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The last two decades have witnessed an increasing effort by the scientific community toward pursuing a better
framework for quantum resource covariance, with the focus predominantly posed on quantum entanglement.
In this work, we move the discussion one step further by analyzing the behavior of both genuine multipartite
entanglement and quantum coherence under Lorentz boosts. Specifically, we conduct a case study for the
problem of an electron-positron pair created in a superposed multipartite pure state. Our approach is different
from the standard treatments also in that we consider all the components of the four-momentum, thus allowing
for an inspection of scenarios wherein entanglement can be encoded among these degrees of freedom as well.
Our analysis reveals interesting subtleties in this problem, such as the fact that genuine 4-partite entanglement in
the laboratory frame transforms into genuine 8-partite entanglement plus quantum coherence in the perspective
of the Lorentz-boosted frame. Moreover, a given combination of these quantum resources is shown to form a
Lorentz invariant. Although our findings are not able to determine, via first principles, an information-theoretic
Lorentz invariant, they pave the way for fundamental incursions along this line.
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I. INTRODUCTION

Several decades have passed since seminal works brought
to light the quantum mechanical phenomenon of entangle-
ment [1,2], whose conceptual and practical implications have
consistently challenged physicists to this day. Entanglement
is by now widely acknowledged as a quantum resource [3] for
tasks such as quantum cryptography [4], randomness gener-
ation [5], and quantum metrology [6]. Many other quantum
resources have since been discovered, among which quantum
coherence [7] emerges as a critical one for many operational
tasks [8].

In light of the fundamental relevance of quantum resources
to both foundational and technological developments, it is
natural to ask how they behave as the systems are allowed
to enter the high-velocity domain and how much of these re-
sources are available to different observers. Most importantly,
although violations of the no-signaling principle have never
been observed, the strict relation found between pure-state en-
tanglement and Bell nonlocality [9] has prompted researchers
to inspect the frontier between quantum mechanics and spe-
cial relativity. In effect, over the past two decades, numerous
works have tested the relativistic invariance of entanglement
on a number of physical systems.

With the goal of studying entanglement and Bell non-
locality in states of relativistic spins, the standard strategy
consists of starting with free particle states encoding mo-
mentum and spin degrees of freedom, and then tracing over
momentum [10–24]. In this scenario, a variety of interest-
ing questions arises, including investigations regarding the

operational significance of spin [13,14,18,25–27]. A general
conclusion about entanglement between relativistic particles
is that it is invariant for bipartitions which keep the momen-
tum and spin degrees of freedom of each particle together.
This derives from the fact that a Lorentz boost U (�) for a
two-particle system is given by the product U1(�) ⊗ U2(�),
which, being local, cannot change the entanglement between
the particles. On the other hand, Uk (�) (k = 1, 2) does change
the amount of entanglement between the spin and the mo-
mentum of the kth particle [14,19,28–30]. Further discussions
on this line of research include the differences in treating
momentum as a discrete [17,20] or continuous [19,21] vari-
able, Bell inequality violations [13], scattering states [22],
entanglement between spin and parity eigenstates (for spin-
1/2 fermions) [24,30,31], and the inclusion of non-inertial
and gravitational effects [32,33]. The reader is also referred to
Refs. [12,26,27,34–37] for the consequences that the covari-
ance properties of entanglement have for relativistic quantum
information science.

Whenever a system of two or more particles is concerned,
the characterization of entanglement becomes subtler. This
is so because the existence of more than two Hilbert spaces
yields tricky notions such as multipartite entanglement [38]
and genuine multipartite entanglement [39,40]. Research re-
garding the manifestation of such resources for relativistic
particles is still incipient [41,42]. In addition, the typical
approach leaves out the fact that relativistic momentum ac-
tually needs four Hilbert spaces to be properly described in
terms of its components, among which entanglement can, in
principle, be generated. Another important gap in the field of
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relativistic quantum information is the lack of systematic stud-
ies on quantum resources other than entanglement and their
eventual interconnections upon changes of reference frames.
Interestingly, results along these lines have recently been re-
ported in the arena of quantum reference frames: although two
“quantum observers” do not agree on the amounts of entan-
glement and quantum coherence [43], they always agree upon
the total amount of quantum resources, as long as quantum
incompatibility is included in the description [44].

