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If one seeks to test quantum theory against many alternatives in a landscape of possible physical theories,
then it is crucial to be able to analyze experimental data in a theory-agnostic way. This can be achieved
using the framework of generalized probabilistic theories (GPTs). Here we implement GPT tomography on a
three-level system corresponding to a single photon shared among three modes. This scheme achieves a GPT
characterization of each of the preparations and measurements implemented in the experiment without requiring
any prior characterization of either. Assuming that the sets of realized preparations and measurements are
tomographically complete, our analysis identifies the most likely dimension of the GPT vector space describing
the three-level system to be nine, in agreement with the value predicted by quantum theory. Relative to this
dimension, we infer the scope of GPTs that are consistent with our experimental data by identifying polytopes
that provide inner and outer bounds for the state and effect spaces of the true GPT. From these, we are able to
determine quantitative bounds on possible deviations from quantum theory. In particular, we bound the degree
to which the no-restriction hypothesis might be violated for our three-level system.
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I. INTRODUCTION

Despite the fact that quantum theory has thus far been very
successful in describing nature, it may one day be superseded
by a novel postquantum theory. In recent years, there have
been many theoretical milestones in identifying plausible can-
didates for such a theory [1–3]. Some of these theories can
even be explained within the quantum formalism itself, such
as models that exhibit intrinsic decoherence [4–7]. However,
most theories require a rejection of some or all of the quantum
framework. Some important examples include Almost Quan-
tum Theory [2,8], theories involving higher order interference
[9–12], and theories involving quaternions [13,14].

In contrast to the abundance of theoretical proposals, there
have been few experiments that aim to test quantum theory
simultaneously against many alternative physical theories.
Doing so is difficult as one cannot a priori assume the validity
of any one particular theory. For this reason, a theory-neutral
framework must be adopted to analyze the experimental data.
Such a framework is provided by the formalism of generalized
probabilistic theories (GPTs).

The GPT formalism provides a description of a physical
system from an operational approach [1,15–23] and is used
frequently in the field of quantum foundations. It is opera-
tional because it describes the theory based solely on what it
predicts for the probabilities for each outcome of a measure-
ment in an experiment. This framework requires the use of
two weak assumptions, both of which are adopted in standard
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quantum theory. The first is that each choice of preparation is
made independently from each choice of measurement. The
other assumption is that repeated runs of the same experiment
yield an independent and identically distributed (i.i.d.) source
of data. Under the validity of these two assumptions, the GPT
framework is completely general for modeling experimental
data, allowing one to avoid any implicit bias towards quantum
theory.

Recent work placed bounds on possible deviations from
quantum theory within a landscape of alternative theories for a
two-level system using the GPT framework [24]. In that work,
the two-level system was the polarization degree of freedom
of a single photon. A large number of repetitions of an experi-
ment on photon polarization were conducted, across which the
preparation procedure and the measurement procedure was
varied (from among a large set of possibilities for each). The
authors developed a scheme for achieving a GPT characteri-
zation of these preparations and measurements, that is, a GPT
tomography scheme. This scheme requires no prior character-
ization of the preparations or measurements. Rather, these are
simultaneously characterized based on their interplay. We will
refer to this scheme as bootstrap GPT tomography. Bootstrap
GPT tomography involves two key innovations relative to
standard quantum tomography [25,26]. First, standard quan-
tum tomography schemes are valid only under the assumption
of the correctness of quantum theory. They do not return
GPT characterizations of the states and measurements, but
only quantum characterizations thereof. In this sense, they
fail to be theory-agnostic. Second, standard schemes achieve
a characterization of the states under the assumption of a prior
characterization of the measurements [25], or they achieve a
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characterization of the measurements under the assumption of
a prior characterization of the states [26]. They do not achieve
a bootstrap characterization of these, that is, a simultaneous
characterization of both states and measurements based on
their interplay.

In the present work, we apply bootstrap GPT tomography
to a photonic three-level system. The constraints describing
the geometry of the quantum state and effect spaces of three-
level systems are more complex when compared with their
two-level counterparts [27]. Due to this complexity, there is
a greater opportunity for an experiment to reveal some sur-
prising discrepancies between nature and the predictions of
quantum theory [28].

Our experiment is conducted using heralded single pho-
tons prepared using spontaneous parametric down conversion
(SPDC). Three-level states are encoded in three modes of
single photons where the modes are distinguished by a combi-
nation of their polarization and spatial degrees of freedom. We
perform bootstrap tomography on a large set of preparations
and a large set of measurements to obtain a GPT character-
ization of both. This bootstrap tomography approach differs
from other experimental schemes that aim to characterize the
geometry of three-level photonic systems, for example the one
outlined in Ref. [29], in that the correctness of the quantum
formalism is not presumed in advance.

Our analysis uses a model selection technique in which
data is collected for two independent runs of the experiment.
The first data set is called the training set, and the second
data set is called the test set. For each of a set of candidate
dimensions, we find the GPT characterization that best fits
the training set. We then score these characterizations based
on how well they predict the test set. This model selection
technique was previously applied to the analysis of a quantum
experiment in Daley et al. [30], where the goal was to adjudi-
cate between different causal accounts of a Bell experiment.
Here it is applied to the problem of achieving bootstrap GPT
tomography.

In the original version of the bootstrap GPT tomography
scheme, described in Ref. [24], it is the Akaïke information
criterion rather than a train-and-test technique that is used to
adjudicate between models of different dimensions. Although
the Akaïke information criterion has the advantage of yield-
ing an estimate of the probability that a given model in the
slate of candidates minimizes the estimated information loss
relative to the true model, it does so only under strong as-
sumptions about the error model underlying the experimental
data, and these assumptions do not, strictly speaking, hold
in our experiment. Similar considerations hold for some of
the proposed alternatives to the Akaïke information criterion
(see, e.g., [31,32]). An additional drawback of model selection
techniques based on the Akaïke information criterion and
other criteria like it is that they are typically reliable only in
situations where the number of data points is large compared
to the number of parameters. As this is not the situation in
our experiment, we could not be confident of the verdicts de-
livered by such criteria. The train-and-test technique, although
more heuristic than those based on information criteria, can be
applied regardless of the error model and the relative number
of data points and parameters. It is for these reasons that we
have opted to use it here.

We now summarize the results obtained from our exper-
imental data analysis and what can be inferred regarding
possible deviations from quantum theory. (For a more in-
depth discussion of what one can infer about possible
discrepancies in the dimension and shapes of the GPT state
and effect spaces from experiments such as the one described
here, we refer the reader to the introduction of Ref. [24].)

There are two ways in which the true GPT describing the
three-level system may differ from quantum-mechanical pre-
dictions. First, the experimental data might imply a deviation
in the dimension of the GPT vector space (the number of
parameters needed to specify a state or effect in the theory)
relative to quantum theory. Second, the experimental data
might imply no dimensional deviation, but a deviation in the
shape of the state and effect spaces relative to quantum theory.

Because we are not assuming the correctness of quan-
tum theory, the set of preparations and measurements that
we implement might fail to be tomographically complete
for the three-level system of interest. Furthermore, the ad-
ditional preparations and measurements required to achieve
tomographic completeness might be implementable only in
a distinct experimental setup from the one we consider, in
particular, one involving exotic physics. Because of this, a
dimensional discrepancy between the true GPT and quan-
tum theory might exist but be missed by our experiment.
Nonetheless, if a dimensional discrepancy exists, it is possible
that it could be detected in a nonexotic experimental setup
(such as ours) because evidence for exotic physics can arise
in conventional setups when these are probed at the precision
frontier. In this sense, our experiment provides an opportunity
for uncovering such a discrepancy.

Applying our train-and-test model selection technique to
the experimental data, we determine that the most likely di-
mension of the GPT vector space governing our three-level
system is nine, in agreement with the dimension predicted by
qutrit quantum theory. The fact that we find no evidence in
favor of the hypothesis of a dimensional discrepancy implies
that one of the following possibilities must hold: (1) it does not
exist; (2) it exists, but can be detected only in an experimental
setup involving exotic physics; or (3) it exists and can be
detected in the sort of experiment we have implemented but
only at higher precision than we achieved here.

Under the assumption that there is no dimensional discrep-
ancy, we deduce from our experimental data the geometry
of the spaces of experimentally realized states and effects,
and from these we deduce the geometry of the spaces of
logically consistent states and effects. Together, these yield
inner and outer bounding polytopes for the state and effect
spaces of the true GPT governing the three-level system. The
bounds we obtain do not exclude the state and effect spaces
of quantum theory, and therefore our results are consistent
with the hypothesis that quantum theory is the true GPT un-
derlying our experiment. Furthermore, using these bounding
polytopes on the state and effect spaces, we are able to derive
a quantitative bound on the extent to which the true GPT
might violate the no-restriction hypothesis [16]. In Ref. [24]
this was done by estimating the ratio of the volumes of the
inner and outer bounding polytopes for the state space. In the
higher-dimensional context considered here, however, com-
puting these volumes is infeasible, and so we instead estimate
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the ratio of the distance from the origin to the inner and outer
bounding polytopes for the state space, averaged over a large
number of directions. This linear dimension ratio was found
to be 0.80 ± 0.04.

