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Generalized phase-space description of nonlinear Hamiltonian systems and Harper-like dynamics
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Phase-space features of the Wigner flow for generic one-dimensional systems with a Hamiltonian HW (q, p)
constrained by the ∂2HW /∂q∂ p = 0 condition are analytically obtained in terms of Wigner functions and Wigner
currents. Liouvillian and stationary profiles are identified for thermodynamic (TD) and Gaussian quantum
ensembles to account for exact corrections due to quantum modifications over a classical phase-space pattern.
General results are then specialized to the Harper Hamiltonian system, which, besides working as a feasible
test platform for the framework here introduced, admits a statistical description in terms of TD and Gaussian
ensembles, where the Wigner flow properties are all obtained through analytical tools. Quantum fluctuations
over the classical regime are therefore quantified through probability and information fluxes whenever the
classical Hamiltonian background is provided. Besides allowing for a broad range of theoretical applications,
our results suggest that such a generalized Wigner approach works as a probe for quantumness and classicality
of Harper-like systems in a framework which can be extended to any quantum system described by Hamiltonians
in the form of HW (q, p) = K (p) + V (q).
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I. INTRODUCTION

The Weyl-Wigner (WW) [1–4] phase-space formalism
of quantum mechanics (QM) encompasses the dynamics of
quantum systems and offers not only an enlarged but also an
equivalent description of QM in terms of quasiprobability dis-
tribution functions of position and momentum coordinates. It
provides subtle insights into the boundaries between quantum
and classical physics as well as a straightforward access to
quantum information issues [5–8]. Without affecting the pre-
dictive power of QM, the WW formalism can also be thought
of as the bridge between operator methods and path-integral
techniques [9–11] encoded by a Weyl transform operation
over a quantum operator Ô, which is defined by

OW (q, p) = 2
∫ +∞

−∞
ds exp (2 i p s/h̄) 〈q − s|Ô|q + s〉

= 2
∫ +∞

−∞
dr exp (−2 i q r/h̄) 〈p − r|Ô|p + r〉.

(1)

For Ô identified as a density matrix operator, ρ̂ =
|ψ〉〈ψ |, the Weyl transform operator OW (q, p) results
in the so-called Wigner quasiprobability distribution
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function,

h−1ρ̂ → W (q, p)

= (π h̄)−1
∫ +∞

−∞
ds exp (2 i p s/h̄) ψ (q − s) ψ∗(q + s),

(2)

which can also be identified as the Fourier transform of
the off-diagonal elements of the associated density matrix
ρ̂, where h = 2π h̄ is the Planck constant. As expected, it
presumes a consistent probability distribution interpretation
constrained by the normalization condition over ρ̂, that is,
Tr{q,p}[ρ̂] = 1.

Notwithstanding its major role in quantum optics, which
can be extended to the context of plasma and nuclear physics
[12,13], the WW phase-space framework is conveniently con-
sidered in the analysis of scattering and decoherence effects
in solid-state physics, for instance, in the context of semicon-
ductor transport-process phenomenology [14,15]. In addition,
the formalism also provides interesting perspectives for the
interpretation of the wave-function collapse [7,16,17]; for the
paradigmatic understanding of standard QM [18–20], which
includes a generalized correspondence between uncertainty
relations and quantum observables [21–24]; and even for the
investigation of more general scenarios, from quantum chaos
[25] to quantum cosmology [26].

From a strictly theoretical perspective [8,27,28], the WW
formalism admits a fluid equivalence of the phase-phase
information flow, which encodes all the information pro-
vided by a quantum density-matrix operator. Starting with the
density-matrix operator W (q, p), one can map the quantum
phase-space ensemble dynamics and its associated Wigner
currents to describe how quantum fluctuations quantitatively
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affect probability distributions and information flows [8,27].
By construction, it results in a continuity equation which is
reduced to the Liouville equation in the classical domain.
Quantum fluctuations coupled to nonlinear effects driven by
higher-order derivatives of the quantum-mechanical potential
introduce distortions (expressed in powers of h) over the Li-
ouvillian flow, which set the boundaries between classical and
quantum regimes [26–29].1 Another relevant aspect involv-
ing the classical-to-quantum correspondence is related to the
phase-space probability and information-flow interpretations
devised by Wigner [1], which establish the correspondence
between classical mechanics and classical thermodynamics
(TD) on the same level as that between QM and TD. That
is, the Maxwell-Boltzmann distribution of classical statistical
mechanics exp[−HW (q, p)/kBT ], where H is the Hamilto-
nian, kB is the Boltzmann constant, and T is the temperature,
can be statistically treated on equal footing to the quantum
version described by

∑
n exp(−En/kBT )Wn(q, p), where n is

a quantum number index for eigenenergies En and Wigner-
related eigenfunctions Wn(q, p).

Given the universal features of the WW formalism de-
scribed above, our proposal in this work is to extend the
formulation of the QM in phase space to nonlinear Hamil-
tonian systems generically described by a Hamiltonian of the
form

HW (q, p) = K (p) + V (q), (3)

which is evidently constrained by the ∂2HW /∂q∂ p = 0 con-
dition, where K (p) and V (q) are arbitrary functions of p and
q, respectively. The point here is that QM states are based
on Hilbert spaces and operators implemented through the
Schrödinger equation, whereas classical mechanics is geo-
metrically defined on symplectic manifolds, whose dynamic
trajectories are described by Hamilton’s equations. For more
general Hamiltonians, like HW (q, p) = K (p) + V (q), imple-
menting the Hamiltonian function through an eigensystem
HW ψn = En ψn is sometimes unfeasible. That is often the
case for K (p) and V (q) simultaneously described by non-
polynomial functions of p and q, respectively, for which
the corresponding Schrödinger-like eigensystem cannot be
solved, even numerically.

Alternatively, when the dynamics is described by a Hamil-
tonian constraint, as opposed to a Hamiltonian function, the
WW formalism can be implemented through a probability
flux-continuity equation, through which the fluid analogy and
the analytical computability of the WW formalism provide so-
lutions for quantum ensembles, as opposed to quantum states.
Therefore, at least for (TD and Gaussian) quantum ensembles,
the classical-quantum limits of exact quantum solutions can
be tested by means of (quantum) probability distributions and
information quantifiers, all obtained from the WW formalism.

1Of course, it is well known that the Wigner function also exhibits
nonclassical patterns which return negative values to the correspond-
ing distribution function. Parallel frameworks which include Husimi
Q [3,30] and Glauber-Sudarshan representations [31–34] or even the
more specific optical tomographic probability representation [35–37]
of QM are used so that we have an adequate interpretation of the
negative quasiprobability distributions.

Hence, our starting point is to consider the Wigner flow
framework for Hamiltonian systems of the form HW (q, p) =
K (p) + V (q), for which the description of probability currents
and the construction of the Hamiltonian-related (quantum)
information quantifiers are expected. Once developed, the
framework will be applied to Harper-type [38,39] systems,
which naturally encompass nonlinearity properties arising
from the momentum coordinate p. In this case, for K (p)
identified by a sinusoidal form cos(p/p0), which is therefore
distinct from the standard Schrödinger (quadratic momentum)
formulation, it will be possible to confront classical and quan-
tum scenarios in the mentioned Hamiltonian context.

