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We describe some of the main external mechanisms that lead to a loss of antibunching, i.e., that spoil the
character of a given quantum light to deliver its photons separated from each other. Namely, we consider
contamination by noise, a time jitter in the photon detection, and the effect of frequency filtering (or detection
with finite bandwidth). The formalism to describe time jitter is derived and connected to the already existing one
for frequency filtering. The emission from a two-level system under both incoherent and coherent driving is taken
as a particular case of special interest. The coherent case is further separated into its vanishing- (Heitler) and high-
(Mollow) driving regimes. We provide analytical solutions which, in the case of filtering, reveal an unsuspected
structure in the transitions from perfect antibunching to thermal (incoherent case) or uncorrelated (coherent case)
emission. The experimental observations of these basic and fundamental transitions would provide additional
compelling evidence of the correctness and importance of the theory of frequency-resolved photon correlations.
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I. INTRODUCTION

Antibunching [1] describes one of the most popular types
of quantum light, the one in which photons get separated
from each other and avoid the opposite bunching tendency
of bosons to appear clumped together [2]. With its obser-
vation by Kimble [3], antibunching provided the first direct
evidence of quantization of the light field, that is to say, the
first observation, albeit indirect, of photons. Antibunched light
is also of considerable importance for quantum applications,
for instance, to feed quantum gates or for the already com-
mercialized quantum cryptography, in which case one seeks
the ultimate antibunching where transform-limited photons
[4] are never detected more than one at a time. This is an
asymptotic race, however, as perfect antibunching has still not
been achieved and some residual multiple-photon emission
has always accompanied the most crafted setups. In principle,
since we are dealing with a quantized property, with a gap
separating one value (one photon) from its neighbors (vac-
uum or two photons), there is no a priori reason why one
could not observe perfect antibunching, just as one observes
perfect conductivity from a superconductor or perfect flow
from a superfluid. In all these cases, there are experimental
limitations, inaccuracy of measurements, and finite times and
energy involved, yet one can show that the measurement of
resistance is compatible with a mathematical zero in a su-
perconductor, where experiments with superconducting coils
have demonstrated current flow persisting for years without
degradation. This points to a lifetime for the persistent current
of at least 100 000 years and with theoretical estimates to
exceed the lifetime of the universe [5]. This is in this sense

that one can speak of the resistance becoming “truly zero” in
a superconductor. Instead, when it comes to the more basic
problem of detecting a single photon, one finds instead two-
photon antibunching deviating from uncorrelated light by at
best 7.5 × 10−5 [6] and 9.5 × 10−5 [7], which are furthermore
sensibly better than most values reported in the ample litera-
ture (which cannot be browsed completely even if we narrow
it down to recent reports below 10−2 [6–20]; see Ref. [21]
for a recent review). The record-value antibunching [6,7] has
been significantly improved by counteracting reexcitations
of a two-level system (2LS) by implementing two-photon
excitation schemes (in Ref. [22] we also discussed how ex-
citing a 2LS with quantum light improves its single-photon
characteristics). However, even with this newly added trick
to suppress multiphoton emission, the perfect antibunching
of an exact zero (or no coincidence at all regardless of the
time the experiment is run) is still out of reach. In this paper
we discuss mechanisms that lead to a loss of antibunching,
regardless of the source of light itself, which can indeed be
perfectly antibunched. We cover both technical (noise and
time jitter) and more fundamental reasons (linked to photon
detection).

II. DEFINITION OF ANTIBUNCHING

The definition of antibunching requires some discussion, as
it varies throughout times and authors [23] and is commonly
mixed with another one (sub-Poissonian statistics). At the
heart of every definition, one finds Glauber’s theory of optical
coherence [24], which introduces correlation functions g(n)
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the nth-order coherence as

g(n)
a (t1, . . . , tn)

≡ 〈a†(t1)a†(t2) · · · a†(tn)a(tn) · · · a(t2)a(t1)〉
〈a†(t1)a(t1)〉〈a†(t2)a(t2)〉 · · · 〈a†(tn)a(tn)〉 (1)

for a single mode with annihilation operator a, which is the
best way to root our discussion at its most fundamental level,
as involving a continuum from the start should eventually lead
us to the same results. Usually, this operator a is bosonic as it
refers to the photons emitted by the system. From the input-
output formalism, one can however extend the definition of
Eq. (1) to the field operators of the source itself, which will be
the case in this paper where we study the 2LS, in which case
one replaces a by the corresponding annihilation operator σ .
The times tk are in increasing order, i.e., t1 < t2 < · · · < tn. At
the two-photon level, which is of more common occurrence,
Eq. (1) reads

g(2)
a (t1, t2) = 〈a†(t1)a†(t2)a(t2)a(t1)〉

〈(a†a)(t1)〉〈(a†a)(t2)〉 (2)

with t1 < t2, and if dealing with a steady state, so that only the
time difference τ ≡ t2 − t1 matters,

g(2)
a (τ ) = 〈a†a†(τ )a(τ )a〉

〈a†a〉2
, (3)

with a ≡ a(0) and 〈a†a〉 = 〈a†(τ )a(τ )〉 for all τ by definition
of stationarity. At zero time delay τ = 0, Eq. (3) further sim-
plifies to what is the most important value,

g(2)
a (0) = 〈a†2a2〉

〈a†a〉2
. (4)

The average 〈· · · 〉 in Eqs. (1)–(3) can be understood from the
ergodic hypothesis as being either over statistical ensembles
of the system or in time for one in isolation (with no evolution
on average when assuming a steady state but fluctuations at
all times in all cases). It can be further simplified for Eq. (4)
as a quantum average over a density matrix ρ to yield the
two-photon coincidences g(2)

a (0) in terms of the probabilities
p(n) ≡ 〈n|ρ|n〉 of finding n photons in the system as

g(2)
a (0) =

∑∞
n=0 n(n − 1)p(n)[∑∞

n=0 np(n)
]2 . (5)

As such, antibunching is deeply associated with photon
statistics and the two-photon probability. However, nowa-
days, antibunching is commonly defined by the condition
[25,26]

g(2)
a (0) < g(2)

a (τ ) : ∀ 0 � τ < τmax, (6)

where τmax can be infinite. Since for long enough time delays
photons are uncorrelated, which means, by definition, that the
numerator in Eq. (3) factorizes in the form of the denomina-
tor, i.e., limτ→∞ g(2)

a (τ ) = 1, then a popular understanding of
antibunching reads

g(2)
a (0) < 1. (7)

This is inaccurate at best since Eqs. (6) and (7) are logically
independent, i.e., neither implies the other, although they
are strongly related to each other [27]. This point has been

made by Zou and Mandel [28]. A proper name for Eq. (7) is
sub-Poisson light (other denominations can be found such as
photon-number-squeezed light [23]). This is because in this
case the photon-number fluctuations as given by Eq. (5) are
indeed below those of a Poisson distribution, which implies
uncorrelations or a random number of photons for a given
average. On the opposite extreme, the case of exactly one
photon p(n) = δn,1, with no fluctuations, cancels the numer-
ator of Eq. (5), which starts at n = 2, and provides the perfect
antibunching

g(2)
a (0) = 0. (8)

This clearly satisfies Eq. (6). Faulty reasoning in terms of
integer numbers of photons only and forgetting about their su-
perpositions led to g(2)

a (0) < 1
2 as a criterion for single-photon

emission [29]: The value 1
2 is obtained for a two-photon state

p(n) = δn,2 and a smaller value would thus indicate one did
not get up to two photons, hence having one. This is of course
incorrect as the value should then be exactly zero. Although
the exact meaning of this criterion has been given [30,31], it
remains a popular one [21]. The ultimate goal for antibunch-
ing therefore remains that of Eq. (8), i.e., a strict zero, since,
however close to zero, the light could still be bunched if not
exactly suppressing coincidences at zero delay. Such discus-
sions truly become important for particular, and often odd,
cases such as the just-discussed bunching of sub-Poissonian
light or antibunching of super-Poissonian light. In this paper
we focus on the simplest case, which is also that of (today’s)
greatest interest, of sub-Poissonian antibunched light, so such
precautions in the terminology will not be entirely necessary.
By antibunching, we thus understand the tendency of emitting
single photons, as is often the case in the literature anyway.
Note that our formalisms and results can nevertheless be
applied to all types of photon correlations (bunching, super-
bunching, etc.) as we will see in the following, even if we
focus presently on antibunching.

