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Bell’s theorem shows that no local hidden-variable model can explain the measurement statistics of a quantum
system shared between two parties, thus ruling out a classical (local) understanding of nature. In this paper we
demonstrate that by relaxing the positivity restriction in the hidden-variable probability distribution it is possible
to derive quasiprobabilistic Bell inequalities whose sharp upper bound is written in terms of a negativity witness
of said distribution. This provides an analytic solution for the amount of negativity necessary to violate the
Clauser-Horne-Shimony-Holt inequality by an arbitrary amount, therefore revealing the amount of negativity
required to emulate the quantum statistics in a Bell test.
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I. INTRODUCTION

It has now been 60 years since John Stewart Bell wrote his
famous paper on the Einstein-Podolsky-Rosen (EPR) paradox
[1], and 50 years since the first experimental Bell test [2]. The
majority of physicists are perfectly happy to concede that in
the laboratory we see experimental results consistent with the
postulates of quantum mechanics. However, the implications
of these mathematical postulates on the “reality” of the wave
function is still very much up for debate [3–8].

These Bell experiments remain as some of the most impor-
tant demonstrations for the reality of the quantum state and
the death of a “local realism” picture of nature. In such an
experiment a physical system is distributed between spatially
separated observers and we allow these observers to perform
measurements on their local system. The emerging statistics
prove that physical systems are not bound to behave locally
(in accordance to local hidden-variable models). Rather, the
statistics are consistent with the postulates governing quantum
mechanics.

In this work we remove the postulates of quantum me-
chanics and instead allow a physical system to be distributed
according to a quasiprobability (hidden-variable) distribution
that is allowed to take negative values. Although we are per-
fectly content with real negative numbers in physics, negative
quasiprobabilities (despite receiving support from individuals
such as Dirac [9] and Feynman [10] and having a solid math-
ematical foundation [11,12]) have been a long-debated issue
in theoretical physics [13]. See, for example, the extensive
discussion surrounding the interpretation of negative values in
the Wigner distribution [14,15]. In the majority of considera-
tions, quasiprobability distributions are used to describe states
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that are not directly observed; that is, all observable mea-
surement statistics must be governed by ordinary probability
distributions. As an example, a Wigner function may assign
a negative quasiprobability to a particle having a particular
combination of position and momentum, but any physical
measurement, constrained by Heisenberg uncertainty, will
have an all-positive outcome distribution. This feature en-
sures that no outcome is ever predicted to be seen occurring
a negative number of times [10], and similarly protects the
quasiprobability physicist from falling victim to “Dutch book”
arguments [16, Chap. 3].

An important motivator for this work is the result of Al-Safi
and Short [17], which showed that it is possible to simulate all
nonsignalling correlations (those which adhere to the princi-
ples of special relativity) [18,19] if one allows negative values
in a probability distribution. However, physical reality does
not explore this full set of correlations, but rather, is restricted
to those achievable by quantum correlations. Therefore the
question that we pose in this paper is the following:

“What are the restrictions on the negativity in a hidden-variable
probability distribution such that it can emulate the statistics
seen in a physical Bell experiment?”

To answer this question we construct Clauser-Horne-
Shimony-Holt (CHSH) inequalities for two parties [20] whose
degree of violation is witnessed by the amount of negativity
present in the hidden-variable probability distribution. Our
witness yields a value of 0 for a quasiprobability distribution
which is entirely positive, such as that which would describe
an ordinary classical system.

To put this result in context, the authors of [17] showed that
negativity in the hidden-variable distribution can produce non-
locality. A contribution by the authors of [21] then observed
in numerics the correlation that stronger nonlocality requires
more negativity. Here we develop this into a precise analytical
bound.
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FIG. 1. A source S distributes a system between two spatially
separated observers Alice (A) and Bob (B). Alice and Bob choose
to measure their local part of the system with measurements xA, xB,
with possible outcomes yA, yB ∈ {−1,+1}. The statistics of their
measurement outcomes depending upon the physical system being
distributed by the source.

II. SETUP

Let us consider the following experimental setup, depicted
in Fig. 1. A source S distributes a system between two ob-
servers, the kth observer can choose some measurement xk ∈
{0, 1, . . . , Xk} and record some outcome yk ∈ {1, 2, . . . ,Yk},
the possible values of k being {A, B}. A specific experimental
setup is characterized by the conditional probability

P(yA, yB|xA, xB). (1)

The physical theory governing the behavior of the system and
experiment determines the achievability of certain conditional
probability distributions resulting from these experiments. We
are interested in the following three physical theories.

(i) Classical theory admits probability distributions (1) of
the following form:∑

λA,λB

PA(yA|xA, λA)PB(yB|xB, λB)P�(λA, λB), (2)

where P�(λA, λB) is a probability distribution defined over
local hidden variables. With each choice of hidden variable we
associate a local scenario governed by ordinary local probabil-
ity distributions Pk (yk|xk, λk ) for the observables yA, yB. The
hidden-variable probability distribution P� determines how
such local scenarios are mixed, and the probability distribu-
tions Pk (yk|xk, λk ) are called “λk-local” because they belong
to the scenario associated with a particular value of λk , not to
be confused with the (observable) marginal probability distri-
butions that are obtained by marginalizing the total probability
distribution, Eq. (2).

