
PHYSICAL REVIEW A 105, 032203 (2022)

Exact energy eigenstates of the Coulomb-Stark Hamiltonian
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An approximation-free, numerically efficient algorithm is presented for the Hamiltonian eigenstates of the
Stark hydrogen problem describing a quantum particle exposed to the central Coulomb force and a homogeneous
external field. As an example of application in a state expansion with continuous energy, we calculate the time-
dependent wave function of an electron tunneling from a hydrogen atom suddenly exposed to an external electric
field.
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I. INTRODUCTION

In calculating the time evolution of a pure quantum state,
the most fundamental approach is to expand the wave function
in terms of the eigenstates of the Hamiltonian. While this is
relatively straightforward in finite-dimensional Hilbert spaces,
infinite-dimensional cases are more difficult. Calculating the
eigenstates of the system and using them as a basis for the
space of quantum states is particularly challenging when the
Hamiltonian has a continuous spectrum. In such a situation,
at least some of the eigenstates are not normalizable in the
usual sense, and normalization to the Dirac δ function in
energy is rather subtle from the numerical standpoint. For this
reason, in most practical situations one resorts to approxima-
tions, for example, by expanding solutions into approximate,
“discretized-continuum” basis.

An important example of a system with a continuous spec-
trum is the Stark-Coulomb Hamiltonian [1], i.e., the problem
of a particle subject to a constant external electric field and
a central Coulomb force. Even an arbitrarily weak exter-
nal field causes a qualitative transformation of the original
hydrogen-atom spectrum into infinitely degenerate continuum
encompassing the whole real axis. The zero-field discrete-
energy states mutate into Stark resonances [2], which further
complicate exact treatments. Perhaps not surprisingly, nu-
merically exact calculation of the energy eigenstates for this
system has not yet been reported. In this paper we present a
robust, approximation-free method to calculate all the eigen-
states in a way that allows practical applications, including
expansion of time-dependent wave functions.

Obviously, the Stark-Coulomb Hamiltonian is important
for a number of applications. Recently, experiments on atomic
hydrogen [3] exposed to strong electric fields provide a
vital testing ground for theory and simulations [3–8]. More-
over, in ionization of atoms and molecules [9], electrons
liberated from the neutral systems experience the Stark-
Coulomb potential at larger distances from the nucleus
[10–12]. This composite potential affects the properties of the
electronic wave functions contributing to strong-field ioniza-
tion [13–16], and high-harmonic generation [11]. Thus, the

numerically exact wave functions of such a problem can be of
great practical use.

The rest of this paper is organized as follows: We start
by laying out the theoretical foundations, by reviewing the
Stark-Coulomb Hamiltonian in a parabolic coordinate system.
We proceed by calculating the exact eigenstates including
their proper normalization to the Dirac δ function in energy.
We then demonstrate the power of this method by using it
to describe the time evolution of an electron tunneling from
the ground state of hydrogen after a sudden exposure to an
external electric field.

II. THE COULOMB-STARK PROBLEM

We start with the formulation of the problem of a quantum
particle (electron) in a Coulomb potential and subject to an
external electric field. It has been recognized that for the cal-
culation of Stark resonances the parabolic coordinate system
is the most suitable [17–21]. Naturally, this is also the case
for the continuum-energy eigenstates we are interested in, and
we shall use this frame of reference as well. In this section we
recall the equations which serve as our point of departure.

The coordinate relations between the parabolic coordinates
(u, v, φ) and Cartesian coordinates (x, y, z) are

z = (u − v)/2, x = (uv)1/2 cos φ,

y = (uv)1/2 sin φ, φ = tan−1 y

x
,

u, v ∈ [0,∞), φ ∈ [0, 2π ), (1)

and the volume element reads

dV = u + v

4
du dv dφ. (2)

The main advantage of this coordinate system is that the
Schrödinger equation of an electron in a Coulomb potential of
a singly charged nucleus (hydrogen) remains separable even
in the presence of an external electric field.
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The time-independent Schrödinger equation (TISE) be-
comes

H�(u, v, φ) = W �(u, v, φ)

= − 2

u+v

[
∂

∂u
u
∂�

∂u
+ ∂

∂v
v
∂�

∂v

]

− 1

2uv

∂2�

∂φ2
− 2�

u+v
−F

u−v

2
�, (3)

where F is the strength of the homogeneous external field.
Without any loss of generality we will assume that this quan-
tity is positive.

As we will see in a moment, the energy eigenstates �qW

for this Hamiltonian can be labeled by two kinds of quantum
numbers. The first labels a continuum of energies, W ∈ R,
encompassing the whole real axis, and the second is a com-
posite discrete pair q = {nv, m} where m is an integer standing
for the usual “magnetic” quantum number, and nv is a whole
number counting the zero crossing along the parabolic axis v.

An arbitrary time-dependent wave function can be ex-
panded in this eigenenergy basis as

�(t ) =
∑

q

∫
dWAq(W )e−iW t�qW , (4)

where Aq(W ) is the wave function in the energy representa-
tion, and it can be understood as the overlap integral between
the given quantum state (at time t = 0) and the corresponding
eigenstate.

Note that �qW depend parameterically on F , so there is a
continuum of different bases, distinguished by the value of
the external field. For each fixed F , we have an infinitely
degenerate continuum of energies. Our task is to design an
accurate and efficient numerical algorithm to evaluate these
states without any approximations.

Because of the symmetry, the sought after eigenfunctions
depend on the azimuthal quantum number as � ∼ eimφ . The
methods required for different m are completely analogous,
so for the sake of simplicity we will restrict ourselves to the
case m = 0. In order to further simplify our notation, we will
use a shorthand, n = {n, m = 0}, for the discrete part of the
eigenstate label.