The so-called Harper Hamiltonian originally described the
effect of a uniform magnetic field on a conduction-band metal
[38], where a tight-binding approximation for symmetric cu-
bic crystals was assumed. The Harper-Hofstadter extension of
the formalism [38,40,41] was generalized to lattice systems
in the presence of a gauge field, where ground-level chiral
many-body states emerge from the system populated with
interacting particles [40]. In the past few years, the Harper
Hamiltonian has been experimentally implemented for neutral
particles in optical lattices through a laser-assisted tunnel-
ing mechanism, which effectively probes the expansion of
the atoms in the lattice, where a potential-energy gradient is
provided either by gravity or by magnetic fields [42]. The
laser-assisted tunneling processes introduce single-site and
single-particle-resolved controls which engender an image
platform that enables one to build chiral systems and then to
tune the particle number within a chiral state atom by atom.
This allows for controlling the lattice size [42,43] exhibiting
the band structure displayed by the so-called Hofstadter’s
butterfly [38,39]. The semiclassical interpretation of the orig-
inal tight-binding approach for the Harper model results in a
classical effective one-dimensional Hamiltonian that reads

HW
H (q, p) = ±[2πα cos(p/p0) + 2πα cos(q/q0)] (4)

for an isotropic q-p phase space where the associated opera-
tors q̂ and p̂ are driven by QM-like (non)commuting relations,
[q̂, p̂] = i 2πα p0 q0, with α identified as the Peierls phase
[38,39,43], which works as an effective modulation of the
reduced Planck constant h̄ in a periodic closed phase-space
trajectory. Recently, the elementary properties exhibited by
the Harper-Hamiltonian, Eq. (4), have also motivated re-
search on the transition from order to chaos, through a
kind of kicked time-dependent Harper map [44–47]. Con-
cerns regarding the quantum topological issues of Harper-type
models, Floquet systems exhibiting the Hall effect due to
electromagnetic fields [48], and the extended Aubry-André-
Harper formulation for classifying topological states [49] have
also been investigated. Besides simulation and experimen-
tal feasibilities, Harper-like systems driven by the classical
correspondence with HH (q, p) from (4) fill the conditions
for HW (q, p) = K (p) + V (q) introduced above. Therefore,
once the prescribed phase-space description of nonlinear (q
and p) Hamiltonian systems is established, the Harper plat-
form might be relevant, as a test, for describing the interplay
between microscopic-quantum and macroscopic-classical re-
alities.

Given the above assumptions, the outline of this paper is
as follows. Section II is concerned with the foundations of
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the WW framework in order to derive stationarity and quanti-
fying Liouvillian properties related to the extended Wigner
framework for HW (q, p) = K (p) + V (q) Hamiltonians. In
Sec. III, the results are specialized to TD ensembles, which
admit a precise interpretation of stationarity conditions in the
context of the classical-to-quantum correspondence and are
physically appealing in relation to statistical mechanics. The
same analysis is extended to Gaussian ensembles in Sec. IV
in a Wigner flow framework in which the overall quantum
fluctuations over a classical phase-space trajectory can be
computed in terms of a convergent infinite series expan-
sion over h̄2n. Through exact analytical results, the Gaussian
framework accounts for complete quantum corrections of the
Hamiltonian classical profile, providing a natural approach
to establish accurate correspondence between classical and
quantum scenarios through the information quantum corre-
lation quantifiers obtained from Wigner currents. In Sec. V,
the Harper Hamiltonian is considered as a test platform for
the derived extended phase-space framework. Stationarity and
Liouvillianity conditions as well as parameters for classical-
to-quantum correspondence are then specialized to TD and
Gaussian ensembles in which the Wigner flow is driven by the
Harper Hamiltonian. These are all explicitly obtained in terms
of analytical expressions for the Wigner currents for both TD
and Gaussian ensembles. Our conclusions and the outlook for
further research are presented in Sec. VI.

II. STATIONARITY AND LIOUVILLIANITY
IN THE EXTENDED WIGNER FRAMEWORK

Based on the symmetries of the Heisenberg-Weyl group of
translations, the Wigner phase-space quasidistribution func-
tion associated with a density operator ρ̂ in the form of an
overlap integral, Eq. (2), was proposed by Wigner’s seminal
work [1] when accounting for quantum corrections to TD
equilibrium states. The Wigner function’s most elementary
property concerns its marginal distributions, which return po-
sition and momentum distributions upon integration over the
momentum and position coordinates, respectively,

|ψ (q)|2 =
∫ +∞

−∞
d pW (q, p) ↔ |ϕ(p)|2 =

∫ +∞

−∞
dq W (q, p),

(5)
such that the Fourier transform of the respective wave func-
tions,

ϕ(p) = (2π h̄)−1/2
∫ +∞

−∞
dq exp (i p q/h̄) ψ (q), (6)

is the property intrinsically based on the Hilbert space features
of the Schrödinger QM that suppresses the coexistence of
positive-definite position and/or momentum probability dis-
tributions.

The connection of the Wigner function to the matrix op-
erator QM [see Eqs. (1) and (2)] allows for computing the
averaged values of quantum observables described by generic
operators Ô evaluated through an overlap integral over the
infinite volume described by the phase-space coordinates q
and p as [1,4]

〈O〉 =
∫ +∞

−∞
d p

∫ +∞

−∞
dq W (q, p) OW (q, p), (7)

which corresponds to the trace of the product between ρ̂

and Ô, Tr{q,p}[ρ̂Ô]. Moreover, the statistical aspects inherent
in the W (q, p) definition also admit extensions from pure
states to statistical mixtures, through which, for instance, the
replacement of OW (q, p) by W (q, p) in Eq. (7) leads to the
quantum purity computed through an analogous trace opera-
tion, Tr{q,p}[ρ̂2], which reads

Tr{q,p}[ρ̂2] = 2π h̄
∫ +∞

−∞
d p

∫ +∞

−∞
dq W (q, p)2, (8)

satisfying the pure-state constraint, Tr{q,p}[ρ̂2] =
Tr{q,p}[ρ̂] = 1.

In addition, flow properties of the Wigner function
W (q, p) → W (q, p; t ) are also connected to the Hamilto-
nian dynamics. These properties are described by a vector
flux [8,27,28] J(q, p; t ) decomposed into the phase-space
coordinate directions q̂ and p̂ as J = Jq q̂ + Jp p̂ in order to
reproduce a flow field connected to the Wigner-function dy-
namics through the continuity equation [3,4,8,27,28]

∂tW + ∂qJq + ∂pJp = 0, (9)

where the shortened notation for partial derivatives is set as
∂a ≡ ∂/∂a. In this case, for a nonrelativistic Hamiltonian op-
erator H (Q̂, P̂), from which the Weyl transforms yield

H (Q̂, P̂) = P̂2

2m
+ V (Q̂) → HW (q, p) = p2

2m
+ V (q), (10)

one has [3,4,8,27]

Jq(q, p; t ) = p

m
W (q, p; t ) (11)

and

Jp(q, p; t )

= −
∞∑

η=0

(
i h̄

2

)2η 1

(2η + 1)!

