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Numerical investigation of the logarithmic Schrödinger model of quantum decoherence

Rory van Geleuken and Andrew V. Martin*

School of Science, RMIT University, Melbourne, Victoria 3000, Australia

(Received 24 June 2021; accepted 28 February 2022; published 25 March 2022)

A logarithmic Schrödinger equation with time-dependent coupling to the nonlinearity is presented as
a model of collisional decoherence of the wave function of a quantum particle in position space. The
particular mathematical form of the logarithmic Schrödinger equation has been shown to follow from con-
ditional wave theory, but the validity of the logarithmic Schrödinger equation has not yet been investigated
numerically for general initial conditions. Using an operator-splitting approach, we solve the nonlinear equa-
tion of motion for the wave function numerically and compare it to the solution of the standard Joos-Zeh master
equation for the density matrix. We find good agreement for the time-dependent behavior of the ensemble widths
between the two approaches, but note curious zero-pinning behavior of the logarithmic Schrödinger equation,
whereby the zeros of the wave function are not erased by continued propagation. By examining the derivation of
the logarithmic Schrödinger equation from conditional wave theory, we indicate possible avenues of resolution
to this zero-pinning problem.
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I. INTRODUCTION

Understanding the behavior of a quantum system under
the continuous influence of its environment is of prime im-
portance to a wide variety of research areas, ranging from
fundamental questions about the quantum-to-classical transi-
tion [1–3] to the creation and operation of emerging quantum
technologies [4]. In the case of the latter, modeling the ef-
fects of decoherence by the environment is a significant step
in the design and implementation of these new technolo-
gies, where the loss of coherence between states is often
a limiting factor [5]. However, the macroscopic number of
degrees of freedom of any physically reasonable environ-
mental model results in analytically intractable models for
the interactions and so these must be treated approximately.
Typically, a master equation is used, where the effects of a
large class of environmental models, such as those obeying
the Born and Markov approximations, can be incorporated
on general principles by the addition of terms of Lindblad
form [6].

If we consider a quantum particle interacting with an en-
vironment of scattering particles, the Gallis-Fleming master
equation [7] can be used to describe the environment’s de-
cohering effects in position space. It is the loss of coherence
between position-space basis states that is responsible for the
localization of quantum particles, a feature that is completely
absent in the bare Schrödinger equation. The Gallis-Fleming
master equation provides a very general description of this
process and was rederived and corrected by Hornberger and
Sipe [8], after first being considered in approximate form by
Joos and Zeh [3]. This has been used to model the effects of
environmental engineering in matter-wave interferometry [9],
to study the quantum-to-classical transition [1,10], and in
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modeling the behavior of quantum states of matter, such as
Bose-Einstein condensates [11].

Treating the environment as a bath of harmonic oscilla-
tors leads to the quantum Brownian motion model, originally
derived by Caldeira and Leggett [12] using path-integral tech-
niques introduced by Feynman and Vernon [13] and solved
analytically by Fleming et al. [14]. This model, specialized
appropriately to the physical situation, has been used to study
a variety of emerging quantum technologies, such as the deco-
herence of Josephson junctions [15], QED cavities [16], and
photonic devices [17], among others [18].

A significant practical consideration in the implementa-
tion of these models is the computational complexity entailed
by working with density matrices. The resources required to
propagate such equations scale at least with the square of the
size of the state space under consideration.

In contrast to working with density matrices, the phase-
space formalism, initially developed by Groenewald [19]
and independently by Moyal [20], building on ideas from
Wigner [21] and others [22], involves converting the master-
equation formalism into a description of the evolution of a
quasiprobability distribution on phase space. This has been
used very successfully to describe a wide variety of appli-
cations, such as the effects of decoherence in matter-wave
interferometry [23], modeling the behavior of quantum walks
as a basis for novel quantum algorithms [24], modeling fun-
damental tests of quantum mechanics in cavity QED [25],
and even furnishing descriptions of coherent dynamics in the
early universe [26]. The flexibility of phase-space approaches
is hindered, as in the case of the density-matrix formalism,
by the growth of the computational complexity of numerical
propagation in higher-dimensional settings. This is because
the Wigner-Weyl transformation between the density-matrix
description and the Wigner function description is invertible
and so both necessarily contain the same number of degrees
of freedom.
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The use of stochastic methods as a way of circumventing
this computational scaling of master equations was pioneered
by the quantum state diffusion methods of Gisin and Per-
cival [27]. They showed that the solution to a large class
of master equations could be modeled by the evolution of
a stochastic Schrödinger equation with appropriately chosen
stochastic forcing terms. Such calculations would result in a
wave function that evolved in a nondeterministic manner, in
response to the constant and random influence of the system’s
environment. The total history of a wave function calculated
in such a way is known as a stochastic unraveling. In essence,
these amount to samples in a Monte Carlo numerical inte-
gration scheme of the path-integral formulation, with each
path corresponding to an unraveling, and can offer significant
computational advantages over master-equation methods [28].
Additionally, conceptual insight into the interpretation of
quantum mechanics with open systems offered by stochastic
methods has been leveraged in proposals of modified theo-
ries of quantum mechanics such as the spontaneous collapse
model of Ghirardi, Rimini, and Weber [29] and the subse-
quent continuous spontaneous localization model of Ghirardi,
Pearle, and Rimini [30]. Extensions to relate these models
to gravitation have also been proposed by Diósi [31] and
Penrose [32].

Even with these conceptual and numerical advantages in
many applications, stochastic methods cannot guarantee an in-
crease in performance in general. This is because for complex
systems, the benefit of only having to propagate wave func-
tions rather than density matrices is outweighed by the cost
of requiring large sample sizes to ensure weak convergence
(which is to say, convergence at the ensemble level, rather than
convergence at the level of a single unraveling, or so-called
strong convergence) [33]. Although various powerful schemes
for reducing necessary sample sizes exist in specific appli-
cations of stochastic evolutions [34,35], there is no known
general method for reducing the inherent statistical error be-
low that guaranteed by the central limit theorem. For many
applications of stochastic quantum propagation, this is not a
problem, as the value in such methods often lies in (but is not
limited to) the reproduction of realistic evolutions of a system
of interest, for example. However, for the description of ef-
fects such as decoherence, a well-converged density matrix or
equivalent is necessary, and in this respect, stochastic methods
may not be able to outperform the master-equation formalism
in general.

Recently we proposed an alternative approach to perform-
ing decoherence calculations at the wave-function level called
conditional wave theory (CWT) [36]. This approach uses a
factorization of the many-body wave function into conditional
and marginal wave functions, which was first introduced by
Hunter [37] and later formed the basis for the exact factoriza-
tion approach to molecular physics [38]. In molecular physics,
it has been extensively developed to model, for example,
light-matter interactions [39], nonadiabatic dynamics [40],
and electronic decoherence [41]. It also been used to model
electron microscope images [42].