In summary, our analysis is consistent with quantum theory
being correct. If the true GPT does involve a dimensional
deviation from quantum theory, then detecting it will require
either achieving higher precision in a conventional setup of
the type we implemented, or an experimental setup involving
exotic physics. Similarly, if the true GPT involves no dimen-
sional deviation, but a deviation in the shapes of the state and
effect spaces, then any future experiment establishing this will
find such deviations to be limited in scope by the quantita-
tive extent established here. Our experiment and others of its
kind thereby provide an empirical constraint—a kind of stress
test—that can be applied to any novel theory that is proposed
as a competitor to quantum theory.

II. BASICS OF THE GPT FRAMEWORK

A GPT describes an experiment operationally by pre-
dicting the probability distribution over outcomes for every
measurement given every preparation. To characterize the set
of effects appearing in a GPT, it is sufficient to consider
binary-outcome measurements, since an effect that appears
in an N-outcome measurement also appears in the binary-
outcome measurement that coarse grains all the outcomes
that are not associated with that effect. Furthermore, for any
binary-outcome measurement, it is sufficient to specify the
probability of only one of its outcomes, say, the 0 outcome,
since by normalization the probability of the other is then
fixed. Thus, for each of a set of m preparations {Pi}m

i=1 and
a set of n binary-outcome measurements {Mj}n

j=1, the GPT
need specify only the probability of obtaining the 0 outcome,
denoted p(0|Pi, Mj ). The full set of probabilities obtained
from each of the preparation-measurement pairs in an exper-
iment can be organized into an m × n matrix D, where each
row represents a preparation, and each column represents a
measurement:

D =

⎛
⎜⎜⎝

p(0|P1, M1) p(0|P1, M2) · · · p(0|P1, Mn)
p(0|P2, M1) p(0|P2, M2) · · · p(0|P2, Mn)

...
...

. . .
...

p(0|Pm, M1) p(0|Pm, M2) · · · p(0|Pm, Mn)

⎞
⎟⎟⎠.

The matrix D encapsulates all of the GPT’s predictions
about the preparations and measurements in the experiment.
If D is rank k, then one can perform the decomposition D =
SE , where S is an m × k matrix and E is a k × n matrix.
The rows of S are called GPT state vectors and are denoted
si, i ∈ {1, 2, . . . , m}. The columns of E are called GPT effect
vectors and are denoted e j, j ∈ {1, 2, . . . , n}. Therefore, each
element of D can be written as

Di, j = p(0|Pi, Mj ) = si · e j . (1)

A GPT is fully specified by the set of all physically realiz-
able state vectors, termed the GPT state space and denoted S,
as well as the set of all physically realizable effect vectors,
termed the GPT effect space and denoted E . The decom-
position of D is not unique. Specifically, for any invertible
k × k matrix �, one can write D = SE = S��−1E . For each

choice of �, the rows of the matrix S� consist of a set of
valid GPT state vectors and the columns of the matrix �−1E
consist of a set of valid GPT effect vectors. For any two such
decompositions, therefore, the GPT state and effect spaces
defined by one are linearly related to those defined by the
other. There is consequently a linear freedom in the GPT state
and effect spaces, and stipulating a particular choice of linear
transformation is therefore just a convention.

GPTs are typically formulated such that any convex com-
bination of preparation (measurement) procedures is also a
valid preparation (measurement) procedure. This is justified
by the requirement of including classical probability theory
as a subtheory of the GPT, which allows for arbitrary mixing
and postprocessing. Consequently, the GPT state and effect
spaces are convex. In addition, it is assumed that for any valid
GPT effect vector e j in the set E , the vector ē j = u − e j is
also a valid effect vector, where the vector u is called the
unit effect and assigns probability 1 to all states. We adopt
the convention that u = (1, 0, . . . , 0)T , which implies that
the first component of every normalized state must be 1, or
equivalently, that the first column of the matrix S contains only
ones. We also adopt the convention that the effect with index
j = 1 is the unit effect, so that the first column of the matrix D
also contains only ones. Thus, each k-dimensional state vector
is fully described by a set of k − 1 parameters.

We call a vector s a logically possible state if it assigns
a valid probability to every measurement effect allowed by
the GPT. More formally, we define the space of logically
possible states, denoted S logical, as the set of states s such
that ∀e ∈ E : 0 � s · e � 1 and s · u = 1. From its definition, it
can be shown that S logical is the intersection of the geometric
dual of E and the hyperplane s · u = 1. For simplicity, we
write S logical = dual(E ). In an analogous manner, we define
the set of logically possible effects, denoted E logical, as the set
of all vectors e such that ∀s ∈ S: 0 � s · e � 1. Again, for
simplicity, we write E logical = dual(S ).

GPTs in which S logical = S and E logical = E are said to
satisfy the no-restriction hypothesis [16]. For GPTs which sat-
isfy the no-restriction hypothesis, all logically allowed GPT
states are physically allowed and similarly for the effects. It is
not possible for an experiment to prove that a particular GPT
satisfies the no-restriction hypothesis exactly. This is because
the number of states and effects characterized in an experi-
ment will always be finite, and noise in their implementation
will bound the realized GPT spaces away from the theoretical
ideal. Therefore, the best one can do is constrain the extent
to which any GPT that is logically consistent with the experi-
mental data can violate the no-restriction hypothesis.

III. THE GPT STATE AND EFFECT SPACES
DESCRIBING A QUTRIT

One of the most familiar examples of a GPT is quantum
mechanics itself. Here we will consider qutrit quantum me-
chanics. In this case, the GPT state space Squtrit is isomorphic
to the set of all positive semidefinite trace-one linear opera-
tors acting on a three-dimensional complex vector space, i.e.,
the set QStates(C3) = {ρ ∈ L(C3):ρ � 0, Tr(ρ) = 1}. The
GPT effect space Equtrit is isomorphic to the set of all pos-
itive semidefinite linear operators with eigenvalues less than
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or equal to one, i.e., the set QEffs(C3) = {Q ∈ L(C3): Q �
0, Q � I}.

A particularly useful convention to adopt for the GPT rep-
resentation of the spaces of qutrit quantum states and quantum
effects is to use the generalized Bloch representation. This
representation is constructed from the identity operator to-
gether with a particular basis of the eight-dimensional vector
space of traceless Hermitian operators (which is orthonormal
relative to the Hilbert-Schmidt inner product), namely, the
basis consisting of the eight Gell-Mann matrices [33]. These
matrices generate the Lie algebra of the group SU(3), in
analogy with how the Pauli matrices generate the Lie algebra
of the group SU(2). Denoting the Gell-Mann matrices by
{λα}8

α=1, the nine operators used in the Bloch representation
are

λ0 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, λ1 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠,

λ2 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, λ3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠,

λ4 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, λ5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (2)

λ6 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, λ7 =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠,

λ8 = 1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠.

One easily verifies that the Gell-Mann matrices are Hermi-
tian, traceless (Tr[λα] = 0 ∀α �= 0), and orthonormal relative
to the Hilbert-Schmidt inner product on the operator space
(Tr[λαλβ] = 2δαβ ∀α, β �= 0, where the normalization is
taken to be 2). With this notation, the Bloch representation
of any state ρ ∈ QStates(C3) and any effect Q ∈ QEffs(C3)
is given by

ρ = 1

3
I + 1

2

8∑
α=1

sαλα

and

Q = e0I +
8∑

α=1

eαλα,

respectively. The GPT state vectors are given by the
Bloch coefficients of ρ: s = (1, s1, . . . , s8), where sα =
Tr[ρλα] ∀α ∈ {0, . . . , 8}. Furthermore, the GPT effect vectors
are given by the Bloch coefficients of Q: e = (e0, e1, . . . , e8)
where eα = 1

2 Tr[Qλα] ∀α ∈ {0, . . . , 8}. It follows that
p(0|Pi, Mj ) = Tr[ρiQ j] = si · e j , thereby matching Eq. (1).
Note that in this generalized Bloch representation, the quan-
tum unit effect, I , is represented by the GPT effect vector
having e0 = 1 and eα = 0,∀α �= 0, so it abides by the conven-
tion that the unit effect vector is taken to be u = (1, 0, . . . , 0).

Let s̃ = (s1, . . . , s8) be the eight-dimensional vector ob-
tained from s by eliminating its first component, and let ||s̃|| =√

s2
1 + s2

2 + · · · + s2
8. It has been shown that s is a GPT state

vector for a valid qutrit state in the generalized Bloch repre-
sentation (s ∈ Squtrit) if and only if it satisfies the following
constraints [34]:

||s̃|| � 2√
3
,

2
9 − 1

2 ||s̃||2 + 1
2

∑
α,β,γ gαβγ sαsβsγ � 0,

(3)

where gαβγ are the elements of the completely symmetric
structure tensor of SU(3). The elements of g are defined im-
plicitly via the anticommutation relations of the Gell-Mann
matrices [34,35]:

{λα, λβ} = 4
3δαβI + 2gαβγ λγ , ∀α, β, γ �= 0. (4)

The first constraint in Eq. (3) corresponds to inclusion in an
eight-dimensional hypersphere, which is the qutrit analog of
the well-known Bloch sphere representation of qubits. The
second constraint in Eq. (3) has no qubit analog and makes
the qutrit state space geometry much more complex.