III. MEASUREMENT OF ANTIBUNCHING

The typical setup for measuring antibunching experimen-
tally is that designed by Hanbury Brown [32] to implement an
intensity interferometer following his naked-eye observation
of radar correlations in the early days of its elaboration. While
initially designed for interferometry in radio astronomy [33],
its application to visible light was quickly understood as in-
volving photon correlations at the single-particle level, which
initially caused much controversy but was quickly confirmed
experimentally [34] (the denomination of “coherent” for the
beams of light in Ref. [34] predates Glauber’s theory of optical
coherence and refers to monochromatic thermal light). The
theory of the effect by Twiss gives to the setup its famed
name of Hanbury Brown–Twiss (HBT) interferometer. While
designed for bunching, i.e., the natural tendency of bosons
whose symmetric wave functions tend to clutter together, the
same setup is apt to measure all types of photon correla-
tions, including antibunching, as had been readily predicted
[35,36]. The HBT setup consists of a beam splitter followed
by two detectors in each branch which are temporally cor-
related. In practice, the first detector that records a click
starts a time counter while the other detector stops it and a
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normalized histogram of the time differences τ between the
successive photons thus reconstructs the second-order coher-
ence function g(2). It is also known as a photon-coincidence
measurement. The critical elements that affect the quantum
correlations in this setup are the detectors, which are typically
avalanche photodiodes (APDs) [37]. The most frequently used
detectors for low-intensity light are photomultiplier tubes,
but their quantum efficiency is low (less than 50%). For this
reason, APDs are used, which have an additional gain mech-
anism, the avalanche effect. With the APDs, a stable gain on
the order of 102−103 can be achieved, which is still too low
to detect single photons. For this purpose, the APDs must be
used in the Geiger mode [38]. These single-photon avalanche
photodiodes have a high detection efficiency and low dark
count rates, but they are slow and with a big timing jitter (typ-
ically 300–400 ps, with low values of 35 ps [39]). To multiply
the signal, they use semiconductor materials. Depending on
these materials, the APDs can operate in different frequency
windows between 550 and 1550 nm. Another source of noise
characteristic of APDs is the afterpulsing, which can limit the
count rate [40].

New methods have emerged to measure photon correla-
tions, in particular one that relies on a direct observation of
the photon streams as measured by a streak camera [41].
The detected photons are first transformed into photoelectrons
by means of a photocathode. These new photoelectrons are
deflected vertically to different pixels on the detector as a
function of time. Due to this shift, the vertical position on
the detector defines the time of arrival of the photon. Streak
cameras have low detection efficiency but allow for a reso-
lution of the order of picoseconds. They operate in frequency
windows of 300–1700 nm, depending on the material used for
the photocathode. One advantage of a streak camera setup in
a cw regime is that it provides the raw result with no need
for postprocessing or normalization. Namely, the condition
g(2)(τ → ∞) = 1, which is used to normalize the signal in
the case of an HBT measurement, should be automatically
fulfilled with the streak setup. Failure to be the case should
indicate some problem in the detection, e.g., nonstationarity
of the signal [42]. This allows as well one to compute higher-
order photon correlations, which can also be achieved with
other emerging techniques such as transition edge sensors set
up to directly resolve the number of detected photons [43].

With this brief overview of some of the main and newest
methods to measure antibunching, one gets a feeling of the
mechanisms that lead to its loss and that we will model the-
oretically in the following. These include, basically, external
noise and time uncertainty in the detection. The latter can be
due to jitter, meaning fluctuation or scrambling of the arrival
time due to the detector, or at a more fundamental level be
linked to the time-energy uncertainty which is inherent even
to ideal detectors. We will cover both mechanisms. Interest-
ingly, photon losses, which constitute an important limitation
of all schemes of photon detection, are not detrimental for
the measurement of g(2)(τ ). This merely dims the signal,
but preserves its statistics. Although only a coherent signal
can pass a linear optical element without being distorted and
sub-Poissonian or super-Poissonian signals get closer to Pois-
sonian distributions, e.g., by passing through beam splitters
[44], this however refers to the noise of the signal rather than

to its statistics. A well-ordered stream of single photons would
appear less ordered in the presence of losses, but this would
in no way lead to spurious coincidences. Such a closeness to
a Poissonian distribution is typically measured by the Fano
factor, which relates the width of the input distribution to
the expected one for a Poissonian distribution with the same
average number as F = (〈n2〉 − 〈n〉2)/〈n〉. Therefore, as the
Fano factor can grow linearly from 0, corresponding to a
number-state distribution, to 1, corresponding to a Poisson
distribution, as the probability to lose any one photon of
the input beam is increased, the statistics as measured by
g(2)(0) remains constant, equal to that of the ideal signal. This
is clear on physical grounds since removing photons to an
antibunched signal cannot create bunching. What is spoiled
is the signal, which can however be compensated by longer
integration times. The loss is therefore in quantity, not in
quality. This features makes the lossy setups, including the
HBT one, able to measure antibunching [45], as it does not
matter that strictly successive photons are recorded, g(2)(τ )
being a density probability for any two photons to be separated
by the interval τ , regardless of whether other photons are
present in between. In fact, a histogram of exactly successive
photons would fail to produce the uncorrelated plateau at
long τ . We can therefore already eliminate one of the main
difficulties encountered in the experiment and focus on the
other above-cited mechanisms. Before turning to them in de-
tail, we first review the antibunching from the source we will
use to illustrate the general theory, which is of great interest
regardless, being the most fundamental and widespread type
of single-photon source.

IV. EXAMPLES OF ANTIBUNCHING

The two-level system is the paradigmatic source of single
photons. When the emission occurs with the system relaxing
from its excited state to its ground state, and since it takes
a finite amount of time for the 2LS to be reexcited, together
with the impossibility to host more than one excitation at a
time, two photons can never be emitted simultaneously. This
is at least the basic picture which one can form and that
applies in the simplest cases of incoherent excitation as well
as strong coherent excitation. Under weak coherent excitation,
on the other hand, subtle interferences at the multiphoton level
also produce antibunching but with a distinct physical origin
[46]. In the rest of the paper we will work with the cases
of incoherent and coherent excitation, the latter being further
separated into its weak- (Heitler) and high- (Mollow) driving
regimes.

A. Incoherent excitation

The Hamiltonian of an incoherently driven 2LS is simply
its free energy, namely,

Hσ = ωσσ †σ, (9)

where the 2LS is described through the annihilation operator
σ , which satisfies the algebra of pseudospins, and ωσ is the
natural frequency of the 2LS. Both the excitation and decay of
the 2LS are taken into account by turning to a master equation
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(we use h̄ = 1 throughout the paper)

∂tρ = i[ρ, Hσ ] +
∑

k

Lck ρ, (10)

with the Lindblad terms Lσ †ρ = (Pσ /2)(2σ †ρσ − σσ †ρ −
ρσσ †), where Pσ is the rate of excitation, and Lσ ρ =
(γσ /2)(2σρσ † − σ †σρ − ρσ †σ ), where γσ is the decay rate
[47–49]. It is then a simple algebraic procedure to obtain
the second-order correlations of a 2LS, g(2)

σ (τ ) = 〈σ †σ †(τ )σ (τ )σ 〉
〈σ †σ 〉2

[cf. Eq. (3)], under incoherent pumping Pσ , as

g(2)
σ,Pσ

(τ ) = 1 − e−	σ τ , (11)

in terms of the effective decay rate 	σ ≡ γσ + Pσ that causes
the power broadening of the emission spectrum.

B. Coherent excitation

The counterpart of the preceding section for coherent exci-
tation is described by the Hamiltonian

H
σ
= ωσσ †σ + 
σ (σeiωLt + σ †e−iωLt ) (12)

and, subsequently, by the master equation

∂tρ = i[ρ, H
σ
] + γσ

2
(2σρσ † − σ †σρ − ρσ †σ ), (13)

where 
2
σ is the intensity at which the 2LS is driven by a

laser of frequency ωL. The temporal dependence in Eq. (12)
is removed by making a Dirac transformation, leaving the
contribution from the free energy of the 2LS [Eq. (9)] pro-
portional to the detuning �σ ≡ ωσ − ωL between the laser
and the 2LS’s natural frequencies. We will focus on the strict
“resonance” of resonance fluorescence, meaning �σ = 0 (the
emitter is driven at the frequency at which it emits). The same
techniques applied to this variation of the problem provide the
correlations for the 2LS under coherent excitation as

g(2)
σ,
σ

(τ ) = 1 − e−3γσ τ/4

[
cosh

(
γMτ

4

)
+ 3γσ

γM
sinh

(
γMτ

4

)]
,

(14)
where γM ≡ √

γ 2
σ − (8
σ )2 (M is for Mollow). This more

involved expression accounts for both regimes of low and high
driving. In the Heitler regime [50], where the rate of excitation
is much weaker than the decay rate of the 2LS, the correlations
simplify to

g(2)
σ,
σ →0(τ ) = (1 − e−γσ τ/2)2, (15)

and in the limit of large driving, the correlations are strongly
oscillating (with frequency 2
σ ) between the envelopes

g(2)
σ,
σ →∞(τ ) = 1 ± e−3γσ τ/4 (16)

that decay from 0 and 2, respectively, to 1. All the expressions
in Eqs. (11) and (14)–(16) are autocorrelations and as such
they are symmetric functions, namely, g(2)

σ (−τ ) = g(2)
σ (τ ).

Already, we have more than enough material to study from
this basic emitter the highly nontrivial physics of loss of anti-
bunching, and we will focus the rest of our discussion on this
case. Other antibunched sources would either behave similarly
and/or could be studied following a similar approach.