The physical substance of Eq. (2) is worth discussing. λA

labels all degrees of freedom associated to the signal transmit-
ted from the source to Alice. This is referred to as a hidden
variable, as Alice is not able to directly access λA. She is
limited to observations of measurement outcomes yA, which
depend on both the choice of measurement xA, and the signal
itself, and even when these are both fixed the measurement
outcomes may still be random, encapsulated in PA(yA|xA, λA).
Similarly, the source itself may not always prepare the signals

deterministically. This is encoded in the local-hidden-variable
distribution P�(λA, λB).

(ii) Quantum theory endows us with a Hilbert space
structure for our quantum states that admits probability dis-
tributions (1) of the following form:

Tr
[(

M (A)
yA|xA

⊗ M (B)
yB|xB

)
ρ
]
, (3)

where ρ � 0 and M (k)
yk |xk

are positive operator-valued measures
(POVMs) [22] for each k.

(iii) Nonsignalling theory, our third physical theory, pro-
hibits the sending of information faster than the speed of light
[18,19]. Such a theory has the conditions on its conditional
probability distribution that for any k ∈ {A, B},∑

yk

P(yA, yB|xA, xB) (4)

is independent of xk . These three physical theories range from
the most restrictive (classical), to the least restrictive (no-
signalling), with quantum theory existing somewhere between
the two [18].

Representing the full set of correlations that the quan-
tum conditional probability distribution in Eq. (3) allows one
to reach is a notorious problem, and the set has recently
been shown to be not closed [23]. Therefore we instead re-
strict ourselves to studying the achievable bounds that these
conditional probabilities allow one to reach in nonlocal exper-
iments; the original and most famous of which being the Bell
inequality [1].

Definition 1 (Bell inequality). Given observers A and B,
each with measurement choice xk ∈ {0k, 1k} with outcomes
yk ∈ {−1,+1}, experiments performed on the systems adhere
to the bound

|E (0A, 0B) − E (0A, 1B) + E (1A, 0B) + E (1A, 1B)| � X, (5)

where both the correlation measure E (xA, xB) =∑
yA,yB

yAyB P(yA, yB|xA, xB) and bound X ∈ R+ are theory
dependent. The left-hand side of this inequality is often called
the score of the experiment.

Each physical theory admits different conditional proba-
bility distributions, and hence a different achievable bound
X . Classical theory has the CHSH bound X = 2 [20],
quantum theory has the Tsirelson bound of X = 2

√
2 [24],

and nonsignalling distributions X = 4 [18]. We are interested
in the achievable bounds of a classical system’s probabil-
ity distribution when the hidden-variable distribution in said
probability distribution can be negative.

III. RESULTS

We now define an important object for this work, the
quasiprobability distribution.

Definition 2 (Quasiprobability distribution). We define a
quasiprobability distribution as P̃� : �1 × · · · × �N → R
where �i ⊂ R and |�i| < ∞∀ i that is properly normalized
such that ∑

λ1,...,λN

P̃�(λ1, . . . , λN ) = 1. (6)

It can be seen that the collection of functions adhering to
the above definition forms a convex set, which we will denote
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P̃ , a super set of the convex set of positive probability distri-
butions P ⊂ P̃ . We must now determine how to quantify the
presence of negativity in our quasiprobability distributions. To
this end we will use a well-known method for quantitatively
detecting properties of a quantum state, witnesses [25–28].
Let us therefore proceed by defining a negativity witness.

Definition 3 (Negativity witness). Given some properly
normalized probability distribution P, a well-defined
negativity witness is one which

N (P) = 0 ∀ P ∈ P . (7)

We may additionally require such a witness to “faithfully”
detect negativity

N (P) > 0 ∀ P ∈ P̃\P . (8)

In the following, we consider classical local hidden-
variable models as defined in Eq. (2), but we replace the
hidden-variable probability distribution P� with a quasiprob-
ability distribution P̃�,∑

λA,λB

PA(yA|xA, λA)PB(yB|xB, λB)P̃�(λA, λB). (9)

This corresponds to a scenario where different local
statistics of observations, governed by λ-local (ordinary)
probability distributions Pk (yk|xk, λk ), are mixed according
to a quasiprobability distribution P̃�. However, when P̃�

takes negative values, we should no longer think of the
model as an ignorance mixture of valid local scenarios, but
rather as a nonlocal model [17]. Furthermore, when compared
with ordinary hidden-variable models not all combinations
of hidden-variable and λ-local probability distributions are
valid; only those combinations which lead to well-defined
P(yA, yB|xA, xB) are valid, i.e., comprised of values between
0 and 1 (the normalization condition is always fulfilled).
Previous numerical work has focused on negativity arising
not from a quasiprobability hidden-variable distribution, but
rather from the total (joint) probability distribution while only
requiring valid marginal distributions [21]. However, since
the total probability distribution governs observable outcome
statistics, obtained when Alice and Bob communicate their
results with each other, negativity would imply that certain
correlations are expected to be seen occurring a negative
number of times. In the Appendices we provide an instruc-
tive example which exhibits valid marginals but negativity in
the total probability distribution. In contrast such situations
are excluded in our model.