This work is aimed at contributing to the above discussion.
Specifically, we want to make the point that even though
genuine multipartite pure-state entanglement and quantum
coherence are not invariant under Lorentz boosts, a given
combination of these resources turns out to be. To accomplish
this task, we proceed as follows. The starting point for de-
riving the relativistic particle states and their transformation
properties is the relativistic wave equations or, as an exten-
sion, the corresponding quantum fields [11,18,23,24,45]. As
is now well known, covariance aspects can thus be treated
in a way convenient for quantum mechanics problems, using
concepts such as Wigner rotations on single-particle states.
We apply this formalism to a specific problem: evaluating
the quantum resources encoded in a given quantum state of
a particle-antiparticle system resulting from a pair-production
event [11,46] from the perspectives of the laboratory and a
boosted frame. After computing entanglement for every bi-
partition and quantum coherence for every reduced state as a
function of the parameters of the quantum state and the boost,
we evaluate genuine multipartite entanglement and come up
with an information-theoretic Lorentz invariant.

II. PRELIMINARY CONCEPTS

A. Wigner rotations

To conveniently represent the action of Lorentz trans-
formations on each single-particle state, we follow the
prescription reviewed in [11,47]. First, one expresses each
state �p,σ of momentum p = (p0, �p) and spin σ through a
Lorentz transformation L(p) from a standard inertial reference
frame, in which the particle state reads �k,σ ′ , with momentum
k and spin σ ′. Formally,

�p,σ = N (p)U (L(p))�k,σ ′ , (1)

where N (p) = √
k0/p0 is a constant of normalization, which

we will drop in the end,1 and U (L(p)) is the 4 × 4 ma-
trix representing the Lorentz transformation in the Dirac
spinor representation. Here we take the preferred inertial ref-
erence frame to be the particle’s rest frame, in which k =
(mc, 0, 0, 0). The application of a Lorentz transformation �

to �p,σ results in a state with momentum �p, namely,

U (�)�p,σ =
√

(�p)0

p0

∑
σ ′

Dσσ ′(W (�, p))��p,σ ′ , (2)

1This constant follows from quantum field theory conventions,
where it comes in to guarantee that the measure of integration in
momentum space is Lorentz invariant. Since we treat momentum as
a discrete observable, this constant will be absorbed in the normal-
ization of its eigenstates.

FIG. 1. A spin- 1
2 particle (cyan sphere) and its antiparticle (blue

sphere) move along the directions defined by the momenta unit
vectors p̂ = ẑ and − p̂, respectively, both with “spin up” (|0〉, in
the computational basis. A boost is performed in the β̂ = ẑ cos α −
x̂ sin α direction. The unit vector n̂ = β̂ × p̂/||β̂ × p̂|| defines the
axis around which the Wigner rotation is performed for the particle,
whereas for the antiparticle, the respective axis is given by −n̂.

with D(W (�, p)) the representation of the Wigner rota-
tion2 W (�, p) = L−1(�p)�L(p) in the spin basis. It is a
well-known fact about the Lorentz group O(1, 3) that the
transformation W lies in the Little Group SO(3) ⊂ O(1, 3).

Let us write the Wigner rotation for a massive spin- 1
2

(Dirac) particle [11] moving along the z direction with mo-
mentum �p = pẑ, where p = γvmv, γv = (1 − β2

v )−1/2, and
βv = v/c. This instance is depicted in the upper half of
Fig. 1, which anticipates the physical setup we shall focus on
throughout this work. The boost is taken to lie in the xz plane,
in the direction defined by the unit vector β̂ = ẑ cos α −
x̂ sin α, which is parametrized by an angle α ∈ [0, π ] mea-
sured from the positive z axis in the direction of the negative x
axis, and with the Lorentz factor γ = (1 − β2)−1/2. It follows
that W (�, p) is a rotation (around the y axis) with matrix
representation

W (�, p) =

⎛
⎜⎝

1 0 0 0
0 cos 	(�, p) 0 sin 	(�, p)
0 0 1 0
0 − sin 	(�, p) 0 cos 	(�, p)

⎞
⎟⎠, (3)

where the rotation angle is given by [47]

cos 	 = γ+γv+ββvγ γv cos α+(1 − γ − γv+γ γv ) cos2 α

1+γ γv+ββvγ γv cos α
.