Using the method of separation of variables we can turn the
partial differential equation into a pair of ordinary differential
equations. With this in mind, we rewrite the TISE as

− ∂

∂u
u
∂�

∂u
− ∂

∂v
v
∂�

∂v
−F

u2−v2

4
� − W

u+v

2
= �, (5)

and note that it has the form

ĥu� + ĥv� = � (6)

with

ĥu = − ∂

∂u
u

∂

∂u
− Fu2

4
− Wu

2
, (7)

ĥv = − ∂

∂v
v

∂

∂v
+ Fv2

4
− W v

2
. (8)

We use the following ansatz:

�nW = VnW (v)UnW (u) (9)

leading to these separated equations for UnW (v):

ĥuUnW (u) = zu(n,W, F )UnW (u) (10)

and VnW (u):

ĥvVnW (v) = zv (n,W, F )VnW (v) (11)

with the two separation constants tied by the constraint

zu(n,W, F ) + zv (n,W, F ) = 1. (12)

Note that the above equations are well known from the
Stark-resonance problem in atomic hydrogen [17]. Unlike in
the discrete non-Hermitian resonance calculation, we look
for a continuum of standard, i.e., Hermitian, real-valued en-
ergy eigenstates. The distinction between these two kinds of
eigenvalue problems boils down to the boundary conditions
imposed on the eigenfunction at infinity. While the frequently
studied Stark resonances with complex-valued energies must
behave as outgoing waves, the Hermitian eigenfunctions pos-
sessing real-valued energies behave as standing waves at
infinity. In other words, the main challenge here is not in find-
ing the eigenvalues, but in designing an approach to obtain the
properly normalized wave function, and it is the continuum
nature of the spectrum that makes the problem difficult.

An important aspect of this work is that our approximation-
free numerical calculation is sufficiently efficient and accurate
at the same time, so that it makes it possible to use the result-
ing continuum-energy basis for state expansion of arbitrary
wave functions.

III. CALCULATION OF EIGENSTATES

The most challenging step in the calculation of the wave
functions corresponding to a continuum of energies is to en-
sure the correct normalization for UnW . For applications in
which the set of eigenstates is used as a basis, it is necessary
that the resolution of unity in the energy space is achieved.
This will require construction of the inner and outer solu-
tions which smoothly connect to each other, each supplying
a crucial piece of information. We take the following steps to
calculate UnW with the correct normalization factor.

Inner solution via “analytic continuation”: Both VnW (u)
and UnW (u) can be easily obtained in the form of a series
in the vicinity of an arbitrary point, say, u = a, provided that
the function value and its derivative are known at this point.
Utilizing a large number of terms in such a series, such initial
data can be obtained at u = a + δa, and the series expansion
can be redone around this new “center.” This is akin to the
analytic continuation of holomorphic functions of a complex
variable. The process can be extended to an arbitrary distance
from the origin, but it leaves the normalization of UnW (u)
undetermined.

Outer solution via carrier-envelope method: In order to
fix the normalization, we examine the large-u behavior of the
differential equation for U and split the function into a “carrier
wave” and its slowly changing “envelope.” Such a form allows
us to ensure the correct normalization to a Dirac δ function
in energy. However, it will not fix the relative phase shift
between the incoming and outgoing waves.

Joining the inner and outer solutions: Because both repre-
sentations solve the same differential equation, the remaining
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degrees of freedom, namely, the normalization of the inner
part and the phase shift of the outer part, can be found by
requiring that the two agree at two arbitrarily chosen points.

Before we execute this plan, it should be useful to point out
some qualitative differences between VnW (v) and UnW (u), so
we start with their spectral properties next.

A. Discrete and continuous spectra and the eigenstate
normalization

One can see that for large values of u and v the equa-
tions for U and V will turn into

−1

2

∂2

∂u2
U − F

8
uU ≈ W

4
U . (13)

and

−1

2

∂2

∂v2
V + F

8
vV ≈ W

4
V. (14)

These equations resemble the TISE of a particle living on a
half-line with a potential that is pulling it from the origin (in
the equation for U ) and/or pushing it towards the origin (in
the equation for V , which is sometimes called the “quantum
bouncer” [22]).

Hence the spectrum of U is continuous while the spectrum
of V is discrete in the following sense. For any given real value
of W (with a fixed F ) there is a discrete (infinite) set of eigen-
values zv (n, F,W ). In contrast, for a given zu = 1 − zv , the
equation for U has a δ-normalizable solution for any W ∈ R.
In other words, the normalization for VnW is to “Kronecker δ,”
while the normalization of UnW is to “Dirac δ.”

The nature of the spectrum is reflected in the following
normalization relation which the eigenstates must obey:

〈�nW |�mE 〉

= 2π

∫
u + v

4
VnW (v)VmE (v)UnW (u)UmE (u) dv du

= δnmδ(W − E ). (15)

This in turn implies the orthogonality relations between the U
and V functions:∫

VnW (v)VmW (v) dv = δnm, (16)

π

2

∫
u UnW (u)UnE (u) du = δ(W − E ), (17)

and
∫

UnW (u)UmE (u) du = 0. (18)

It is the second, Dirac δ normalization condition that requires
more attention if one aims for a practical method to utilize
these states in expansion of arbitrary wave functions.

The third condition holds in the distribution sense and is
actually independent of the normalization. While it may seem
that the term proportional to v in the normalization integral
(15) was left out to obtain (17), one must evaluate all wave
function overlaps with the whole volume element proportional
to (u + v)/4. The detailed derivation of the above normaliza-
tion conditions is given in the Appendix.

For readers who may prefer a more intuitive normalization
argument, we note that these conditions may be obtained by

following the recipe given in Refs. [23,24]. This approach
splits the wave function into the incoming and outgoing waves
and requires that the total probability outflow in the latter
equals 1/2π for all continuum energies. It is straightforward
to demonstrate that the above normalization satisfies this re-
quirement.

B. VnW eigenstates

While for F > 0 closed-form expressions for the VnW so-
lutions to (11) are not known, they are normalizable and can
be easily calculated using the method of series expansion. We
will use the following representation:

VnW (v) = vn0(W, F )M(W, zv, F |v), (19)

in which M is a series in v normalized such that
M(W, z, F |v = 0) = 1 and vn0 represents the first coefficient
in the series expansion for a normalized eigenstate. (Note
that argument z of M here and in what follows stands for
the separation constant zv or zu, not a coordinate.) The series
expansion can be written as

M(W, z, F |v) =
∞∑

k=0

ck (W, z, F )vk, (20)

and substituting this in the differential equation we obtain

c0 = 1,

c1 = −z,

c2 = 1

8
(2z2 − W ),

ck (W, z, F ) = 1

k2

(F

4
ck−3 − W

2
ck−2 − zck−1

)
. (21)

Using this recurrence relation, hundreds of terms can be cal-
culated efficiently. Note that this series expansion does not
represent the solution to our problem until the separation con-
stant z = zv is determined. For a general z, the above function
diverges at infinity, while we seek a normalizable VnW (v). We
can numerically calculate zv by demanding that the series
expansion approximation remains reasonably close to zero
at a sample v0 far enough from the origin and adjusting zv

gradually until the function tends to zero for large arguments
v. In this process, one obtains a function which can have none
or several zeros. The number n of these nodes is the first part
of the discrete label of the energy eigenstate. At this point we
have determined

zv = zv (n,W, F ) n = 0, 1, . . . (22)

for any fixed W and positive F . The behavior of zv as a
function of energy W is illustrated in Fig. 1.