[
∂2η+1

q V (q)
]
∂2η

p W (q, p; t ),

(12)

with ∂s
a ≡ (∂/∂a)s, from which one notices that the above-

identified series expansion contributions from η � 1 in-
troduce the quantum corrections which distort classical
trajectories. In fact, for Eq. (12), the suppression of the η � 1
contributions results in a classical Hamiltonian description of
the phase-space probability distribution dynamics in terms of
classical Wigner currents,

JC
q (q, p; t ) = +(∂pHW )W (q, p; t ) (13)

and

JC
p (q, p; t ) = −(∂qHW )W (q, p; t ), (14)

which, once substituted into Eq. (9), return the (classical)
Liouville equation, with the classical phase-space veloc-
ity identified by vξ (C) = ξ̇ = (q̇, ṗ) ≡ (∂pHW , −∂qHW ), with
∇ξ · vξ (C) = ∂qq̇ + ∂p ṗ = 0, where dots denote the time
derivative d/dt . Likewise, for a quantum current parameter-
ized by J = w W , where the Wigner phase-space velocity w
is the quantum analog of vξ (C), a suitable divergent behavior
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is identified by

∇ξ · w = W ∇ξ · J − J · ∇ξW

W 2
(15)

since ∇ξ · J = W ∇ξ · w + w · ∇ξW [8]. Therefore, Wigner-
function stationarity and Liouvillian behaviors are straightfor-
wardly identified and quantified in terms of Eqs. (9) and (15)
by ∇ξ · J = 0 and ∇ξ · w = 0, respectively.

This Wigner current constraint, J = w W , indeed brings
some relevant aspects of the topological properties of
the Wigner flow. Considering the integral version of the
above-mentioned stationary and Liouvillian conditions, these
properties can be captured by the introduction of a substantial
derivative [27,50,51], written as

D

Dt

∫
V

dV f (W ) ≡
∫

V
dV

( D

Dt
+ ∇ξ · vξ

)
f (W ), (16)

which evinces the conservative features associated with the
elementary vector unity of the phase space ξ surrounded by
an infinitesimal volume dV ≡ d p dq. For the case of a volume
V enclosed by the two-dimensional comoving closed surface
C, it gives rise to the usual tool for quantifying the flux of
information through C [27], which is depicted by the trajectory
obtained from the classical velocity vξ (C), which can be seen
from Eq. (16), when f (W ) is identified by a power of W or
W β ,

D

Dt

(∫
VC

dV W β

)

=
∫

VC

dV
[ D

Dt
(W β ) + W β∇ξ · vξ (C)

]

=
∫

VC

dV
[
∂t (W

β ) + ∇ξ · (vξ (C)W
β )

]

=
∫

VC

dV
[−βW β−1∇ξ · J + ∇ξ · (vξ (C)W

β )
]

= −
∫

VC

dV
[
(β − 1)W β ∇ξ · w

+∇ξ · (JW β−1 − vξ (C)W
β )

]

= −
∫

VC

dV (β − 1)W β ∇ξ · w −
∮
C

d�W β−1(J · n), (17)

with the unitary vector n satisfying n · vξ (C) = 0.
For β = 0, Eq. (17) results in

D

Dt
V =

∫
VC

dV ∇ξ · w −
∮
C

d� w · n = 0, (18)

which reflects the phase-space volume conservation, given
that Green’s theorem states that∫

VC

dV ∇ξ · w =
∮
C

d� w · n, (19)

which, of course, vanishes for ∇ξ · w = 0 in a kind of integral
version of the Liouville condition. Analogously, by identify-
ing the phase-space volume integrated probability as

σ(C) =
∫

VC

dV W (20)

for β = 1, Eq. (17) results in

D

Dt
σ(C) = −

∮
C

d� J · n, (21)

which reflects the probability conservation for stationary
states, given that Green’s theorem now states that∫

VC

dV ∇ξ · J =
∮
C

d� J · n. (22)

As proposed, the above set of stationarity and Liouvillian-
ity quantifying tools will be evaluated in the extended Wigner
framework. In this case, explicit expressions for the Wigner
current components J = Jq q̂ + Jp p̂ must be deduced for QM
Hamiltonians generically identified by the Weyl transform (3).

In what follows such an extended form of the Wigner con-
tinuity equation is obtained by deducing the time dependence
of W . As a guide, our departing point is the von Neumann
equation for the state-density operator ρ̂ = |ψ〉〈ψ |, obtained
from [3]

∂t ρ̂ = ih̄−1[ρ̂, H] ≡ ∂
(K )

t ρ̂ + ∂
(V )

t ρ̂, ∂
(A)

t ρ̂ = ih̄−1[ρ̂, A],

(23)

which can then be separately evaluated in momentum and
position representations for A ≡ K (P̂), V (Q̂). Hence, we use
the Wigner-function properties from Eq. (2) to transform each
contribution into its respective Wigner representation (see
Ref. [3] for nonrelativistic QM):

∂
(K )

t 〈p|ρ|p′〉 = ih̄−1〈p|ρ|p′〉 [K (p′) − K (p)] ⇒ ∂
(K )

t W (q, p; t )

= ih̄−1(π h̄)−1
∫ +∞

−∞
dr ρ

W,ϕ
(p−r; p+r) exp (−2 i q r/h̄) [K (p + r) − K (p − r)], (24)

where ρ
W,ϕ
(p−r; p+r) ≡ 〈p − r|ρ|p + r〉 has been identified by ϕ(p − r) ϕ∗(p + r), and

∂
(V )

t 〈q|ρ|q′〉 = ih̄−1〈q|ρ|q′〉 [V (q′) − V (q)] ⇒ ∂
(V )

t W (q, p; t )

= ih̄−1(π h̄)−1
∫ +∞

−∞
ds ρ

W,ψ

(q−s; q+s) exp (2 i p s/h̄) [V (q + s) − V (q − s)], (25)

where ρ
W,ψ

(q−s; q+s) ≡ 〈q − s|ρ|q + s〉 has been identified by ψ (q − s) ψ∗(q + s). Now, by noticing that

K (p + r) − K (p − r) = 2
∞∑

η=0

r2η+1

(2η + 1)!
∂2η+1

p K (p) (26)
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and

V (q + s) − V (q − s) = 2
∞∑

η=0

s2η+1

(2η + 1)!
∂2η+1

q V (q) (27)

and identifying the auxiliary variables r and s by +i(h̄/2) ∂q [see Eq (24)] and −i(h̄/2) ∂p [see Eq (25)], respectively, one
recovers an equivalent Wigner continuity equation cast in the form of Eq. (9), i.e., with the stationarity quantifier explicitly
given by

∂tW =
∞∑

η=0

(−1)η h̄2η

22η(2η + 1)!

{[
∂2η+1

q V (q)
]
∂2η+1

p W − [
∂2η+1

p K (p)
]
∂2η+1

q W
}
, (28)

from which one has

Jq(q, p; t ) = +
∞∑

η=0

(
i h̄

2

)2η 1

(2η + 1)!

[
∂2η+1

p K (p)
]
∂2η

q W (q, p; t ) (29)

and

Jp(q, p; t ) = −
∞∑

η=0

(
i h̄

2

)2η 1

(2η + 1)!

[
∂2η+1

q V (q)
]
∂2η

p W (q, p; t ), (30)

which encompass all the contributions for quantum corrections. Analogously, to fully capture the quantum effects over the
classical Hamiltonian regime described by currents in the form of (13) and (14), the Liouvillianity quantifier [such as that from
Eq. (15)] is expressed by

∇ξ · w =
∞∑

η=1

(−1)η h̄2η

22η(2η + 1)!

{[
∂2η+1

p K (p)
]
∂q

[
1

W
∂2η

q W

]
− [

∂2η+1
q V (q)

]
∂p

[
1

W
∂2η

p W

]}
. (31)

Finally, as will be pointed out in the following sections,
the above-presented forms for quantifiers of stationarity and
Liouvillian regimes provide fundamental information about
quantum ensembles, which is essential for discriminating
classical from quantum behaviors.