V. LOSS OF ANTIBUNCHING BY NOISE
CONTAMINATION

A first obvious and simple way that antibunching can be
lost is due to the signal being perturbed by noise. Dark counts,
for instance, which correspond to photon detection even in
the absence of light (whence the name) [51], clearly spoil
antibunching, since the extra photon can arrive simultaneously
with a signal photon that was supposed to be detected in
isolation. Also, in some cases, the laser driving the system can
directly inject a spurious fraction of photons into the detectors
[52]. All these photons that are uncorrelated with the source
cause a random noise, or shot noise, which (usually) spoils
antibunching (shot noise usually assumes Poissonian statistics
of the noise).

If we call I (t ) the instantaneous photon intensity from the
source (signal) and I ′(t ) that of the randomly added photons
(noise), the total final intensity is given by

I∗(t ) = I ′(t ) + I (t ) (17)

and the photon statistics of the total signal is given by

g∗(2)(t, τ ) = 〈:I∗(t )I∗(t + τ ):〉
〈I∗(t )〉2

, (18)

where : · · · : normally orders the operators so that they appear
in the form of Eq. (2), without which the Cauchy-Schwarz
inequality forbids antibunching [in the form of Eq. (6)].
Since the signal and noise are uncorrelated 〈:I (t )I ′(t ′):〉 =
〈I (t )〉〈I ′(t ′)〉 for all t , t ′, and with ξ , the noise-to-signal ratio,
i.e., ξ (t ) ≡ 〈I ′(t )〉/〈I (t )〉, one can get a simple expression that
relates the photon statistics of the signal contaminated by
the noise with statistics g′(2)(τ ) ≡ 〈:I ′(t )I ′(t + τ ):〉/〈I ′(t )〉2 to
that of the original signal g(2)(τ ) as

g∗(2)(t, τ )=g(2)(t, τ )+ξ (t )ξ (t+τ )g′(2)(τ )+ξ (t )+ξ (t + τ )

(1 + ξ )2
.

(19)
This is straightforwardly applied to the case of a stationary
signal, in which case Eq. (19) becomes g∗(2)(τ ) = [g(2)(τ ) +
ξ 2g′(2)(τ ) + 2ξ ]/(1 + ξ )2, where ξ is now a constant. If the
noise has no correlation, g′(2)(τ ) = 1 for all τ , and for perfect
antibunching with g(2)(0) = 0, the loss of antibunching ξ (2 +
ξ )/(1 + ξ )2 requires a noise-to-signal ratio of

√
2 − 1 ≈ 42%

to spoil it to 0.5; even when there is twice as much noise
as perfectly antibunched signal, the resulting antibunching of
8
9 ≈ 0.89 is still clearly observed. The random noise tends to
flatten the correlations to that of an uncorrelated (coherent)
signal with g∗(2)(τ ) = 1 everywhere, in a way that shifts the
curves to one, without transforming bunching into antibunch-
ing or vice versa [53]. It also has no effect on the coherence
time (the time necessary for the correlation to converge to one
is independent of the percentage of noise). Thermal noise, not
surprisingly, is more detrimental to antibunching, with ξ = 1

3
to spoil perfect antibunching to 0.5, and when the noise and
signal are equal in intensity, then g∗(2)(0) = 1, with super-
Poissonian statistics for higher ξ . Depending on the coherence
time of the thermal light, g∗(2)(τ ) is either bunched or anti-
bunched in the sense of decreasing or increasing correlations
in time. If the noise itself is antibunched, it cannot increase
g∗(2)(0) beyond 0.5, which it does when ξ = 1. Further noise
reduces g∗(2)(0) again as the original signal becomes the noise
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for the now dominating antibunching. In all cases, in the limit
ξ → ∞, g∗(2)(τ ) → g′(2)(τ ) and then one observes the noise
itself, so what is lost is indeed the antibunching of the signal
(such as its coherence time). Finally, we commented already
how a possible source of noise is from the driving laser itself.
We have assumed in this discussion that the noise and signal
are independent and do not interfere, so their intensity is
simply added in a way reminiscent of a classical picture of
photons as particles which are superimposed onto others. In
this respect, the normal ordering above plays no direct role
and one could understand the result with classical stochastic
fields I which are not number operators. In contrast, it could
also be the case that the admixing of the two quantum fields
is done at the level of their amplitudes, in which case the
description would need to be with quantized fields along the
lines of Ref. [54] where time and operator orderings would be
significant and more complex correlations could be obtained
as a result.

VI. LOSS OF ANTIBUNCHING BY TIME UNCERTAINTY

We now turn to the loss of antibunching due to a time
uncertainty in the detection of the photons. Such a scenario
can be due to a dead time of the detector or a jitter effect. In
both cases, the result is that a photon arriving at the detector
at a time t0 is reported by the latter at some other time t0 + t ,
with t following a probability distribution D2

	 (t ), which we
will refer to as the jitter function. The parameter 	 is the
inverse of the characteristic jitter time in the sense that it is
a measure of the width of the distribution. Independently of
	, since we assume perfect detection, the jitter function must
be such that

∫ ∞

−∞
D2

	 (t )dt = 1, (20)

implying that all the photons that arrive at the detector are
ultimately reported. The temporal structure of the photon
stream that is received by the detector is modified by the jitter
function. Its effect can be formally taken into account through
the physical spectrum of emission, defined as [55]

S(1)
	 (ω, T ) = 1

2π

∫∫ ∞

−∞
D	 (T − t1)D	 (T − t2)

× eiω(t2−t1 )〈σ †(t1)σ (t2)〉 dt1dt2, (21)

where σ is the annihilation operator of the field emit-
ting the photons and ω and T are the frequency and time
at which these photons are being emitted. While we will
later on apply the theory to the case where σ describes
a 2LS, the theory is general and holds for any single-
mode field. Integrating Eq. (21) in frequency leads to the
time-resolved population S(1)

	 (T ) ≡ ∫ ∞
−∞ S(1)

	 (ω, T )dω which,
using

∫ ∞
−∞ e−iω(t2−t1 )dω = 2πδ(t2 − t1), gives

S(1)
	 (T ) =

∫ ∞

−∞
D2

	 (T − t )〈σ †σ 〉(t )dt . (22)

Namely, the time-resolved population of the light emitted is
the convolution of the population with the jitter function. If
the signal is in a steady state, then the population is indepen-
dent of time, 〈σ †σ 〉 = nσ , and we find that the time-resolved
population is equal to the total intensity, S	 (T ) = nσ , and that
the jitter does not play a role in this observation. This makes
sense since in the steady state, shuffling the times at which
the photons are reported does not change the mean number of
detected photons per unit time.

Applying the same treatment to the intensity-intensity cor-
relation function describes the effect of the time jitter on
g(2)(τ ) which now persists even in the steady state. Instead of
the physical spectrum, one starts in this case with the second-
order correlation function resolved in time and frequency [56]

S(2)
	1	2

(ω1, T1; ω2, T2) = 1

(2π )2

∫∫∫∫ ∞

−∞
dt1dt2dt3dt4D	1 (T1 − t1)D	1 (T1 − t4)D	2 (T2 − t2)D	2 (T2 − t3)

× eiω1(t4−t1 )eiω2(t3−t2 )〈T−[σ †(t1)σ †(t2)]T+[σ (t3)σ (t4)]〉, (23)

where 	1 and 	2 accommodate the fact that the pair of
photons can be recorded by detectors with different jitters,
T+ and T− mean time reordering of the operators so that
the first time is to the far right and the last time to the
far left, respectively, and the whole expression is likewise
time ordered. Assuming that the jitter for both detectors are
equal (i.e., 	1 = 	2 = 	), the frequency-integrated quantity
S(2)

	 (T1; T2) = ∫∫ ∞
−∞ S(2)

	1	2
(ω1, T1; ω2, T2)dω1dω2 becomes

S(2)
	 (T1; T2) =

∫∫ ∞

−∞
D2

	 (T1 − t1)D2
	 (T2 − t2)

× 〈T−[σ †(t1)σ †(t2)]T+[σ (t2)σ (t1)]〉 dt1dt2,
(24)

which corresponds to the intensity correlations between two
branches of a split signal that is affected by the same time

jitter. Time ordering of the operators leads to two integra-
tion regions t1 > t2 and t2 > t1, which allows us to express
Eq. (24) in terms of the standard G(2)(t,�t ) = 〈a†(t )a†(t +
�t )a(t + �t )a(t )〉 of the system, setting t = min(t1, t2) and
�t = |t1 − t2|,
S(2)

	 (T1; T2)

=
∫ ∞

−∞
dt

∫ ∞

0
d�t G(2)(t,�t )[D2

	 (T1 − t )D2
	 (T2 − t − �t )

+ D2
	 (T1 − t − �t )D2

	 (T2 − t )], (25)

where 0 � �t < ∞ represents the delay between the two de-
tected photons. The second-order correlations function of the
stream of photons affected by the time jitter is then obtained
by normalizing Eq. (25) with Eq. (22) as

g(2)
	 (T1; T2) = S(2)