Having fixed zv (n,W, F ), formulas (20) and (21) provide
the shape of the function VnW (v). Figure 2 shows a few as an
example.

Finally, we determine the value vn0 by imposing the nor-
malization condition (16). The integrals required for this
calculation can be obtained analytically in terms of the series-
expansion coefficients, so vn0 can be highly accurate.

From the numerical standpoint, calculation of the V -
part of the energy eigenstate is straightforward, and various
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FIG. 1. Separation constant zv (n,W, F ) as a function of energy
W for n = 0, 1, 2, 3, 4 (indicated by the arrow) and two values of the
external field.

algorithms can be utilized to find zv to a high accuracy. For
the illustrations in this work, we utilized between 100 and 200
terms for the series expansion around v = 0. This is sufficient
to reach v ≈ 40–50 with sufficient accuracy. Should VnW (v)
be needed for even larger v, the technique described next can
also be used.

C. UnW eigenstates

The more challenging part of the problem is to calculate
the U eigenfunctions, which are not normalizable and have
a continuous spectrum. After we determined the zv using the
properties of the V functions, we can use the relation between
zv and zu eigenvalues and calculate zu = 1 − zv .

The behavior of U at small u can be calculated using the
same method as the V eigenfunctions; We use a series expan-
sion again, and since their differential equations are related by
the transformation

zv → zu, F → −F, (23)
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W=-0.5

FIG. 2. Unnormalized function VnW (v) for several values of n
and F = 1/40.

we can use the same series by simply applying the above
modification. The small u behavior of UnW (u) can thus be
written as

UnW (u) = un0(W )M(W, 1 − zv,−F |u). (24)

As we know the U eigenfunctions are not normalizable, so
un0 cannot be determined as easily as vn0. This is, in fact, the
most subtle part of the whole procedure, and we will address
it in its due course. However, it will be necessary to calculate
UnW (u) for a large u, typically in the range of u ∼ 103. This is
not possible with the series for the vicinity of the origin—with
100 to 200 terms in the series one can obtain the function with
a good accuracy for up to u ∼ 40. However, the series can be
easily analytically continued to reach even very large values
of u as follows.

Let us assume that we have used the above series to cal-
culate f = M(a) and p = M ′(a) for some a > 0, utilizing a
large number of terms (e.g., 150, to ensure sufficient accu-
racy). As a next step we can obtain a series expansion of M
centered at a:

Ma(W, z, F |u) =
∞∑

k=0

mk (a, f , p,W, z, F )(u − a)k . (25)

The recursion relations for the coefficients can be obtained by
inserting into (11) (note the we use the same master function
M for both V and U functions), giving

m0 = f ,

m1 = p,

m2 = 1

2a

(
Fa2m0

4
− aW m0

2
− zm0 − m1

)
,

m3 = 1

6a

(
Fam0

2
− W m0

2
+ Fa2m1

4
−

× aW m1

2
− zm1 − 4m2

)
,

mk = 1

k(k − 1)a

(Fmk−4

4
+ Famk−3

2
− W mk−3

2

+Fa2mk−2

4
− aW mk−2

2
− zmk−2 − (k − 1)2mk−1

)
.

(26)

This specifies a series expansion valid around u = a, for the
function value and its derivative at this point set to f , and p,
respectively. Note that this recursion scheme applies equally
to both U and V functions since both are expressed in terms
of the same master function M; the only difference is in the
parameters passed to M. Obviously, this is a more complicated
recursion than (21), because it solves a more general problem
characterized by three additional parameters ( f , p, a). How-
ever, this is the most important piece of the whole scheme
because it provides locally exact solutions which can be eval-
uated to an arbitrary precision.

032203-4



EXACT ENERGY EIGENSTATES OF THE COULOMB-STARK … PHYSICAL REVIEW A 105, 032203 (2022)

0 50 100 150
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

U
0W

(u
)

0 50 100 150
u (a.u.)

-40

-30

-20

-10

0

10

20

30

U
0W

(u
)

F=1/40, W=+0.2

F=1/40, W=-0.5

FIG. 3. Oscillatory behavior of UnW (u) for negative (bottom) and
positive (top) energy. The dashed vertical line separates the classi-
cally allowed and forbidden regions.

Next, one can repeat the same procedure, obtaining a new
series centered around u = b > a,

Mb(W, z, F |u)

=
∞∑

k=0

mk (b, Ma(. . . |b), M ′
a(. . . |b),W, z, F )(u − b)k,

(27)

and keep repeating the reexpansion until reaching the u region
of interest. Typically, with long-double precision and utilizing
between 100 and 200 terms, one can create a set of power-
series expansions, the center of each shifted farther beyond
the previous. Such a representation of the function is fast
to evaluate and remains accurate for u as large as several
thousands. One could be worried that errors can accumulate
by a repeated reexpansion, and they indeed could. However,
because one can easily increase the number of terms in the
expansion, the accuracy is limited only by the number of bytes
used in the floating-point type. So the error propagation and
accumulation turns out to be a nonissue with the long double
type (the simple double type can also be used with smaller
distance between patch centers b − a) when the two values ( f
and p) passed from a patch to the next are calculated to 15 to
18 digits.

The functional shape of UnW (u) is distinct from that of
VnW (v), as should be expected for the continuous energy spec-
trum. Figure 3 shows a couple of examples, highlighting the
oscillatory nature of these functions for large argument values.
While not evident on the scale of this figure, the oscillation
frequency increases toward infinity, reflecting the fact that the
particle is accelerated by the external field.

At this point, we have a practically usable implementation
of the eigenstate up to a multiplicative constant un0. This
remaining piece is a function of W and F , and it carries

information crucial for the set of functions to be used as a
continuum basis. It will be obtained next.