Defining ẽ = (e1, . . . , e8) and ||ẽ|| =
√

e2
1 + · · · + e2

8, we
have that e is the GPT effect vector for a valid qutrit effect in
the generalized Bloch representation (e ∈ Equtrit) if and only
if it satisfies the following constraints:

0 � e0 � 1,

||ẽ|| � √
3Min(e0, 1 − e0),

e3
0 − e0||ẽ||2 + 2

3

∑
α,β,γ gαβγ eαeβeγ � 0,

(1 − e0)3 − (1 − e0)||ẽ||2 − 2
3

∑
α,β,γ gαβγ eαeβeγ � 0.

(5)

The constraints in Eq. (5) are derived following the same steps
as are followed to derive Eq. (3) [34], with the added condition
that Q � I . Note that the third and fourth conditions follow
from Q � 0 and I − Q � 0, respectively.

To visualize the geometry of the nine-dimensional qutrit
state and effect spaces, it is useful to consider the geometry
of various three-dimensional projections of these. We follow
the approach taken in Ref. [36] to the study of the geometry
of the qutrit state space (see also Refs. [37–39]) and adapt this
approach to the case of the effect space.

The joint numerical range of a set of k operators {Aα}k−1
α=0

is defined as [36]

W (A0, . . . , Ak−1) = {w ∈ Rk : wα = 〈ψ |Aα|ψ〉,
∀|ψ〉 ∈ Cd}, (6)

where Cd is the complex vector space of dimension d . Con-
sider the nine operators defined by

A0 = I, Aα = λα, ∀α ∈ {1, . . . , 8},
i.e., the identity matrix and the eight Gell-Mann matrices,
defined in Eq. (2). The joint numerical range W (A0, . . . , A8)
is equal to the set of nine-dimensional generalized Bloch vec-
tors associated with pure qutrit states (i.e., the Bloch vectors
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including the s0 component),

Squtrit
pure = W (A0, . . . , A8). (7)

It follows that the convex hull of W (A0, . . . , A8) is equal
to Squtrit , which corresponds to the set of nine-dimensional
generalized Bloch vectors associated with all qutrit states,
characterized in Eq. (3),

Squtrit = {s ∈ R9 : sα = Tr[ρAα] ∀α ∈ {0, . . . , 8},
∀ρ ∈ QStates(C3)},

= cvxhull[W (A0, . . . , A8)]. (8)

For some arbitrary triple of these nine operators, {Aμ, Aν, Aω},
the convex hull of their joint numerical range describes the
projection of Squtrit into the three-dimensional operator sub-
space spanned by {Aμ, Aν, Aω},

Pμνω(Squtrit ) = {s ∈ R3 : sα = Tr[ρAα],∀α ∈ {μ, ν, ω},
∀ρ ∈ QStates(C3)}

= cvxhull[W (Aμ, Aν, Aω )]. (9)

Similar considerations hold for the effects. Taking

B0 = 1
3 I, Bα = 1

2λα, ∀α ∈ {1, . . . , 8},
the joint numerical range W (B0, . . . , B8) is equal to the set of
generalized Bloch vectors associated with atomic effects on
qutrits. An atomic quantum effect is one described by a rank-1
projector, so that the set of atomic quantum effects for a qutrit
is simply AtmQEffs(C3) = {|ψ〉〈ψ |:|ψ〉 ∈ C3}. Denoting the
set of GPT effect vectors that are associated with atomic qutrit
effects by Equtrit

atomic, we have

Equtrit
atomic = W (B0, . . . , B8). (10)

For all such GPT effect vectors, e0 = Tr( 1
3 |ψ〉〈ψ |) = 1

3 .
To transition from the set of atomic quantum effects to the

set of all quantum effects, the following procedure suffices.
For each atomic quantum effect Q ∈ AtmQEffs(C3), add to
the set its complement, I − Q. In addition, add to the set the
unit effect, I , and the zero effect, 0, which assigns probability
0 when paired with all states. Finally, close under convex com-
binations. In summary, if one denotes the set of complements
of atomic quantum effects by AtmQEff(C3), then the full set
of quantum effects satisfies

QEff(C3) = cvxhull
[{0} ∪ {I} ∪ AtmQEff(C3)

∪ AtmQEff(C3)
]
. (11)

The same procedure allows one to go from the set of GPT
effect vectors describing atomic qutrit effects in the gener-
alized Bloch representation to the set of GPT effect vectors
describing generic qutrit effects. Recall that u = (1, 0, . . . , 0)
denotes the GPT effect vector associated with the unit quan-
tum effect. Letting 0 = (0, . . . , 0) denote the GPT effect
vector associated with the zero quantum effect and letting
Ēqutrit

atomic denote the complement of the set of atomic effects,

Ēqutrit
atomic = {u − e : e ∈ Equtrit

atomic}, we have

Equtrit = {e ∈ R9:eα = Tr[QBα] ∀α ∈ {0, . . . , 8},
∀Q ∈ QEff(C3)}

= cvxhull
[{0} ∪ {u} ∪ Equtrit

atomic ∪ Ēqutrit
atomic

]
. (12)

As with the states, we wish to consider the projection of
Equtrit into the three-dimensional operator subspace spanned
by {Bμ, Bν, Bω} for various triples of operators. Some pre-
liminary definitions are useful for describing this projection.
Let 0(3) ≡ (0, 0, 0); this is the three-dimensional projection
of 0 for any choice of μ, ν, ω. Let u(μνω) denote the pro-
jection of u into the appropriate three-dimensional subspace.
Note that if 0 ∈ {μ, ν, ω}, then the corresponding component
of u(μνω) is 1, with the other components being 0, while if
0 �∈ {μ, ν, ω}, then u(μνω) = 0(3). Finally, let W (Bμ, Bν, Bω )
denote the complement of W (Bμ, Bν, Bω ) relative to uμνω, i.e.,
W (Bμ, Bν, Bω ) = {u(μνω) − e: e ∈ W (Bμ, Bν, Bω )}. For those
projections where u(μνω) = 0(3), W (Bμ, Bν, Bω ) is simply the
inversion about the origin of W (Bμ, Bν, Bω ).

Relative to these definitions, the three-dimensional projec-
tions of Equtrit are given by

Pμνω(Equtrit ) = {e ∈ R3 : eα = Tr[QBα],∀Q ∈ QEff(C3)}
= cvxhull[{0(3)} ∪ {u(μνω)}

∪ W (Bμ, Bν, Bω ) ∪ W (Bμ, Bν, Bω )]. (13)

Figure 1 shows plots of a number of three-dimensional pro-
jections of the qutrit state space (yellow shapes) and the qutrit
effect space (cyan shapes). Before describing some of their
features, we briefly explain how these plots are generated.

To plot a given three-dimensional projection of Squtrit , we
begin by generating a large quantity of random GPT state
vectors that are on the boundary of the set defined by Eq. (3)
[40]. For every GPT state vector in our random set, we project
it down into the three-dimensional space of interest. We
then plot the convex hull of these three-dimensional vectors.
Similarly, to generate a plot of any given three-dimensional
projection of Equtrit , we generate a large quantity of random
GPT effect vectors that are on the boundary of the set defined
by Eq. (5) and with e0 = 1

3 , which is to say, vectors associ-
ated with atomic qutrit effects. For every GPT effect vector
obtained in this way, we compute its complement effect. We
then project both the atomic effects and their complements
down into the three-dimensional space of interest. Finally, we
plot the convex hull of the set of projected GPT effect vectors,
their projected complements, and the projected zero and unit
effect vectors. As the number of vectors defining these convex
shapes is always finite, the shapes depicted in the plots are
polytopes. Indeed, a close examination of Fig. 1 reveals that
they are not smooth, in contrast to the true three-dimensional
projections. Nonetheless, because the sampling is quite dense,
the plots provide a good visual approximation to the true
shapes.

Consider first the three-dimensional projections of the
nine-dimensional qutrit state space onto a triple of Gell-
Mann matrices, that is, the projections where 0 /∈ {μ, ν, ω}.
There are

(8
3

) =56 of these. In Ref. [38,39] the connection
to joint numerical ranges was leveraged to show that all
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

FIG. 1. A sampling of three-dimensional projections of the nine-dimensional qutrit state space (top shape of each subfigure, displayed
in yellow) and of the nine-dimensional qutrit effect space (bottom shape of each subfigure, displayed in cyan). For each subfigure (a)– (j),
we specify the triple of indices (μ, ν, ω) describing which three-dimensional projection is plotted, as well as the type of the state space
projection. In the cases (a)–(f), the type is a pair of numbers (l, f ), counting the flat segments and flat faces in the two-dimensional boundary,
while in the cases (g)–(f), it is a single number l counting the flat segments in the one-dimensional boundary. (a) (μ, ν, ω) = (1, 2, 3),
(l, f ) = (0, 0); (b) (μ, ν, ω) = (2, 3, 8), (l, f ) = (∞, 1); (c) (μ, ν, ω) = (3, 4, 6), (l, f ) = (0, 4); (d) (μ, ν, ω) = (1, 3, 4), (l, f ) = (0, 2);
(e) (μ, ν, ω) = (2, 5, 8), (l, f ) = (1, 2); (f) (μ, ν, ω) = (3, 4, 5), (l, f ) = (∞, 0); (g) (μ, ν, ω) = (0, 3, 8), l = 3; (h) (μ, ν, ω) = (0, 1, 3),
l = 0; (i) (μ, ν, ω) = (0, 3, 4), l = 2; (j) (μ, ν, ω) = (0, 7, 8), l = 0.

three-dimensional projections of the qutrit state space can be
classified into different types according to the number of flat
segments in their two-dimensional boundary and the number
of flat faces in their two-dimensional boundary. A given type
of three-dimensional projection, therefore, can be specified
by a pair of natural numbers, denoted (l, f ), where l is the
number of flat segments and f is the number of flat faces.