(4)

It is instructive to look at a few interesting particular cases.
For a Lorentz boost in the z direction, the Wigner rotation
is trivial since, in this case, W (�, p) = L−1(�p)L(�p) = I4.

2That W (�, p) is a rotation matrix follows from the fact that it is
in the subgroup of the Lorentz group which keeps the momentum k
fixed.
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Indeed, with α = 0, we find cos 	(�, p) = 1, which leads
Eq. (3) to the mentioned result. Conversely, in the case of a
boost along the −x direction (α = π/2), we get the known
result cos 	 = (γ + γv )/(1 + γ γv ) [11,29]. Other results can
be readily checked from the general formula (4): (i) for any α,
the small-velocity limit (either β = 0 or βv = 0) recovers the
identity, W = I4, and (ii) in the relativistic limit (both β → 1
and βv → 1), the Wigner angle is simply given by 	 → α.

The four-dimensional space of Dirac spinors can be
decomposed into two-dimensional particle and antiparticle
subspaces as H = H+ ⊕H−. Let us introduce the (com-
putational) basis of the spin-z eigenstates in each space Hν

through the relation σz |s〉ν = (−1)s |s〉ν , with s ∈ {0, 1} and
ν ∈ {−,+} (referring to electron and positron, respectively).
In this basis, the Wigner rotation is represented by [48]

D(W (�, p)) = Dn̂(	) ⊕ Dn̂(	), (5)

where Dn̂(	) := e−i(	/2)n̂·�σ , with �σ the vector formed by
the Pauli matrices, and n̂ = β̂ × p̂/||β̂ × p̂||. Thus, for one-
particle states, a simple transformation law follows, namely,
U (�) |p, s〉ν = |�p〉ν Dn̂(	) |s〉ν . Specializing for the sce-
nario of our interest (Fig. 1), now using the notation ps =
(p0, 0, 0, sp) and �ps = πs, we can write

U (�) |p0, 0, 0, sp, s〉ν = |πs
0 , πs

x , 0, πs
z 〉ν Dsŷ(	) |s〉ν , (6)

where s ∈ {−,+} is the sign of the z component of momen-
tum. As can be checked by direct application of the Lorentz
transformations, the new four-momentum πs implicitly de-
pends on s in a way such that π+

0 = π−
0 iff α = π

2 and π+
x =

π−
x iff α ∈ {0, π

2 , π}, whereas π+
z never equals π−

z . Hence,
by restricting the boost to the domain α ∈ (0, π

2 ), we ensure
that π+ �= π−. As a consequence, we have 〈πs

a |πs′
a 〉 = δss′ for

a ∈ {0, x, z}.

B. Electron-positron pair

Now we specify the arena wherein our study will be
conducted. The system of interest is a positron-electron pair
whose creation is chosen to occur on the z axis (see Fig. 1).
Because the pair creation has to satisfy the conservation laws,
one can always find an inertial reference frame in which the
two particles move with opposite momenta ±pẑ and ∓pẑ,
while the total energy is the same irrespective of the sign that
is adopted. As far as the spin is concerned, the state of affairs
prior to the matter creation, which basically involved a photon
and a nucleus, demands that both the electron and positron
manifest their spins in the same direction,3 being either “spin
up” (|0〉) or “spin down” (|1〉). The situation depicted in Fig. 1
is then expressed as |p0, 0, 0, p, 0〉 |p0, 0, 0,−p, 0〉, where we
have dropped the system descriptor ν in favor of a notation
that maintains the electron kets always on the left-hand side.
Quantum mechanics also allows for the occurrence of a state

3In the language of QED, this is understood as a consequence of the
interaction Lagrangian (or, equivalently, the Feynman rules for the
vertex diagram), which is proportional to εμv̄αγ

μ

αβuβ and therefore
imposes the conservation of angular momentum of the photon (fixed
by the polarization state εμ) and those of the spinors (fixed by the
spin states v̄α , uβ ).