In addition to the correlation function between two mea-
surements xA and xB, E (xA, xB), it will also be useful to define
λk-local expectation values corresponding to an imagined sce-
nario where observer k is able to perform measurement xk in
the local scenario corresponding to λk ,

〈k〉xk
λk

:=
∑

yk

ykPk (yk|xk, λk ). (10)

This λk-local expectation value will be useful to formulate
our results, but does not correspond to the actual observations
which are themselves governed by Eq. (9).

We are now in a position to state the main result of this
paper, the quasiprobabilistic Bell inequality.

Theorem 1 (Quasiprobabilistic Bell inequality). Given ob-
servers A and B, each with measurement choice xk ∈ {0k, 1k}
with outcomes yk ∈ {−1,+1} whose systems are distributed
according to some quasiprobability distribution P̃�, then the
quasiprobabilistic Bell inequality holds:

|E (0A, 0B) − E (0A, 1B) + E (1A, 0B) + E (1A, 1B)|
� 2 + N (P̃�), (11)

where

N (P̃�) :=
{N+(P̃�) if E (1A, 0B) + E (1A, 1B) < 0,

N−(P̃�) else,
(12)

is a negativity witness and

N±(P̃�) :=
∑
λA,λB

[
2 ± (〈A〉1A

λA
〈B〉1B

λB
+ 〈A〉1A

λA
〈B〉0B

λB

)]
× (|P̃�(λA, λB)| − P̃�(λA, λB)).

The proof (see the Appendix) of this theorem begins analo-
gously with Bell’s proof of the CHSH bound [29], but diverges
when the assumption P ∈ P is made in Bell’s proof. The
above result shows that if an arbitrary amount of negativity
is allowed in the hidden-variable probability distribution then
the upper bound of Eq. (11) can be arbitrarily large. However,
it should be noted that a natural limit of 4 in the relevant Bell
tests (i.e., for the upper bound in the quasiprobabilistic Bell in-
equality) is imposed by the requirement that P(yA, yB|xA, xB)
is a well-defined, valid probability distribution [30].

The previous result of Al-Safi and Short [17] showed that it
was possible to violate said inequality up to this no-signalling
bound of X = 4. Therefore, to emulate the physical results
seen in Bell tests (Tsirelson bound) one needs a negative prob-
ability distribution whose witness equals N (P̃�) = 2(

√
2−1).

In the following examples section we show that for any
N (P̃�)� 2, there exist quasiprobabilistic hidden-variable
models with valid local measurement statistics that saturate
inequality (11). We would hope that if a physical mechanism
was discovered that allowed a hidden-variable probability dis-
tribution to have the appearance of negativity,1 one would
expect that said physical mechanism was limited in such a
way that it resulted in the Tsirelson bound and more generally
was able to reconstruct the limits on quantum correlations.

It is also important to note that although said witness
N (P̃�) is a valid witness according to definition 3 it is not
necessarily a “faithful” one. However, this can be rectified,
at the cost of loosening the bound, by redefining said witness.

For example the function N ′(P̃�) := ∑
λA,λB

4(|P̃�(λA, λB)| −
P̃�(λA, λB)) is defined to be both a valid and “faithful”
witness.

There are numerous generalizations of the famous CHSH
inequalities, such as multiple parties [32], arbitrary numbers
of possible outcomes [33], and so on [34]. These would no
doubt be interesting to study, but we leave it to future work
to explore these other generalizations and instead focus on the

1See this recent contribution for a discussion on possible opera-
tional interpretations [31].
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scenario in which Alice and Bob have access to an arbitrary
number of measurement settings [35].

Theorem 2. Given observers A and B, each with n � 2
measurements xk ∈ {0k, 1k, . . . , n − 1k} with outcomes yk ∈
{−1,+1} whose systems are distributed according to some
quasiprobability distribution P̃�,∣∣∣∣∣

n−1∑
i=0

E (iA, iB) +
n−1∑
i=1

E (iA, i − 1B) − E (0A, n − 1B)

∣∣∣∣∣
� 2n − 2 + Nn(P̃�), (13)

where Nn(P̃�) = ∑n−1
i=1 N (i)(P̃�) is a negativity witness with

N (x)(P̃�)

:=
{
N (x)

+ (P̃�) if E (0A, xB) + E (0A, x − 1B) < 0,

N (x)
− (P̃�) else,

(14)

where

N (x)
± (P̃�) :=

∑
λA,λB

[
2 ± (〈A〉xA

λA
〈B〉xB

λB
+ 〈A〉xA

λA
〈B〉x−1B

λB

)]
× (|P̃�(λA, λB)| − P̃�(λA, λB)).

The proof of the above theorem can be found in the
Appendix, it utilizes proof by induction by chaining together
the inequalities from theorem 1. In the next section we show
that the bound in theorem 2 can be saturated. Namely, for any
Nn(P̃�)� 2, there exist well-defined P(yA, yB|xA, xB), char-
acterized by a quasiprobability hidden-variable distribution
P̃�(λA, λB) that saturate inequality (13). In addition, analo-
gously to the two measurement result, at the cost of loosening
the bound we can ensure that the above witness is also “faith-
ful” by choosing for all x, N (x)(P̃�) = N ′(P̃�).