Figures 1(a)–1(f) depicts a sampling of three-dimensional
projections of the qutrit state space, corresponding to six dis-
tinct types. The projection depicted in Fig. 1(a), for example,
is of type (l, f ) = (0, 0) because it is a ball and therefore has
no flat segments or flat faces, while for Fig. 1(e), the type
is (l, f ) = (1, 2) because it is has two flat faces (one on the
top and one on the bottom) and a single flat segment (con-

necting the two flat faces at the points where they are furthest
apart).

In Figs. 1(g)–1(j) we display a sampling of three-
dimensional projections of the qutrit state space where 0 ∈
{μ, ν, ω}, so that the component s0 is included in the projec-
tion. There are

(8
2

) =28 of these projections. By convention,
we plot the s0 component along the vertical axis. Because
the states are normalized, their projections are confined to the
s0 = 1 plane, and the shape is only nontrivial along the other
two axes. It follows that the s0 = 1 section of the projection
onto the three-dimensional subspace (0νω) is equivalent to
the projection onto the two-dimensional subspace (νω). All
two-dimensional projections of the qutrit state space can be
classified into different types in a manner analogous to the
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three-dimensional projections, namely, by the number of flat
segments in their one-dimensional boundary. We denote this
number by l . For example, the projection in Fig. 1(g) is of type
l = 3 because it has three flat segments in its boundary. Note
that the projections depicted in Figs. 1(h) and 1(j) are of the
same type, l = 0, because they both have no flat segments in
their boundary. This pair of examples illustrates the fact that
two projections of the same type can still have distinct shapes.

Although we do not present an exhaustive set of projection
types in Fig. 1, our sampling is sufficient to give a sense of
the geometric features that are characteristic of the qutrit state
space.

We now turn to the projections of Equtrit . In Fig. 1 we
display projections of Equtrit alongside the corresponding
projection of Squtrit . As before, therefore, we show projec-
tions where 0 �∈ {μ, ν, ω} appear in Figs. 1(a)–1(f), while
projections where 0 ∈ {μ, ν, ω} (i.e., which include the e0

component) appear in Figs. 1(g)–1(j). Given that for effects,
unlike states, the component e0 can be any value in the interval
[0,1], even the projections where 0 ∈ {μ, ν, ω} are nontrivial
along all three axes.

It is useful to take note of some general features of the
shapes appearing in Fig. 1. The set of trace-one quantum
effects is always precisely the same as the set of normalized
quantum states, cvxhull(AtmQEffs(Cd )) = QStates(Cd ). It
follows that the e0 = 1/3 section of the space of GPT ef-
fect vectors for a qutrit (which describes the set of trace-one
quantum effects in the generalized Bloch representation we
are considering) should be of precisely the same shape as the
s0 = 1 section of the space of GPT states for a qutrit. This
also holds true for every three-dimensional projection where
0 ∈ {μ, ν, ω}: the e0 = 1/3 section of the projected effect
space should coincide with the s0 = 1 section of the projected
state space. This is precisely what is seen in Figs. 1(g)–1(j).
Furthermore, in those three-dimensional projections where
0 �∈ {μ, ν, ω}, we expect the projection of the effect space
to be symmetric under inversion about the origin, for the
reasons discussed below Eq. (12). This feature is also evident
in Figs. 1(a)–1(f).

The three-dimensional projection depicted in Fig. 1(g) is
particularly intuitive to interpret. It describes a classical three-
level system, i.e., a classical trit. This projection is associated
with the triple of Gell-Mann matrices λ0, λ3, and λ8, which
form a commutative algebra. It follows that the joint eigen-
states of these three Gell-Mann matrices describe a triple of
perfectly distinguishable states, and the associated projection
of the qutrit state space is the convex hull of these, i.e., a
triangle, which is the state space of a classical trit. Meanwhile,
the associated projection of the qutrit effect space is the cor-
responding three-dimensional hypercube of classical effects
[41].

Regarding the precise shapes of the other projections de-
picted in Fig. 1, we restrict ourselves to a few observations.

The fact that Fig. 1(a) depicts shapes that are isomorphic
to a Bloch ball of states and a Bloch ball of trace-one effects
follows from the fact that the algebra defined by the four op-
erators { 2

3λ0 + 1√
3
λ8, λ1, λ2, λ3} is, in fact, the Pauli algebra,

and so describes a qubit embedded in the qutrit.
Meanwhile, the three operators { 2

3λ0 + 1√
3
λ8, λ1, λ3} de-

scribe the Pauli algebra without the Pauli Y , and so are

associated with a real-amplitude qubit (or “rebit”). The state
space projection depicted in Fig. 1(h), therefore, is the Bloch
disk associated with a rebit. The effect space projection de-
picted in Fig. 1(h), meanwhile, is a bit more complicated. It
is the convex hull of the trace-one rebit effects (the Bloch
disk at e0 = 1/3), together with their complements relative to
the qutrit unit effect (the trace-two rebit effects, depicted as a
disk at e0 = 2/3), as well as the zero effect and the qutrit unit
effect.

More generally, some understanding of the shapes of the
(μ, ν, ω) projections (of both the state and effect spaces) can
typically be gleaned by considering the algebra defined by the
operators λμ, λν , and λω and how this algebra embeds in the
full qutrit algebra.

Quantum theory satisfies the no-restriction hypothesis, so
the set of logically possible qutrit states is precisely equal to
the set of physically realizable qutrit states, and the set of
logically possible qutrit effects is precisely equal to the set of
realizable qutrit effects. If the GPT describing the three-level
system of our experiment were to differ from quantum theory
such that it failed to satisfy the no-restriction hypothesis, then
this would manifest as a gap between the physically realiz-
able and logically possible state spaces (equivalently, a gap
between the physically realizable and logically possible effect
spaces). Any such gap would also be manifest in some of the
three-dimensional projections of these.

IV. DESCRIPTION OF THE EXPERIMENT

Our experimental setup is shown in Fig. 2. A heralded
single-photon source uses a continuous-wave diode laser with
output at 404 nm that is focused with a lens onto a 15 mm
PPKTP crystal to perform Type-II SPDC. Excess 404 nm light
is filtered out with a long-pass filter (LPF), and resulting
808 nm photons are split using a polarizing beam splitter
(PBS2). The transmitted photons are received by an avalanche
photo diode (APD), denoted Dh, which heralds the arrival of
the reflected photons within a coincidence window of 3 ns. To
control polarization drifting effects characteristic to the laser,
the reflected port of PBS1 is actively monitored with a power
meter (PM100D) and is connected via a feedback loop to a
motorized half wave plate (HWP) to ensure optimal crystal
pump polarization at all times.

Photons from the source are coupled into a single-mode
fiber with polarization control (PC) and are passed to an
interferometer in a displaced Sagnac configuration. A calcite
beam displacer (CBD) is used with the fiber PC to ensure
vertically polarized photons are incident to the interferometer.
Different states of the three-level system are prepared using
motorized quarter wave plate (QWP) and HWP pairs P1 and
P2 (highlighted in blue in Fig. 2). Preparation stage P1 is
used to prepare a two-level state with modes |H1〉 and |V1〉.
These modes are split on PBS3. Mode |H1〉 travels counter-
clockwise around the first interferometer loop and returns to
PBS3 unchanged. Mode |V1〉 travels clockwise around the first
interferometer loop and is addressed by preparation stage P2
where the third mode of the three-level state, denoted |H2〉, is
prepared. Each three-level state is fully constructed once all
three modes recombine on PBS3. The measurement is varied
using motorized HWP-QWP pairs M1 and M2 (highlighted
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FIG. 2. Single photons at 808 nm are generated via type II SPDC using a continuous wave laser diode at 404 nm focused onto a PPKTP
crystal with a lens. Polarization drifting effects of the source are actively compensated using a power meter (PM100D) connected via a feedback
loop to a motorized HWP. Excess 404 nm light is filtered out with a long-pass filter (LPF). Photons detected at APD Dh are used to herald the
arrival of photons arriving at APDs D0 (outcome 0), D1 (outcome 1), and D2 (outcome 2) through the displaced Sagnac interferometer with
a coincidence window of 3 ns. Three-level states are prepared in the modes |H1〉, |V1〉, and |H2〉 using QWP-HWP pairs P1, P2 (highlighted in
blue) and are measured using HWP-QWP pairs M1, M2 (highlighted in orange). The interference visibility of each interferometer is actively
compensated using two HWP pairs C1 and C2. One HWP of each pair is placed on a pivoting motorized mount, allowing for fine control of
the relative optical path length. The nonmotorized wave plates, labeled as Comp. 1 and Comp. 2 and shown in blue and red, are used to balance
the optical path lengths of the interferometer arms and always have optical axis oriented along the horizontal. The arrows shown within the
interferometer arms are displayed for clarity of photon direction.

in orange in Fig. 2), and the photon is detected at one of
three APDs D0, D1, or D2, corresponding to a three-outcome
measurement. In our analysis, outcomes 1 and 2 are coarse
grained to give a binary-outcome measurement. The nonmo-
torized QWP-HWP pairs in Fig. 2 (shown in blue and red and
labeled Comp. 1 and Comp. 2) are used to balance the optical
path lengths of the interferometer arms and always have the
optical axis oriented along the horizontal.