such as |p0, 0, 0,−p, 1〉 |p0, 0, 0, p, 1〉 in consonance with the
same conservation laws and, more generally, a superposition
of these two scenarios. Now, as can be seen in Eq. (6), the parts
of the state associated with the y component of momentum
will not change upon the considered boosts and, therefore, will
remain uncorrelated with the remainder degrees of freedom.
This means that the whole description can be done in terms of
one-particle states |p0, px, pz, s〉. We then propose to describe
the electron-positron state in the simplified form

|�〉 = η |p0, 0, p, 0〉 |p0, 0,−p, 0〉
+ ξeiθ |p0, 0,−p, 1〉 |p0, 0, p, 1〉 , (7)

with amplitudes η = cos φ and ξ = sin φ, with φ ∈ [0, π
2 ],

and a generic phase θ . As usual, momentum is treated as a
discrete variable, so that 〈ε1p|ε2p〉 = δε1ε2 for ε1,2 ∈ {+,−}.
In fact, in both reference frames, each momentum component
can be effectively treated as a qubit.

C. Genuine multipartite entanglement

The advancement of quantum computation and quantum
cryptography urged the development of quantum resource
quantifiers [3,7], a task that is by no means trivial, espe-
cially when multipartite states are concerned. Here, we restrict
our attention to the quantification of genuine multipartite en-
tanglement (GME) for pure states, a class of entanglement
that refers to a “global link” not conceivable in terms of
the correlations existing between bipartitions. To make this
notion more rigorous, let us start with a system composed of
three parts (degrees of freedom) denoted 1, 2, and 3. A pure
state |ψ〉 is said to be biseparable if |ψ〉 = |ψ j〉 ⊗ |ψkl〉, with
{ j, k, l} assuming any permutation of {1, 2, 3}, totally separa-
ble if |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉, and genuinely entangled if it
is neither biseparable nor totally separable. In the latter case,
the state is said to possess genuine 3-partite entanglement. Of
course, the situation becomes more and more complex as one
adds degrees of freedom to the system.

Let us now consider a n-partite state |ψ〉 ∈ ⊗n
i=1Hi. In

Ref. [40], a measure En(ψ ) has been put forward to quantify
the amount of genuine n-partite entanglement encoded in the
pure state ψ = |ψ〉 〈ψ | for an arbitrary n. Called generalized
concurrence, this measure formally reads

En(ψ ) := min
℘i∈P

√
2L(ρ℘i ), (8)

where L(ρ) := 1 − Tr(ρ2) is the linear entropy of ρ (a mea-
sure of pure-state bipartite entanglement when ρ is a reduced
state) and P is the set of all possible parts ℘i defining bipar-
titions for the state. Consider, for instance, a 4-partite state
|ψ〉 ∈ H1 ⊗H2 ⊗H3 ⊗H4. In this case, ℘i may assume the
labels {1, 2, 3, 4, 12, 13, 14}, corresponding to the bipartitions
1|234, 2|134, 3|124, 4|123, 12|34, 13|24, and 14|23. The
rationale behind measure (8) is as follows. The occurrence of
a single factorizable bipartition is enough to make GME null,
whereas one has En > 0 iff all reduced states ρ℘i are mixed,
meaning that biseparability is not admissible, no matter which
bipartition is regarded. Because 0 � L(ρ) � 1 − 1

d , with d
the dimension of the space on which ρ acts, it follows that
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GME saturates to
√

2(d − 1)/d , which is only realized for the
maximally entangled n-partite state 1√

d

∑d
i=1 |i〉⊗n.

D. Quantum coherence

Quantum coherence is a quantum resource [49] which lies
at the heart of foundational aspects of the quantum realm as
matter wave interference [50] and realism [51–58], with ap-
plications ranging from quantum information [8] to biological
systems [59]. Its quantification with respect to an observable
A’s eigenbasis is provided by the so-called relative entropy
of coherence, CA(ρ) := S(�A(ρ)) − S(ρ) [7], where S(ρ) :=
−Tr(ρ ln ρ) stands for the von Neumann entropy of the single-
partite state ρ. �A(ρ) := ∑

i AiρAi is the dephasing map
associated with unrevealed measurements of the observable
A = ∑

i aiAi, with eigenvalues ai and projectors Ai = |ai〉 〈ai|
such that AiAj = δi jAi. Roughly speaking, CA tells us how far
the state ρ under scrutiny is from its “decohered” counterpart
�A(ρ). Starting from the decomposition of a generic ρ in the
{|ai〉} basis, we obtain that �A(ρ) = ∑

k ρkkAk ≡ ρdiag, which
has no off-diagonal terms in the A basis.

