 1 if the last Alice and
Bob perform projective measurements. For N = 1, it naturally
reduces to the one-sided sequential case with one Alice and
multiple Bobs.
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