Example. To understand how to saturate the Bell inequality
from Theorem 1, we rewrite the left-hand side of Eq. (11) as∣∣∣∣∣∑

λ

M(λ) P̃�(λ)

∣∣∣∣∣. (15)

Here we have replaced the hidden variables λA

and λB with a single hidden variable λ because our
example only uses a single hidden variable λ. Further,
M(λ) := 〈A〉0A

λ 〈B〉0B
λ − 〈A〉0A

λ 〈B〉1B
λ +〈A〉1A

λ 〈B〉0B
λ + 〈A〉1A

λ 〈B〉1B
λ

are the scores of each of the λ-local distributions, that is,
−2 � M(λ) � 2 holds.

For a given value of the negativity witness, we exceed
the local bound maximally by the simple strategy of
weighting classical distributions with M(λ) = +2 with
positive quasiprobability, while simultaneously taking
a classical distribution with M(λ) = −2 with negative
weight. To ensure that the total probability distribution
P(yA, yB|xA, xB) is well defined we make a choice of
three deterministic classical distributions with positive
weight and a fourth with negative weight. Our four
deterministic classical distributions can be denoted
[(−,−)A, (−,+)B], [(+,−)A, (−,−)B], [(+,+)A, (+,+)B],
and [(+,−)A, (−,+)B]. Here, our notation means that the
distributions can be produced by assigning the first pair of
symbols to Alice and the second to Bob. Each party chooses
to read either the first or second of the symbols given to them
(this choice reflects their measurement setting xk) while the
outcome of their measurement is determined by the symbol
itself; that is, yk = +1 (yk = −1) for a plus (minus) sign. This
experimental description of distributing classical information
makes clear that these distributions are local, with our hidden
variable λ indicating which of these sets the source that
actually produces.

The source produces each of the distributions according to
the following quasiprobability distribution:

P̃�(λ) =
{

4+N
12 for λ = 1, 2, 3,

−N
4 for λ = 4,

(16)

where M(λ) = 2 if λ = 1, 2, 3 and M(λ) = −2 if λ = 4.
We can use tables to represent λ-local probability distribu-
tions and the total probability distribution is then given as the
weighted sum of such tables

4 + N
12

⎡
⎢⎢⎢⎢⎢⎣

yAyB

xAxB −− −+ +− ++
00 1 0 0 0
01 0 1 0 0
10 1 0 0 0
11 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦ + 4 + N

12

⎡
⎢⎢⎢⎢⎢⎣

yAyB

xAxB −− −+ +− ++
00 0 0 1 0
01 0 0 1 0
10 1 0 0 0
11 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

+ 4 + N
12

⎡
⎢⎢⎢⎢⎢⎣

yAyB

xAxB −− −+ +− ++
00 0 0 0 1
01 0 0 0 1
10 0 0 0 1
11 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ − N

4

⎡
⎢⎢⎢⎢⎢⎣

yAyB

xAxB −− −+ +− ++
00 0 0 1 0
01 0 0 0 1
10 1 0 0 0
11 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦

= 1

12

⎡
⎢⎢⎢⎢⎢⎣

yAyB

xAxB −− −+ +− ++
00 4 + N 0 4 − 2N 4 + N
01 0 4 + N 4 + N 4 − 2N
10 8 − N 0 0 4 + N
11 4 + N 4 − 2N 0 4 + N

⎤
⎥⎥⎥⎥⎥⎦. (17)
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The requirement that the resulting total probability distri-
bution must be valid implies N � 2 which corresponds to
the no-signalling limit. Furthermore, it is easy to check that
said distribution indeed gives a value of N for the negativity
witness.

The quasiprobabilistic Bell inequality score for this ex-
periment is 2 + N , which upon substituting Eq. (16) into
the negativity witness, can be seen to saturate the bound. In
the Appendix we discuss how one can generalize the above to
the n-measurement scenario.

IV. CONCLUSION

We showed that there exists a relationship between the
amount of negativity allowed in a local-hidden-variable dis-
tribution and the degree to which said distribution can
demonstrate nonlocality in a Bell experiment. In particular,
theorem 2 introduces a quasiprobabilistic Bell inequality,
which gives us a sharp bound in the scenario of two parties
with n inputs (corresponding to a choice between n mea-
surements) and can be used straightforwardly to reconstruct
quantum statistics using nothing more than local, separa-
ble classical probability distributions and a quasiprobability
distribution over them (granted an appropriately well-spent
budget of negativity).

The negative quasiprobability is essential precisely be-
cause the distribution is over local states (local hidden
variables). If one allows nonlocal hidden variables then it is
possible to describe all quantum computing (including Bell
tests) with entirely positive probabilities [36].

Our work sits within the long-established tradition of
trying to understand quantum theory through interpretative
lenses which remove some particular aspect from a classical
world view. Such approaches are wide and varied, includ-
ing superdeterminism [37,38]; retrocausality [39]; invoking
an irreducible role for subjectivity in physics [7,40,41]; tak-
ing physical reality to consist of interacting, separate realms
[42,43]; allowing the relativity of pre and postselection [44];
taking Hilbert space to be literal [45]; and so on. Here we add
to this list in that we present an additional way to recapture the
nonlocal features of quantum theory: through having a finite
amount of negativity allowed in a hidden-variable distribution
over scenarios which are, in themselves, entirely local and
classical. We are not claiming that such quasidistributions
are “real” only, more modestly, that such a perspective could
not be ruled out at this stage. Such a perspective may even
provide new ways of looking at open quantum problems,
such as determining the source of quantum advantages for
computing [46].