Since S and the linear entropy L are widely believed to
be monotonic functions of each other, here we propose to
measure quantum coherence in terms of such “linear metric,”
so to speak; that is, we introduce

CA(ρ) := L(�A(ρ)) −L(ρ) = Tr
(
ρ2 − ρ2

diag

)
. (9)

Noticing that Tr[(ρ − ρdiag)2] = Trρ2 + Trρ2
diag − 2Trρ2

diag

and Tr[ρ�A(ρ)] = Tr(ρ2
diag), the above formula simplifies to

CA(ρ) = || ρ − ρdiag ||2, (10)

where ||O|| :=
√

Tr(O2) is the Hilbert-Schmidt norm of the
observable O. It is clear that Eq. (10) furnishes a reasonable
estimate for coherence since CA is null only if ρ = ρdiag and
increases with the number of off-diagonal terms in ρ − ρdiag.
Quantum coherence is, by construction, a basis-dependent no-
tion. In this work, we confine our attention to the observables
Pν

0,x,z and σ ν
z , which are the ones directly involved in the state

(7).

III. GME AND QUANTUM COHERENCE FOR THE
ELECTRON-POSITRON PAIR

We are now equipped with the tools to discuss how GME
and quantum coherence, as given by Eqs. (8) and (10), be-
have upon changes of inertial reference frames. We start by
computing these resources with respect to the laboratory per-
spective, wherein the electron-position state (7) is assumed to
have been prepared.

A. Quantum resources in the laboratory frame

The evaluation of GME for the 8-partite state � = |�〉 〈�|
given by Eq. (7) is trivial because the parts Pν

0,x (correspond-
ing to the p0,x component of the system ν) factorize, so that
E8(�) = 0. Likewise, because every reduced state ρ℘i , for
℘i ∈ {Pν

0,Pν
x ,Pν

z ,Sν}, is a two-branch mixture (a diagonal
state) with probabilities η2 and ξ 2, we have CA(ρ℘i ) = 0 for
A ∈ {Pν

0 , Pν
x , Pν

z , σ ν
z }. However, all this does not imply that the

state (7) is devoid of quantum resources. In fact, as we show
now, genuine 4-partite entanglement is present.

Tracing the four parts Pν
0,x out of the global state

� gives another pure state ρ = TrPν
0,x

(�). According to
the prescription (8), to compute genuine 4-partite entan-
glement, we have to evaluate the bipartite entanglement
of the following bipartitions: P−

z |P+
z S−S+, P+

z |P−
z S−S+,

S−
z |P−

z P+
z S+, S+

z |P−
z P+

z S−, P−
z P+

z |S−S+, P−
z S−|P+

z S+,
and P−

z S+|P+
z S−. For the first bipartition, for example,

we derive the reduced density operator ρP−
z

= TrP+
z Sν (ρ) =

η2 |p〉 〈p| + ξ 2 |−p〉 〈−p|, from which we obtain the bipartite
entanglementL(ρP−

z
) = 1

2 sin2(2φ). The calculation is similar
for the other bipartitions and the resulting entropies are all the
same. Hence, from formula (8), we obtain

E4(�) = sin(2φ), (11)

which turns out to be the only resource available in the labora-
tory frame (among the ones considered in this work, namely,
pure-state entanglement and quantum coherence).

B. Quantum resources in the boosted frame

We now investigate how the quantum resources change if
one applies a Lorentz transformation to the state (7). Direct
application of the formula (6) yields |� ′〉 = U (�) |�〉, where

|� ′〉 = η |π+
0 , π+

x , π+
z , u+〉 |π−

0 , π−
x , π−

z , u−〉
+ ξeiθ |π−

0 , π−
x , π−

z , v−〉 |π+
0 , π+

x , π+
z , v+〉 (12)

and

|us〉 = cos

(
	

2

)
|0〉 + s sin

(
	

2

)
|1〉 ,

|vs〉 = −s sin

(
	

2

)
|0〉 + cos

(
	

2

)
|1〉 . (13)