D. Large-u behavior and normalization of UnW

In order to fix un0, we need to turn to the Dirac δ normal-
ization requirement (17). Obviously, an asymptotic solution
for large u is needed, and the strategy is to use an ansatz
to separate a fast changing “carrier” of the wave function
from its slowly changing “envelope.” Looking back at the
asymptotic differential equation (13), one can see that the
relevant solutions should behave essentially as Airy functions
[25]. The linear combination of Airy functions

Ci[z]± = Bi[z] ± iAi[z] (28)

is suitable to serve as the carrier. More concretely, our ansatz
for U can be written as

U ≈ 1

2NU
Ci+

[
α
(u

2
+ W

F

)]
H (u)eiδ(W,F ) + c.c. (29)

in which NU is some normalization constant, α = −(2F )1/3,
δ(W, F ) is an as yet undetermined phase shift, and H (u) is the
slowly changing envelope of the wave function. The rationale
behind this is that the envelope can be calculated with very
modest numerical effort. In fact, its analytic asymptotics will
be sufficient for many purposes. Substituting this ansatz in the
differential equation for U we get

uH ′′ + (1 + αuR+(u))H ′ +
(

zu + α

2
uR+(u)

)
H = 0, (30)

where

R+(u) = Ci+
′[
α
(

u
2 + W

F

)]
Ci+

[
α
(

u
2 + W

F

)] (31)

stands for the logarithmic derivative of Ci+. Unlike the func-
tion itself, R changes slowly with u, and as a consequence,
the differential equation for the envelope is easy to solve
numerically.

Indeed, such a calculation can yield H (u), which can be
used in practice. Nevertheless, here we will utilize only an
asymptotic solution for H valid for large u, so that we will
avoid numerical treatment of H . One reason to avoid a numer-
ical ODE solution and favor an analytic approach is that any
numerical ODE solver is designed for universal usage, and as
such it cannot take advantage of the concrete equation solved.
Another reason to avoid a numerical ODE solution is the
superior accuracy and speed of the algorithm given next.

Using the asymptotic behavior of the Airy functions,
lengthy but straightforward calculations give, for u → ∞,

H (u) ∼ 1

u1/2
− 2izu

F 1/2u
− 2z2

u

Fu3/2
+ i

(
8z3

u + 4W zu − F
)

6F 3/2u2
· · · ,

(32)
where more terms can be calculated with some effort.

We need only the first term in (32) to obtain NU , which is
fixed such that the normalization condition

π

2

∫
u UnW (u)UnE (u) du = δ(W − E ) (33)

is satisfied. This requires a calculation involving the asymp-
totic behavior of U that is determined by the carrier wave Ci+
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FIG. 4. Left: Phase shift eiδ0 (W ) as a function of energy W . The
“jump” around W ≈ −0.5 is due to the Stark resonance born from
the ground state. Right: u00(W ) exhibits a sharp peak due to the same
resonance (it is cut off in this graphic).

alone and leads to the normalization factor

NU = 2−1/3√πF 1/6. (34)

Having properly normalized the eigenstates to the Dirac δ in
energy, we can proceed to calculate the last remaining un-
knowns, namely, the phase shift δn(W, F ) and u0n(W, F ). The
inner solution in terms of the series expansion (24) and the
outer solution expressed in (29) satisfy the same second-order
differential equation, so in order to obtain these two unknown
parameters it suffices to require that the two representations
agree at two arbitrary locations. Taking two arbitrary points
u1,2 we have a system of two equations (i = 1, 2):

un0(W, F )Ma(W, 1 − zv,−F |ui )

= 1

2NU
Ci+

[
α
(ui

2
+ W

F

)]
H (ui )e

iδn (W,F ) + c.c. (35)

from which un0(W, F ) together with δn(W, F ) are calculated
numerically. In practice, the left-hand side of these equa-
tions is obtained by the analytic continuation with the series
center a in the vicinity of the u1 ∼ u2. The advantage of the
“analytically continued” representation of U is that the inner-
outer join points u1,2 can be taken to a very large distance from
the origin where the asymptotics of the envelope (32) can be
used. Thus, no numerical-ODE solution of (30) is required.

Quantities un0(W ) and eiδn (W,F ) are of central importance
here. They are illustrated in Fig. 4.

While the phase shift is a useful quantity when one aims
to calculate, for example, the quasiclassical approximation
of the wave function at large distances from the nucleus,
un0(W ) is necessary to finalize the calculation of the inner
solution for UnW (u). A most prominent feature in un0(W ) is
the peak corresponding to the Stark resonance. This requires
that un0(W ) is sampled on a fine grid in the vicinity of W ≈
−1/2. A fit with a simple-pole function can yield the value of
the complex-valued resonance energy accurate to a part in a
million [26,27].

IV. SUMMARY OF THE ALGORITHM

We have thus arrived at the central result of this work,
which is the algorithm for calculating the eigenstates of the
Stark-Coulomb problem. The method can be summarized as
follows:

1. Fix W , F, and n:
We start by choosing a fixed value of the external field

F , a real energy eigenvalue W ∈ (−∞,+∞), and an integer
n which is the desired number of zero crossings the wave
function has along the v axis. For many experiments utilizing
femtosecond optical pulses, F is around 0.01–0.05 in atomic
units. The relevant interval for W is from about −0.6 to +0.6;

2. Calculate zv (n,W, F ):
Using (20) and (21) find numerically a value of z =

zv (n,W, F ) which ensures that the function M(W, zv, F |v →
∞) → 0 converges to zero at large values of v, and that there
are n zeros of M. This gives the solution to the eigenvalue
problem (11).

3. Construct VnW :
Having found zv (n,W, F ), we have all necessary in-

gredients to calculate VnW (v). The remaining piece is the
normalization factor vn0(W, F ) in (19), which we can calcu-
late by integrating over |VnW (v)|2 to satisfy the normalization
condition (16). This completes calculation of the normalized
VnW (v) function.

4. Construct UnW :
Setting zu = 1 − zv (n,W, F ) according to (12), use (20)

and (21) and subsequently (25) and (27) with (26) and a =
k�a, k = 0, 1, 2, . . . using �a ∼ 1 on the order of unity
to calculate UnW (u)/un0(W ) = Ma(W, zu,−F |u). To fix the
normalization, we calculate analytically continued series ex-
pansions (25) for u up to several thousand. Finally, un0(W )
is calculated by solving the system of two equations given
in (35) using asymptotic representation (32) for the envelope.
As a by-product in this step, the phase shift δn(W, F ) is also
obtained. This completes the calculation of UnW (u) satisfying
the Dirac δ normalization condition (33).

Note that the same “continuation method” employing for-
mulas (27) and (26) also can be applied to functions V as the
only difference is in the input, where the sign of F needs to be
reversed and the appropriate separation constant zv or zu must
be used.