In the CWT decoherence model, the marginal wave func-
tion informs about the probability density of a particle in a
position space, while the conditional wave function encodes
the state of the environment. We have shown in Ref. [36]

that the formalism is deterministic and involves a infinite
number of coupled nonlinear equations. However, this series
can be truncated at three for Gaussian packets and produces
results in exact agreement with a known analytic solution to
a classic decoherence model. For non-Gaussian states, such a
low-order truncation of the CWT equations would be an ap-
proximation. Yet if this approximation were accurate enough,
it could provide a deterministic wave-function-level approach
to decoherence calculations, at the expense of working with a
nonlinear equation. The aim of the present study is to investi-
gate the accuracy of this approach.

With truncated CWT equations, the marginal equation of
motion takes the form of a logarithmic Schrödinger equa-
tion (LSE). This is a surprising connection to the original
proposal for the LSE as a nonlinear extension of quantum
mechanics due to the separability property and existence
of solitonic ‘Gausson’ solutions [43,44]. In that work, the
bounded solutions of the LSE were seen as a plausible model
of macroscopic objects. However, this idea was not supported
by the results of atomic physics experiments [45]. It is some-
what unexpected that the LSE reemerged as the result of
a rigorous derivation in the context of CWT. In the CWT
decoherence model, the sign of the nonlinearity is opposite
to that of the theory of Bialynicki-Birula and Mycielsky and
only unbounded solutions are possible. As a deterministic
wave-function level description, CWT offers an intriguing
alternative to density matrices, phase-space methods, and
stochastic methods.

The LSE itself has been adapted to a variety of different
fields, such as nuclear physics [46] and in modeling solitonic
behavior of optically nonlinear media [47]. It has also been
proposed as a model of quantum information exchange [48]
and Bose-Einstein condensation [49], due to its obvious for-
mal similarity to the expression for entropy. In contrast to
these proposals, the logarithmic nonlinearity arises from the
CWT description of collisional decoherence, rather than as a
speculative model.

We are motivated to develop the LSE approach to deco-
herence further, because there may be complex decoherence
calculations where CWT offers advantages over current meth-
ods. Phase-space methods have provided analytic models for
matter-wave interferometry, exploiting the slit-based optical
elements and one effective transverse dimension [23]. It is
not inconceivable that, in the future, matter-wave experiments
could involve more complex optical elements that are less
amenable to the phase-space approach. Alternatively, ultra-
cold gases are routinely formed in three dimensions and
subject to complex dynamics, which could be a potential
application for CWT. Before we can explore these possibil-
ities, we need to ensure that the CWT approach, using an
approximate LSE model, can correctly model the physics of
decoherence for a general wave function. To investigate this,
we must first test the LSE model of decoherence on non-
Gaussian states in a single dimension. Note that we are not
aiming to show that CWT can outperform existing methods
computationally on these simple systems.

Rather, our aim in this paper is to gain physical insight into
the dynamics modeled by the LSE in the context of decoher-
ence and the validity of the approximations that lead to the
LSE. To that end, in this work we investigate the LSE model
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of decoherence for both Gaussian and non-Gaussian wave
packets using numerical techniques. In Secs. II A and II B
we briefly review the Joos-Zeh master equation and condi-
tional wave theory, as well as the mathematical form of the
corresponding LSE predicted by the latter. In Sec. II C the
regularization of the logarithmic nonlinearity is discussed and
in Sec. II D important properties of error propagation in partial
differential equations (PDEs) with time-dependent nonlinear
terms, such as the LSE given by CWT, are discussed. Sec-
tion III contains the results of our numerical investigation,
with Gaussian (Sec. III A) and non-Gaussian (Sec. III C) ini-
tial conditions presented. Section III D contains an analysis
of the behavior of the numerical error and the nature of the
agreement between the Joos-Zeh master equation (JZME) and
LSE. Section IV contains a discussion of the advantages and
disadvantages of the methods presented, as well as in-depth
analysis of the curious zero-pinning behavior exhibited by the
LSE in Sec. IV.

II. THEORY

A. Joos-Zeh master equation and conditional wave theory

A seminal result in the theory of quantum decoherence
and localization was the JZME. Joos and Zeh considered a
massive particle with position x that scatters massless (or ap-
proximately massless) environmental particles and found that
the net effect of a macroscopic number of these events could
be approximated by a simple quadratic decohering term. The
regime in which the JZME’s approximations hold is that of
low-momentum environmental particles and small displace-
ments of the central particle. With these conditions satisfied,
the JZME governs the behavior of the reduced density matrix
ρS (x, x′) of a particle moving along the x axis,

d

dt
ρS (x, x′, t ) = ih̄

2m

(
∂2

∂x2
− ∂2

∂x′2

)
ρS (x, x′, t )

− �

h̄
(x − x′)2ρS (x, x′, t ), (1)

where � is the decoherence parameter, which controls the
strength of the decohering effect of the environment. The
reduced density matrix ρS (x, x′) is related to the total system-
environment density matrix ρ̂ through the partial trace,

ρS (x, x′) = 〈x′|trE ρ̂|x〉 =
∑

|e〉∈BE

〈x′| ⊗ 〈e|ρ̂|e〉 ⊗ |x〉, (2)

where BE is an orthonormal basis of HE , the Hilbert space of
environmental states, and ⊗ denotes the tensor product. Using
the tools of conditional wave theory, we have shown in a
prior work [36] that, instead of the master-equation formalism,
decoherence can be modeled by a pair of coupled equations of
motion for the conditional wave function φ and marginal wave
function a. These are defined by a factorization of the total
system-plus-environment wave function ψ , through

ψ (x, q, t ) = φ(x, q, t )a(x, t ), (3)

where x is the coordinate of the central particle of interest
(the system) and q is an abstract coordinate that represents
the configuration of the environment. The factorization is not
unique and has an associated gauge symmetry realized by

multiplying one factor by an x-dependent phase factor and
the other factor by the conjugate of the same. Nonetheless, by
choosing an appropriate gauge and constructing the marginal
density matrix, given by ρm(x, x′, t ) = a∗(x′, t )a(x, t ), the re-
sulting equation of motion can be compared to the JZME. We
find a logarithmic Schrödinger equation of the form

i
da(x, t )

dt
= − h̄

2m
∇2a(x, t ) + h̄γ (t )

m
a(x, t ) ln |a(x, t )|2, (4)

where γ (t ) is a real-valued function of time that reproduces
the behavior of solutions to the JZME in coordinate space,
provided the environmental state is Gaussian in its coordinate.
The details of the derivation can be found in the Appendix.

The time dependence of the coupling parameter γ (t ) can
be derived exactly for Gaussian initial conditions and ap-
proximately generalized to non-Gaussian initial conditions,
where it possesses asymptotically linear forms in both the
long- and short-time regimes. As our aim is to solve Eq. (4)
for non-Gaussian initial conditions, the asymptotic behavior
exhibited by γ (t ) results in a straightforward and computa-
tionally efficient numerical implementation. However, due to
the nature of error propagation in nonlinear PDEs, this linearly
increasing coupling leads to numerical breakdown in finite
time, as discussed in Sec. II D.