	 (T1; T2)/
[
S(1)

	 (T1)S(1)
	 (T2)

]
. (26)
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In the case of a steady state, it is convenient to express the
correlations as a function of the time delay between the photon
pairs (the initial time is irrelevant in this case). This provides
the main result of this section in the form of the jittered g(2)

	

expression from that of the original signal as affected by the
jitter function D	 ,

g(2)
	 (τ ) =

∫ ∞

0
g(2)(θ )

∫ ∞

−∞

[
D2

	 (−t − θ )D2
	 (τ − t )

+ D2
	 (−t )D2

	 (τ − t − θ )dt
]
dθ, (27)

where we have used the fact that in the steady state S(1)
	 (T ) =

nσ is independent of time and g(2)(θ ) is the second-order
correlation of the photon stream without the time jitter. Equa-
tion (27) is general: It holds for any g(2)(θ ) (as long as it is
obtained in the steady state). It shows that the correlations
with time jitter are obtained by weighting the original corre-
lation function with a quantity that depends only on the jitter
function. We now consider a few particular cases, describing
a possible physical origin for each of them. The analytical
expressions for the corresponding photon correlations for the
emission from a two-level system in the various regimes of
excitation, applied to the textbook expressions (11) and (14),
can be obtained in all theses cases, but they are bulky and not
enlightening per se; therefore we provide their full expression
in the Appendixes. All the distributions have been chosen such
that their variances are identical, namely, equal to 1/	2, so as
to compare them usefully (the variance is a better indicator of
the effect of the distribution on antibunching than the mean).

(i) The Heaviside function describes a device that has no
time resolution within a given time window, in which case the
jitter function reads

D	 (t ) ≡
√

	√
12

θ

(
1 − 2	t√

12

)
θ

(
1 + 2	t√

12

)
, (28)

where θ (t ) is the Heaviside function and the distribution in
Eq. (28) is only nonzero in the interval |t | <

√
3/	 (chosen

again so that the variance of the jitter is 1/	2), as shown
in Fig. 1(i). This could correspond to a streak camera which
randomizes the time information within one pixel of the CCD
camera [57]. The filtered correlations are given by Eq. (A2)
for incoherent excitation and by Eq. (A3) for coherent excita-
tion.

(ii) The exponential function describes a device that is
equally likely to trigger the signal at any moment that follows
its excitation, with the jitter function

D	 (t ) =
√

	θ (t )e−	t/2, (29)

where θ (t ) is the Heaviside function, as shown in Fig. 1(ii).
This describes a wide class of devices with a memoryless
dead time. The filtered correlations are given by Eq. (A5) for
incoherent excitation and by Eq. (A6) for coherent excitation.

(iii) The double-exponential function, also known as the
Laplace distribution, describes a device that has a memoryless
dead time not only in its signal emission, like the previous
type, but also in its excitation time, with the jitter function

D	 (t ) =
√

	√
2

e−|t |	/
√

2, (30)

(i)

(ii)

(iii)

(iv)

Heaviside

Exponential

Laplace

Gaussian

420-4 -2
0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

FIG. 1. Jitter functions considered in this text, namely, (a) Heav-
iside (28), (b) single exponential (29), (c) double exponential
(Laplace) (30), and (d) Gaussian, (31), all with the variance 1/	2.
A photon from the original signal at time 0 is replaced by one at time
t following the respective distributions.

as shown in Fig. 1(iii). It can be seen as a refinement of the
two previous cases, where the variation at which the photons
are reported can be both delayed and advanced according to
an exponential function. The filtered correlations are given
by Eq. (A9) for incoherent excitation and by Eq. (A10) for
coherent excitation.

(iv) Finally, the Gaussian function describes normally dis-
tributed fluctuations in the detection time, with the jitter
function

D	 (t ) =
√

	

(2π )1/4
e−(	t/2)2

, (31)

as shown in Fig. 1(iv). This could be due to, e.g., the elec-
tronics involved in the detection of a photon after its arrival or
various types of noise [58]. The filtered correlations are given
by Eq. (A13) for incoherent excitation and by Eq. (A14) for
coherent excitation.

The two-photon correlations as seen by a detector with the
four types of time jitters just described are shown in Fig. 2
for incoherent excitation and in Fig. 3 for coherent excitation,
as follows from the analytical expressions given in the Ap-
pendixes. The most striking result is that while various types
of jitter result in an overall identical loss of antibunching, the
robustness of the photon correlations depends on the type and
the regime of driving, even though the emitter is the same
(2LS). Specifically, the most robust photon correlations are
from the coherent driving in the Heitler regime. This can be
understood from the coherence time of the Heitler correla-
tions, being larger than for the others. Comparing Figs. 2(c)
and 3(c) (the traces of the former are reproduced in light
gray in the latter), one can see how the Mollow regime, the
incoherent 2LS, and finally the Heitler regime appear in order
of least robust to most robust (the same amount of any type
of jitter affects much more the Mollow antibunching than it
does its Heitler counterpart). This comparison is direct for the
vanishing drivings Pσ → 0 and 
σ → 0 as it allows us to su-
perimpose both graphs with the same axes. For small enough
jitter (γσ /	 � 0.1 in the figure), the Mollow antibunching
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FIG. 2. Photon correlations with various types of time jitter for the incoherently driven 2LS. (a) Transition from perfect antibunching when
the jitter vanishes (corresponding to a large 	 of the jitter functions) to uncorrelation when jitter is large. The progression occurs at different
speeds depending on the type of jitter, namely, (i) Heaviside, (ii) single exponential, (iii) double exponential (Laplace), and (iv) Gaussian. The
black contours shows the isolines g(2)

	,Pσ
= 0.9. (b) Cuts along the lines marked in (a ii) (single exponential). (c) Zero-delay correlations for the

various types of jitter, which only cause small quantitative departures that are not even discernible for cases (i) and (iv).

actually gets more robust than the incoherent 2LS, which is
itself more sensitive to time shifts than the Heitler case. The
antibunching in this limit of small values of the x axes for the
various types of jitters is

g(2)
	,Pσ

(0) = Cj
	σ

	
, (32a)

g(2),Heitler
	,
σ

(0) = γ 2
σ

2	2
, (32b)

with Cj a coefficient that corresponds to the jitter types listed
in Fig. 1 for j = i, ii, iii, iv, which one can obtain from the

expressions given in Appendix A as Ci = 2
√

3/3, Cii = 1,
Ciii = 3

√
2/4, and Civ = 2/

√
π . In the coherent case, the

Heitler regime has the same limiting case for all types of
jitters, while the Mollow regime is a complicated function of
the parameters 
σ , γσ , and 	, which we do not provide but
that differ for the various types of jitter. The γσ → 0 limit
converges to nonzero values of g(2)

	,
σ
(0) for finite jitter in both

the incoherent and Mollow cases. In the incoherent case, this
indeed plateaus to Cjγσ /	. The Heitler case and the Gaussian
jitter in the Mollow case both go to zero to leading order.
The other Mollow cases plateau to complicated functions of
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0.0

0.5

1.5

1.0

2.0

10-2 10-1 100 101 102

(b) (c)

M
ol
lo
w

H
ei
tl
er

i,iv iii, ii

i,iv iii, ii

22- 0 422- 04- 4±
10-2

10-1

100

101

102
(a)

1
0

2

Heitler Mollow

FIG. 3. Photon correlations with various types of time jitter for the coherently driven 2LS. (a) The loss of antibunching depends strongly
on the regime of excitation, i.e., in the Heitler regime (left) the transition to uncorrelation requires a greater time jitter than in the Mollow
triplet regime (right). The behavior with the four jitter functions follows the trend shown in Fig. 2(a) and therefore we only show the case for
the single exponential. (b) Cuts along the lines marked in (a) for the Mollow triplet, showing the dampening of the correlations as the jitter
increases. (c) Zero-delay correlations. The blue solid and red dashed lines correspond to the 2LS driven in the Heitler and Mollow regimes,
respectively. The Heitler regime depends only on γσ /	, so the plot covers all cases (of sufficiently small driving). The Mollow regime also
depends on 
σ which is here taken as 2γσ . Higher values of 
σ further shift the family of curves to the left. The various lines i–iv correspond
to the different jitter functions, namely, Heaviside, double exponential, single exponential, and Gaussian, respectively. The incoherent-case
counterparts from Fig. 2(c) for the corresponding case of vanishing driving Pσ → 0 are also shown in light gray for comparison. While the
type of jitter bears little impact on the loss of antibunching, both the type of driving and its regime have a considerable influence.
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the parameters, which is not necessary to provide explicitly.
All go to zero as 	 → ∞ (no jitter). Such limiting cases are
interesting to compare the loss of antibunching between the
various types and regimes of driving. It is well known that
resonant excitation yields stronger antibunching, but this is
attributed to the cleaner environment that is free of carriers,
heating, etc. Here we find that at a fundamental level too,
resonant excitation typically produces a stronger antibunching
in the sense that it is more resilient to factors that spoil it.