Pursuing this line of reasoning, we would hope that our
results may help to determine the fundamental restrictions on
a system’s quasiprobability hidden-variable distribution such
that it captures the full character of physical correlations. Put
another way; we know that zero negativity can capture the
set of classical correlations, while unbounded negativity can
capture the nonsignalling set. Given that the set of quantum
correlations lies between these two, what are the restrictions
on the quasiprobability hidden-variable distribution which
would suffice to identify the full set of quantum correlations?
We leave this question for future work.
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APPENDIX A: PROOF OF THEOREM 1

Theorem. Given observers A and B, each with mea-
surement choice xk ∈ {0k, 1k} with outcomes yk ∈ {−1,+1}
whose systems are distributed according to some quasiproba-
bility distribution P̃�, then the quasiprobabilistic Bell inequal-
ity holds:

|E (0A, 0B) − E (0A, 1B) + E (1A, 0B) + E (1A, 1B)|
� 2 + N (P̃�), (A1)

where

N (P̃�) :=
{N+(P̃�) if E (1A, 0B) + E (1A, 1B) < 0,

N−(P̃�) else,
(A2)

is a negativity witness, and

N±(P̃�) :=
∑
λA,λB

[
2 ± (〈A〉1A

λA
〈B〉1B

λB
+ 〈A〉1A

λA
〈B〉0B

λB

)]
× (|P̃�(λA, λB)| − P̃�(λA, λB)).

Proof. The first part of the proof follows Bell’s 1971
derivation of the CHSH inequality [29]. For brevity in the
proof we will just write P̃� as P.

We start by rewriting the correlation function

E (xA, xB) :=
∑
yA,yB

yAyB

∑
λA,λB

PA(yA|xA, λA)

× PB(yB|xB, λB)P(λA, λB)

=
∑
λA,λB

〈A〉xA
λA

〈B〉xB
λB

P(λA, λB), (A3)

where 〈k〉xk
λk

:= ∑
yk

ykPk (yk|xk, λk ), is the λk-local expecta-
tion value for observer k performing measurement xk . Starting
with the following difference between correlation functions:

E (0A, 0B) − E (0A, 1B)

=
∑
λA,λB

(〈A〉0A
λA

〈B〉0B
λB

− 〈A〉0A
λA

〈B〉1B
λB

)
P(λA, λB)

=
∑
λA,λB

(〈A〉0A
λA

〈B〉0B
λB

− 〈A〉0A
λA

〈B〉1B
λB

± 〈A〉0A
λA

〈B〉0B
λB

〈A〉1A
λA

〈B〉1B
λB

∓ 〈A〉0A
λA

〈B〉0B
λB

〈A〉1A
λA

〈B〉1B
λB

)
P(λA, λB)

032202-5



MORRIS, FIDERER, LANG, AND GOLDWATER PHYSICAL REVIEW A 105, 032202 (2022)

=
∑
λA,λB

〈A〉0A
λA

〈B〉0B
λB

(
1 ± 〈A〉1A

λA
〈B〉1B

λB

)
P(λA, λB)

−
∑
λA,λB

〈A〉0A
λA

〈B〉1B
λB

(
1 ± 〈A〉1A

λA
〈B〉0B

λB

)
P(λA, λB), (A4)

where the “±” in equation (A4) is to be understood as either
“+” in all terms or “−” in all terms. Taking the absolute value
of both sides and using the triangular inequality∣∣E (0A, 0B) − E (0A, 1B)

∣∣
�

∣∣∣∣∣ ∑
λA,λB

〈A〉0A
λA

〈B〉0B
λB

(
1 ± 〈A〉1A

λA
〈B〉1B

λB

)
P(λA, λB)

∣∣∣∣∣
+

∣∣∣∣∣ ∑
λA,λB

〈A〉0A
λA

〈B〉1B
λB

(
1 ± 〈A〉1A

λA
〈B〉0B

λB

)
P(λA, λB)

∣∣∣∣∣. (A5)

Starting with the first term on the right-hand side of inequality
(A5), we again apply the triangular inequality∣∣∣∣∣ ∑

λA,λB

〈A〉0A
λA

〈B〉0B
λB

(
1 ± 〈A〉1A

λA
〈B〉1B

λB

)
P(λA, λB)

∣∣∣∣∣
�

∑
λA,λB

∣∣〈A〉0A
λA

〈B〉0B
λB

(
1 ± 〈A〉1A

λA
〈B〉1B

λB

)
P(λA, λB)

∣∣
=

∑
λA,λB

∣∣〈A〉0A
λA

〈B〉0B
λB

∣∣∣∣(1 ± 〈A〉1A
λA

〈B〉1B
λB

)
P(λA, λB)

∣∣. (A6)