B. Time dependence of the coupling to the nonlinearity

As shown in the paper by Joos and Zeh [3] where it first
appeared, the JZME not only preserves the Gaussian func-
tional form of states (so that initially Gaussian states remain
Gaussian for all time) but also causes O(t3) spreading of the
ensemble width w(t ) of these states (which corresponds to the
standard deviation of the associated probability distributions).
For a free particle, the Schrödinger equation predicts a linear
growth rate for w(t ). Note that w(t ) is often referred to as
the ensemble width, as it represents the standard deviation
of a probability distribution and to distinguish it from the
coherence length, which represents the distance over which a
given state retains quantum phase information and hence can
support superpositions.

These two length scales can be more directly interpreted in
terms of the density matrix. The coherence length measures
the width of the distribution of off-diagonal entries, while the
ensemble width measures the spread of the on-diagonal en-
tries. For a free particle, these have identical time dependence.
Decoherence causes a reduction in the coherence length over
time which is accompanied by an increase in the ensemble
width. In reality, the coherence length will only fall to some
minimum value related to the energy and length scale of the
interaction between the system and environment. However,
this minimum is closely related to thermalization and will not
appear in simplified models such as the JZME.

Substituting a Gaussian initial state into Eq. (4), we find
that the coupling parameter γ (t ) can be written as

γ (t ) = 2�

h̄

1

w(t )

∫ t

0
dt ′w(t ′). (5)

Working through the equations of motion, we find that w(t ) =
O(t3) and indeed the form of the resulting coupled differential
equations for the parameters describing the Gaussians exactly
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agree [36]. Setting w(0) = b, the characteristic decoherence
time is

tb = h̄

�b2
, (6)

which is the time taken for the coherence length to fall by a
factor of 1/e (unless otherwise stated, we will be working in
units where b = h̄ = � = 1 for the remainder of this paper).
The behavior of γ (t ) can be split into two regimes, short and
long times, as

γ (t ) = 2�t + O(t2), t 	 tb (7)

γ (t ) = c0 + �t

2
+ O(t−1), t 
 tb, (8)

where c0 is a constant determined by the initial conditions.
The transition between these two regimes occurs around the
first decoherence time. In the numerical calculations, we use
an interpolation between these two regimes rather than cal-
culating the integral explicitly, even in the Gaussian case.
The short-time expansion clearly holds [by Taylor expand-
ing the integral in Eq. (5) around zero, for instance] for
an arbitrary time-dependent width (i.e., the second moment)
of a general state, where that is well defined. Although the
long-time dependence is only exact in the case of Gaussian
initial conditions, numerical investigation shows that it shows
good agreement with the JZME in general. Furthermore, if we
assume that the long-time behavior of the width is dominated
by polynomial growth, so that w(t ) = O(t n) for t 
 tb, then
it is easily verified that

γ (t ) = 2�

h̄

∫ t
0 dt ′w(t ′)

w(t )
∝ t n+1

t n
= O(t ), (9)

which further motivates the general use of a linear time de-
pendence in the limiting (long and short) regimes for a general
state.

C. Regularization of the logarithm

Although the limit

lim
z→0

z log |z| = 0 (10)

for z ∈ C is straightforward to prove, it is necessary to regu-
larize the logarithm for numerical stability. In particular, we
use the regularized logarithmic function lnσ , defined as

lnσ (x) = Re ln(x + 10−σ i) (11)

for some σ � 0 so that for x 
 0,

lnσ (x) ≈ ln(x), (12)

but as x → 0, lnσ (x) → −σ ln(10) rather than diverging to
−∞. In the results presented in this paper, σ = 16, as this was
well below the level of desired numerical accuracy and did
not noticeably affect the computational resources required.
Other choices had little to no appreciable effect on the results,
provided σ � 2. Several other regularization schemes were
also trialed, including

ln(σ,N )(x) = 1

N

N−1∑
k=0

ln(x + 10−σ e2π ik/N ), (13)

FIG. 1. Relative L2(0, 1] distance between the natural logarithm
and a variety of regularized logarithms as discussed in the text.
“Rational” refers to the form given in Eq. (14) and “root average”
refers to the form given in Eq. (13).

which also showed no appreciable sensitivity to choices of σ

or N provided σ � 3. A slightly different approach took the
form

lnr(σ,r)(x) = xp

xp + 10−σ
ln(x + 10−σ ), (14)

which also did not display any appreciable effect on the evo-
lution for σ � 3 and all p � 1. Similar conclusions can be
drawn from the graph in Fig. 1, which shows the relative
error in terms of the functional distance between the natural
logarithm and the various regularization schemes discussed.
The functional distance was calculated using the formula

Err( f , g) = ‖ f − g‖2√‖ f ‖2‖g‖2
(15)

for two functions f and g, where ‖ f ‖2 denotes the L2(0, 1]
norm, given by

‖ f ‖2 =
(∫ 1

0
dx| f (x)|2

)1/2

. (16)

The fact that the singularity of z ln |z| at the origin is
removable appears to be of much greater importance than
the particular method of calculating the logarithm during the
intermediate steps. This is consistent with the results of Bao
et al. [50], which also showed that the evolution to the stan-
dard LSE displayed insensitivity to the regularization scheme
used.

As discussed in more detail below, particularly in Sec. IV,
the behavior of solutions to the LSE near zeros of the wave
function disagree significantly with standard theory. However,
the results in this section strongly suggest that these issues
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appear to be caused not by the numerical details of the log-
arithmic regularization but by analytic properties of the form
of the LSE itself and its derivation from CWT.

We used a split-operator approach with the second-order
Strang-splitting scheme to propagate the LSE (see Ref. [50]
for a thorough analysis of operator splitting applied to the
standard LSE). This has been shown to have better perfor-
mance in both computational time and reduced numerical
error when compared to a (modified) Crank-Nicolson finite-
difference scheme which is standard for linear PDEs [51].
Operator splitting also has the advantage of being relatively
straightforward to implement, as most of the computation is
handled by Fourier transforms. In our case, the algorithm was
implemented in PYTHON, using the NUMPY library [52] for
array manipulation and Fourier transforms.

D. Error analysis

Although the Strang-splitting method has relatively low
numerical error and is stable for the standard LSE [50], CWT
requires the nonlinearity to be time dependent. This leads to an
intrinsic source of numerical error for any discrete numerical
scheme. To see this, consider a general nonlinear Schrödinger-
like equation

i∂t u(x, t ) + 1
2∇2u(x, t ) = F [u(x, t )], (17)

where F [u] is some arbitrary differentiable function with the
square brackets denoting that F will typically take a function
as an argument, although it can also depend on x and t inde-
pendently. Recall also that in our units h̄ = m = 1. We denote
some approximate solution to this equation, given by some
numerical scheme, for example, by ũ so that

ũ(x, t ) = u(x, t ) + η(x, t ), (18)

where u(x, t ) is the exact solution and η(x, t ) is the error. If
we try to evolve ũ using the equation of motion, we find

i∂t u + 1
2∇2u + i∂tη + 1

2∇2η = F [u + η]. (19)

Expanding the right-hand side of this expression as a Taylor
series in η,

F [u + η] = F [u(x, t )] +
∞∑

k=1

∂kF [u]

∂uk

η(x, t )k

k!
, (20)

and substituting this back into the right-hand side of Eq. (19),
we can cancel out the exact solution’s terms so that we are left
with

i∂tη + 1

2
∇2η =

∞∑
k=1

∂kF [u]