5. Obtain the energy eigenstate �nW :
The eigenstate for the chosen W and n is given by the

product in (9), expressed as

�nW (u, v) = vn0(W )M(W, zv (n,W, F ), F |v)

× un0(W )M(W, 1 − zv (n,W, F ),−F |u). (36)

V. IMPLEMENTATION AND USAGE CONSIDERATIONS

The method presented in this work deviates from the nu-
merical solutions implemented on grids (e.g., [24]) in that
the resulting algorithm is essentially a formula which is both
simple to implement and very fast to execute. The code can
be written in fewer than 300 lines of c++, and its core for the
series expansion is much smaller yet. The resulting speed of
the algorithm is such that the compute time is not an issue.
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FIG. 5. Left: Behavior of u2
00(W ) in the vicinity of the Stark

resonance energy SR = −0.500225560455.... These data allow us
to estimate the location of SR with an accuracy of 10−12. Right:
Demonstration of the robustness w.r.t. choice of the join points
u1,2. The plot shows the difference between results obtained with
u1 = 2900, u2 = 2910 and with u1 = 3900, u2 = 3910.

The computational complexity is comparable to that of some
special functions.

The implementation does utilize a few “hyperparameters”
which control the evaluation. These include the order of the
series expansion (ov and ou), the size of the patch pv and
pu which is the distance between the centers of the series-
expansion components [it is b − a in formula (27)], and the
two arbitrary points u1 and u2 selected for joining the outer
and inner solutions.

Of course, the results must be insensitive to the choice of
these values. Due to the fast evaluation speed, it is straight-
forward to establish that they indeed are by repeating the
calculation after variation of these hyperparameters.

To give an example of appropriate values, for our illustra-
tions we have used ov = 100 and pv = 20 for the V solutions
and ou = 25 with pu between one and three. Increasing the
expansion orders by 50% did not change the results by more
than one part in 1010 indicating that these values represent a
very safe choice.

The least trivial choice of the hyperparameters is that of
u1,2, but this is not because they would need to be fine-tuned in
any way. They merely need to be far from the origin to make
the asymptotic envelope representation (32) accurate. So we
used u1,2 of the order of several thousands to ensure accuracy
of the U -function amplitude u00(W ) to a part in a million or
better. By moving u1,2 further, to ui ≈ 104, the accuracy can
be further increased to a relative level of 10−10–10−12.

The distance between the join points u2 − u1 was varied
between unity and several hundred without a significant im-
pact on accuracy [change in u00(W ) less than 10−10].

In order to demonstrate the robustness and the accuracy of
the algorithm, Fig. 5 depicts data obtained for the amplitude
u00(W ) for the energy in a close neighborhood of the Stark
resonance, which is located at SR = −0.500225560455 . . . for
F = 1/100. We choose this quantity here because it is the
most sensitive as it varies over many orders of magnitude
in an extremely narrow interval of energies as shown in the

left panel of the figure. The panel on the right depicts the
difference between u00 values obtained for two very differ-
ent choices of u1,2, i.e., the locations used to join the outer
and inner solutions. One can see that despite moving u1,2 by
1000 atomic units, the resulting numerical variation in u00 is
extremely small. Even as the value changes by five orders of
magnitude, the relative error (as estimated by the difference
shown) remains on the level of 10−6. It should be emphasized
that the robustness of the u00 value reflects the accuracy of
the wave function everywhere as this quantity “connects” the
asymptotic region to the origin.

Additional evidence for the fidelity of our algorithm is in
the high accuracy of the Stark resonances. For the example
shown in Fig. 5, we have estimated the resonance location SR

by finding the point in the middle of the peak for higher and
higher value(s) of u00. We have obtained an estimate which
agrees with the value from the literature [26,27] to 12 digits.

VI. RESONANT CONTRIBUTION

We have seen that there is a potentially nontrivial W -
dependent feature in the un0(W ) caused by the Stark resonance
born from the originally stable ground state. Depending on the
field it can be so narrow that it could remain unresolved, or
even completely missed when W is sampled on a coarse grid.
So a question arises how to deal with it, especially for appli-
cations in time-dependent problems. Here we sketch how the
resonant contribution can be extracted and treated separately
from the continuum background.

Our previous study of toy models in one spatial dimension
suggested the functional shape of un0(W ) in the vicinity of a
resonance [28]. More specifically, every resonance causes a
“step” in the phase shift δ, and in its neighborhood we can use

exp[iδ(W, F )] ≈
√

W − S(F )∗√
W − S(F )

, (37)

where the phase is controlled by the Stark resonance located
at S(F ) = SR(F ) + iSI (F ). The effect of the square root ratio
is a very fast phase change with W , and this is because the
imaginary part SI of S(F ) is very small (see Fig. 4).

Incorporating this into the carrier-envelope representation
of the wave function, we have

un0(W ) = H (0)

2NU
Ci+

[
α

W

F

]√W − S(F )∗

W − S(F )
+ c.c. (38)

For a sharp resonance (i.e., a weak field), the Airy combina-
tion Ci+ is dominated by Bi, and we can further approximate

un0(W ∼ SR) = H (0)

2NU
Bi

[
α

SR

F

]√W − SR + iSI

W − SR − iSI
+ c.c.,

(39)
where H (0) is evaluated for W = SR. Now we want to use an
observation based on our numerical data. Namely, we have
found that H (W = SR, u = 0)= iHI (0) is purely imaginary,
which leads us to the following representation for the resonant
part contribution to the probability density (in energy):

u2
n0 ≈ πSI H2

I

N2
U

Bi
[
α

SR

F

]2 SI

π
[
(W − SR)2 + S2

I

] . (40)
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Here the last term tends to a δ function in a weak field when
SI → 0. The fit shown as full line in Fig. 5 demonstrates that
this functional shape indeed dominates the resonant portion
of u00(W ). Symbols represent the calculated values, and the
solid lines are fits based on the above expression. The fit
was obtained with merely 15 datums closest to the resonance.
Nevertheless, the agreement with the data remains extremely
good over the whole interval shown in the figure.

We have thus shown that in the case where the field F
is weak the resonance contribution to the wave function can
be accurately extracted with the help of the analytic structure
built into the carrier-envelope representation. This can present
an advantage in applications, as it offers the option to repre-
sent the spectral amplitude An(W ) as consisting of a smooth
background plus a resonant pole contribution.