The Heaviside and Gaussian types of jitter lead to almost
identical losses of antibunching, suggesting that spreading
more photons (these two distribution are flatter) has a worse
effect than displacing fewer of them but farther. There is
nevertheless a difference between the Heaviside and Gaussian
types of jitter in the Mollow case, since the former shifts pho-
tons from the time window where g(2)(τ ) < 1 to that where
it is greater than 1 “all of a sudden” as a function of 	, while
the Gaussian type perceives the g(2)(τ ) > 1 region in advance.
The same happens for a still larger 	 now returning to a region
where g(2)(τ ) < 1. These successions lead to ripples in the
loss of antibunching with the Heaviside type of jitter. This
is a small, but qualitative, departure between the two types
of jitter. In all cases, the single-exponential memoryless jitter
is the one that least affects the antibunching. Since the exact
quantitative results differ only slightly from one type of jitter
to the other, we show the traces for the loss of antibunching
for one case only (ii, single exponential) in Figs. 2(b) and
3(b), where the temporal dependence also exhibits a change
in the correlation time in addition to the damping of the cor-
relations. In all cases, in the limit of large widths of the jitter
noise, the correlations follow a Poisson distribution. The mean
uncertainty of the times at which the photons are observed
increases to a point where times are essentially randomized.
While this is true regardless of the type of jitter, the speed of
this randomization varies.

As a concluding remark, it would be interesting for prac-
tical purposes to tackle the reverse problem of deconvoluting
Eq. (27) so as to obtain the original g(2)(θ ) from the measured
g(2)

	 (τ ) in the presence of time jitter. In cases where the main
cause of the loss of antibunching is due to such a mechanism,
that would allow us to get a more faithful characterization of
the source regardless of secondary issues from the surround-
ing equipment. Such attempts are furthermore commonplace
in the literature [29,59–79], although how legitimate and accu-
rate the recovery procedure is in all cases is still unclear to us,
since it applies only for this particular type of antibunching
loss (it could be, for instance, quite meaningless for that
discussed in the next section) and through a procedure that
appears to be oversimplified in view of the general expression
given above.

VII. LOSS OF ANTIBUNCHING BY FREQUENCY
FILTERING

Antibunching is also spoiled in another way, this time
more fundamental since it is inherent to any detection pro-
cess. Consider a photon counting experiment in which one
has information not only about the time of arrival, but also
about the frequency (or energy) of the detected photon. In
such a scenario, Heisenberg’s uncertainty principle applies:

A perfect resolution of the time of arrival (and therefore, in
the absence of jitter, of the time of emission) results in a com-
plete uncertainty of the frequency of the photons. Satisfying
this condition allows one to observe the perfect antibunch-
ing of the source if it is there, as is the case with a 2LS,
for which the second-order correlation functions, given in
Eq. (11) for incoherent driving and in Eq. (14) for coherent
driving, is exactly zero at τ = 0. However, gaining informa-
tion about the frequency of the detected photons means that
the temporal resolution inevitably ceases to be perfect, and
antibunching gets lost as a consequence. Emission spectra
are typically Lorentzian, i.e., with fat tails and thus regu-
larly emitting arbitrarily far from the central frequency. Since
all detectors have a finite bandwidth, such photons are lost.
Detection is therefore fundamentally limited in its frequency
range or, equivalently, in its temporal resolution. Formally,
such an effect is embodied in the expressions for the first-
and second-order physical spectra, given in Eqs. (21) and
(23), respectively. Thus, the frequency-resolved second-order
correlation function is obtained as

g(2)
	1	2

(ω1, T1; ω2, T2) = S(2)
	1	2

(ω1, T1; ω2, T2)

S(1)
	1

(ω1, T1)S(1)
	2

(ω2, T2)
, (33)

which is the counterpart of Eq. (2) for photons whose frequen-
cies ωi as well as times Ti of detections are now known within
the limits 	i of the detectors.

Obtaining the frequency-resolved correlations in Eq. (33)
is a complicated task, for which several integrals must be
performed, keeping track of the integration regions that stem
from the time-ordering requirements. Even for the most
fundamental system, the two-level system, and a detection
function with an exponential profile [as given in Eq. (29)], this
endeavor required some approximations that however allowed
one to obtain approximate analytical expressions [45,80–85].

A theory to compute N-photon frequency-resolved photon
correlations [56], for which Eq. (33) is a particular case with
N = 2, was shown to be both exact and simple to imple-
ment. It consists in adding detectors to the source of light,
whose correlations recover those of the filtered emission of the
source. This is exact provided the dynamics of the detectors
do not perturb that of the source itself. This can be ensured
either by having the source and the detectors coupled with
a vanishing strength (this was actually the approach taken
in the original paper [56]) or by turning to the cascaded
formalism [86,87], by which the coupling is unidirectional
and the detectors become the targets of the excitation of the
source of light, which remains unaffected by the presence of
the detectors. We have shown that, for Glauber correlations,
these two approaches are equivalent [88] (to measure, say, the
numerators of the Glauber correlators, of which the population
is a particular case of interest, the cascading formalism must
be used). In practical terms, the description of the system
consisting of the source and the detectors of the emission that
will implement frequency filtering, as shown in Ref. [56], is
done by augmenting the master equation, namely, Eq. (10)
for incoherent pumping and Eq. (13) for coherent driving,
with a detector described by a bosonic operator ξ . Thus, if
the source of light is described by a field with annihilation
operator σ (which in our case is the two-level system but
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FIG. 4. Loss of antibunching of an incoherently driven 2LS due to frequency filtering. (a) The observed correlations transit from perfect
antibunching when not filtering (	 → ∞) to a complete thermalization in the opposite limit (	 → 0), as described by Eq. (35). (b) Cuts of the
map in (a) for the 	/γσ ratios highlighted by the blue dashed lines numbered 1–8. Note that while the correlations vary from antibunching to
bunching, they do not pass through an exactly uncorrelated emission, as is evidenced by the lump in the correlations marked by the arrow on
line 4. (c) Zero-delay correlation as a function of the linewidth of the detector, showing a smooth loss of antibunching with frequency filtering.

could be any other operator with any given quantum algebra),
then the Hamiltonian H for the source is supplemented with a
Jaynes-Cummings type of coupling with the detector as (still
with h̄ = 1)

H → H + ωξξ
†ξ + ε(σ †ξ + ξ †σ ), (34)

where H is, in our case, either Hσ for incoherent pumping
[cf. Eq. (9)] or H
σ

for coherent driving [cf. Eq. (12)], ωξ

is the frequency at which the detector is collecting the light,
and ε is the (vanishing) strength of the coupling between
the source and the detector. In addition, the bandwidth 	 of
the detector ξ is included thought a Lindblad term Lξ ρ =
(	/2)(2ξρξ † − ξ †ξρ − ρξ †ξ ). Given that the operator ξ de-
scribes the detector of light, the parameter 	 can also be
interpreted as the linewidth of the detector. Note that if the
detector were in isolation (without coupling it to the source),
its emission spectrum would be given by a Lorentzian of width
	 centered at ωξ . Therefore, the frequency filtering done with
this detector has a Lorentzian profile and the time resolu-
tion is lost following an exponential distribution with mean

1/	. As we will see, that nevertheless leads to a different
loss of antibunching than from the corresponding jitter case
(cf. Appendix A 2). The method outlined above can also be
used to describe detectors with different temporal and spectral
resolutions, such as the ones that we have considered in the
preceding section: One simply has to couple the source of
light to a quantum object whose emission spectrum has the de-
sired shape. However, their implementation is more involved
[89] and therefore in this paper we will restrict the discussion
to the case of Lorentzian filters.

The rest of the section is devoted to the explicit application
of the theory of frequency-resolved correlations to the emis-
sion of a two-level system, considering the excitation from
both an incoherent and a coherent source of light.