∂uk

η(x, t )k

k!
, (21)

which means that the error of any approximate solution to
a nonlinear equation propagates according to a nonlinear
equation of its own. For equations with a nonlinearity that
is polynomial in the intensity, such as the Gross-Pitaevskii
equation (GPE), the right-hand side of (21) will be of finite
order. However, in general, the sum will extend over infinitely
many terms. Nonetheless, if ũ is a good approximation, then η

can be taken to be small everywhere and we can truncate the
series at k = 1, that is,(

i∂t + 1
2∇2

)
η(x, t ) = F ′[u]η(x, t ) + O(η2), (22)

where F ′[u] = ∂F/∂u. The differential operator on the left-
hand side of (21) shares a Green’s function with the
homogeneous time-dependent Schrödinger equation over Rd ,

G(x, t ) = i�(t )
( i

2πt

)d/2

e−i(x2/2t ), (23)

where �(t ) is the Heaviside step function, such that(
i∂t + 1

2∇2
)
G(x, t ) = δd (x)δ(t ). (24)

Although Eq. (22) cannot be solved exactly either, we can
extract some information about the behavior of the errors
propagated by (21) by expanding the solution in a series
η(x, t ) = ∑

n ηn(x, t ), where

ηn+1 = G ∗ (F ′[u]ηn), (25)

with ∗ denoting convolution. The first term η0 can be thought
of as the error intrinsic to the original approximation and ηn

for n � 1 represents error propagated due to the nonlinear
nature of the equation of motion. Since the Green’s function
contains a factor of t−d/2, we expect that the higher-order
propagated errors will die out quickly. This is indeed the case
for the GPE, where F ′[u] is not explicitly time dependent.
However, in the case of CWT, we have a time-dependent
coupling to the nonlinearity and so F ′[u] has an approximately
linear time dependence. Thus, each iteration of (25) yields a
factor of t1−d/2. For d = 1, this means that the propagated er-
rors will eventually diverge. For d = 3, we would expect these
errors to die out, whereas for d = 2 a more subtle analysis is
required. The latter two cases are outside the scope of this
paper, though the methods we present can be generalized to
higher dimensions and are intended to form the basis of future
work.

While we have shown that any numerical scheme for
evolving our equation of interest is inherently unstable, we
found that the Strang-splitting approach was stable over the
timescale required.

III. NUMERICAL RESULTS

A. Gaussian initial conditions

As demonstrated in [36], CWT can exactly reproduce
the evolution predicted by the JZME for Gaussian initial
conditions. Moreover, CWT allows us to make a so-called
linear-time approximation, which simplifies calculations at
the cost of accuracy. Even with this simplified approach, we
find that some qualitative features are captured by the LSE.
Recalling the discussion in Sec. II B, we note that since the
coupling to the nonlinearity transitions between two distinct
linear regimes, we try an interpolation between them to ap-
proximate γ (t ). That is, our γ (t ) is given by

γ (t ) = 2�t[1 − σ (t )] +
(

c0 + �t

2

)
σ (t ), (26)

where σ (t ) is the function

σ (t ) = 1 + tanh(t − tb)

2
. (27)

Any sigmoid function can be used for σ (t ) and the hyperbolic
tangent is selected as it offers a good combination of both
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FIG. 2. Behavior of γ (t ) for a Gaussian state over the timescale
of interest, along with its interpolated linear approximation. Note that
this is a log-log plot, so straight lines here correspond to straight
lines on the equivalent rectangular axes, but offset lines have different
gradients, even if they appear parallel.

smoothness of transition and simplicity of implementation.
Other widths of the transition (that is, scaling of the time
coordinate) can be used, but since we are working in units
natural to the problem, the simplest form provides the best
agreement.

This linear approximation for γ (t ) is plotted in Fig. 2.
In this manner, we smoothly interpolate between the short-

and long-time regimes with a transition over the characteristic
decoherence time tb. Naturally, this does introduce some error,
even in the Gaussian case, which can be seen as a slight
disagreement between the exact JZME solution and the LSE
solution, which is visible in Fig. 3. On the other hand, this
approach is reasonably general and simple, as well as being
quite flexible, as different interpolation methods could pro-
duce better agreement in regions of interest (much shorter than
the decoherence timescale or much longer, for example).

Figure 3 was created using a time step of 0.05tb (and in our
units tb = 1), a domain of width 30 comprising 2048 points
(or a spatial step size of approximately 0.015). The Gaussian
initially had a unit standard deviation and a mean of zero.

The apparent interference effects evident after about four
decoherence times in Fig. 3 are due to the periodic bound-
ary conditions implicit in the Fourier transforms used to
perform the split-operator steps. This leads to one side of
the Gaussian wrapping around the domain and interfering
with the other half once it has grown sufficiently wide. This
can be postponed by simply using a wider domain, although
at the expense of a larger number of spatial steps to maintain
the same density of points.

B. Non-Gaussian zero-free initial conditions

Two non-Gaussian functions that do not possess zeros were
also trialed as initial conditions (see Figs. 4 and 5). These were
the Lorentzian, given by

a(x, 0) =
√

1/π

b2 + x2
(28)

FIG. 3. Gaussian initial conditions propagated by both the JZME and the LSE with the linear-interpolation form γ (t ) function at multiples
of the characteristic decoherence time: (a) 1tb, (b) 2tb, (c) 3tb, and (d) 4tb. This demonstrates the good agreement between the two models, until
the wave-packet encounters the boundary. The origin of the interference fringes is discussed in the text.
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FIG. 4. An initially Lorentzian wave function evolving under
both the JZME and LSE with the linearly interpolated form of γ (t )
at multiples of the decoherence time: (a) 1tb, (b) 2tb, (c) 3tb, and
(d) 4tb. Although zero-pinning effects, discussed in detail in Sec. IV,
are visible, the ensemble width shows good agreement between the
two methods.

for a width parameter b, and the hyperbolic secant, given
by

a(x, 0) = 1√
2b

sech
(x

b

)
=

√
2

b

[
exp

(x

b

)
+ exp

(
−x

b

)]−1

(29)

with an analogous width parameter b. Note that the width
parameter for the Lorentzian represents half the full width at
half maximum and not the standard deviation, since the latter
is ill-defined for a Lorentzian distribution.

FIG. 5. Wave function initially described by the hyperbolic se-
cant evolving under both the JZME and LSE with the linearly
interpolated form of γ (t ) at multiples of the decoherence time:
(a) 1tb, (b) 2tb, (c) 3tb, and (d) 4tb. Since zeros do not develop during
evolution, the agreement between the two methods is very good until
finite domain effects cause spurious interference effects, similar to
the Gaussian case. The origin of these effects is discussed in the text.

FIG. 6. Twin Gaussian initial conditions at various fractions of
the characteristic decoherence time: (a) 0.05tb, (b) 0.4tb, (c) 0.7tb,
and (d) 1.0tb. As in Fig. 3, the LSE is implemented with the linearly
interpolated form of γ (t ). This demonstrates the good agreement in
the ensemble width behavior of the LSE solution, while the zero-
pinning effects, discussed further in Sec. IV, are evident.