The beams in the interferometer arms are displaced to
about 5 mm. All wave plates within the interferometer arms
have 3.5 mm holes allowing one beam to pass freely through.
The interferometer is inside a box to reduce air currents
and improve long-term stability. Relative phases of the inter-
ferometer arms are controlled using tilted HWPs placed on
pivoting motors (displayed skewed in wave plate pairs C1
and C2). The interference visibility of both interferometers
is automatically checked and corrected every 20 minutes as
it was noted that interferometer phase began to drift after
approximately 30 minutes. The compensation scheme is as
follows: For a specific experimental configuration in which
maximum interference should occur on PBS3 and in which
the count rate at detector D1 should be minimal, the motorized
HWPs in either C1 or C2 (depending on the interferometer
being compensated) is pivoted until a threshold count rate
is achieved at detector D1, which corresponds to an optimal

interference visibility. We obtain an optimal interference vis-
ibility for the first interferometer (top in Fig. 2) of 0.972 and
an optimal interference visibility for the second interferometer
(bottom in Fig. 2) of 0.984. The discrepancy between the
two optimal visibility values is explained by the fact that the
second interferometer has a shorter optical path length than
that of the first, making it intrinsically more stable.

To choose our experimental preparation settings, we first
generate a number of random qutrit quantum states that are
distributed according to the SU(3) invariant Haar measure.
This is accomplished by sampling a number of 3 × 3 uni-
tary matrices according to the Haar distribution, whose first
columns are then taken to be a set of random pure quantum
states [42,43]. We then compute the HWP and QWP angles
necessary to prepare each of these random states in our exper-
imental setup and use these angles to set the QWP-HWP pairs
P1 and P2 shown in Fig. 2.

Every rank-1 projective effect Qj = |ψ j〉〈ψ j | can be
matched with the state to which it responds with unit
probability, namely, ρ j = |ψ j〉〈ψ j |, so that Tr[ρ jQ j] =
Tr[|ψ j〉〈ψ j |ψ j〉〈ψ j |] = 1. We choose our set of measurements
such that {Qj, Q̄ j} = {|ψ j〉〈ψ j |, I − |ψ j〉〈ψ j |}, where each
|ψ j〉〈ψ j | corresponds to one of the sampled preparation states.
Here Qj is the effect corresponding to outcome 0 and Q̄ j is
the effect corresponding to the coarse graining of outcomes
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1 and 2. Therefore, the measurement settings are the wave
plate angles that must be passed to the HWP-QWP pairs
M1 and M2 shown in Fig. 2 in order to implement the n
projective measurements of the form {Qj, Q̄ j}. We convert our
three-outcome measurement into a binary-outcome measure-
ment in postprocessing. During the experiment, however, we
measure photon counts at all three detectors independently.
There are a continuum of experimental configurations such
that coarse graining outcomes 1 and 2 yields the binary-
outcome measurement {Qj, Q̄ j}. Every decomposition of the
rank-2 projector Q̄ j into a pair of rank-1 projectors yields a
distinct such configuration. However, ensuring that the effect
Qj is implemented at detector D0 provides us with sufficient
information to conduct our GPT analysis scheme. We there-
fore choose any set of wave plate angles that associates the
effect Qj with detector D0, without imposing any constraints
on the effects associated with detectors D1 and D2.

Our choices of measurement settings produce many in-
stances in which p(0|Pi, Mj ) = 1 in theory. However, in
practice, limitations of the experimental setup always bound
the probabilities obtained away from 1, so that the uncertain-
ties on our counts never produce supernormalized outcomes.
Note that although our choices of experimental preparations
and measurements are informed by quantum theory, we do
not assume its correctness in any of our analysis techniques.

For our first experiment, we choose m = 100 Haar-
distributed preparation settings and n = 100 corresponding
measurement settings for a total of mn = 104 experimental
configurations. With a laser power of 0.5 mW incident to the
PPKTP crystal, we report a second order correlation function
value of g(2) = 0.0034 and detect photon coincidences at a
rate of approximately 2000 counts/s. We integrate each mea-
surement configuration for 2 s. Including the time it takes for
the motorized wave plates to reposition between settings, and
the time it takes to actively correct for interferometer phase
drift, each run of the experiment takes approximately 16 h to
complete.

V. BOOTSTRAP TOMOGRAPHY IN THE GPT
FRAMEWORK

A. Inferring best-fit probabilities from experimental data

We now discuss how to estimate the probability matrix
D directly from experimental data. Heralded photon counts
are detected at D0, D1, and D2. We assume Poissonian un-
certainty on the counts obtained at each detector. One can
obtain estimates of the probabilities p(0|Pi, Mj ) by dividing
the number of counts detected at D0 by the total number of
counts obtained at all three detectors. We denote these relative
frequencies by f (0|Pi, Mj ) and from them we construct a fre-
quency matrix F that is an estimate of the rank-k probability
matrix D. The experiment was conducted twice (back to back)
using the same preparation and measurement settings. We
call the first data set obtained the training set and the second
data set obtained the test set. The training set, with frequency
matrix F train, is used to find the best-fit probability matrix D
that characterizes the GPT underlying the experiment. Since
the frequencies in the matrix F train fluctuate away from the
true probabilities, F train will tend to be full rank, regardless of

the rank of the underlying matrix D. Therefore, the problem
at hand is to find, for each of a set of candidate ranks, the
matrix D of that rank that best fits the matrix of frequencies
F train. Specifically, the task can be formulated as the weighted
low-rank approximation problem

minimize χ2 train
k =

m∑
i=1

n∑
j=1

(
F train

i j − Di j

F train
i j

)2

,

subject to rank(D) = k

0 � Di j � 1

(14)

where F train
i j is the statistical uncertainty in F train

i j .
Equation (14) can be solved using an algorithm based on

an alternating least-squares approach [24]. The column of
ones corresponding to the unit effect that we include in F
are added in by hand and have uncertainty 0. Because D is
defined as the matrix that minimizes χ2 train

k , the entries in the
same column of D must also be exactly 1. (If this was not
the case, then χ2 train

k would be undefined for those entries.)
For each of the candidate ranks k, we compute the best-fit
approximation to the experimental data, denoted Drealized

k . To
determine which Drealized

k is the best approximation to the true
probability matrix D, we analyze the training error and testing
error. The training error for rank k is simply the χ2 train

k value
obtained from Eq. (14), and it is used to determine how much
a given model underfits the data. The testing error χ2 test

k for a
data set is given by

χ2 test
k =

m∑
i=1

n∑
j=1

(
F test

i j − Drealized
k,i j

F test
i j

)2

, (15)

and is used to determine the predictive power of a given
model, which can be compromised by both underfitting or
overfitting the data. Here F test is the frequency matrix corre-
sponding to the testing data set and F test

i j is the statistical
uncertainty in F test

i j . The rank-k model that minimizes the
testing error has the highest predictive power and will be the
model adopted as the best fit for our data.

For the 100 × 100 Haar-distributed experiment, the train-
ing and testing errors for different ranks are shown in Fig. 3(a).
The training error (shown in blue) decreases as the candidate
rank k increases from 2 to 9. It continues to decrease as the
rank increases from 9 to 12, but at a slower rate. The testing
error (shown in red) also decreases as the candidate rank k
increases from 2 to 9; however, unlike the training error, it
begins to rise again as the rank ranges from 9 to 12. Since the
rank-9 model is the one that is found to minimize the testing
error, it is the one that is identified as having the maximum
predictive power. Furthermore, the trends just described are
precisely what one expects if the rank-9 model is the transition
point between underfitting and overfitting, as we now explain.