III. THERMODYNAMIC ENSEMBLES

The Wigner function is also an essential tool for defining
quantum projectors for TD ensembles. Once it is assumed
that the spectral decomposition of the quantum system driven
by the Hamiltonian (3) cannot be obtained, the stationary
solution of the Wigner continuity equation [see Eq. (9)] for
the corresponding quantum TD ensemble can be computed
through a perturbative expansion over the classical Maxwell-
Boltzmann distribution [1,52].

To find quantum corrections to the classical TD regime,
one solves a closed equilibrium equation which indeed ex-
hibits the response of the quantum system to the thermal
equilibrium for relatively high temperatures. It yields the
corresponding Wigner stationary distribution WSt (q, p; β ),
where β = 1/kBT . In fact, one departs from the classical
distribution described by

W0(q, p; β ) = [h̄Z0(β )]−1 exp[−βHW (q, p)], (32)

with the partition function identified by

Z0(β ) = h̄−1
∫ +∞

−∞
dq

∫ +∞

−∞
d p exp[−βHW (q, p)], (33)

and notices that the stationary solution of Eq. (9) is iteratively
obtained through a series expansion [1,52],

W (2N )
St (q, p; β ) =

N∑
η=0

h̄2η W2η(q, p; β ), (34)

truncated at order O(h̄2N ), from which

lim
N→∞

W (2N )
St (q, p; β ) = WSt (q, p; β ).

The assumption that the TD equilibrium prevails every-
where in the phase space ensures that a closed-equation res-
olution procedure for determining, order by order, the
contributions from W2η applies [1,52]. Given the arbitrariness
of K (p) and V (q), in this first analysis, the quantum correc-
tions will be constrained to contributions up to order O(h̄2). In
this case, one identifies W2(q, p; β ) with χ(q, p; β ) W0(q, p; β ),
where χ(q, p; β ) is a multiplicative parameter that factorizes the
corrections over W0(q, p; β ) and computes the time deriva-
tive of the stationary solution for N = 1, W (2)

St (q, p; β ) =
W0(q, p; β ) + h̄2 W2(q, p; β ), in order to obtain

∂tW
(2)

St = ∂tW0 + h̄2 ∂tW2

= (1 + h̄2 χ(q, p; β ) ) ∂tW0 + h̄2 W0 ∂tχ(q, p; β ). (35)

Up to order O(h̄2), the contribution from ∂tχ(q, p; β ) to the
above expression can be expressed by

∂tχ(q, p; β ) = −{χ, H}PB

= ∂qV (q) ∂pχ(q, p; β ) − ∂pK (p) ∂qχ(q, p; β ), (36)
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where PB stands for the Poisson brackets. Likewise, now from
Eq. (28), one writes

∂tW0 = −∇ξ · J = [∂qV (q) ∂pW0 − ∂pK (p) ∂qW0]

− h̄2

24

{[
∂3

qV (q)
]
∂3

pW0 − [
∂3

pK (p)
]
∂3

qW0
}

+ O(h̄4), (37)

where, due to the classical nature of W0, the contribution from
classical currents vanishes, i.e.,

∂qV (q) ∂pW0 − ∂pK (p) ∂qW0 = −{W0, H}PB = 0.

In the next step, after identifying the auxiliary derivatives
given by ∂qW0 = −β W0 ∂qV (q) and ∂pW0 = −βW0 ∂pK (p),
one notices that

∂2
qW0 = −β W0 ∂2

qV (q) + β2 W0[∂qV (q)]2, (38)

∂2
pW0 = −β W0 ∂2

pK (p) + β2 W0[∂pK (p)]2 (39)

and that

∂3
qW0 = −β W0 ∂3

qV (q) + 3β2 W0
[
∂2

qV (q)
]
∂qV (q) − β3 W0 [∂qV (q)]3, (40)

∂3
pW0 = −β W0 ∂3

pK (p) + 3β2 W0
[
∂2

pK (p)
]
∂pK (p) − β3 W0 [∂pK (p)]3, (41)

which can all be inserted into Eq. (37). Then, through the insertion of Eqs. (36) and (37) into Eq. (35), one obtains

∂tW
(2)

St = h̄2W0

(
∂qV (q) ∂pχ(q, p; β ) − ∂pK (p) ∂qχ(q, p; β ) − β2

8

{[
∂3

qV (q)
] [

∂2
pK (p)

]
∂pK (p) − [

∂3
pK (p)

] [
∂2

qV (q)
]
∂qV (q)

}

+ β3

24

{[
∂3

qV (q)
]

[∂pK (p)]3 − [
∂3

pK (p)
]

[∂qV (q)]3
}) + O(h̄4). (42)

Finally, from the above result, the stationarity condition over W (2)
St , ∂tW

(2)
St = 0, results in

χ(q, p; β ) = −β2

8
∂2

qV (q) ∂2
pK (p) + β3

24

{
∂2

qV (q) [∂pK (p)]2 + ∂2
pK (p) [∂qV (q)]2

}
, (43)

which gives

W (2)
St (q, p; β ) = Z0(β )

ZSt (β )
W0(q, p; β )

[
1 + h̄2

(
β3

24

{
∂2

qV (q) [∂pK (p)]2 + ∂2
pK (p) [∂qV (q)]2

} − β2

8
∂2

qV (q) ∂2
pK (p)

)]
, (44)

where the multiplying factor Z0(β )/ZSt (β ) has been introduced in order to reflect the modifications of the associated partition
functions as well as to guarantee the QM unitarity properties. Of course, for K (p) ∼ p2, one recovers the original Wigner results
[1,52].

To summarize, the same systematic corrections can be used to compute the Wigner currents which, up to order O(h̄2), are
written as

J (2)
q (q, p; t ) = +

(
∂pK (p)

(
1 + h̄2χ(q, p; β )

) − h̄2

24
∂3

pK (p)
{
β2[∂qV (q)]2 − β∂2

qV (q)
})

W0, (45)

and

Jp(q, p; t ) = −
(

∂qV (q)
(
1 + h̄2χ(q, p; β )

) − h̄2

24
∂3

qV (q)
{
β2[∂pK (p)]2 − β∂2

pK (p)
})

W0, (46)

which can also be recast in the forms

Jq(q, p; t ) ≈ +
(

∂pK (p) − h̄2

24
∂3

pK (p)
{
β2[∂qV (q)]2 − β∂2

qV (q)
})

WSt (47)

and

J (2)
p (q, p; t ) ≈ −

(
∂qV (q) − h̄2

24
∂3

qV (q)
{
β2[∂pK (p)]2 − β∂2

pK (p)
})

WSt . (48)

Naturally, according to the truncation criterion, the Wigner
perturbed function contributions due to W2η(q, p; β ) for
η higher than 1 could also be evaluated in terms of the
derivatives of K (p) and V (q). Different from Hamiltonian
systems that, on the face of the quadratic momentum contribu-
tions, are quantum mechanically driven by the nonrelativistic

Schrödinger equation, in the scope of quantum and classical
TD, the nonlinear effects from K (p) give rise to a non-
Gaussian behavior of the momentum distribution, even if the
equilibrium phase-space (Maxwell-Boltzmann) distribution
function is factorable in the position and momentum variables.
It is independent of higher-order quantum correction terms
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of WSt , which can be exhaustively computed to any order in
powers of h̄.