C. Double-peak initial conditions

For non-Gaussian initial conditions, we observe a phe-
nomenon we have termed zero pinning whereby the number
of points of zero intensity in the wave function do not decrease
as a result of the evolution under the LSE. This is particularly
evident in Fig. 6, where the initial marginal wave function is
a coherent superposition of two Gaussians, of the form

a(x, 0) = N (b, s)−1/2

[
exp

(
− (x − s)2

4b2

)

+ exp

(
− (x + s)2

4b2

)]
, (30)

where N (b, s) is a normalization factor. We choose s = b = 1
in our units, so the peaks are initially of unit width and
separated by two units. Again, we used a time step of 0.05
and a spatial step size of approximately 0.015 (a 30-unit-wide
domain with 2048 points).

As the two Gaussian peaks spread out, they begin to inter-
fere, creating zeros in the probability distribution. The zeros
spread out at the correct rate, but their visibility is not di-
minished, unlike solutions to the JZME. This represents a
significant drawback to using the LSE as a model of deco-
herence, as decreased fringe visibility is a central feature of
decoherence, and is used extensively in experimental work to
characterize the decohering effect of the environment [9]. The
analytic nature of this problem is discussed further in Sec. IV.

In all test cases where zeros were present, zero pinning
was observed. There is no sensitivity to the origin of the zero,
whether it is a feature of the initial conditions or interference
effects (such as the twin-Gaussian case shown above) or as a
result of dynamics (for example, an isolated Cauchy-Lorentz
distribution will spontaneously form zeros as it spreads out).
As discussed below, this is likely a result of the analytic
properties of the LSE and not a numerical artifact. More-
over, even with the zero pinning, all test cases showed good
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FIG. 7. Plots of the ensemble widths of the probability distributions corresponding to (a) the Gaussian initial state and (b) the twin-Gaussian
initial state, measured relative to the initial width of the distribution [w(0) = b]. Note that the kink that occurs in the twin-Gaussian plot at
around 10−1tb corresponds to the initial formation of the interference fringes. The divergence of the widths just before 10tb corresponds to the
numerical breakdown discussed in Sec. II D.

agreement with the predictions of the JZME regarding the
time dependence of the ensemble widths of the distributions.

Note that since the same numerical integrator was used
for both the JZME and LSE, the JZME solutions simulated
here also have implicitly periodic boundary conditions. Their
interference effects are not visible here, however, since the
JZME does not exhibit zero pinning and appears to be some-
what more efficient at suppressing the off-diagonal terms in
the density matrix.

Conversely, the use of the same integrator for both for-
malisms resulted in a good demonstration of the significant
computational speedup offered by the LSE model. Performing
the calculations (on a commercial PC CPU) to produce the
figures in this paper took on the order of hours for the highest
spatial resolution calculations using the JZME but took only a
few minutes using the LSE.

However, operator splitting is not necessarily the most
efficient method for propagating the JZME, as it is linear in
the density matrix. Generally, finite-difference methods (such
as the well-established implicit Crank-Nicolson method) may
exhibit better performance for these types of partial dif-
ferential equations. Nonetheless, the observed reduction in
computation time still serves as a comparison to demonstrate
a potential advantage of the LSE model.

D. Widths and error growth

Although solutions to the LSE display different behavior
from the corresponding JZME solutions, there is good agree-
ment in the behavior of the ensemble-width spreading, as
shown in Fig. 7. Note that the kink present around 0.1tb in
Fig. 7(b) corresponds to the initial moment the interference
fringes form, which affects the growth rate of the width. This
is because the fringes contain less probability mass far away
from the origin and instead concentrate it in the central band.

As discussed in Sec. II D, the growth in numerical error
for a one-dimensional simulation of the LSE grows over time
regardless of numerical details. At the same time this error
is being propagated, the typical (absolute) value of the wave
function is shrinking due to the rapid ensemble width growth

(rapid, that is, compared to the free Schrödinger equation so-
lution with the same initial conditions). Since the logarithm
rapidly approaches an asymptote for real arguments in (0,1],
the function is quite steep in this region. Consequently, small
changes in the absolute value of the wave function can have a
considerable effect on the value of the logarithm, which may
contribute to numerical instability.

The self-interference caused by the periodic boundary con-
ditions can occur quite early in the simulation due to the
rapid spreading out of the wave function. Combined with the
zero pinning, these effects can be difficult to tease apart by
varying the parameters of the simulation (temporal and spatial
resolutions, domain size, etc.).

Incorporation of absorptive boundary conditions was at-
tempted in order to mitigate the effects of self-interference,
but were ultimately disregarded. An imaginary potential that
was nonzero only at the boundary was trialed; however, un-
less the width of this nonzero region was carefully tuned,
reflections from the boundary were produced ([53] contains a
good discussion of this problem). This tuning seemed to be
sensitive to the initial conditions, unlike in the linear case,
and simply introduced a new problem while not completely
eliminating the wrapping of the wave function around the
domain. While more mathematically rigorous and physically
realistic methods exist for implementing absorptive bound-
ary conditions, these can introduce significant computational
complexity because they require an additional integral to be
performed at each time step, as well as being nonlocal in time
(see [54] for an example algorithm and general analysis).

Ultimately, the computational scaling of integrating the
LSE with Strang-splitting means that it is in general more
tractable to simply work with a very large domain to mitigate
the spurious effects of periodicity.

Regardless, the good agreement between the two for-
malisms (master equation versus LSE) as far as the ensemble
width is concerned suggests that while the form of the LSE
that has been derived captures some aspects of the environ-
mental influence, the mechanism by which fringe visibility is
diminished is lost. Interestingly this also suggests that these
are, in some sense, separate phenomena, which is not obvious
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FIG. 8. Relative L2 error (defined in the text) of the JZME and
LSE evolutions of a Gaussian initial state. The rapid increase in error
around nine characteristic times is insensitive to the domain width
and spatial resolution, corresponding to the inevitable numerical
breakdown discussed in Sec. II D.

a priori, since both appear simultaneously with the addition
of the single decohering term in the JZME.

IV. DISCUSSION

As shown in Fig. 8, the LSE performs very well as a model
of decoherence for a Gaussian initial state. In all other test
cases investigated, the LSE yielded ensemble width growth
that closely matched the JZME solution, before numerical in-
stability set in. Since the LSE’s computational demand scales
more favorably than the master-equation approach, it is not
unreasonable to decrease the step size somewhat in order
to improve stability. However, as shown in Fig. 9, this only
delays the breakdown to a point. As discussed in Sec. II D,
the time dependence of the nonlinearity all but guarantees a
finite-time numerical breakdown.

Furthermore, our analysis indicates that in more than one
dimension, the accumulation of error intrinsic to the non-
linearity of the problem should not prove as destructive. As
discussed above, this is a consequence of the form of the

Green’s function in Eq. (23). This is of particular interest as
the computational speedup offered by conditional wave theory
is also most evident in higher-dimensional problems. This
suggests that the application of conditional wave theory to
quantum-mechanical problems involving continuous degrees
of freedom, such as matter-wave interferometry or decoher-
ence of quantum states of matter, could be a promising area
for further research. Besides ensemble width growth, the other
major prediction of decoherence theory is the loss of fringe
visibility in interference patterns. As discussed in Sec. III, the
LSE in this form cannot reproduce this behavior. This is a
significant hurdle in the way of using this model in practi-
cal situations such as prediction of matter-wave interference
patterns. The cause of this problem is discussed in the next
section, and possible areas of investigation which may offer a
solution are proposed.