Recall that the set of probability matrices that can be real-
ized by models of rank k − 1 is a strict subset of what can
be realized by models of rank k [the rank-(k − 1) models
have strictly fewer parameters than the rank-k models]. If the
rank-(k − 1) model underfits the data relative to the rank-k
model, so that it has a higher training error and also a higher
testing error, then every model with rank less than k − 1 only
further underfits the data relative to the rank-k model and so
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FIG. 3. The training error (light blue) and testing error (dark
blue) corresponding to various candidate model ranks k. (a) Training
and testing errors for the m = n = 100 experiment. Insets show train-
ing and testing error for model ranks k = 9 through k = 12. Models
with rank k < 8 severely underfit the experimental data as indicated
by the relatively high training error. Models with ranks k > 9 begin to
overfit the experimental data, as indicated by the increase in the test-
ing error accompanied by a decrease in the training error. (b) Training
and testing errors for the m = n = 415 experiment. The rank k = 8
model underfits the experimental data, while the rank k = 10 model
overfits the data. For both experiments, we conclude that the best-fit
GPT is rank k = 9 as it has the highest predictive power.

necessarily has training and testing errors that are higher than
or equal to those of the rank-(k − 1) model. Meanwhile, if
the rank-k model overfits the data relative to the rank-(k − 1)
model (i.e., its greater parametric freedom causes it to fit
to statistical fluctuations in the training data), so that it has
a lower training error but a higher testing error, then every
model with rank greater than k only further overfits the data
relative to the rank-k model, implying that its training error
can only fall further and its testing error tends to rise higher.
The change in the rate of decrease of the training error after
the point where the testing error is minimized is also expected.
Prior to that point, an increase in rank makes a big difference
for the ability of the model to fit the data. After that point,
the additional parametric freedom can cause the model to fit
to fluctuations in the training data, but this can yield only a
slightly lower training error.

FIG. 4. Comparison between the best-fit realized probability ma-
trices Drealized

9 and the predicted quantum mechanical probability
matrices Dqutrit for our two experiments. (a) A matrix plot of Drealized

9

for the m = n = 100 experiment. (b) A matrix plot of Dqutrit corre-
sponding to the preparation and measurement settings used in the
m = n = 100 experiment. The mean and standard deviation of the
difference between Drealized

9 and Dqutrit
9 is −0.003 and 0.03, respec-

tively. (c) A matrix plot of Drealized
9 for the m = n = 415 experiment.

(d) A matrix plot of Dqutrit
9 for the m = n = 415 experiment. The

mean and standard deviation of the difference between Drealized
9 and

Dqutrit
9 is −0.006 and 0.03, respectively.

In summary, the profile of the training and test errors that
we observed is precisely what one expects under the assump-
tion of the correctness of quantum theory: the rank k = 9
model is the one at which there is a transition from under-
fitting to overfitting. The degree of underfitting monotonically
increases as one decreases the rank below 9, and the degree of
overfitting monotonically increases as one increases the rank
above 9.

The best-fit probability matrix for our experimental data,
therefore, is the rank-9 matrix Drealized

9 . Figures 4(a) and 4(b)
show a comparison between Drealized

9 and the theoretical proba-
bility matrix predicted by qutrit quantum mechanics, denoted
Dqutrit. Figure 4(a) shows Drealized

9 as a matrix plot of prob-
ability values for the m = n = 100 experiment. The random
pattern of the matrix plot is a consequence of the Haar-
distributed experimental configurations. Figure 4(b) shows
a similar matrix plot for Dqutrit. The quantum mechanical
probabilities were computed using Dqutrit

i j = Tr[ρiQ j] with ρi

and Qj being the same states and effects used to compute
the wave plate angles for the experimental configurations.
Figures 4(a) and 4(b) show strong agreement between the
experimentally realized probability matrix and the probability
matrix predicted by quantum theory with the mean and stan-
dard deviation of the difference between Drealized

i j and Dqutrit
i j

being −0.003 and 0.03, respectively.
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B. Increasing the number of experimental configurations

The m = n = 100 experiment was useful for obtaining
strong evidence that the dimension of the GPT underlying our
experiment is nine, but the sampling of states and effects was
not sufficiently dense to capture the geometries of the state
and effect spaces. In this section, we outline a method for
increasing the number of GPT states and effects characterized
in our experiment, so that we can obtain a clearer picture of
the geometries.

Simply increasing m and n and probing all state-
measurement pairs leads to a large increase in the number
of experimental configurations and, consequently, an increase
in the experimental run time. However, to characterize a par-
ticular GPT state vector, one only needs to find its statistics
on any tomographically complete subset of measurements.
Similarly, to characterize any GPT effect vector, one only
needs to implement it on a tomographically complete set of
preparations. The cardinality of a tomographically complete
set is the dimension k of our GPT vector space. It follows
that one should be able to characterize m preparations and
n measurements with only k(m + n) experimental settings,
where k is the dimension of the GPT.

Despite the success of the first experiment in identifying
the dimension of the GPT describing our data, it is prudent
not to assume this result when conducting our second ex-
periment. This means that although we expect we only need
nine states/effects to construct our tomographically complete
sets, we use more than that to allow the new data to poten-
tially refute the rank-9 conclusion of our first experiment.
From the set of 24 normalized eigenvectors of the eight 3 × 3
Gell-Mann matrices (excluding identity), we choose the 15
that are distinct, denoted {|ψ j〉}15

j=1, as our tomographically
overcomplete set of states. Our tomographically overcom-
plete set of measurements are simply the 15 binary-outcome
measurements given by {Qj, Q̄ j} = {|ψ j〉〈ψ j |, I − |ψ j〉〈ψi|}.
We call the set of 15 tomographically overcomplete states
(measurements) the fiducial set, and we use it to extend the
number of states and effects we can characterize with our
experiment. We sample 400 preparations and measurements
according to the Haar distribution (in the same manner as
our first experiment). We then pair each of the 15 fiducial
states with the 400 Haar-distributed effects, and each of the
400 Haar-distributed states with the 15 fiducial effects. We
also allow each fiducial state to be paired with each fiducial
effect, adding 152 state-effect pairings. In total, the second ex-
periment requires 15(400 + 400 + 15) = 12 225 state-effect
pairings to be experimentally implemented, a modest 22%
increase relative to the 10 000 pairings required in the first
experiment, while allowing a characterization of 415 states
and effects, which is more than four times the number of
states and effects characterized in the first experiment. We
again add the unit effect u by hand. Our data is arranged
into a 415 × 416 frequency matrix F , where the bottom right
400 × 400 entries are unfilled.

We run our second experiment twice back-to-back to ob-
tain a training and test data set and perform a similar analysis
to that of our first experiment. We choose to analyze only
the candidate model ranks k ∈ {8, 9, 10} because our first
experiment already indicated that k = 9 is likely to provide

the best fit for our data and, as explained above, if k = 9
is found to be the transition point between underfitting and
overfitting in the range k ∈ {8, 9, 10}, then one can infer that
ranks k < 8 could only have exhibited more underfitting while
ranks k > 10 could only have exhibited more overfitting.

We find the best-fit matrix Drealized
k for F train using Eq. (14)

and retrieve the training error for each model. For the 400 ×
400 submatrix of unfilled entries in the frequency matrix, we
take their weighting in the least-squares fit to be 0. Thus, the
only constraint on the fit for the 400 × 400 unfilled entries
is that each corresponding entry in Drealized

k must be a valid
probability. Once Drealized

k is found for each candidate model,
we compute the corresponding testing errors using Eq. (15).
The training and testing errors for this data set were computed
using only the elements of the frequency matrices that were
actually measured in the experiment (i.e., the complement of
the unfilled 400 × 400 submatrix of F train and F test).

The results of the training and testing error analysis for the
fiducial experiment are shown in Fig. 3(b). Comparing k = 8
to k = 9, the training and testing errors clearly indicate that
the k = 8 model underfits the experimental data relative to the
k = 9 model, in agreement with our first experiment. Compar-
ing k = 10 to k = 9, the fact that the training error decreases
but the testing error increases indicates that the k = 10 model
is overfitting the data relative to the k = 9 model. We draw the
conclusion that (in agreement with our first experiment) the
model with the most predictive power for our data has rank
k = 9, and we adopt Drealized

9 as the best-fit probability matrix.
A comparison between Drealized

9 to the probability matrix
predicted by qutrit quantum mechanics Dqutrit for the fiducial
experiment is shown in Figs. 4(c) and 4(d). Figure 4(c) shows
a matrix plot for the probabilities comprising Drealized

9 , and
Fig. 4(d) shows an analogous matrix plot for the quantum
mechanically predicted probabilities. The narrow bands span-
ning the top and left sides of the matrix plots represent the
preparations and measurements actually recorded in the ex-
periment. These bands can be visually distinguished from the
rest of the probabilities because the 15 fiducial states (effects)
are more distinct from one another than the 400 states (effects)
randomly sampled from the Haar distribution. The remainder
of the probabilities in Drealized

9 are filled in from the weighted
least squares fit. We again observe a strong agreement be-
tween the experimentally realized probability matrix and the
probability matrix predicted by quantum theory with mean
and standard deviation of the difference between Drealized

i j and

Dqutrit
i j of −0.006 and 0.03, respectively.