From now on, aiming to understand the decoupling of
quantum corrections from nonlinear effects, a more compre-
hensive view of the phase-space dynamics can be obtained if it
is cast in terms of a dimensionless version of HW (q, p) from
Eq. (3),

H(x, k) = K(k) + V (x). (49)

In this case, H(x, k) is written in terms of dimension-
less variables x = (m ω h̄−1)1/2q and k = (m ω h̄)−1/2 p, such
that H = (h̄ω)−1H , V (x) = (h̄ω)−1V ((m ω h̄−1)−1/2x), and
K(k) = (h̄ω)−1K ((m ω h̄)1/2k), where m is a mass-scale pa-
rameter and ω is an arbitrary angular frequency. Therefore,
the Wigner function can be cast into the dimensionless form
W (x, k; ωt ) ≡ h̄ W (q, p; t ), with h̄ absorbed by d p dq →
h̄ dx dk integrations, i.e.,

W (x, k; τ ) = π−1
∫ +∞

−∞
dy exp (2 i k y) φ(x − y; τ ) φ∗

× (x + y; τ ), (50)

with y = (m ω h̄−1)1/2s and τ = ωt . In this case, the position
and momentum wave functions, ϕ(x, τ ) and ψ (q; t ), are con-

sistently normalized by∫ +∞

−∞
dx |φ(x; τ )|2 =

∫ +∞

−∞
dq |ψ (q; t )|2 = 1. (51)

The Wigner currents are now given by

Jx(x, k; τ ) = +
∞∑

η=0

( i

2

)2η 1

(2η + 1)!

[
∂

2η+1
k K(k)

]

× ∂2η
x W (x, k; τ ), (52)

Jk (x, k; τ ) = −
∞∑

η=0

( i

2

)2η 1

(2η + 1)!

[
∂2η+1

x V (x)
]

× ∂
2η

k W (x, k; τ ), (53)

so that ω ∂xJx ≡ h̄ ∂qJq(q, p; t ) and ω ∂kJk ≡
h̄ ∂pJp(q, p; t ), through which the dimensionless continuity
equation is written in terms of the redefined phase-space
coordinates ξ = (x, k) as

∂τW + ∂xJx + ∂kJk = ∂τW + ∇ξ · J = 0. (54)

Turning back to the TD ensembles, the stationary Wigner
function from Eq. (44) can be written in a dimensionless form,

W (2)
St (x, k; β ) = Z0(β )

ZSt (β )
W0(x, k; β )

[
1 +

(
(β h̄ω)3

24

{
∂2

x V (x) [∂kK(k)]2 + ∂2
k K(k) [∂xV (x)]2} − (β h̄ω)2

8
∂2

x V (x) ∂2
k K(k)

)]
,

(55)

in this case up to order O((β h̄ω)3). From Eq. (55), it is in-
teresting to note that, for quantum approached TD ensembles,
despite the asymptotic stationarity, the non-Liouvillian feature
is shown by the nonvanishing value of ∇ξ · w, which is written
in the dimensionless form

ω−1∇ξ · w = (β h̄ω)2

12

[
∂3

k K(k)∂2
x V (x)∂xV (x)

− ∂3
x V (x)∂2

k K(k)∂kK(k)
]
. (56)

Of course, for the exact quantum description, only evinced
in the case when the system spectral decomposition is
known, the quantum propagator (Green’s function) for a time-
independent dimensionless Hamiltonian H can be expressed
by

�(x, t ; x′, 0) = 〈x| exp(−i τ Ĥ)|x′〉, (57)

which, for a canonical ensemble in equilibrium with a heat
reservoir at temperature T , corresponds to the inception of
an associated thermal density matrix ρ(x, x′; β h̄ω), obtained
[2,3] by replacing the above related time dependence τ by
−i β h̄ω. One thus would have

ρ(x, x′; β h̄ω) = �(x,−i β; x′, 0)

=
∑

n

exp(−β h̄ω εn) ψ∗
n (x)ψn(x′), (58)

where the Hamiltonian eigenstates ψn(x) and eigenvalues εn

are implicitly given by Hψn(x) = εn ψn(x).

In the coordinate representation, the functional
ρ(x, x′; β h̄ω) can have its delocalization aspects
parameterized by displacement relations, i.e., x → x − y
and x′ → x + y, so that the y-Fourier transform of
ρ(x − y, x + y; β h̄ω) is identified with a thermalized
phase-space probability distribution,

�(x, k; β )

= π−1
∫ +∞

−∞
dy exp (2 i k y) ρ(x − y, x + y; β h̄ω),

(59)

which satisfies the Bloch equation

∂�

∂β
= −Ĥ� = −�Ĥ, �(β = 0) ≡ I. (60)

One thus identifies a correspondence between ρ(x − y, x +
y; β h̄ω) and Z−1 exp(−β h̄ω Ĥ) ≡ Z−1�, from which a large
set of systematic TD and statistical results follows from the
definition of the partition function as a trace-related func-
tional given by Z ≡ Z (β ) = Tr[exp(−β h̄ω Ĥ)]. Therefore,
from Eq. (59), the thermalized (QM) Wigner function can be
written as

W�(x, k; β ) = (Z π )−1
∫ +∞

−∞
dy

× exp (2 i k y) ρ(x − y, x + y; β ), (61)
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normalized by

Z (β ) = Tr
[
exp(−β h̄ω Ĥ)

] =
∫ +∞

−∞
dx

∫ +∞

−∞
dk �(x, k; β )

=
∞∑

n=0

exp (−β h̄ω εn). (62)

Finally, as matter of completeness, it is worth mentioning
that results from Eqs. (44)–(56) can also be interpreted as
an extension [from k2 to generic K(k) Hamiltonian kinetic
contributions] of the semiclassical truncated Wigner approxi-
mation (TWA). The TWA is shown by noticing that classical
trajectories are identified by trajectories along which the
Wigner function is conserved [2,53,54], which is indeed also
supported by Wigner’s seminal proposal [1]. In particular, the
TWA is also constrained by the non-positive-definite property
of the Wigner function such that the corresponding outcome
function cannot be interpreted as a probability of a particular
realization of the boundary conditions [53]. As pointed out in
the broader context of phase-space quantum dynamics [53],
several slightly different frameworks have been historically
considered to circumvent such an issue, even in the context
of k2-dependent Hamiltonians.

IV. GAUSSIAN ENSEMBLES

Gaussian ensembles are at the core of information issues
in continuous-variable QM due to their manipulability prop-
erties for building vacuum states, thermal states, and coherent
quantum states [55], as well as describing atomic ensembles
[56]. Besides its theoretical appeal and its experimental rel-
evance in quantum optics and low-dimensional physics, the
phase-space representation of Gaussian ensembles can also
be helpful in establishing the bridge between classical and
quantum dynamics. In fact, Gaussian Wigner functions have
been parametrically worked out in order to describe sets of
measured data [57,58] correlated to the issues of classical-
quantum correspondence [59], to probe some hypotheses of
quantum chaos [60], and to understand the quantum and
classical correlations emerging from noncommutative QM
[17,19,20,23,24].