Zero pinning

We now discuss in depth the mathematical origin of the
zero-pinning phenomenon, as this is the most significant
drawback of the LSE model. Furthermore, the way that the
LSE treats zeros so differently from other values of the wave
function suggests that some important mathematical structure
is missing or incorrect in the derivation of the LSE from CWT.
Although several approximations have been made, it is not
immediately apparent how these would result in the observed
effects. For example, most of the approximations make no
reference to the on-diagonal values of the density matrix or
are concerned with simplifying the time dependence of the
nonlinear coupling. Although the zero pinning is time inde-
pendent (in that it occurs regardless of how far along in time
the simulation is) we will show that the assumption that the
evolution is dependent on purely local information contained
in the wave function is closely related to the appearance of
zero-pinning effects.

Assume that at some point on the z axis, say, 2x0, the
intensity ρ(x0, x0) goes to zero. We now consider why the
addition of a term proportional to y2ρ(y, z) in the master
equation should fill in the zero when this term vanishes at this
point. To begin, we note that along the z axis ρ must be real

FIG. 9. (a) Kinetic energy of a Gaussian state plotted against time, in units of the initial kinetic energy. Initially, the kinetic energy grows
linearly (note the logarithmic axis) and suddenly jumps when the wave packet encounters the edge and wraps around the domain. (b) Point at
which this jump first occurs, plotted with increasing domain width. Note that for domains wider than about 103b, the numerical breakdown is
no longer due to self-interference, but is intrinsic to the LSE as we have implemented it.
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and a short distance along this axis, say, δx, from the point x0,
ρ must be small, positive, and approximately parabolic. This
follows if the zero is of first order in the wave function. If we
Taylor expand in time around the zero (assuming ρ vanishes
at some time t), we find

ρ(x0, x0, t + dt ) = dt

(
i

μ
∂2

yzρ − λy2ρ

)

+ dt2

2

(
i

μ
∂2

yzρ̇ − λy2ρ̇

)

+ dt3

3!

(
i

μ
∂2

yzρ̈ − λy2ρ̈

)
+ O(dt4),

(31)

where μ−1 = 2h̄/m, λ = �/h̄, the overdots denote differenti-
ation with respect to time, and everything on the right-hand
side is understood as being evaluated at the point (x0, x0)
at time t . We can find the expressions for the higher time
derivatives of ρ by repeated application of the JZME (A2). A
significant amount of algebraic work can be saved by noting
that most of the terms generated in this manner will vanish.
Trivially, anything with a surviving factor of y must be zero,
since this clearly vanishes at (x0, x0). Furthermore, the deriva-
tive operator can be rewritten

∂2
yzρ = 1

4

(
∂2

x ρ − ∂2
x′ρ

)
, (32)

but since ρ vanishes along both of the axes (s, x0) and (x0, s)
(where s ∈ R) the second derivatives with respect to both x
and x′ must both vanish at (x0, x0). From all this, we can
conclude that both the first- and second-order-in-time terms
vanish, but the third-order term will contain

˙̇ρ̇ ∼
(

i

μ

∂2

∂y∂z

)2

(−λy2ρ) ∼ 2λ

μ2

∂2ρ

∂z2
≈ 16h̄�

m

ρδ

δx2
, (33)

where ∼ denotes equality up to cancellation of terms that
vanish according to our observations above and ρδ is the value
of ρ(x, x) a short distance in either direction along the z axis.
As we noted, ρ is approximately parabolic along this axis and
so the second derivative along it is positive (since ρ must be
non-negative along z). Thus, for short times, the growth of
absolute value of the wave function will be cubic in time.

Note this argument depends crucially on the fact that the
JZME is manifestly nonlocal. Information about the state at
the point x′ is propagated to x through the decoherence term
encountering the kinetic term. In the LSE all information
remains local and so cannot be propagated to fill in the zeros.

A similar analysis can be performed for the LSE. To begin,
the marginal wave function can be expanded over some small
time step dt at some first-order zero x0 and eliminating terms
that vanish at the zero,

a(x0, t + dt ) = dt2 1

m
∇ε · ∇a + O(dt3), (34)

recalling that ∇2a = 0 at a first-order zero. Furthermore, from
the derivation of the LSE (detailed in the Appendix) the gra-
dient of ε(x) is given by

∂ε(x)

∂x
= − h̄2

m

1

|a(x)|
∂

∂x
{|a(x)|γ (x)} (35)

so that

a(x0, t + dt ) = −dt2

2

h̄2

m2

1

|a|
∂

∂x
{|a(x)|γ (x)}∂a

∂x
. (36)

Setting h̄ = m = 1, the coefficient of dt2, c2, can be written

c2 = ∂γ

∂x

∂a

∂x
+ γ

|a|
∂|a|
∂x

∂a

∂x
, (37)

which appears to be singular at the zero, since |a| → 0. How-
ever, care must be taken, since that is also precisely the point
at which |a| is not differentiable. Expanding over some small
step dx using a central finite difference and setting |a(x)| =
r(x),

lim
x→x0

1

|a(x)|
∂|a(x)|

∂x
(38)

= lim
x→x0

1

r(x)
lim

dx→0

r(x + dx/2) − r(x − dx/2)

dx
(39)

= lim
x→x0

r′(x+
0 ) + r′(x−

0 )

r(x)
. (40)

Note that close to a zero, f ′(x+
0 ) = − f ′(x−

0 ) for any continu-
ous real function f . So it must hold that

lim
x→x0

1

|a(x)|
∂|a(x)|

∂x
= lim

x→x0

0

r(x)
= 0. (41)

The second term of c2 in Eq. (37) can therefore be dropped,
leaving

a(x0, t + dt ) = −dt2 h̄2

m2
γ ′(x0, t )a′(x0, t ), (42)

which is clearly nonzero if a is not everywhere zero and γ is
a function of space. In the simplest version of the CWT LSE
that we have used so far, γ is not a function of space, implying
that γ ′(x) = 0, which in turn means the zeros cannot be filled
in.