VII. ILLUSTRATION: TUNNELING DYNAMICS

In general, using a continuum-energy basis to expand time-
dependent wave functions is a highly nontrivial task from the
numerical point of view. For instance, one of the challenges in
methods utilizing discretized continuum basis sets is that the
wave function can be calculated only within a relatively small
computational box surrounding the system. Our illustration
aims to emphasize that with an accurate algorithm to evaluate
all energy eigenstates, we are free of this problem, and wave
functions can be obtained even for very large distances from
the origin.

We choose to consider an electron tunneling from the hy-
drogen atom and calculate its time-dependent wave function.
We assume that the initial state is the zero-field ground state
wave function, and that the field is suddenly set to a constant
value F . Motivated by its simplicity, this is an idealized sce-
nario previously studied in exactly solvable one-dimensional
models [28]. Here we investigate the same dynamics in a
realistic three-dimensional system.

The time-dependent solution can be expressed as a super-
position of Hamiltonian eigenstates calculated for a fixed F ,

�(t ) =
∑

n

∫
dWAn(W )e−iW t�nW , (41)

in which the energy representation An(W ) must be set such
that the initial condition

�(t = 0) = ψG = 1√
π

e−(u+v)/2 (42)

is satisfied. Using the resolution of unity in the energy space,
〈�nW |�mE 〉 = δmnδ(W − E ), spectral amplitude An(W ) is ob-
tained as an overlap integral with the initial wave function,

An(W ) = 〈�nW |ψG〉

= 2π

∫ ∞

0

∫ ∞

0

(u + v)

4
e− u+v

2 VnW (v)UnW (u) du dv.

(43)

Figure 6 illustrates the behavior of An(W ) for several low-
est quantum numbers n. It reveals that the sudden application
of the field excited multiple continua of higher-energy states.
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W (a.u.)
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-0.02
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A
n(W

)

n=0

n=1

n=2 n=3 n=4

FIG. 6. Spectral amplitudes An(W ) as function of the energy W
for several quantum numbers n, calculated for the hydrogen-atom
ground state and external field F = 1/40 a.u.

One can see that the contribution of higher states dimin-
ishes quickly with their energy, yet the resulting spectrum is
very broad and it implies very fast evolution, which we will
see shortly.

Because An(W ) is nothing but the energy-representation of
the initial-time wave function, |An(W )|2 gives the probability
distribution that the given energy is excited. From Fig. 6 one
can see that the excitation of energies above −0.4 is small,
of the order of 10−4. This means that almost all of the wave
function remains “concentrated” around the Stark resonance
peak, which is the feature in A0(W ) in the vicinity of the
original ground-state energy. This peak is so narrow that it
is impossible to resolve properly in Fig. 6.

Figure 7 shows a logarithmic-scale view and allows one
to appreciate the presence of the resonance contribution. It
also indicates that two very different timescales govern the
evolution of the wave function after the field is applied.

-0.6 -0.4 -0.2 0 0.2
W (a.u.)

10
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-4

10
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|A
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)|
2

F=1/100
F=1/40

FIG. 7. Spectral amplitude A0(W ) as a function of the energy
W exhibits a narrow, ground-state Stark resonance. Note that on the
scale of this figure the resonance peaks remain unresolved and are cut
off by the plot range. In contrast, the higher-energy resonances are
blurred as a consequence of the suddenly turned-on field. The sharp
feature in the curve for F = 1/100 is an example of the resonance
“remnant.”
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FIG. 8. Tunneled electron wave function observed at a distant
location at z = 250. Left: Different n components arrive at the ob-
servation point in the form of well-defined pulses. Right: Resolved
real and imaginary parts for the n = 0 component.

The time-energy uncertainty relation suggests that the nar-
row resonance peak gives rise to a slowly evolving part of the
wave function, and the wide peak results in a fast changing
part of the wave function. The former remains localized and
very similar to a bound state, only slightly deformed by the
external field. The probability that the electron occupies this
state can be obtained by fitting the resonance functional shape
(40) to the |A0(W )|2 finely sampled around W ∼ SR. This
“amplitude” is the survival probability of the system’s state
after sudden exposure to the field. For our illustration case
shown here, one obtains the survival probability of 99.9%.
This is the part of the wave function which remains locked
in the Stark resonance. It gives rise to an exceedingly slow
but steady leakage of the probability density from the vicinity
of the nucleus toward infinity. But the survival rate of 99.9%
means that with probability of about 0.1%, the electron es-
capes from the atom, and it occurs very fast.

This is a consequence of the nonadiabatic change in the
field, and it manifests itself as a “pulse” in which the electron
escapes from the atom. Figure 8 illustrates this in a “time-
of-arrival” picture, where the evolution of the wave function
is observed at a fixed point z = 250, x = y = 0. Because the
localized portion of the wave function is exceedingly small
at this distance, one can see only a pulse for each component
n = 0, 1, 2, 3, . . . as it propagates away from the nucleus.

For a snapshot view, Fig. 9 shows the n = 0 component
depicted at time t = 60 after the external field was turned
on. Figure 10 shows the n = 1 component, which exhibits a
spatial transverse structure reflecting directional distribution
of the tunneling particles. The higher n components of the es-
caping wave function have a correspondingly richer structure.

These figures illustrate the part of the tunneling wave func-
tion which can be called nonadiabatic, because it is caused by
the sudden turn on of the field. Given the distance from the
nucleus, and the accuracy required, this would be extremely
difficult to evaluate with standard numerical methods.

It is worth noting that our wave function, as shown in
Fig. 9 contains both the eventually freed part and the part
which is bound to the nucleus for a very long time and we
do not explicitly distinguish between the two in the formulas

FIG. 9. Wave function snapshot taken at time t = 60 a.u. The
real part of the component n = 0 is shown here with the vertical
plot range of ±0.001 vs x and z in atomic units. The cutoff part
in the center (the “stump”) is the (slightly deformed by the field)
wave function remaining in the metastable ground state which will
“survive” for ∼1010 atomic units of time. In contrast, the waveform
will propagate away from the atom very quickly, and thus contributes
to the nonadiabatic ionization.

presented. However, at larger distances the part that is bound
to the nucleus is exponentially small in comparison to the
“freed” part, and what one obtains far from the nucleus is
for all practical purposes the part of the wave function which
represents the “freed” electron.