Given that the WW phase-space QM is closely connected
to the information content of a quantum system [55,61–65],
the evaluation of decoherence, stationarity, and nonclassical-
ity aspects arising from the dynamical behavior of Gaussian
ensembles might be relevant in describing more accurately the
boundaries between classical and quantum regimes. Consid-
ering that the phase-space framework presented in Sec. II can
be applied to a relevant set of nonlinear Hamiltonian systems,
which includes the Harper Hamiltonian [38], in the follow-
ing, stationarity and Liouvillianity quantifiers for Gaussian
ensembles driven by HW (q, p), Eq. (3), will be analytically
computed.

One thus considers a Gaussian Wigner function written as

Gγ (q, p) = γ 2

π h̄
exp

[
−γ 2

h̄

(
q2

a2
+ a2 p2

)]
, (63)

where, in the case of harmonic states, the parameter a is
identified with a = (m ω)−1 for the mass scale m and the
arbitrary angular frequency ω previously introduced. Again,

the problem can be recast into a dimensionless configuration
with the Gaussian distribution written as

Gγ (x, k) = h̄ Gγ (q, p) = γ 2

π
exp[−γ 2(x2 + k2)], (64)

which leads to the following associated Wigner flow contribu-
tions:

∂xJx(x, k; τ )

= +
∞∑

η=0

( i

2

)2η 1

(2η + 1)!

[
∂

2η+1
k K(k)

]
∂2η+1

x Gγ (x, k),

(65)

∂kJk (x, k; τ )

= −
∞∑

η=0

( i

2

)2η 1

(2η + 1)!

[
∂2η+1

x V (x)
]
∂

2η+1
k Gγ (x, k)

(66)

once the Hamiltonian form from Eq. (49) has been assumed.
From Gaussian relations with Hermite polynomials of order
n, Hn, one has

∂
2η+1
ζ Gγ (x, k) = (−1)2η+1γ 2η+1 H2η+1(γ ζ )Gγ (x, k) (67)

for ζ = x, k, which can be reintroduced in Eqs. (65) and
(66) to lead to potentially convergent series expansions. These
allow for recasting the Wigner flow expressions into an
analytical form, which accounts for the overall quantum mod-
ifications, i.e., for η from 1 to ∞ into Eqs. (65) and (66). In
particular, for the quantum systems where V and K derivatives
can be recast in the form

∂2η+1
x V (x) = λ

2η+1
(x) υ(x), (68)

∂
2η+1
k K(k) = μ

2η+1
(k) κ (k), (69)

with λ, υ, μ, and κ identified as arbitrary auxiliary functions,
it can be straightforwardly verified that, once they are substi-
tuted into Eqs. (65) and (66), the above expressions lead to

∂xJx(x, k; τ ) = (+2i)κ (k)Gγ (x, k)
∞∑

η=0

( i γ μ(k)

2

)2η+1

× 1

(2η + 1)!
H2η+1(γ x), (70)

∂kJk (x, k; τ ) = (−2i)υ(x)Gγ (x, k)

×
∞∑

η=0

(
i γ λ(x)

2

)2η+1 1

(2η + 1)!
H2η+1(γ k).

(71)

Finally, by noticing that
∞∑

η=0

H2η+1(γ ζ )
s2η+1

(2η + 1)!
= sinh(2s γ ζ ) exp[−s2], (72)

one gets

∂xJx(x, k; τ ) = −2κ (k) sin(γ 2μ(k) x)

× exp
( + γ 2μ2

(k)/4
)
Gγ (x, k), (73)
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∂kJk (x, k; τ ) = +2υ(x) sin(γ 2λ(x) k)

× exp(+γ 2λ2
(k)/4)Gγ (x, k), (74)

which, as prescribed, points to a convergent series for the
stationarity quantifier ∇ξ · J . In addition, depending on the
explicit form of the Hamiltonian, it can be manipulated to give
the Liouvillian quantifier ω−1∇ξ · w and the complete pattern
of the associated Wigner flow.

V. THE HARPER-LIKE DYNAMICS

First introduced by Harper [38] for parametrizing the
behavior of electrons coupled to magnetic fields in a
two-dimensional lattice, the so-called Harper Hamiltonian
framework turned into an outstanding tool for several ap-
plications [66,67]. These include the description of fractal
structures related to the Hofstadter spectral decomposition
connected to the phenomenology of the quantum Hall effect
[68] and of the quantum-mechanical topological phases which
emerge in the context of designing ultracold-atom platforms
for producing synthetic gauge fields and topological structures
for neutral atoms [69,70].

From an effective perspective, Harper-like models can
be reduced to a one-dimensional Hamiltonian description of
nearest-neighbor couplings with a sinusoidal modulation of
the on-site energies expressed by a Hamiltonian constraint
given by

Hψn= − Ak (e+iϑ ψn+1 + e−iϑ ψn−1)−Ax cos(2πα n + θ )ψn,

(75)

where Ax and Ak correspond to the coupling magnitude and
the modulation [42], respectively, and the phases θ and ϑ are
related to the wave number in two dimensions.

By observing that the displacement of quantum numbers
exhibited by ψn±1 in Eq. (75) is associated with localized
states in adjacent sites, quantum states described by ψn±1 ∼
ψ (x ± a) ≡ exp(±i k a)ψ (q) can be parameterized by the ac-
tion of the translation operators exp(±i k a). According to the
application of the dimensionless momentum operator k, for a
coordinate correspondence given by (x, a) → (2παn, 2πα),
which is also dimensionless, the Hamiltonian (75) admits a
semiclassical representation reduced to the form of Eq. (4).
One can, indeed, demonstrate that Eq. (4) is derived from
Eq. (75) [39] for corresponding coordinate operators x̂ and k̂,

satisfying [x̂, k̂] = i 2πα. The so-called Peierls phase parame-
ter 2πα plays the role of an effective Planck constant through
the condition 2πα ≡ 1 in the dimensionless variables arising
from the canonical commutation relation [x̂, k̂] = i. It is also
relevant to notice that questions related to quantum chaos are
more suitably addressed in the case of Ak = Ax = 2πα ≡ 1,
through which the transition from integrable to chaotic Hamil-
tonian regimes is more clearly evinced.

Of course, the phase-space representation of the elec-
tron dynamics in a two-dimensional crystal is also covered
by Eq. (75), which, in order to fit the nonlinear properties
described by H(x, k) = K(k) + V (x), ignoring the global rel-
ative sign and admitting a phenomenological variation driven
by an arbitrary parameter ν2, can now be cast into the dimen-
sionless form

HH (x, k) = cos(k) + ν2 cos(x), (76)

which exhibits (time-dependent) cyclic analytical solutions.
This Hamiltonian works as a feasible platform for identifying
classicality and quantumness through the Wigner flow devi-
ations from stationarity and Liouvillian regimes, according
to the formalism introduced in the previous sections. The
classical properties of the Harper-like Hamiltonian (76) are
depicted in Fig. 1, where the phase-space trajectories associ-
ated with the corresponding lattice designs are identified for
several values of the classical energy HH → ε and for the
phenomenological parameter ν.