Following the derivation of the LSE given in the Appendix,
we can arrive at a slightly more general solution for the non-
linear term than is given in Eq. (4),

ε(x, t ) = C(t ) −
∫ x

0
dx′ 1

|a(x′, t )|
∂[γ (x′, t )|a(x′, t )|]

∂x′ , (43)

where C(t ) is an arbitrary function of time that does not affect
the dynamics. If we allow γ to be independent of x′ then
we recover our expression for the logarithmic nonlinearity. In
general, however, ε can be written

ε(x, t ) = −γ (x, t ) −
∫ x

0
dx′γ (x′, t )

∂

∂x′ ln |a(x′, t )|, (44)

which follows from the product rule applied to the integrand
of Eq. (43), and the constant of integration has been set to
zero. This form suggests that the influence of the coupling
to the environment manifests in two ways. The first term
represents a local potential which arises directly from the in-
teraction with the environment and a second, nonlocal term is
difficult to interpret physically. Zloshchastiev [55] discussed
the logarithmic Schrödinger equation in the context of quan-
tum information transfer, and the above form of the nonlinear
term suggests a kind of weighted sum over the differential
information content of the probability distribution generated
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by the marginal wave function. Thus the integral term may be
interpreted as the amount of entanglement with the environ-
ment, as measured by the delocalized quantum information
content of the marginal state. The principal challenge in ap-
plying Eq. (44) unsurprisingly lies in evaluating the integral.
First, at points where the magnitude of the wave function
vanishes, the logarithm is ill-defined. However, this does not
mean that the integral itself is undefined. If we regard x as the
real part of a complex coordinate, it is possible to evaluate the
integral assuming the marginal magnitude is meromorphic on
an appropriate domain. This can be done using the generalized
Cauchy argument principle, which states that for a meromor-
phic function f and a holomorphic function g of a complex
variable w, defined on an open subset of the complex plane D,

1

2π i

∮
C

dw
f ′(w)

f (w)
g(w) =

∑
z

g(z)nC (z) −
∑

p

g(p)nC (p),

(45)

where C is a closed curve in D that does not intersect the
zeros (z) or poles (p) of f and nC (x) is the winding number
of the point x with respect to the curve C [note that if x
does not lie in the interior of C, nC (x) = 0]. Currently, we
know of no sufficiently general solution for γ (x, t ) to actually
apply this formula or how to find such a solution numeri-
cally. Nonetheless, the importance of zeros in the generalized
Cauchy argument principle, along with the seemingly reason-
able assumption that there should not be any poles in |a(x, t )|
on the real line, is suggestive of a possible resolution to the
zero-pinning problem.

V. CONCLUSION

Conditional wave theory offers new mathematical tools for
the analysis of quantum decoherence, a central problem in the
era of emerging quantum technologies. We have shown that as
applied to the localizing effects of decoherence, as measured
by the behavior of the ensemble width of a state, the loga-
rithmic equation of motion predicted by CWT demonstrates
excellent agreement with standard theory. However, the math-
ematically simplest form of this equation of motion leads to
significant accumulation of error and zero-pinning behavior.
We have shown that the former is accompanied by intrinsic
reduction of necessary computational resources, by working
at the wave-function level, and becomes less problematic with
increasing dimension. The zero-pinning effect prevents the
destruction of interference effects that are well known to occur
as a result of decoherence. The resolution of this shortcoming
of CWT may lie in careful analysis of the subtle nonlocal
behavior of the coupling to the environment, which appears
to have mathematical links to previous work on information
theory and the logarithmic Schrödinger equation.

APPENDIX: DERIVATION OF THE LSE

The one-dimensional JZME for the reduced density matrix
ρS (x, x′) can be written in the standard form

dρS (x, x′, t )

dt
= ih̄

2m

(
∂2

∂x2
− ∂2

∂x′2

)
ρS (x, x′)

− �

h̄
(x − x′)2ρS (x, x′). (A1)

It is more convenient to work in the rotated coordinate system
given by y = x − x′ and z = x + x′. The JZME thus becomes

dρS (y, z, t )

dt
= 2ih̄

m

∂2

∂y∂z
ρS (y, z, t ) − �

h̄
y2ρS (y, z, t ). (A2)

The evolution of solutions to the JZME is characterized by
the narrowing of the distribution of nonzero density-matrix
entries around y = 0, i.e., the diagonal. The key insight of
CWT is that this single master equation can be written as
two equations for the conditional and marginal wave functions
φ(x, q, t ) and a(x, t ), respectively, where the total system-
environment wave function ψ (x, q, t ) is given by

ψ (x, q, t ) = φ(x, q, t )a(x, t ), (A3)

where the generalized coordinate q represents the degree(s)
of freedom of the environment. The reduced density matrix is
then given by

ρS (x, x′, t ) = trEψ∗(x′, q′, t )ψ (x, q, t )

=
∫

dq ψ∗(x′, q, t )ψ (x, q, t ). (A4)

Substituting in the CWT factorization, we find

ρS (x, x′, t ) = a∗(x′, t )a(x, t )
∫

dq φ∗(x′, q, t )φ(x, q, t )

= ρM (x, x′, t )K (x, x′, t ), (A5)

where we defined the marginal density matrix ρM (x, x′, t ) =
a∗(x′, t )a(x, t ) and the coherence integral K (x, x′, t ) =∫

dq φ∗(x′, q, t )φ(x, q, t ). Substituting this back into the
JZME (A2), we find that the marginal density matrix and the
coherence integral must satisfy

dρM

dt
= 2ih̄

m

(
∂yzρM + (∂yρM )(∂z ln K ) + (∂zρM )(∂y ln K )

+ρM

∂2
yzK

K

)
− �

h̄
y2ρM − d

dt
ln K. (A6)

However, CWT also requires that the marginal density matrix
obey an equation of motion of its own [36]. This arises from
the equation of motion for the marginal wave function, which
itself arises from the Schrödinger equation, the CWT factor-
ization, Eq. (A3), and the requirement∫

dq φ∗(x, q, t )φ(x, q, t ) = 1. (A7)

With an appropriate choice of gauge, the equation of motion
for the marginal wave function can be written as

i
da(x, t )

dt
= − h̄

2m

∂2a(x, t )

∂x2
+ 1

h̄
ε(x, t )a(x, t ), (A8)

where ε(x, t ) is a real-valued function. This leads to an equa-
tion of motion for the marginal density matrix through the
relation ρM (x, x′, t ) = a∗(x′, t )a(x, t ),

dρM

dt
= ih̄

2m

(
∂2

x − ∂2
x′
)
ρM − i

h̄
[ε(x, t ) − ε(x′, t )]ρM . (A9)

Our aim then is to find a form of ε(x, t ) and K (x, x′, t ) such
that Eqs. (A9) and (A6) are equivalent. One such form can be
found by noting the fact that the original JZME has analytic
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Gaussian solutions, suggesting that a Gaussian form for K
may satisfy this requirement. In particular, if we take

K (y, t ) = exp

(
−γ (t )y2

2

)
, (A10)

where we are working in the (y, z) basis for convenience,
then it can be verified by substitution that Eqs. (A6) and (A9)
coincide as y → 0 provided

ε(x, t ) = h̄2

m
γ (t ) ln |a(x, t )|2. (A11)

For y �= 0, the two equations coincide only if

dγ (t )

dt
= �

h̄
⇒ γ (t ) = γ (0) + �t

h̄
. (A12)

However, since all observables depend only on the diagonal
values of ρM (x, x′), that is, when x = x′ or equivalently y = 0,
the requirement of the evolution of the off-diagonal terms
is not strictly necessary. In the Gaussian case, for example,
Eq. (A12) does not hold for all time, but still shows good

agreement with the JZME, as discussed in the main text. A
more general solution can be found by dropping the Gaussian
assumption for K (x, x′, t ). The expression for ε(x, t ) in that
case has the form

ε(x, t ) = C(t ) +
∫ x

0
dx′γ2(x′, t )