Our example is therefore relevant for the ongoing debate
concerning the question of the tunneling time. More specif-
ically, there is no universal agreement about the time an
electron spends while tunneling from an atom under the influ-
ence of an external electric field (a brief discussion of different
schools of thought can be found in [28]). In this context, our

FIG. 10. Wave function snapshot taken at t = 60 a.u. The real
part of the component n = 1 is shown here with the vertical plot
range of ±0.001 vs x and z in atomic units. The spatial structure
indicates that one cannot assign a single classical trajectory to this
tunneling particle.
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example is the first exact solution in a three-dimensional sys-
tem that suggests the tunneling time and velocity might not be
zero. In this model there is no single well-defined tunnel exit,
and therefore the notion of “tunneling time” is also ambigu-
ous. As can be seen from Fig. 9 and 10, we can also conclude
that in this three-dimensional case we cannot ascribe a sin-
gle classical trajectory to the tunneling portion of the wave
function. The tunneling dynamics continues to be quantum in
nature even beyond the emergence of the particle from the
classically forbidden region. Consequently, a proper quantum
description should be preferred also in the outer regions, and
our representation of the Stark hydrogen solutions represents
an ideal tool for such an application. For example, the same
kind of calculations as above but only at larger distances can
be used to create data for the back-propagation method to
find a family of classical trajectories (see, e.g., Ref. [29] for
various classifications of the exit and initial velocity).

In relation to the debate about the nature of the tunnel-
ing time, we have to admit that the present model does not
yet completely reflect a typical experiment since such ex-
periments are done using a circularly polarized (or “almost”
circularly polarized) laser beam [3,4]. Moreover, our sudden
excitation drives the system into a more nonadiabatic regime
than an optical pulse with a smoothly varying intensity en-
velope would. Thus, it should be interesting to generalize
our model to one which reflects the circular polarization of
the driving field. The Stark hydrogen states could serve as
a suitable point of departure to describe the ionization and
tunneling dynamics in a reference frame corotating with the
electric field.

Another currently relevant physics question concerns
strong-field ionization in a long-wavelength (i.e., slowly
evolving) optical field [30]. We have seen that there are two
qualitatively different channels for ionization. Besides the
well-known adiabatic tunneling ionization which is mediated
by the Stark resonance [9,31–33], there is also an ionization
current in the form of a short-duration “pulse.” This is the re-
action of the system to the increment of the external field, so it
is nonadiabatic in nature. Postadiabatic corrections are univer-
sally believed to become negligible for a very slowly evolving
external fields, but accurate evaluations are not available at
this time. Having seen here how strong the nonadiabatic con-
tribution is in our case, a detailed investigation should be
of great interest. The technique used in our example can be
generalized to evaluate the relative strength of the adiabatic
and postadiabatic ionization yields in slowly evolving external
fields.

VIII. CONCLUSION

We have presented an accurate, approximation-free algo-
rithm to calculate the continuum-energy eigenstates of the
Stark hydrogen problem for a particle subject to Coulomb and
a homogeneous electric field.

Importantly for future applications, the algorithm pre-
sented in this work takes advantage of the analytic properties
of the problem. In particular, the wave functions are repre-
sented with the help of a “carrier wave” which captures the
tunneling portion of the wave function. This is then modi-
fied by an “envelope,” or slowly changing function, which

is relatively easy to find numerically, or analytically in the
form of an asymptotic expansion. This representation of the
wave functions can be useful in constructing quasiclassical
solutions for electrons escaping from single-charged quantum
systems.

Complementary to the carrier-envelope representation, we
have also designed an algorithm suitable for small and inter-
mediate (up to a few thousands of atomic units) distances from
the nucleus. This approach is based on a series expansion
“analytically continued” away from the origin, and it can
be used to study the properties and eventually the temporal
dynamics of the electrons driven by strong long-wavelength
optical fields.

We have illustrated the usage of the continuum-energy
basis to expand a time-dependent wave function of a tun-
neling particle after an excitation due to a sudden turn-on
of an external field. Application to a general case with time-
dependent F (t ) requires evaluation of the spectral amplitude
AnW (t ), which, too, depends on time. This generalization will
be addressed elsewhere.

We have presented a practically usable state-expansion
method utilizing a continuous energy basis for a realistic
three-dimensional quantum system. Given that the superposi-
tion of the Coulomb and homogeneous fields appears in many
situations, we trust that the capability to treat these nontrivial
quantum states without approximations will prove useful in
various situations, including, for example, strong-field ioniza-
tion of atoms and molecules and high-harmonic generation.
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APPENDIX: NORMALIZATION

The normalization condition we seek to satisfy reads

2π

∫
u + v

4
VnW (v)VmE (v)UnW (u)UmE (u) dv du

= δnmδ(W − E ) (A1)

and expands into two contributions which we will refer to as
u and v terms:

Iu = π

2

∫
VnW (v)VmE (v) dv

∫
uUnW (u)UmE (u) du, (A2)

Iv = π

2

∫
vVnW (v)VmE (v) dv

∫
UnW (u)UmE (u) du, (A3)

together giving rise to the δ function in energy as

Iu + Iv = δmnδ(W − E ). (A4)

Let us look first at the integrals over v. Because the V func-
tions are integrable, they can be normalized to unity. It can
also be shown in a standard way that they are orthogonal to
each other, so we can assume∫ ∞

0
VnE (v)VmE (v) dv = δmn. (A5)
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For the other integral, it turns out that the nondiagonal part
will not be needed, and one can show that the diagonal portion
can be simplified as∫

VnW (v)vVnW (v) dv = −2z′
v, (A6)

where prime denotes partial derivative with respect to W . To
obtain this result, one takes the “expectation value” equa-
tion for hv , ∫ ∞

0
VnW (v)ĥvVnW (v) dv = zv (n,W ), (A7)

differentiates on both sides w.r.t. W , and uses the fact that the
normalization is fixed as in (A5).

Now we turn to the integrals over u. With the normalization
of V accounted for, the Iu term turns into

Iu = δmn
π

2

∫ ∞

0
UnW (u) u UnE (u) du. (A8)

The relevant contribution to this integral is from the region
of large u, where we use the asymptotic behavior of the U
functions,

U = 1

2NU
Ci+

[
α
(u

2
+ W

F

)]
H (u)eiδ(W,F ) + c.c., (A9)

where H is the envelope which behaves as H ∼ u−1/2 at infin-
ity and thus cancels u in the integrand. The integral over large
values of u tends to (we leave out index n in the integrand)

Iu = δmn
π

2

∫ ∞

0

(
1

2NU
Ci+

[
α
(u

2
+ W

F

)]
eiδ(W,F ) + c.c.

){
1

2NU
Ci+

[
α
(u

2
+ E

F

)]
eiδ(E ,F ) + c.c.