Let us now compute the GME for the 8-partite boosted
state � ′ = |� ′〉 〈� ′|. We start by looking at the eight bipar-
titions that separate one part from the other seven, hereafter
called the 1|7 bipartitions. Since 〈π+

a |π−
a 〉 = 0 (a ∈ {0, x, z}),

the reduced states for the parts Pν
a are statistical mix-

tures given by ρ ′
Pν

a
= η2 |π+

a 〉 〈π+
a | + ξ 2 |π−

a 〉 〈π−
a |. Hence,

for these six reduced states, we find L(ρ ′
Pν

a
) = 1

2 sin2(2φ).
For the two remaining 1|7 bipartitions, the ones refer-
ring to the spin parts, the situation is different because
the new spin states are not orthogonal, that is, 〈u+|v−〉 =
〈u−|v+〉 = sin 	. Thus, while the reduced states have the
form ρ ′

S∓ = η2 |u±〉 〈u±| + ξ 2 |v∓〉 〈v∓|, the linear entropy
results in L(ρ ′

Sν ) = 1
2 sin2(2φ) cos2(	). For almost all the

8!
2!6! = 28 bipartitions of the form 2|6, involving the orthonor-
mal basis such as {|π+

a , u+〉 , |π−
a , v−〉}, we find the same

bipartite entanglement 1
2 sin2(2φ). The only special 2|6 bi-

partition is the one referring to the reduced state ρ ′
S−S+ =

η2 |u+, u−〉 〈u+, u−| + ξ 2 |v−, v+〉 〈v−, v+|, for which one
has L(ρ ′

S−S+ ) = 1
2 sin2(2φ)(1 − sin4 	). The number of 3|5

bipartitions is 8!
3!5! = 56. In this scenario, there is no spe-

cial case since all the pertinent bases are orthonormal, even
{|π+

a , u+, u−〉 , |π−
a , v−, v+〉}. The bipartite entanglement is,

once again, 1
2 sin2(2φ). Finally, we look at the 1

2
8!

4!4! = 35 bi-
partitions of the form 4|4, for which the bipartite entanglement
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is no different from the previous one. To obtain the GME
prescribed by Eq. (8), we take the minimum value ofL among
the ones indicated in this paragraph, so as to obtain

E8(� ′) = E4(�) cos 	, (14)

with cos 	 always being non-negative for α ∈ (0, π
2 ). Natu-

rally, one may wonder what happens with E4 in the boosted
frame. The first point to note is that we cannot obtain a 4-
partite pure state out of � ′ so that even if E4(ρ ′

℘i
) existed,

it would not rigorously have the same character as E4(�). It
turns out, though, that E4(ρ ′

℘i
) = 0 for all possible 4-partite

configurations ℘i, the reason being the fact that the possible
reduced states ρ ′

℘i
are all explicitly multiseparable due to the

orthogonality of the momenta bases. That is, these states admit
the form ρ℘i = ∑

k ckρ1k ⊗ ρ2k ⊗ ρ3k ⊗ ρ4k , which implies
full separability and hence no entanglement.

To compute quantum coherence, we return to the 1|7 bipar-
titions. Being incoherent mixtures, the reduced states ρ ′

Pν
a

are
already diagonal in the momenta bases, so that CPi

a
(ρ ′
Pν

a
) = 0

for a ∈ {0, x, z}. On the other hand, for the spin reduced states,
one shows that ρ ′

Sν − (ρ ′
Sν )diag = −ν sin 	

2 (|0〉 〈1| + |1〉 〈0|)
for ν ∈ {−,+}, and then, via formula (10), we obtain

Cσν
z
(ρ ′
Sν ) = 1

2 sin2 	. (15)

C. Discussion

The results expressed by Eqs. (11), (14), and (15) are
formally simple and insightful. First, they do not depend on
the relative phase θ , a fact that is well known from the entan-
glement theory. Second, the quantum resources in the boosted
frame are clearly modulated by the factor cos 	 [Eq. (4)],
which emerged from the Wigner rotation and hence critically
depends on the boost parameters.