A. Results for TD ensembles

By identifying K(k) and V (x) with cos(k) and ν2 cos(x),
respectively, as in Eq. (76), one straightforwardly writes the
Harper-like associated classical distribution as

W0(x, k; βh̄ω )=[Z0(βh̄ω )]−1 exp{−βh̄ω[cos(k)+ν2 cos(x)]},
(77)

with the phase-space domain reduced to the intervals x ∈
[−π, π ] and k ∈ [−π, π ], where βh̄ω = β h̄ω, from which
the partition function can be obtained as

Z0(βh̄ω ) =
∫ +π

−π

dx
∫ +π

−π

dk exp{−βh̄ω[cos(k) + ν2 cos(x)]}

= 4π2 I0(βh̄ω ) I0(ν2βh̄ω ), (78)

where In is the modified Bessel function of order n. After
the mathematical manipulations which result in Eq. (55), one
obtains

W (2)
St (x, k; βh̄ω ) = Z0(βh̄ω )

ZSt (βh̄ω )
W0(x, k; β )

(
1 −

{
(βh̄ω )3

24
[ν2 cos(k) sin2(x) + cos(x) sin2(k)] + (βh̄ω )2

8
cos(k) cos(x)

})
, (79)

with

ZSt (βh̄ω ) = 4π2 I0(βh̄ω ) I0(ν2βh̄ω ) − 1

24
(βh̄ω )2I1(βh̄ω ) I1(ν2βh̄ω ) (80)

and with the associated Wigner currents given by

J (2)
x (x, k; τ ) = − sin(k)

(
1 − β3

h̄ων2

24
[ν2 cos2(k) sin(x) + sin(k) cos2(x)]

+ 1

24

{
βh̄ων2 cos(x) + β2

h̄ω[m4 sin2(x) − 3ν2 cos(k) cos(x)]
})

W0, (81)
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FIG. 1. Classical portrait of Harper Hamiltonians. Phase-space trajectories and corresponding lattice designs are for Max{ν2 − 1, 0} <

|ε| < ν2 + 1 associated with closed trajectories for ε > 0 (black dashed lines), for ε < 0 (red thin lines), and for 0 < |ε| < ν2 − 1, correspond-
ing to open trajectories (blue thick lines), when they exist. The threshold (open-closed) value is given by |ε| = ν2 − 1. The plots are for ν2 = 2
(left), with |ε| = 5/2, 2, 3/2, . . . , 0; ν2 = 1 (middle), with |ε| = 5/2, 2, 3/2, . . . , 0; and ν2 = 1/2 (right), with |ε| = 5/2, 2, 3/2, . . . , 0.

J (2)
k (x, k; τ ) = ν2 sin(x)

(
1 − β3

h̄ω

24
ν2[ν2 cos2(k) sin(x) + sin(k) cos2(x)]

+ 1

24

{
βh̄ω cos(k) + β2

h̄ω[sin2(k) − 3ν2 cos(k) cos(x)]
})

W0, (82)

which leads to the Liouvillianity quantifier given by

ω−1∇ξ · w = (βh̄ω )2

12
sin(x) sin(k)[ν4 cos(x) − ν2 cos(k)].

(83)

The partition function of classical and quantum [O(h̄2)]
stationary ensembles can be considered when obtaining the
TD variables, which include the corresponding quantum pu-
rity P(βh̄ω ) [71], the (dimensionless) internal energy E(βh̄ω )

[≡ E/(h̄ω)], and the (dimensionless) heat capacity C(βh̄ω )(≡
C/kB), given, respectively, by

P(βh̄ω ) = Z (2βh̄ω )

Z2(βh̄ω )
, E(βh̄ω ) = − ∂

∂βh̄ω

ln [Z (βh̄ω )],

C(βh̄ω ) = β2
h̄ω

(
∂

∂βh̄ω

)2

ln [Z (βh̄ω )].

From results depicted in Fig. 2, one notices that quantum
contributions recover the meaning of quantum purity and
work to constrain its maximum values to be lower than unity
(pure state). The results also exhibit corrections to E and C
which work fine only for 0 < β h̄ω � 1 in an interval that is
unaffected by the choice of the Peierls phase parameter 2πα,
set equal to unity.

Besides the natural interpretation of the quantum contribu-
tions which lead to an overall suppression of classical values,
it is evident that negative values of E have no classical analogs
in the Schrödinger theory for Hamiltonians with quadratic
kinetic terms. The internal energy of a real neutral gas depends
on how the temperature T appears in the equation of state. In
general, negative values of E mean that interaction contribu-
tions dominate over thermal kinetic ones, which decrease as
β increases. In the same sense, despite evident modifications

(
)

( )

−
−
−
−
−

(
)

( )

(
)

( )

FIG. 2. (a) Purity P (βh̄ω ), (b) internal energy E (βh̄ω ), and (c) heat capacity C(βh̄ω ) as a function of βh̄ω for classical (black lines) and
quantum [O(h̄2), red lines] stationary regimes. The results are for ν2 = 1/

√
2 (dotted lines), 1 (dashed lines),

√
2 (thin solid lines), and 2 (thick

solid lines).

032207-10



GENERALIZED PHASE-SPACE DESCRIPTION OF … PHYSICAL REVIEW A 105, 032207 (2022)

for C, a more accurate quantum behavior could be described
only by accounting for higher-order terms in the h̄2 expansion.
One notices that the results are not qualitatively modified by
the parameter ν, which is set equal to 1 for the evaluation of
the Wigner current maps (see Fig. 3).

To complete the TD ensemble analysis, the non-Liouvillian
behavior is depicted in Fig. 3. The results are reduced to
the central site, but they can be periodically reproduced
from x, k ∈ (−π, π ) to x, k ∈ (−π ± 2nπ, π ± 2nπ ) (with
n ∈ Z) due to the lattice symmetry properties. For βh̄ω � 1
(first row), quantum fluctuations are highly suppressed by
the thermal fluctuations and cannot be identified through the
patterns of the Wigner function (left column) and of the cor-
responding Wigner flow (middle column), which is depicted
by the light-dark background color in Fig. 3. The Wigner flow
stagnation points are identified by orange and blue crossing
lines, where J (2)

x = J (2)
k = 0, and can be interpreted as a

consequence of the O(h̄2) quantum contributions which are
evinced for βh̄ω � 1. Blue (orange) contour lines denote the
threshold for the reversal of the Wigner flow in the x (k) di-
rection. The quantum fluctuations are identified by clockwise
and counterclockwise vortices (winding numbers equal to +1
and −1), separatrix intersections, and saddle points (winding
number equals to zero). The contra-flux fringes (bounded by
blue and orange lines) emerge to compensate the retarded
evolution of the quantum flux. The classical profile does not
exhibit such an overall local compensation phenomenon. For
comparison reasons, the classical trajectory is shown as a
collection of black thin lines, which do not exhibit any local
features like the above-mentioned ones. The non-Liouvillian
quantifier is depicted in the right column in Fig. 3, corre-
sponding to the quantum TD ensemble Wigner function for
βh̄ω = 0.1 (first row), 1 (second row), 3 (third row), and 5
(fourth row), from which one notices that the quantum effects
are much more evident for lower temperatures (increasing βh̄ω

values).