As yk ∈ {−1,+1} we can say |〈k〉xk
λk

| � 1 ∀ k, we can write∣∣∣∣∣ ∑
λA,λB

〈A〉0A
λA

〈B〉0B
λB

(
1 ± 〈A〉1A

λA
〈B〉1B

λB

)
P(λA, λB)

∣∣∣∣∣
�

∑
λA,λB

∣∣(1 ± 〈A〉1A
λA

〈B〉1B
λB

)
P(λA, λB)

∣∣
=

∑
λA,λB

∣∣(1 ± 〈A〉1A
λA

〈B〉1B
λB

)∣∣|P(λA, λB)|

=
∑
λA,λB

(
1 ± 〈A〉1A

λA
〈B〉1B

λB

)|P(λA, λB)|, (A7)

where we used the fact that (1 ± 〈A〉1A
λA

〈B〉1B
λB

) is necessar-
ily nonnegative because of the choice of eigenvalues yk ∈
{−1,+1}.

Similarly, we find for the second term on the right-hand
side of inequality (A5)∣∣∣∣∣ ∑

λA,λB

〈A〉0A
λA

〈B〉1B
λB

(
1 ± 〈A〉1A

λA
〈B〉0B

λB

)
P(λA, λB)

∣∣∣∣∣
�

∑
λA,λB

(
1 ± 〈A〉1A

λA
〈B〉0B

λB

)|P(λA, λB)|. (A8)

By adding inequalities (A7) and (A8) we find the following
upper bound for the left-hand side of inequality (A5)

|E (0A, 0B) − E (0A, 1B)|
�

∑
λA,λB

[
2 ± (〈A〉1A

λA
〈B〉1B

λB
+ 〈A〉1A

λA
〈B〉0B

λB

)]|P(λA, λB)|.

(A9)

So far the proof followed Bell’s 1971 derivation [29] of
the CHSH inequality. In Bell’s derivation, one assumes that
the joint probability distribution is positive, P(λA, λB) � 0,
which, using the definition of the correlation function and the
triangle inequality, leads to the well-known CHSH inequality
|E (0A, 0B) − E (0A, 1B) + E (1A, 0B) + E (1A, 1B)| � 2.

We have to take another approach because here P(λA, λB)
can be a quasiprobability distribution and thus take negative
values. For each of the two inequalities (A9) (corresponding
to the choice for “±”), we define a negativity witness N±(P)
for some normalized distribution P ∈ P̃ as the difference
obtained by replacing |P(λA, λB)| with P(λA, λB) in the right-
hand side of inequality (A9)

N±(P) :=
∑
λA,λB

[
2 ± (〈A〉1A

λA
〈B〉1B

λB
+ 〈A〉1A

λA
〈B〉0B

λB

)]
× [|P(λA, λB)| − P(λA, λB)]. (A10)

Note that, although this negativity witness is perfectly valid
according to the definition in the main text, it is not faith-
ful because 2 ± (〈A〉1A

λA
〈B〉1B

λB
+ 〈A〉1A

λA
〈B〉0B

λB
) may be zero for

P ∈ P̃\P , i.e., N±(P) may be zero for a quasiprobability dis-
tribution. Nevertheless we can now write inequality (A9) as

|E (0A, 0B) − E (0A, 1B)|
�

∑
λA,λB

[
2 ± (〈A〉1A

λA
〈B〉1B

λB
+ 〈A〉1A

λA
〈B〉0B

λB

)]
× P(λA, λB) + N±(P). (A11)

The first term on the right-hand side of inequality (A11)
can then be simplified using the definition of the correlation
function (A3) and that P(λA, λB) is normalized∑

λA,λB

[
2 ± (〈A〉1A

λA
〈B〉1B

λB
+ 〈A〉1A

λA
〈B〉0B

λB

)]
P(λA, λB)

=
∑
λA,λB

2P(λA, λB) ±
∑
λA,λB

(〈A〉1A
λA

〈B〉1B
λB

+ 〈A〉1A
λA

〈B〉0B
λB

)
P(λA, λB)

= 2 ± [E (1A, 0B) + E (1A, 1B)]. (A12)

Thus, inequality (A11) becomes

|E (0A, 0B) − E (0A, 1B)|
� 2 ± [E (1A, 0B) + E (1A, 1B)] + N±(P). (A13)

Now, we choose the inequality corresponding to “+” if
[E (1A, 0B) + E (1A, 1B)] is negative, and the inequality
corresponding to “−” else. This allows us to write

|E (0A, 0B) − E (0A, 1B)|
� 2 − |E (1A, 0B) + E (1A, 1B)| + N (P), (A14)

where we defined

N (P) :=
{N+(P) if E (1A, 0B) + E (1A, 1B) < 0,

N−(P) else.
(A15)

From inequality (A14), we obtain

|E (0A, 0B) − E (0A, 1B)|
+ |E (1A, 0B) + E (1A, 1B)| � 2 + N (P), (A16)
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and with one final use of the triangular inequality we find a
CHSH-type inequality for arbitrary P ∈ P̃,

|E (0A, 0B) − E (0A, 1B) + E (1A, 0B) + E (1A, 1B)|
� 2 + N (P), (A17)

completing the proof.