As far as pure-state entanglement is concerned, we have
an interesting and nontrivial interchange in the structure of
this resource: genuine 4-partite entanglement in the labora-
tory frame is transformed into genuine 8-partite entanglement
(and coherence). This means that, strictly speaking, we can-
not claim entanglement invariance, not even when cos 	 →
1 (which occurs as α → 0) because, in the boosted frame,
entanglement is codified in a larger number of degrees of
freedom, thus being different in essence. Figure 2 illus-
trates how E8(� ′) gets attenuate in relation to E4(�) as a
function of the dimensionless velocities β and βv . The atten-
uation becomes significant (and abrupt) in the high-velocity
limit. In particular, it follows from this analysis that the
GME in the boosted frame is lower bounded as E8(� ′) �
E4(�) cos α, with equality holding only in the ultrarelativistic
limit (β, βv ) → (1, 1).

As expected, the amount of entanglement is controlled by
the term 2ηξ = sin(2φ), for η and ξ determine the characteris-
tics of the quantum superposition in the electron-positron state
(7). Accordingly, no quantum resources whatsoever are avail-
able in the laboratory frame when φ ∈ {0, π

2 }. Still, quantum
coherence will manifest itself in the boosted frame because
the relative motion induces a rotation—a Wigner rotation,
Dsŷ(	)—in the axis along which the spin is quantized, thus
leading the spin to enter in quantum superposition. Moreover,
the quantum coherence associated with the z component of

FIG. 2. Transformation factor cos 	 = E8(� ′)/E4(�) for GME
as a function of β (dimensionless velocity of the boost) and βv

(dimensionless velocity of the particles), for (a) α = π/4 and (b) α =
π/2. The entanglement attenuation becomes appreciable only in
the high-velocity regime. In particular, in the ultrarelativistic limit,
one has limβ→1 limβv→1 cos 	 = cos α = β̂ · β̂v , where β̂v = p̂ =
�p/|| �p||.
spin increases as E8(� ′) decreases, reaching its maximum in
the ultrarelativistic regime. In the regime where both β and
βv are small enough, one has Cσν

z
(ρ ′
Sν ) ∼= 1

8β2β2
v sin2 α � 1,

showing that coherence invariance can be claimed to some
extent.

D. Constructing a quantum invariant

For simplicity, let us introduce the notation E4 ≡ E4(�),
E8 ≡ E8(�), Cν ≡ Cσν

z
(ρSν ), and, similarly for the boosted

frame, E′
4 ≡ E4(ρ ′

℘i
), E′

8 ≡ E8(� ′), C′
ν ≡ Cσν

z
(ρ ′
Sν ). Via di-

rect algebra, we can combine the results of the previous
section to arrive at E4 = E′

8/
√

1 − (C′+ + C′−). Now, since
C± = E8 = 0, we can compose the invariant

E4 + E8√
1 − (C+ + C−)

= E′
4 + E′

8√
1 − (C′+ + C′−)

= sin(2φ), (16)

which is maximized for a Bell-like state (φ = π/4). Although
one may claim that this quantity emerged artificially, it offers
some hint of what kind of information-theoretic object should
be taken into account for one to obtain the definitive quantum
invariant, conceivable by first principles of information theory.
That such a quantum invariant must exist is an intuitive idea
grounded in the fact that the total information encoded in a
quantum state does not change upon unitary transformations
[44], including Lorentz boosts. That the invariant (16) is not
expected to be the definitive one is suggested by the fact we
have considered neither other types of entanglement, such
as mixed-state entanglement, nor quantum coherences asso-
ciated with observables other than σz.

IV. SUMMARY

In this work, we investigated how some quantum resources,
such as genuine multipartite entanglement and quantum co-
herence, transform upon Lorentz boosts. To this end, we
considered (i) an electron-positron multipartite pure state, (ii)
Lorentz boosts perpendicular to the Wigner rotation axis, and
(iii) measures of GME and quantum coherence based on the
linear entropy. We found an interesting state of affairs in
which genuine 4-partite entanglement in the laboratory frame
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transforms to genuine 8-partite entanglement plus quantum
coherences in the σ ν

z bases. Furthermore, within the adopted
framework, we showed that a given combination of quantum
resources can be derived which remains invariant upon the
Lorentz boosts.

It is noteworthy that our analysis was not aimed at exhaust-
ing the whole universe of quantum resources (see Ref. [49]
for a small collection of them). In fact, even other entangle-
ment structures (such as E3�n<8 for mixed reduced states) and
quantum coherence (for instance, Cσν

x,y
) were set aside. This

constitutes a fruitful research program for near future works.
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