A. Incoherent excitation

The master equation in Eq. (10) with the Hamiltonian in
Eq. (9) complemented with a detector ξ of bandwidth 	 gives
access to the frequency-resolved correlations of the incoher-
ently driven 2LS. When the detector is in resonance to the
2LS, i.e., ωξ = ωσ , we find

g(2)
σ (τ ) = 1 −

(
	

	 − 	σ

)2

e−	σ τ + 	σ

(
	2

σ − 3		σ − 2	2
)

(	σ − 	)2(	σ + 3	)
e−	τ + 2	σ	(5	 − 	σ )

(	σ − 	)2(	σ + 3	)
e−(	σ +	)τ/2, (35)

where 	σ = γσ + Pσ . This result was already obtained
through numerical calculations with frequency-resolved
Monte Carlo simulations in Ref. [88]. The expressions for
higher-order correlations can also be obtained in closed form,
but they become bulky and typically not considered for an-
tibunching, so we do not discuss them here. Furthermore, in
Ref. [22] we provided a recurrence relation for all correlations
at zero delay. The expression in Eq. (35) is written for positive
values of τ , but, as before, these correlations are a symmetric
function of time, namely, g(2)

σ (τ ) = g(2)
σ (−τ ), as is shown in

Fig. 4. There one can appreciate the transition from perfect an-
tibunching (in the limit in which the linewidth of the detector

is infinite, 	 → ∞, and one does not have information about
the frequency of the observed photons) to photon bunching
(in the opposite regime, where the linewidth of the detector is
much smaller than the linewidth of the emission, 	/γσ → 0),
where the extreme frequency filtering yields a thermalization
of the signal [22,57,90,91]. This is even more clear from the
particular case of Eq. (35) at zero delay, which reduces to

g(2)
σ (0) = 2	σ

	σ + 3	
(36)

and is shown in Fig. 4(c) [this was also obtained in Ref. [91],
Eqs. (6) and (8), and from the cascaded formalism in Ref. [92],
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Eq. (14b)]. This displays a smooth transition from antibunch-
ing to bunching, in accordance with the universal behavior
of thermalization by extreme filtering and of recovering
the unfiltered correlations when detecting at all frequencies,
namely,

lim
	→0

g(2)
σ (τ ) = 2, lim

	→∞
g(2)

σ (τ ) = g(2)(τ ) of Eq. (11). (37)

A series expansion of 	 around zero gives the time de-
pendence for the correlation function for vanishing filters
as g(2)(τ ) ≈ 1 + exp(−	τ ), showing how in this case the
dynamics of the emitter itself is completely washed out by
the filter, which is solely responsible for the statistics of the
surviving photons. The limit of vanishing frequency filter-
ing thus deviates qualitatively from the case considered in
the preceding section, where the loss of antibunching was
due to temporal uncertainty in the measurement. Here we
observe thermalization, with g(2)

σ (0) = 2, while in the lat-
ter case we observed that the signal became uncorrelated,
with lim	→0 g(2)

	 (τ ) = 1, regardless of the jitter function.
This highlights the fundamental difference between the two
mechanisms through which the antibunching is lost, with the
randomization in the case of temporal uncertainty and the
indistinguishability bunching stemming from frequency filter-
ing [91].

Looking more closely, the isoline g(2)
σ (τ ) = 1 is not straight

in Fig. 4(a) (black dash-dotted line). Cuts for some values
of the detector linewidth are shown in Fig. 4(b), where the
various numbered lines correspond to the horizontal dashed
lines in Fig. 4(a). Thus, the transition of the correlations from
antibunching to a thermal state with an increase of the coher-
ence time, as filtering tightens, does not transit through exactly
uncorrelated (or coherent) light. The shape is similar to that of
an antibunched signal contaminated by thermal noise with a
smaller coherence time [cf. Eq. (19)] and possibly the effect of
the filter could be understood in these terms: converting some
photons from the signal into thermal photons. The transition is
thus richer than one could have expected. Therefore, Eq. (37)
should be more accurately used than the customary single-
exponential fit g(2)(τ ) ≈ 1 − g(2)

0 exp(−t/τ0), where the value

of the parameter g0 is introduced from a deconvolution of the
photon correlations with the temporal profile of the instrument
response function [29,59–79]. The observation of this detailed
structure of the loss of antibunching seems to be readily ob-
servable experimentally and would provide a fundamental test
of the theory of frequency-resolved photon correlation from
one of the most basic types of quantum emission as well as
confirm that the loss of antibunching is more complex and
varied than is typically assumed, even for the most simple
cases.

B. Coherent excitation

Now turning to the master equation (13) complemented by
a detector ξ , we obtain the time-resolved frequency-resolved
correlations for the coherently driven 2LS. The general ex-
pression can also be obtained analytically, but it becomes quite
cumbersome and will require the definition of a few auxiliary
notations. It takes the form of a sum of seven exponentials of
τ correcting the no-correlation value (unity)

g(2)
σ (τ ) = 1 +

7∑
i=1

G (2)
i exp(−γiτ ) (38)

with coherence times

γ1 ≡ (3γσ + γM)/4, γ2 ≡ (3γσ − γM)/4, (39a)

γ3 ≡ 	/2, (39b)

γ4 ≡ γ11/2, (39c)

γ5 ≡ (γ23 + γM)/4, γ6 ≡ (γ23 − γM)/4, (39d)

γ7 ≡ 	, (39e)

where we have introduced the notation

γi j ≡ i	 + jγσ , (40)

i.e., γ11 = 	 + γσ and γ23 = 2	 + 3γσ . The corresponding
coefficients Gi are bulky and given in Eqs. (B1)–(B7), but
various limits of interest can be obtained in closed form of size
reasonable enough to be featured as complete expressions,
starting with the zero-delay correlation for arbitrary driving
intensities:

g(2)
σ (0)=γ11

(
γ 2

01+4
2
σ

)(
γ11γ12 + 8
2

σ

)[
γ11γ

2
21γ

2
31γ12γ32 + 4γ10γ31

(
17γ 3

10 + 29γ 2
10γ01 + 18γ10γ

2
01 + 4γ 3

01

)

2

σ + 48γ 2
10γ21


4
σ

]
γ21γ31

(
γ11γ21 + 4
2

σ

)(
γ31γ32 + 8
2

σ

)(
γ 2

11γ12 + 4γ10
2
σ

)2 .

(41)

This was also obtained from the cascaded formalism in Ref. [92], Eq. (19b), and used to account for finite-driving departures in
Ref. [46], where this expressions provided an essentially exact fit to the raw data.

The time correlations in the low-driving Heitler limit can be considerably simplified,

g(2)
σ,Heitler (τ ) = e−(	+γσ )τ

[
	2e	τ/2 − 	γσ eγσ τ/2 − (

	2 − γ 2
σ

)
e(	+γσ )τ/2

]2

(	2 − γ 2
σ )2

, (42)

with a simple overall behavior of a monotonic loss of antibunching, due to frequency filtering, given by

g(2)
σ,Heitler (0) =

(
γσ

γσ + 	

)2

. (43)

This is shown on Fig. 5(a). The zero-delay correlation function was obtained in Ref. [91], Eq. (21). The high-driving Mollow
regime, on the other hand, is more complex. In particular, taking the limit 
σ → ∞ sends the satellite peaks away and, if
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FIG. 5. Loss of antibunching for the coherently driven 2LS in the Heitler (
σ /γσ → 0) and deep Mollow (
σ /γσ = 100) regimes, both at
(a) zero delay and (b)–(d) as a function of time τ in the various limits of the Mollow triplet (
σ � γσ ) depending on the filter widths: (b) when
	 is small, exhibiting bunching; (c) at intermediate 	, with onset of correlations; and (d) when 	 is large and beyond the triplet splitting,
exhibiting antibunching. Note the very different scales on both axes of (b)–(d). Case iii, which belongs to the intermediate regime, displays a
correlation function akin to those of the low-	 case and is best plotted with them. These results can be obtained either from Eqs. (41)–(48) in
the corresponding limits or from Eq. (38), which covers all the cases simultaneously (but through a very bulky expression).

	 → ∞ slower than 
σ , filtering will be limited to the central peak in this case, which cannot produce values below 1, namely,

g(2)
σ,Mollow

0	
σ

(τ ) = 1 + 2γσ

2	e−(	+γσ )τ/2 − (	 + γσ )e−	τ

(	 − γσ )(3	 + γσ )
, (44)

with zero-delay coincidences

g(2)
σ,Mollow

0	
σ

(0) = 3(	 + γσ )

3	 + γσ

. (45)

This corresponds to Fig. 5(c). The other cases, namely 	 → 0 [Fig. 5(b)] and 	 → ∞ faster than 
σ [Fig. 5(d)], have to be
treated independently and retain the 
σ dependence, to yield [here we upgrade the notation (40) with a bar to refer to a negative
number, e.g., γ21 = 2	 − γσ , and with a comma if involving two-digit integers, e.g., γ14,5 = 14	 − 5γσ ]

g(2)
σ,Mollow

	→0

(τ ) = 1 +
(

2γ 2
σ


2
σ

+ 4	γ21

γ 2
σ

)
e−(	+γσ )τ/2 + 3γ 8

σ − 8	γ 4
σ γ11


2
σ + 16	2(	γ51 + γ 2

σ )
4
σ

8	2γ 2
σ 
4

σ

e−	τ , (46a)

g(2)
σ,Mollow
	�
σ

(τ ) = 1 + 8(	/
σ )2[10 + (	/
σ )2]

[4 + (	/
σ )2][8 + (	/
σ )2]2
e−	τ − 4(	/
σ )2[16 + (	/
σ )2]

[4 + (	/
σ )2][8 + (	/
σ )2]2
e−(γσ +	)τ/2

+ 4(	/
σ )2{[16 + (	/
σ )2] cos(2
στ ) + (	/
σ )[10 + (	/
σ )2] sin(2
στ )}
[4 + (	/
σ )2][8 + (	/
σ )2]2

e−(3γσ +2	)τ/4

− (	/
σ )2[16 + (	/
σ )2] cos(2
στ )