C. Constraining the shapes of the state and effect spaces

We now discuss how to decompose the m × n best-fit
probability matrix Drealized

9 into an m × k matrix Srealized of
realized GPT state vectors and a k × n matrix E realized of
realized effect vectors. Recall that a decomposition D = SE
is not unique, because for any invertible matrix �, one
also has D = (S�)(�−1E ). The choice of � is merely a
convention for how to represent the GPT state and effect
spaces geometrically. We expect that because the dimension
of our experimentally realized GPT is nine, we will be able
to recover GPT states and effects that resemble the sets of
quantum states and effects used to generate our experimental
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preparations and measurements. Thus, we seek to identify
the choice of � that yields the decomposition of Drealized

9
that best approximates the quantum states and effects used to
generate our experimental wave plate angles (specifically, the
generalized Bloch representations of these states and effects).
Identifying this decomposition will allow us to more easily
compare our realized GPT spaces to those predicted by quan-
tum theory.

We begin by finding an initial valid decomposition of
Drealized

9 . To obtain this initial decomposition, we follow the
method outlined in Appendix D of Ref. [24]. This method is
summarized as follows: We first take the QR decomposition
of Drealized

9 , where Q is an m × m unitary matrix, and R is
an m × n upper-right triangular matrix. We then perform the
singular value decomposition QR = U�V T and partition the
result such that the m × k matrix of GPT states can be written
as S′ = U

√
� and the k × n matrix of GPT effects obtained

from this decomposition can be written as E ′ = √
�V T .

We define the matrices Squtrit and Equtrit to be those that
consist of the Haar-distributed (and fiducial) qutrit state and
effect vectors used to generate the wave plate angles for the
second experiment. Given the initial decomposition Drealized

9 =
S′E ′, the goal is to find an invertible k × k matrix � such that
S′� is as close as possible to Squtrit. Therefore, we wish to find
the matrix � that minimizes the cost function

minimize χ2 =
∑

i

∑
α

[Squtrit
iα − (S′�)iα]2,

subject to � invertible

(16)

where i ∈ {1, 2, . . . , 415} and α ∈ {0, . . . , 8}.
If �� is the optimal transformation matrix computed from

Eq. (16), we take it as our conventional choice of � in
the decomposition Drealized

9 = (S′�)(�−1E ′) and thereby take
Srealized = S′�� and E realized = �−1

� E ′ to be the matrices defin-
ing our experimentally realized GPT state and effect vectors.
This choice facilitates the project of looking for potential
deviations from quantum theory.

The realized GPT state space, denoted S realized, describes
the states that were in fact realized by the experiment. The
convex hull of the rows of the matrix Srealized yields our best
estimate of S realized. It is merely an estimate due to the fact
that Srealized is based on the relative frequencies in a finite run,
rather than from long-run probabilities. Similarly, the realized
GPT effect space, denoted E realized, describes the effects that
were in fact realized by the experiment. The procedure by
which we obtain our best estimate of E realized is as follows.
We begin by taking the set of GPT effect vectors defined by
the columns of E realized. Next, we find the set of complements
of these, i.e., the set of vectors u − e for each e corresponding
to a column of E realized. Finally, we identify the convex hull
of these two sets. Note that because the unit effect vector u is
included as the first column of E realized, it follows that the zero
effect vector 0 is included in the set of complements of effect
vectors, and so the unit and zero effect vectors are necessarily
included in the convex hull.

The set of GPT effect vectors that are logically consistent
with the realized GPT state vectors, termed the consistent
effect space and denoted Econsistent, is the set of all vectors e
such that ∀s ∈ S realized: 0 � s · e � 1. For simplicity, we write

Econsistent = dual(S realized). Analogously, the set of GPT state
vectors that are logically consistent with the realized GPT
effect vectors, termed the consistent state space and denoted
Sconsistent, is the set of all vectors s such that ∀e ∈ E realized: 0 �
s · e � 1 and s · u = 1. We write Sconsistent = dual(E realized).

We now explain how the realized and consistent state
(effect) space obtained from our experiment relates to the
true state (effect) space governing nature. First, the state and
effects that are realized experimentally necessarily involve
additional noise relative to what is possible in the true GPT.
As such, we expect all of the states and effects we realize to
be slightly noisy versions of the ones that are stipulated to be
possible by the true GPT. Geometrically, this means that the
realized state and effect vectors should be slightly contracted,
in directions orthogonal to the normalization axis, relative
to their noiseless counterparts. And this in turn implies that
the state and effect vectors that are logically consistent with
the ones we realized should be slightly elongated in these
directions relative to their noiseless counterparts.

Second, the fact that one can only realize a finite number
of states and effects in the experiment implies that the realized
state and effect spaces will be convex polytopes even if the
true state and effect spaces are not. The same is true of the
logically consistent spaces that one obtains from the real-
ized spaces. The extent to which the realized and consistent
spaces approximate the true and logical spaces depends on
how densely sampled the full set of states and effects is.

The experimental limitations described above imply that
the realized spaces are expected to be strictly contained within
the true spaces, S realized ⊂ S and E realized ⊂ E , while the con-
sistent spaces strictly contain the logical spaces, S logical ⊂
Sconsistent and E logical ⊂ Econsistent. It follows that the true GPT
state (effect) space governing our three-level system must lie
somewhere between the realized and consistent GPT state
(effect) space inferred from our experiment. More precisely,
S must satisfy S realized ⊆ S ⊆ Sconsistent, which is equivalent
to the constraint that E must be such that E realized ⊆ E ⊆
Econsistent. [Recall also that S and E are not independently
specifiable. For instance, once S is specified, the possibilities
for E are constrained to satisfy E ⊆ dual(S ).] Hence, one
does not uniquely identify the true state and effect spaces; one
only delimits the scope of possibilities for what they might be.

Finally, to plot three-dimensional projections of S realized

and E realized, we rely on the fact that these convex sets are
polytopes. We first identify the vectors describing the ver-
tices of these polytopes. We then compute the projections
of each of these vertices. Finally, we plot the convex hull
of the resulting sub-vectors corresponding to each projection.
The definitions of Sconsistent and Econsistent provided above are
known as the inequality representations. However, in order to
plot projections of Sconsistent and Econsistent in a similar manner
to how we plot projections of S realized and E realized, we require
the so-called vertex representations of the spaces, which lists
all the vertices that specify their convex hulls. Converting
from an inequality representation to a vertex representation
is highly nontrivial and requires solving the vertex enumer-
ation problem. Fortunately, the solution to the problem can
be computed using an algorithm first developed by Avis and
Fukada [44]. Calculation of the vertex representations of our
consistent spaces was performed using the LRS package in C
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that implements a modified version of the vertex enumeration
algorithm [45].

We end this section with some comments on how experi-
mental imperfections manifest themselves in this data analysis
technique. We begin by considering this question under the
assumption of the correctness of quantum theory. Although
an experimentalist may aim to achieve the ideal of pure states
and projective measurements, what is realized experimentally
always deviates from this ideal. It is a critical feature of
bootstrap GPT tomography that the rows of the matrix Srealized

and the columns of the matrix E realized (which ultimately
determine S realized and E realized) are characterizations of the
preparations and measurements that were actually realized
in the experiment, and not characterizations of the idealized
preparations and measurements that the experimentalist was
targeting. It is useful to consider two distinct ways in which a
realized procedure might deviate from the ideal that was being
targeted: it might differ in a systematic and consistent way
from the target (i.e., inaccuracy), or it might exhibit statistical
fluctuations away from the target (i.e., imprecision). In our
experiment, an example of inaccuracy is if the wave plate
angles that are implemented for a given preparation procedure
differ in a systematic and consistent way (across all repetitions
of the procedure) from those that would achieve the particular
pure state being targeted. In this case, our tomography scheme
would return a best-fit GPT state that is rotated in Bloch
space (i.e., the qutrit analog of the Bloch ball) relative to
the target. An example of imprecision is if, in the ensemble
of repetitions of a given preparation procedure, a wave plate
angle exhibits statistical fluctuations away from the targeted
value. In this case, our tomography scheme would return a
best-fit GPT state that was a noisy version of the target, for
instance, one that is contracted (in Bloch space) relative to
the pure state being targeted. If one is willing to make strong
assumptions about the nature of the imperfections in one’s
experiment, then one might hope to process the raw data to
compensate for these and thereby achieve a characterization
of the ideal procedures that one was targeting. (Background
subtraction is an example of such a processing.) Bootstrap
GPT tomography, however, simply analyzes the raw data,
rather than a processed version thereof, and allows one to
infer the nature of the imperfections. Making such inferences
about experimental imperfections, however, is only possible
relative to some assumption about what the correct opera-
tional theory is. This is because it is only under such an
assumption that an experimentalist can have any expectation
about what GPT states and effects will characterize some
experimental procedure (even an idealized one). For example,
under the assumption of the correctness of quantum theory,
one expects certain idealized preparation procedures to be
on the surface of the state space dictated by quantum theory
(i.e., Bloch space), such that rotations and contractions of
these GPT states relative to one’s expectations can be used
to infer inaccuracies and imprecisions in the actually realized
procedures relative to their idealized counterparts. Given that
the purpose of this article is to find a way to analyze the
experimental data without making assumptions about which
theory is correct, it is imperative not to make any assumptions
about what GPT states describe the experimental procedures
one is implementing (or putative idealized versions thereof).

It follows that the data analysis scheme one uses must be
such that it returns a characterization of the actually realized
procedures, as bootstrap GPT tomography does. To put it
another way: in a theory-agnostic tomography scheme, it is
not possible to imagine a processing of the raw data that can
compensate for imperfections relative to some putative ideal
because one is not allowed to make assumptions about the
nature of this ideal.