APPENDIX B: PROOF OF THEOREM 2

Theorem. Given observers A and B, each with n � 2
measurements xk ∈ {0k, 1k, . . . , n − 1k} with outcomes yk ∈
{−1,+1} whose systems are distributed according to some
quasiprobability distribution P̃�,∣∣∣∣∣

n−1∑
i=0

E (iA, iB) +
n−1∑
i=1

E (iA, i − 1B) − E (0A, n − 1B)

∣∣∣∣∣
� 2n − 2 + Nn(P̃�), (B1)

where Nn(P̃�) = ∑n−1
i=1 N (i)(P̃�) is a negativity witness with

N (x)(P̃�)

:=
{
N (x)

+ (P̃�) if E (0A, xB) + E (0A, x − 1B) < 0,

N (x)
− (P̃�) else, (B2)

where N (x)
± (P̃�) := ∑

λA,λB
[2 ± (〈A〉xA

λA
〈B〉xB

λB
+〈A〉xA

λA
〈B〉x−1B

λB
)]

(|P̃�(λA, λB)| − P̃�(λA, λB)).
Proof. The proof is similar to the creation of chained

CHSH inequalities, see [47] for an intuitive description, and
works by induction in n.

Anchor step n = 2: see Theorem 1.
Inductive step. Suppose that Theorem 2 holds for n = k.

We will prove the theorem for n = k + 1. Starting from the
left-hand side of equation (B1) for n = k + 1, we find

∣∣∣∣∣
k∑

i=0

E (iA, iB) +
k∑

i=1

E (iA, i − 1B) − E (0A, kB)

∣∣∣∣∣ (B3)

=
∣∣∣∣∣

k−1∑
i=0

E (iA, iB) +
k−1∑
i=1

E (iA, i − 1B) − E (0A, kB) + E (kA, kB) + E (kA, k − 1B)

∣∣∣∣∣ (B4)

=
∣∣∣∣∣

k−1∑
i=0

E (iA, iB) +
k−1∑
i=1

E (iA, i − 1B) − E (0A, kB) + E (kA, kB) + E (kA, k − 1B) + E (0A, k − 1B) − E (0A, k − 1B)

∣∣∣∣∣ (B5)

�
∣∣∣∣∣

k−1∑
i=0

E (iA, iB) +
k−1∑
i=1

E (iA, i − 1B) − E (0A, k − 1B)

∣∣∣∣∣ + |E (kA, kB) + E (kA, k − 1B) + E (0A, k − 1B) − E (0A, kB)| (B6)

� 2k − 2 +
k−1∑
i=1

N (i)(P̃�) + 2 + N (k)(P̃�) (B7)

= 2(k + 1) − 2 + Nk+1(P̃�), (B8)

which concludes the induction. The inequality in line (B6) is
the triangle inequality, and we proceed from that line by using
the induction hypothesis and theorem 1 for measurements 0A,
kA for Alice, and k − 1B, and kB for Bob.

APPENDIX C: SATURATION OF THE n-MEASUREMENT
QUASIPROBABILISTIC BELL INEQUALITY

We can generalize the two-measurement example from the
main text to n measurements in the following way. Using
Eq. (A3), we rewrite the left-hand side the n-measurement
Bell inequality as ∣∣∣∣∣∑

λ

M(λ) P̃�(λ)

∣∣∣∣∣, (C1)

where we use only a single hidden variable λ, and

M(λ) :=
n−1∑
i=0

〈A〉iA
λ 〈A〉iB

λ +
n−1∑
i=1

〈A〉iA
λ 〈A〉i−1B

λ − 〈A〉0A
λ 〈A〉n−1B

λ

(C2)

are the scores of each of the λ-local distributions, that is
−(2n − 2) � M(λ) � 2n − 2 holds.

We again consider four classical scenarios, three of which
achieve a score of 2n − 2 but now the last achieving a score of
2n − 6. The source produces each of the distributions accord-
ing to the following quasiprobability distribution:

P̃�(λ) =
{ 4+Nn

12 for λ = 1, 2, 3,

−Nn
4 for λ = 4,

(C3)

where λ = 1, 2, 3 corresponds to classical distributions with
score 2n − 2, and λ = 4 to 2n − 6. We can see that this
distribution saturates the n-measurement quasiprobabilistic
Bell inequality from theorem 2,

(2n − 2)P̃�(1) + (2n − 2)P̃�(2) + (2n − 2)P̃�(3)

+ (2n − 6)P̃�(4) = 2n − 2 + Nn. (C4)

We now need to come up with the λ-local probability dis-
tributions which result in a well-defined P(yA, yB|xA, xB) and
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gives the correct value for the witness Nn. To do this we can
generalize the classical distributions from the main text for

n measurements, using the same notation as previously, such
classical distributions are,

[
(

n︷ ︸︸ ︷
−, . . . ,−)A, (

n−1︷ ︸︸ ︷
−, . . . ,−,+)B

]λ=1

,

[
(+,

n−1︷ ︸︸ ︷
−, . . . ,−)A, (

n︷ ︸︸ ︷
−, . . . ,−)B

]λ=2

,

[
(

n︷ ︸︸ ︷
+, . . . ,+)A, (

n︷ ︸︸ ︷
+, . . . ,+)B

]λ=3

,

[
(+,

n−1︷ ︸︸ ︷
−, . . . ,−)A, (

n−1︷ ︸︸ ︷
−, . . . ,−,+)B

]λ=4

. (C5)

It is easy to check that all such distributions achieve for
λ = 1, 2, 3 a score 2n − 2, and for λ = 4, 2n − 6. Since the
distribution for λ = 4 enters into the total probability distribu-
tion, P(yA, yB|xA, xB), with negative weight, the other λ-local
distributions (with λ = 1, 2, 3) must compensate for that neg-
ativity to ensure that the total probability distribution is valid.