[8 + (	/
σ )2]2
e−3γσ τ/4, (46b)

with the latter highly oscillating function being enclosed by the envelopes

g(2)
σ,Mollow
	�
σ

(τ ) = 1 ± (	/
σ )2[16 + (	/
σ )2]

[8 + (	/
σ )2]2
e−3γσ τ/4 (47)

and with zero-delay correlations

g(2)
σ,Mollow

	→0

(0) = γ41γ
9
σ + 12	γ21γ

6
σ 
2

σ−16	2γ 3
σ γ14,5


4
σ − 192	3γ21


6
σ

γσ (γ 3
σ + 4	
2

σ )3
→ 1 + 4γσ

	
, (48a)

g(2)
σ,Mollow
	�
σ

(0) = 8[2 + (	/
σ )2][16 + (	/
σ )2]

[4 + (	/
σ )2][8 + (	/
σ )2]2
→ 8
2

σ

	2
(48b)

that correspond to the left and right parts of Fig. 5(a), respectively. The simplest formula we can find that unites all these
behaviors is the one that is valid for all 
σ anyway, namely, Eq. (41) to describe the three limits of Eqs. (48a), (45), and (48b)
that together reconstruct completely the curve in Fig. 5(a), and, for the τ dependence, Eq. (38) along with (39) and (B1)–(B7)
for the corresponding limits of Eqs. (46a), (44), and (46b).
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FIG. 6. Loss of antibunching of a coherently driven 2LS due to frequency filtering. (a) The Rabi oscillations induced by the laser are
dampened by the frequency filtering, and the perfect antibunching obtained in the limit 	 → ∞ thermalizes when 	 = γσ . However, further
reducing the linewidth of the detector reveals the uncorrelated nature of the light emitted by the driving laser. (b) Cuts of the density plot in
(a) illustrating the transition between these regimes. (a) and (b) correspond to 
σ = 2γσ . (c) Zero-delay correlations on the low side 
σ /γσ of
the Mollow triplet, down to its disappearance at 
σ /γσ = 1/

√
8, at which point bunching disappears.

Some of the above results are still quite heavy, but that only
illustrates how rich and complex the seemingly simple and
basic problem of filtering a two-level system is and the sort of
complexity needed to embody all these various regimes and
behaviors in a single analytical expression. One can check
indeed that these results recover those of the unfiltered case
in the limit 	 → ∞, namely, Eq. (46b) recovers Eq. (14),
Eq. (47) recovers Eq. (16), and Eq. (42) recovers Eq. (15),
while their respective τ = 0 cases, Eqs. (48b) and (43), both
recover the perfect antibunching g(2)

σ (0) = 0. Frequency fil-
tering allows us to see how both the Heitler and Mollow
antibunching go to zero with the same speed with filtering,
namely, as its inverse square, but that the necessity to first
go over the bunching of the central peak of the Mollow
triplet delays the antibunching phase so that the Heitler regime
always keeps the upper hand, as seen in Fig. 5. It is also
instructive to observe that the bulk of the complexity lies with
the antibunching of the Mollow regime (46b), which overall
seems more predisposed to emit bunched light, confirming
its key role in multiphoton physics [93]. In all instances, the
results are particular cases of Eq. (38) [with its coefficients
(B1)–(B7) and decay rates (39)].

The characteristic shapes of g(2)
σ (0) shown in Fig. 5(a) were

also discussed in Ref. [91]. The two plateaus g(2)
σ (0) = 1 in the

Mollow case, which sandwich the plateau g(2)
σ (0) = 3, are of a

different nature. At vanishing 	, one is filtering the coherently
scattered light from the laser alone (the so-called Rayleigh
peak), which reproduces the laser uncorrelation. However, at
larger 	 (though still below 
σ ), one is fully filtering the
central peak of the Mollow triplet. This peak dominates the
correlations because the coherent fraction is much smaller
in the Mollow regime. Considering the transitions between
dressed states that produce the central peak, one would expect
bunching in this regime, but due to an interference between
the two possible deexcitation paths, correlations go down to
g(2)

σ (0) = 1 again, as explained in Ref. [91] and references
therein. The intermediate plateau at g(2)

σ (0) = 3 is obtained
for filtering widths smaller than γσ but larger than 	3

σ /(4
2
σ )

[91], a point at which the coherent part (Rayleigh peak) equals

the incoherent part (central peak of the Mollow triplet). In
this regime, the interference no longer holds and the expected
bunching manifests. More specifically, the value of 3 suggests
that the central peak of the Mollow triplet corresponds to
squeezed light [54]. Such a particular value is not yet, but
could become, a typical value of Glauber correlations along
with 0 (antibunching), 1 (uncorrelated or laser), and 2 (ther-
mal), as the value realized under extreme squeezing. Such a
rich span of a wide range of photon correlations in the deep
Mollow regime remains to be observed experimentally.

We also show temporal correlations for the coherently
driven single-photon source in the lower 
σ/	 side of the
Mollow regime (
σ = 2γσ ) in Fig. 6(a), which is more rele-
vant for experiments, as a function of time and of the linewidth
of the detector, i.e., as a counterpart of Fig. 4. This puts in
better perspective the several and striking differences with
respect to the case of incoherent driving. First is the presence
of Rabi oscillations induced by the laser, which are main-
tained, including their frequency, as long as antibunching is
observed. They have a maximum visibility when the detec-
tor is colorblind [94], in which case they recover Eq. (14).
Figure 6(b) shows a series of cuts for several values of 	/γσ ,
marked in Fig. 6(a) by dashed lines, showing how the Rabi
oscillations amplitudes are softened and remain reminiscent
in the bunching phase, vanishing completely when the detec-
tor filters within a region narrower than the linewidth of the
2LS. Second, the limit of vanishing filtering width leads to
randomization rather than to thermalization, thereby behaving
like a time jitter rather than thermal filtering. This is the
same manifestation as for the deep Mollow regime, namely,
due to the approximation of the laser as a δ function, which
has exactly zero linewidth. One can therefore never filter the
photons from within the emission line of the laser, and the
thermalization does not appear [91]. However, turning to more
sophisticated models of the laser, e.g., the one-atom laser [48],
one then reaches a thermalization in the limit 	 → 0. The
widely used approximation of the laser as a δ function has
nevertheless been shown to be good to account for experimen-
tal observations several times and under different conditions:
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mapping the two- and three-photon correlation landscape of
the 2LS [95,96] (in agreement with the theoretical predictions
[91,97]) and recently by measuring the effect of the filter
[46] in perturbing the balance between the quantum emission
and the laser itself in a self-homodyning picture [98]. In this
case, when the linewidth of the filtering is not vanishing
but still remains below the natural linewidth of the 2LS, the
correlations become bunched as the intensity of the driving
increases. This brings us to the third main departure from the
incoherent case, which was also featured in the deep Mollow
regime but that persists as long as the triplet is resolved,
namely, the nonmonotonic evolution of g(2)

σ (0), even if it
would thermalize at vanishing 	. This is clear when focusing
on the zero-delay correlations (41), as shown in Fig. 6(c) as
a function of the linewidth of the detector for several inten-
sities of the driving. One can find a region of superbunching
with more bunched photons emitted by the 2LS than thermal
light itself. Bunching is realized when entering the Mollow
triplet regime, i.e., when the intensity of the driving becomes
such that the emission spectrum of the 2LS is given by the
sum of three Lorentzians [92], when 
σ/γσ � 1/

√
8. This

does mean that the triplet itself is spectrally resolved, which
happens at about 
σ/γσ ∼ 2. The low-driving case observed
experimentally by two independent groups [46,79] featured
departures from the Heitler limit 
σ/γσ → 0 but still without
evidencing bunching. Filtering below the natural linewidth
of the 2LS in the Mollow regime means that one is filtering
the photons coming from the central peak, which has long
been predicted to display bunching [84,91,99] and has since
been observed experimentally [95]. While bunching values in
excess of 2 appear to be already within experimental reach,
the maximum possible bunching g(2)

σ (0) = 3 is obtained in the
strongly filtered, deep Mollow regime, as seen in Fig. 5 and
highlighted in Fig. 7. This should make this limit much more
difficult to approach.

We do not discuss further the underlying physics of the
filtered Mollow triplet [97] as this relates to bunching rather
than antibunching, which comes with specificities of its own,
but this serves to illustrate how the regime of driving results in
very different dynamics for the antibunching of the emitter. In
particular, the loss of antibunching is so serious for the coher-
ently driven 2LS that it is complete at all driving intensities, if
the filtering is too stringent.