∂

∂x′ ln[γ2(x′, t )r(x′, t )],

(A13)
where r(x, t ) = |a(x, t )|, C(t ) is an arbitrary function of time
which does not affect the dynamics, and γ2(x, t ) is defined as

γ2(x, t ) = ∂2

∂y2
ln K (y, z, t )

∣∣∣∣
y=0

. (A14)

Equation (A13) can be verified by substitution of

γ (t )y2

2
→

∑
n

γn(z, t )yn

n!
(A15)

in Eq. (A10). This agrees with the Gaussian case exactly when
∂γ2

∂x = 0, which is to say that γn = 0 for n > 2.
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687 (2009).
[18] L. Tian, S. Lloyd, and T. P. Orlando, Phys. Rev. B 65, 144516

(2002).
[19] H. J. Groenewold, Physica 12, 405 (1946).
[20] J. E. Moyal, Math. Proc. Camb. Philos. Soc. 45, 99 (1949).
[21] E. P. Wigner, Phys. Rev. 40, 749 (1932).
[22] T. Curtright and C. Zachos, Asia Pac. Phys. Newsl. 01, 37

(2012).
[23] J. Bateman, S. Nimmrichter, K. Hornberger, and H. Ulbricht,

Nat. Commun. 5, 4788 (2014).

[24] C. C. López and J. P. Paz, Phys. Rev. A 68, 052305 (2003).
[25] P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. Raimond,

and S. Haroche, Eur. Phys. J. D 32, 233 (2005).
[26] A. L. Matacz, Phys. Rev. D 49, 788 (1994).
[27] N. Gisin and I. C. Percival, J. Phys. A: Math. Gen. 25, 5677

(1992).
[28] N. Gisin and I. C. Percival, J. Phys. A: Math. Gen. 26, 2245

(1993).
[29] G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470

(1986).
[30] G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78

(1990).
[31] L. Diósi, Phys. Lett. A 120, 377 (1987).
[32] R. Penrose, Gen. Relat. Gravit. 28, 581 (1996).
[33] E. Platen, Acta Numer. 8, 197 (1999).
[34] A. Shapiro, Handb. Oper. Res. Manage. Sci. 10, 353 (2003).
[35] D. Kroese, T. Taimre, and Z. Botec, Handbook of Monte Carlo

Methods (Wiley Blackwell, Hoboken, 2011).
[36] R. van Geleuken and A. V. Martin, Phys. Rev. Research 2,

033189 (2020).
[37] G. Hunter, Int. J. Quantum Chem. 9, 237 (1975).
[38] A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett.

105, 123002 (2010).
[39] N. M. Hoffmann, H. Appel, A. Rubio, and N. T. Maitra, Eur.

Phys. J. B 91, 180 (2018).
[40] S. K. Min, F. Agostini, and E. K. U. Gross, Phys. Rev. Lett. 115,

073001 (2015).
[41] B. F. E. Curchod, F. Agostini, and E. K. U. Gross, J. Chem.

Phys. 145, 034103 (2016).
[42] B. D. Forbes, A. V. Martin, S. D. Findlay, A. J. D’Alfonso, and

L. J. Allen, Phys. Rev. B 82, 104103 (2010).
[43] I. Bialynicki-Birula and J. Mycielsky, Ann. Phys. (NY) 100, 62

(1976).
[44] I. Bialynicki-Birula and J. Mycielski, Phys. Scr. 20, 539 (1979).
[45] C. G. Shull, D. K. Atwood, J. Arthur, and M. A. Horne, Phys.

Rev. Lett. 44, 765 (1980).

032210-12

https://doi.org/10.1103/RevModPhys.76.1267
https://doi.org/10.1007/BF01725541
https://doi.org/10.1038/35106500
https://doi.org/10.1038/nmat3182
https://doi.org/10.1007/BF01608499
https://doi.org/10.1103/PhysRevA.42.38
https://doi.org/10.1103/PhysRevA.68.012105
https://doi.org/10.1088/2058-7058/18/3/28
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1038/nature06331
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/j.aop.2010.12.003
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/PhysRevLett.75.3788
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1103/PhysRevB.65.144516
https://doi.org/10.1016/S0031-8914(46)80059-4
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1142/S2251158X12000069
https://doi.org/10.1038/ncomms5788
https://doi.org/10.1103/PhysRevA.68.052305
https://doi.org/10.1140/epjd/e2004-00171-6
https://doi.org/10.1103/PhysRevD.49.788
https://doi.org/10.1088/0305-4470/25/21/023
https://doi.org/10.1088/0305-4470/26/9/019
https://doi.org/10.1103/PhysRevD.34.470
https://doi.org/10.1103/PhysRevA.42.78
https://doi.org/10.1016/0375-9601(87)90681-5
https://doi.org/10.1007/BF02105068
https://doi.org/10.1017/S0962492900002920
https://doi.org/10.1016/S0927-0507(03)10006-0
https://doi.org/10.1103/PhysRevResearch.2.033189
https://doi.org/10.1002/qua.560090205
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1140/epjb/e2018-90177-6
https://doi.org/10.1103/PhysRevLett.115.073001
https://doi.org/10.1063/1.4958637
https://doi.org/10.1103/PhysRevB.82.104103
https://doi.org/10.1016/0003-4916(76)90057-9
https://doi.org/10.1088/0031-8949/20/3-4/033
https://doi.org/10.1103/PhysRevLett.44.765


NUMERICAL INVESTIGATION OF THE LOGARITHMIC … PHYSICAL REVIEW A 105, 032210 (2022)

[46] E. F. Hefter, Phys. Rev. A 32, 1201 (1985).
[47] M. Shen, Q. Wang, J. Shi, Y. Chen, and X. Wang, Phys. Rev. E

72, 026604 (2005).
[48] K. G. Zloshchastiev, Acta Phys. Pol. B 42, 261 (2011).
[49] A. Avdeenkov and K. G. Zloshchastiev, J. Phys. B 44, 195303

(2011).
[50] W. Bao, R. Carles, C. Su, and Q. Tang, Numer. Math. 143, 461

(2019).
[51] W. Bao, R. Carles, C. Su, and Q. Tang, SIAM J. Numer. Anal.

57, 657 (2019).

[52] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg,
N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van
Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P.
Peterson, P. Gérard-Marchant et al., Nature (London) 585, 357
(2020).

[53] F. He, C. Ruiz, and A. Becker, Phys. Rev. A 75, 053407 (2007).
[54] C. Lubich and A. Schädle, SIAM J. Sci. Comput. 24, 161

(2002).
[55] K. G. Zloshchastiev, Z. Naturforsch. A 73, 619 (2018).

032210-13

https://doi.org/10.1103/PhysRevA.32.1201
https://doi.org/10.1103/PhysRevE.72.026604
https://doi.org/10.5506/APhysPolB.42.261
https://doi.org/10.1088/0953-4075/44/19/195303
https://doi.org/10.1007/s00211-019-01058-2
https://doi.org/10.1137/18M1177445
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1103/PhysRevA.75.053407
https://doi.org/10.1137/S1064827501388741
https://doi.org/10.1515/zna-2018-0096