B. Results for Gaussian ensembles

For Gaussian ensembles driven by K(k) = cos(k) and
V (x) = ν2 cos(x), exact analytical results can be obtained.
First, one identifies λ

2η+1
(x) = μ

2η+1
(k) = (−1)η+1 from Eqs. (68)

and (69), which leads to μ = λ = i, υ(x) = iν2 sin(x), and
κ (k) = i sin(k). Once they are placed into Eqs. (73) and (74),
one can write

∂xJx(x, k; τ ) = +2 sin(k) sinh(γ 2 x) exp(−γ 2/4)Gγ (x, k),

(84)

∂kJk (x, k; τ ) = −2ν2 sin(x) sinh(γ 2 k)

× exp(−γ 2/4)Gγ (x, k) (85)

as a result of the convergent series expansion equations (70)
and (71). This means that a Gaussian ensemble driven by
the Harper-like Hamiltonian can be considered in order to
compare classical and quantum regimes, providing the exact
analytic expression for the quantum scenario in the phase
space. The integrated Wigner currents obtained from Eqs. (73)

and (74) thus read

Jx(x, k; τ ) = + γ

2
√

π
sin(k) exp(−γ 2 k2)

×{erf[γ (x − 1/2)] − erf[γ (x + 1/2)]}, (86)

Jk (x, k; τ ) = − γ

2
√

π
ν2 sin(x) exp(−γ 2 x2)

×{erf[γ (k − 1/2)] − erf[γ (k + 1/2)]}, (87)

written in terms of error functions erf(· · · ), and of course, the
components of the quantum-like velocity, w, wx, and wk , are
obtained by replacing −k2 ↔ +x2 in the exponential func-
tion of the respective equations, (86) and (87) (multiplied by
πγ −2).

The departure configuration (τ = 0) of the Gaussian
Wigner flow pattern described above is depicted in Fig. 4,
where the density plots for stationarity and Liouvillianity
quantifiers, ∇ξ · J and ω−1∇ξ · w, are shown.

The stationarity quantifier ∇ξ · J is depicted according
to the background color scheme, in which lighter regions
correspond to nonvanishing local contributions to ∂tGγ (x, k).
In spite of the x-k symmetry provided by the Gaussian distri-
bution, one should notice that stationarity and Liouvillianity
are decoupled from each other as their associated quantifiers
do not exhibit the same local pattern.

Finally, once the above quantifiers, ∇ξ · J and ω−1∇ξ · w,
are integrated over the volume enclosed by the classical path
C, the quantum effects are shown to average out. This shows
that, despite providing the phase-space local identification
of quantum effects, Gaussian ensembles, in the case of a
Harper-Hamiltonian system, suppress the local vortices from
the quantum Wigner pattern and keep the flow of probability
and information properties quantitatively equivalent to those
of the classical pattern.

VI. CONCLUSIONS

The phase-space framework for describing the classical-
quantum behavior of systems driven by one-dimensional
nonlinear Hamiltonians described by HW (q, p) = K (p) +
V (q) (constrained to ∂2HW /∂q∂ p = 0) was introduced and
analytically scrutinized through their Wigner flow proper-
ties. Generalized Liouvillian and stationary properties were
established for TD and Gaussian quantum ensembles to quan-
tify the quantum modifications over the classical phase-space
Hamiltonian solutions. For TD ensembles, a natural extension
of the Wigner approach for perturbatively constructing sta-
tionary Wigner functions was provided to include the Wigner
procedure as a particular solution related to the Hamiltonian
kinetic contribution identified by K (p) = p2/2m. Following a
parallel procedure, for Gaussian ensembles, the overall quan-
tum distortion over a classical phase-space trajectory was
obtained in terms of convergent infinite series expansions
over h̄2.

As noticed from previous works, the WW framework, now
in its generalized version, can work as a probe for quantum-
ness and classicality for an enlarged class of Hamiltonian
systems which includes out-of-the-ordinary contributions for
the kinetic term K (p) �= p2/2m. As an implementation exam-
ple, our results were specialized to a Harper-like Hamiltonian
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FIG. 3. Left: Classical (black contours) and QM-corrected (yellow contours) Wigner-function profiles, W0(x, k; βh̄ω ) and W (2)
St (x, k; βh̄ω ).

Middle: Features of the Wigner flow for the TD ensemble in the x-k plane. Blue contour lines are for J (2)
x (x, k; βh̄ω ) = 0, and orange contour

lines are for J (2)
k (x, k; βh̄ω ) = 0. The green-yellow vector arrow color scheme shows the [quantum O(h̄2)] Wigner current profiles, with the

domains of quantum fluctuations bounded by blue and orange lines. Darker green arrows correspond to intenser fluxes. Right: Liouvillian
quantifier ∇ξ · w superposed by the normalized quantum velocity field representation (red arrows) w/|w|. The background color scheme (from
darker regions, ∇ξ · w ∼ 0, to lighter regions, ∇ξ · w > 0) reinforces the approximated Liouvillian behavior for the central region. The results
are for ν2 = 1 and βh̄ω = 0.1 (first row), 1 (second row), 3 (third row), and 5 (fourth row).
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FIG. 4. Left: Features of the Wigner flow for the Gaussian ensemble in the x-k plane. At τ = 0, Gaussian ensembles do not exhibit either
vortices or stagnation points, in a kind of camouflage of the quantum corrections. The stationarity quantifier ∇ξ · J and the modulus of J are
described, respectively, according to the light- and dark-blue background and yellow-red background color schemes. The results are for the
increasing spreading characteristic of the Gaussian function for γ = 1/

√
2 (first row), 1 (second row), and

√
2 (third row). Peaked Gaussian

distributions (γ = √
2) localize the quantum distortions which result in nonstationarity. Right: Liouvillian quantifier ω−1∇ξ · w, depicted

through the light- and dark-blue background color scheme, from darker regions, ∇ξ · w ∼ 0, to lighter regions, ∇ξ · w > 0. In both columns,
classical patterns are shown as a collection of black lines.
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system which, besides working as an experimental platform
first identified in Harper’s approach for crystal electrons in the
presence of magnetic fields [38], admits a statistical descrip-
tion in terms of TD and Gaussian ensembles, like what was
here considered. However, our extended Wigner phase-space
approach is not restricted to Harper-like Hamiltonians. In fact,
the Hamiltonian from Eq. (4) can be interpreted as a restrictive
choice of the phenomenological parameters of the more gen-
eral Aubry-André model [39,43], which includes additional
linear contributions to a reparameterized form of HW (q, p),
with K (p) → K (p) + ωp p and V (q) → V (q) + ωqq, where
momentum and position contribution coefficients ωp(p) and
ωq(q) [see Eq. (4)] are the drivers of either bound-state or
continuous spectrum regimes.

Beyond the condensed-matter physics examples, deformed
Hamiltonians with K (p) = cosh(p/p0), which are sometimes
related to the Toda lattice theory [72], have been conjec-
tured in the investigation of the Seiberg-Witten curve of an
N = 2 Yang-Mills theory, where a quantization hypothesis
follows from the correspondence between spectral theory
and strings [73]. Following a similar prescription in which
the hyperbolic behavior is dominant in the description of
the competitive ecological equilibrium of populations, Lotka-
Volterra-like systems [74], besides being extensively applied
stochastic systems [75,76], can be treated via the dynamical
equations arising from the Hamiltonian formulation described

(in dimensionless notation) by

H(x, k) = x + k + e−x + e−k, (88)

which yields the following classical equations of motion:

dx/dτ = {x,H}PB = 1 − e−k, (89)

d p/dτ = {k,H}PB = e−x − 1, (90)

whose phase-space trajectories can be extended to the non-
commutative context, [x, k] �= 0, through the WW formalism.
This allows for quantifying (cf. Refs. [27,28]) related phase-
space correlations and information flow aspects as well as
quantumlike deviations from the well-known prey-predator
classical system.

Finally, it is worth mentioning that the procedure dis-
cussed here can be equally specialized to the above-mentioned
scenarios and could encompass more complex forms of non-
Linear Hamiltonians. Clearly, an extended framework of
phase-space QM that deserves further research.
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