VI. RESULTS

In Fig. 5 we present various three-dimensional projections
of the realized and consistent spaces we found in our exper-
iment. Specifically, we present the same projections that are
showcased in Fig. 1 for ease of comparison with the latter. For
a given three-dimensional subspace, we plot the projection
of Srealized into this subspace as a yellow polytope, and the
projection of E realized as a cyan polytope. The corresponding
projections of the spaces Sconsistent and Econsistent are plot-
ted as mesh polytopes alongside the projections of S realized

and E realized. For the state space projections that include the
normalization component, depicted in Figs. 5(g)–5(j), the con-
sistent state spaces are plotted in dark orange rather than as a
mesh.

A visual comparison of Fig. 5 to Fig. 1 reveals that our
results do conform broadly with the hypothesis that the qutrit
state (effect) space lies between the realized and consis-
tent state (effect) spaces obtained in our experiment. Strictly
speaking, consistency holds if some invertible linear trans-
formation of the qutrit space lies between the realized and
consistent space. We shall return to the question of consis-
tency with quantum theory at the end of this section.

The question of whether the no-restriction hypothesis holds
for the true GPT governing nature is the question of whether
all logically possible states (effects) are included in the state
(effect) space. In other words, it is the question of whether
there is a gap between S and S logical or between E and E logical.
As noted above, however, experimental noise and finite sam-
pling imply that the gap between the realized and consistent
spaces is expected to be strictly larger than the gap between
the true and logical spaces. Seeing a nontrivial gap of the
former type, therefore, does not imply that a gap of the latter
type exists. Nonetheless, one can put an upper bound on
possible violations of the no-restriction hypothesis.

The gap between S realized and Sconsistent therefore delimits
the scope of possible deviations from quantum theory. In par-
ticular, they bound how far any candidate GPT describing our
three-level system may deviate from the no-restriction hypoth-
esis. We will here focus on bounding the extent to which the
no-restriction hypothesis might fail based on the gap between
S realized and Sconsistent. We turn now to the question of how to
quantify this gap.

In the investigation of two-level systems undertaken in
Ref. [24], the gap was quantified by the ratio of the volumes of
S realized and Sconsistent. This approach is not feasible here—the
fact that the state spaces are nine-dimensional and the fact
that the consistent state space has a very large number of
vertices made it intractable to compute the volume ratio in a
straightforward manner. We have opted, therefore, to consider
instead a ratio of linear dimensions, specifically, the distances
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

FIG. 5. A sampling of three-dimensional projections of the realized GPT state space S realized (top polytope of each subfigure, displayed in
yellow) and of the realized GPT effect space E realized (bottom polytope of each subfigure, displayed in cyan). The mesh polytopes surrounding
each of the yellow polytopes depict three-dimensional projections of the consistent GPT state space Sconsistent, while the mesh polytopes
surrounding each of the cyan polytopes depict three-dimensional projections of the consistent GPT effect space Econsistent. The true state and
effect spaces of the GPT describing nature must lie somewhere between the realized and consistent GPT spaces. The specific projections
depicted in (a)–(i) are the same as in Fig. 1.

from the “center” of the space of normalized states, the vector
(1, 0, . . . , 0), to the surface of the realized and consistent
state spaces along some direction. As this ratio of distances
will vary with the direction being considered, we quantify the
gap by averaging the ratio over a large sampling of random
directions. We consider directions defined by the generalized
Bloch vectors of pure quantum states, and we sample these
according to the Haar measure. For each ray, we divide the
norm of the vector extending to the intersection point with
S realized by the norm of the vector extending to the intersection
point with Sconsistent to obtain our linear dimension ratio.
For a set of 1000 rays, the average linear dimension ratio
between S realized and Sconsistent is computed to be 0.80, with
an associated standard deviation of 0.04. Any candidate GPT

describing our three-level system that admits an average linear
dimension ratio much smaller than 0.80 exhibits a greater
failure of the no-restriction hypothesis than is consistent with
our experimental findings.

Note that the average linear dimension ratio within each
of the various three-dimensional projections of the realized
and consistent spaces is not related in a simple manner to
the average linear dimension ratio for the full-dimensional
spaces. This is because projections need not correspond to
sections that pass through the origin. Nonetheless, a visual
inspection of Fig. 5 reveals that the average linear dimension
ratio for many of these projections might well be close to 0.80.

To conclude this section, we return to the question of
whether an invertible linear transformation of the qutrit state
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space Squtrit fits between the realized and consistent state
spaces, S realized and Sconsistent. The question turns out to be
more nuanced than it appears at first glance. What complicates
matters is that the rows of the matrix Srealized are, strictly
speaking, only finite-sample estimates of the states in S realized.
Recall that, by definition, a given state vector in S realized

specifies the long-run probabilities that would be obtained by
the associated realized preparation procedure, and finite-run
relative frequencies need not coincide with these long-run
probabilities. Finite-run estimates of the realized state vectors
will, therefore, exhibit fluctuations away from the realized
state vectors. In particular, the finite-run estimates of certain
realized state vectors might be anomalously long. Similarly,
the finite-run estimates of certain realized effect vectors might
be anomalously long, implying that the finite-run estimates of
certain consistent state vectors might be anomalously short.
Together these two anomalies can lead to a situation wherein
Squtrit does not in fact fit between the estimate of S realized and
the estimate of Sconsistent.

Given that the geometry of the qutrit state space is nontriv-
ial, and given that our estimate of the consistent state space
has a very large number of vertices, it is not straightforward to
solve this decision problem. We therefore resort to a heuristic
assessment of the question. We again consider the 1000 rays
sampled according to the Haar measure from the directions
defined by the generalized Bloch vectors of pure qutrit quan-
tum states. Let l be an index that runs over these rays. For each
l , define srealized

l to be the vector in the direction of the lth ray
that lies on the boundary of S realized, and define sconsistent

l to be
the one that lies on the boundary of Sconsistent. Because all pure
qutrit states have generalized Bloch vectors of the same norm,
if the longest of the srealized

l is shorter than the shortest of the
sconsistent

l , i.e., if maxl ||srealized
l || � minl ||sconsistent

l ||, then there
is a linear transformation of Squtrit (in particular, one that pre-
serves the relative norm of pure states) which is straddled by
our estimate of S realized and our estimate of Sconsistent at least
along the 1000 random directions. We find maxl ||srealized

l || =
1.11 and minl ||sconsistent

l || = 1.13, so the straddling condition
does hold for the 1000 random directions. In summary, our
experimental results seem to be consistent with the hypothesis
that quantum theory is the true GPT underlying our experi-
ment.

VII. CONCLUSIONS

In this paper, we reconstructed the GPT state and effect
spaces for a three-level photonic system directly from exper-
imental data. The tomographic scheme utilized is bootstrap
in that it does not require any prior characterizations of the
preparations and measurements used in the experiment. Fur-
thermore, neither our experimental scheme nor our analysis
assumed the correctness of quantum theory. From the statistics
obtained in our experiment, we were able to infer that if our
sets of states and effects are tomographically complete, then
the dimension of the underlying GPT for our system is nine.
This inference was accomplished by computing the training
and testing error [Eqs. (14) and (15)] for the best-fit proba-
bility matrices of different ranks, and identifying the model
that tests best. Although our experiment provided an oppor-

tunity to discover that the dimension of the GPT governing
our three-level system differed from the quantum mechanical
predictions, our analysis did not yield any evidence in favour
of such a deviation.

We have also identified the scope of possible shapes of
the true GPT state and effect spaces, assuming they are in-
deed nine-dimensional. The true GPT state space must lie
between the realized GPT state space S realized and the con-
sistent GPT state space Sconsistent. Similarly, the true GPT
effect space must lie between the realized GPT effect space
E realized and the consistent GPT effect space Econsistent. We
displayed the geometries of our estimates of the realized
and consistent state and effect spaces as three-dimensional
projections of the full nine-dimensional spaces in Fig. 5. In
addition, we were able to place quantitative bounds on how
much any proposed alternative to quantum theory may violate
the no-restriction hypothesis by identifying the average ratio
of linear dimensions of S realized and of Sconsistent to be 0.80.
Even though our experimental data provides some room for
violations of the no-restriction hypothesis, it is notable that
we observe good agreement in the shapes of our experimental
GPT spaces when comparing them to the quantum mechanical
predictions.

The results obtained in this paper provide constraints on the
scope of possible deviations from quantum theory. There are
many avenues to explore in conducting further experiments
of this kind. The obvious extension of this work would be
to undertake a GPT characterization of higher-dimensional
systems or of composite systems. For example, one might un-
dertake a GPT characterization of a pair of qubits and test the
validity of principles that concern such systems, such as the
principle of local tomography. Another interesting possible
extension of this work is to undertake a GPT characterization
of channels by performing the GPT equivalent of quantum
process tomography.

The results of our analysis and those of Ref. [24] demon-
strate the utility of the GPT framework in adjudicating
between quantum theory and its alternatives in the landscape
of possible physical theories.
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