It is easy to see that this is indeed the case by observing that
for each combination of Alice and Bob’s signs for λ = 4 that
same combination of symbols appear in the same places for at
least one of the other distributions. We also find that requiring
positivity of the total probability distribution also gives us the
no-signalling condition:

P̃�(λ) + P̃�(4) � 0 for λ = 1, 2, 3 ⇒ Nn � 2 ∀ n � 2.

(C6)

The final thing to check is that said distributions in Eq. (C5)
coupled with the quasiprobability distribution in Eq. (C3)
gives the required value Nn for the negativity witness
Nn(P̃�) = ∑n−1

i=1 N (i)(P̃�) with

N (x)(P̃�)

:=
{
N (x)

+ (P̃�) if E (0A, xB) + E (0A, x − 1B) < 0,

N (x)
− (P̃�) else,

(C7)

where N (x)
± (P̃�) := ∑

λA,λB
[2 ± (〈A〉xA

λA
〈B〉xB

λB
+

〈A〉xA
λA

〈B〉x−1B
λB

)](|P̃�(λA, λB)| − P̃�(λA, λB)).

First, we can see by going through the distributions in
Eq. (C5) that for all measurement choices x, E (0A, xB) +
E (0A, x − 1B) > 0 meaning that the witness we calculate for
all x in the sum of Nn(P̃�) is N (x)

− (P̃�). We then go through
the expectation values in the definition of N (x)

− (P̃�) for all x
for the λ = 4 distribution given in Eq. (C5), from which we
can see

2 − (〈A〉xA
4 〈B〉xB

4 + 〈A〉xA
4 〈B〉x−1B

4

)
=

{
0 for x = 1, . . . , n − 2,

2 for x = n − 1,
(C8)

meaning that upon calculating Nn(P̃�)
∑n−1

i=1 N (i)(P̃�), we get

Nn(P̃�) = 2(|P̃�(4)| − P̃�(4))

=Nn, (C9)

as required.

APPENDIX D: VALID MARGINALS DO NOT IMPLY
A VALID TOTAL PROBABILITY DISTRIBUTIONS

In the following, we present an example of a negative total
probability distribution that exhibits valid marginal probabili-
ties for all observers. We consider the setting of Theorem 1 in
the paper with two observers each having two measurements
each with two outcomes. Similarly to the example saturating
the bound from Theorem 1, we construct a quasiprobabilistic
mixture of four different scenarios each of which can be
created locally by the source,

4 +N
8

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

yAyB

xAxB −− −+ +− ++
00 1 0 0 0
01 1 0 0 0
10 1 0 0 0
11 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

yAyB

xAxB −− −+ +− ++
00 0 0 0 1
01 0 0 0 1
10 0 0 0 1
11 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠−N

8

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

yAyB

xAxB −− −+ +− ++
00 0 1 0 0
01 0 1 0 0
10 0 1 0 0
11 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

yAyB

xAxB −− −+ +− ++
00 0 0 1 0
01 0 0 1 0
10 0 0 1 0
11 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ = 1

8

⎡
⎢⎢⎢⎢⎢⎣

yAyB

xAxB −− −+ +− ++
00 4 + N −N −N 4 + N
01 4 + N −N −N 4 + N
10 4 + N −N −N 4 + N
11 4 + N −N −N 4 + N

⎤
⎥⎥⎥⎥⎥⎦. (D1)

Clearly, each of the tables corresponds to a trivial deter-
ministic strategy where the outcomes are independent from
the measurements chosen by Alice or Bob. It can also be seen

that the total probability distribution [the right-hand side of
Eq. (D1)] is negative for N > 0. Nevertheless, it is easy to
check that the corresponding marginals are valid probablity
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distributions which predict equiprobable outcomes indepen-
dent from the measurements chosen by Alice and Bob,

p(yA|xA) =
∑

yB

p(yA, yB|xA, xB) (D2)

= 1

2
∀yA, xA, xB, (D3)

p(yB|xB) =
∑

yA

p(yA, yB|xA, xB) (D4)

= 1

2
∀yB, xA, xB. (D5)

Equation (D1) would correspond to an experiment, where
Alice and Bob each find outcomes according to a valid
(marginal) distribution. However, as soon as they would com-
municate their findings with each other, their joint outcome
statistics would be governed by a negative probability distri-
bution, a contradiction with the laws of probability. A rather
extreme scenerio which potentially avoids this contradiction
could be a setting where communication is fundamentally
impossible for the observers, e.g., involving event horizons.
In common scenarios, where communication is possible, one
must impose that the total probability distribution is valid. We
impose this stronger condition throughout.
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