}
du. (A10)

Eliminating terms which oscillate even for E = W and do not contribute to the δ function one gets

Iu = δmn
π

8N2
U

∫ ∞

0

{
Ci+

[
α
(u

2
+ W

F

)]
e+iδ(W,F )Ci−

[
α
(u

2
+ E

F

)]
e−iδ(E ,F ) + c.c.

}
du. (A11)

Using the leading term in the asymptotic expansion of the Airy functions, one obtains

Iu = δmn
1

4 22/3F 1/6N2
U

∫ ∞

0

{
exp

[
−i

u1/2(E − W )

F 1/2

]
eiδ(W,F )−iδ(E ,F ) + c.c.

}
du

u1/2
. (A12)

Recall that the phase-shift terms δ(·, F ) belong to the same m = n, and because they cancel for W → E they can be dropped.
After substitution of k = u1/2F−1/2 and representing the complex conjugate term as an integral over −k, we obtain

Iu = δmn
2F 1/2

4 22/3F 1/6N2
U

∫ +∞

−∞
exp[−ik(E −W )] dk (A13)

or

Iu = F 1/3π

22/3N2
U

δ(E − W )δmn. (A14)

Next we turn to the v term given by the integral

Iv = π

2

∫ ∞

0
vVnW VmE dv

∫ ∞

0
UnW (u)UmE (u) du ≡ V (1)

mn (W, E ) Imn(W, E ). (A15)

We will see that only the diagonal portion of V (1)
mn (W, E ) plays a role, because the second term turns out proportional to δmn. It

requires us to evaluate

Imn(W, E ) = π

2

∫ ∞

0
UnW (u)UmE (u) du, (A16)

which is a distribution because we deal with a continuous spectrum. Next we show that for m = n the above equals zero in the
distribution sense. We start by rewriting it equivalently as

Imn=π

2

[zu(m, E ) − zu(n,W )]

[zu(m, E ) − zu(n,W )]

∫ ∞

0
UnW (u)UmE (u) du (A17)

in which we use the fact that zu are the eigenvalues of the differential operator ĥu to obtain

[zu(m, E ) − zu(n,W )]Imn = π

2

∫ ∞

0
[UnW (u)ĥuEUmE (u) − UmE (u)ĥuW UnW (u)]du, (A18)

where we have used additional indices W, E in ĥu to indicate their corresponding energy parameters. The parts of hu that are
proportional to F cancel out, and one is left with

[zu(m, E ) − zu(n,W )]Imn = π

2

∫ ∞

0
{UnW (u)(−1)∂u[u∂uUmE (u)] − UmE (u)(−1)∂u[u∂uUnW (u)]}du

+ π

2

∫ ∞

0

[
UnW (u)

(−E )u

2
UmE (u) − UmE (u)

(−W )u

2
UnW (u)

]
du. (A19)
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One can integrate by parts twice in the first term on the right-
hand side to get

Imn ≡ I (S)
mn + I (V )

mn , (A20)

where the “surface term” reads

I (S)
mn = −π |uUnW (u)∂uUmE (u) − uUmE (u)∂uUnW (u)|∞0

2[zu(m, E ) − zu(n,W )]
(A21)

and the “volume contribution” is

I (V )
mn = − (E − W )

2[zu(m, E ) − zu(n,W )]

π

2

∫ ∞

0
UnW (u)uUmE (u) du.

(A22)

This is the point where one needs to use the specific prop-
erties of the U functions. When W = E both terms on the
right-hand size oscillate themselves to a distribution zero. As
a consequence, Im =n(W, E ) is zero in the distribution sense,
meaning that Im =n acting on an arbitrary smooth test function
T (E ) yields zero:∫

Im =n(W, E )T (E ) dE = 0. (A23)

However, this argument does not hold for m = n and W → E .
We have to investigate such a case more closely, starting with
the “volume” term. We know from (A14) that the integral part
is proportional to the Dirac δ in energy, so the prefactor can
be replaced by its limit for W → E :

I (V )
nn = − 1

2z′
u(n,W )

π

2

∫ ∞

0
UnW (u)uUnE (u) du. (A24)

As a consequence of (A6) and because z′
v = −z′

u, the contri-
bution to Iv simplifies to

V (1)
nn (W,W )I (V )

nn = −π

2

∫ ∞

0
UnW (u)uUnE (u) du, (A25)

which, interestingly, exactly cancels Iu contribution to the
normalization integral.

The surviving contribution is therefore given by the “sur-
face terms” V (1)

mn I (S)
mn . Because functions U are regular in the

vicinity of the origin, the lower bound does not contribute. For
the upper boundary term (u → ∞) the envelope H ∼ u−1/2

cancels the factor of u, and we end up with a bounded function
which oscillates faster and faster for large u. More precisely,
utilizing the asymptotic expansion of the Airy functions, we

obtain

I (S)
mn = −α

4N2
U

lim
u→∞

sin[δn(W )−δm(E )+(E − W )(u/F )1/2]

zu(m, E )−zu(n,W )

+ · · · . (A26)

When m = n, the denominator remains finite even for W →
E , and as u → ∞ the function oscillates “infinitely fast.” As
such, it vanishes in the distribution sense. Let us consider the
diagonal case n = m:

I (S)
nn = −α

4N2
U

lim
u→∞

sin[δn(W )−δn(E )+(E − W )(u/F )1/2]

zu(n, E ) − zu(n,W )
.

(A27)

The relevant behavior is of W ∼ E , so expanding accordingly
we get

I (S)
nn

= −α

4N2
U

lim
u→∞

sin[(E − W )(u/F )1/2]

z′
u(n,W )(E − W )

= −απ

4N2
U z′

u(n,W )
δ(W − E ). (A28)

Once again, the derivative of the separation constant z′
u gets

canceled by the integral over v, and the contribution to the
whole Iv is

V (1)
nn I (S)

nn = F 1/3π

22/3N2
U

δ(W − E )δmn. (A29)

In summary, the normalization integral gives three contribu-
tions which are equal in their absolute values while one of
them is negative. In effect the u term remains, while the v

term vanishes (as a distribution). As a result the normalization
to the Dirac δ in energy requires to set NU such that

F 1/3π

22/3N2
U

δ(W − E )δmn = δmnδ(W − E ) (A30)

or

NU = 2−1/3F 1/6√π. (A31)

With the normalization factor set like this, it can be shown that
the total probability outflow in the outgoing part of the wave
function is equal to 1/2π independently of the energy, as it is
expected to be [23].
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