VIII. CONCLUSION AND OUTLOOK

We have described a variety of mechanisms—in our under-
standing, the most common and important ones—that lead to
a reduction of antibunching, namely, contamination by noise
(Sec. V), by a time jitter in the photon detection (Sec. VI), and
by frequency filtering (Sec. VII). In all cases, we have applied
the results to a two-level system under various types and
regimes of excitation. The first two mechanisms (noise and
jitter) act directly on g(2)(τ ) of the source [through Eq. (19)
and the noise-to-signal ratio ξ on the one hand and through
Eq. (27) and the jitter function D	 on the other hand], while
the third one (frequency filtering) depends, at a more fun-
damental level, on the dynamics of the emitter. As a result,
although the theoretical derivations are tightly linked [namely,
Eqs. (21) and (23) are the starting point for Eq. (33)], the
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FIG. 7. The blue solid line shows the maximum value that the
zero-delay correlation g(2)

σ (0) of the coherently driven 2LS can take
for a given driving intensity 
σ . At every intensity of the driving, the
filter’s linewidth 	 has been taken to maximize g(2)

σ (0) and is shown
by the red dashed line with values on the right axis. This shows
that a coherently driven 2LS can always fail to display antibunching
depending on the filtering. At 
σ /γσ � 0.4, the filter’s width gets
too small to still be featured on the plot but theoretically exists
and still remains larger than the δ function (which has no width)
as to produce uncorrelated photons. The qualitative change at about

σ /γσ ∼ 2 occurs when the three peaks of the Mollow triplet start
to be spectrally distinguished.

end results differ substantially. For instance, a time jitter can
only drive correlations towards uncorrelation, while frequency
filtering can alter their type, e.g., turning antibunching into
bunching. While the textbook results of the antibunching of
a 2LS [Eqs. (11) and (14)] provide a convenient and relevant
illustration for the general theory, they become problems of
great intrinsic and fundamental interest when turning to their
frequency filtering. For the time jitter, we find that while its
actual type has only a small quantitative effect, the dynamics
of g(2)(τ ) itself is important to characterize the robustness of
the correlations to time fluctuations. The low-driving coherent
case is overall less affected than its high-driving or incoherent
counterparts.

While the formalism for frequency filtering has been
considerably studied, including for the 2LS, its link and
application to time fluctuations of the jitter type have not
been previously considered, and we have introduced the for-
malism for the loss of antibunching in this case. Regarding
frequency filtering, while many numerical simulations and
several limiting analytical cases have indeed been provided
throughout the years, our present results offer a complete
description of the antibunching from a 2LS that unifies all the
previous knowledge with closed-form and general analytical
expressions which cover all types [incoherent, Eq. (35), and
coherent, Eq. (38)] as well as all regimes (low, intermediate,
and high) of driving, also being valid for arbitrary time de-
lays as opposed to only coincidences. The incoherent case
has very recently benefited from such a generalization by
another group [100], relying on a different approach (out of
time ordering) and going beyond Lorentzian filtering. The
coherent case is very bulky with its full form to be found
in Appendix B, but simplifications can be obtained in the
low- (Heitler) driving limit (42) and in the high- (Mollow)
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driving limit. In the latter case, one should further consider
various cases depending on whether 	 is commensurable with
[Eq. (44)], much smaller than [Eq. (46a)], or much greater
than [Eq. (46b)] the Mollow splitting. Since the 2LS is a
textbook system, such a comprehensive description of its an-
tibunching is naturally desirable in addition to its importance
for a detailed characterization at both a fundamental and ap-
plied level. Many of our results apply directly to other cases,
including both other systems and other types of photon statis-
tics. For instance, it would be instructive to adapt this analysis
to the current record holders of antibunched emission [6,7]
and track whether the origin of the remaining imperfection lies
in the factors analyzed here or in the source itself (i.e., resid-
ual reexcitation). Ultimately, failures attributed to the source
really belong to the detection scheme as a better detector with
a higher time resolution would be able to discriminate photon
pairs in time and their antibunching, although these could be
attributed to a mechanism inherent to the source, such as its
reexcitation. In this regard, we have already speculated that
a perfect antibunched source should not have a Lorentzian
profile [92] but feature a standard deviation so as to avoid spu-
rious coincidences from the finite bandwidth of the detector,
which is unavoidable. The design of such a perfect source in
itself, however, constitutes a different problem.

Even the 2LS system that we have studied in this text
could be analyzed further, e.g., to higher photon orders, out of
resonance with the filter (in particular for the Mollow triplet),
including other processes such as pure dephasing or phonon-
induced dephasing, etc. One could also extend the discussion
to other mechanisms that spoil antibunching (some, such as
the gravity peak of a streak camera whereby one photon
spreads over several pixels of the detectors, are covered in
Ref. [42]) or combine those that we have discussed, from
loss by external noise, time uncertainty, and/or frequency
filtering. There are indeed more mechanisms leading to a
loss of antibunching than one would actually want to ac-
count for, and none of them consists in a simple exponential
damping of the perfect antibunching of the source. While one
particular mechanism (frequency filtering) has been recently
investigated in depth for one of the regimes considered above
(close to the Heitler regime) [46,79], there remains much to

investigate experimentally. In particular, the Mollow triplet,
although rooted in a 2LS, proves to be particularly apt at
emitting a variety of bunched light and even its coherent
emission can arise from different mechanisms. The observa-
tion of the zero-delay photon correlations shown in Fig. 5
along with time correlations would span a large range of basic
regimes of quantum optical emission. This would provide an
instant classic illustration of the versatility and complexity of
an otherwise extremely basic and simple system. Also, the
transition from antibunching to bunching for the incoherently
driven two-level system, tending to thermalization ruled by
the filter alone and passing by an imperfectly uncorrelated
state exhibiting a small suppression of photon pairs within
the emitter’s coherence time when g(2)(0) = 1, still remains
a considerable omission from experimental characterizations
of what is arguably the most widely and commonly studied
quantum optical emitter. The level of agreement with the
theory would allow one to assess how valid the two-level
picture is for the emitter in question, how well understood
the mechanism leading to its loss of antibunching is, and,
at a more fundamental level, how accurate the theory of
frequency-resolved photon correlations is, which constitutes
in itself a basic aspect of the theory of photodetection.
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APPENDIX A: TIME JITTER

1. Heaviside function

The case of the Heaviside function (28) yields, for Eq. (27),

g(2)
	 (τ ) = 	

∫ τ+1/	

τ

dx g(2)(x)[1 − 	(x − τ )] + θ

(
τ − 1

	

)
	

∫ τ

τ−1/	

dx g(2)(x)[1 + 	(x − τ )]

+ θ

(
1

	
− τ

)
	

{∫ 1/	−τ

0
dx g(2)(x)[1 − 	(x + τ )] +

∫ τ

0
dx g(2)(x)[1 + 	(x − τ )]

}
, (A1)

providing the photon correlations from an incoherently driven 2LS with time jitter,

g(2)
	,Pσ

(τ ) = 1 − 	2

	2
σ

e−	σ (τ+1/	)(1 − e	σ /	 )2θ

(
τ − 1

	

)

− 2	2

	2
σ

{
e−	σ /	 cosh(	στ ) − e−	σ τ + 	σ

(
1

	
− τ

)}
θ

(
1

	
− τ

)
, (A2)
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with the τ � 1/	 behavior on the first line and τ � 1/	 on the second line, while the corresponding expression for the coherently
driven 2LS is

g(2)
	,
σ

(τ ) = 1 − 32	2e−3γσ τ/4

Rσ

(
R2

σ + 9γ 2
σ

)2

[
9γσ

(
R2

σ − 3γ 2
σ

)
sin

(
Rσ τ

4

)
+ Rσ

(
R2

σ − 27γ 2
σ

)
cos

(
Rσ τ

4

)]

+ 16	e−3γσ τ/4e−3γσ /4	

Rσ

(
R2

σ + 9γ 2
σ

)2

[
9γσ

(
R2

σ − 3γ 2
σ

)
sin

(
Rσ (1 + 	τ )

4	

)
+ Rσ

(
R2

σ − 27γ 2
σ

)
cos

(
Rσ (1 + 	τ )

4	

)]

+ 16	2
(
R2

σ − 27γ 2
σ

)
(R2

σ + 9γ 2
σ )2

cos

(
Rσ (1 − 	τ )

4	

)
e−3γσ |1−	τ |/4	 − 48	γσ (1 − 	τ )

R2
σ + 9γ 2

σ

θ

(
1

	
− τ

)

+ 144	2γσ

(
R2

σ − 3γ 2
σ

)
Rσ

(
R2

σ + 9γ 2
σ

)2 sin

(
Rσ (1 − 	τ )

4	

)[
e−3γσ (1−	τ )/4	θ

(
1

	
− τ

)
− e3γσ (1−	τ )/4	θ

(
τ − 1

	

)]
. (A3)

where we have used the notation Rσ ≡
√

(8
σ )2 − γ 2
σ .

2. Exponential function

In this case, the correlations with time jitter are given by

g(2)
	 (τ ) = 	 cosh(	τ )

∫ ∞

0
g(2)(x)e−	xdx − 	

∫ τ

0
g(2)(x) sinh[	(τ − x)]dx. (A4)

In the case of the incoherently driven 2LS, the correlations with time jitter become

g(2)
	,Pσ

(τ ) = 1 − 1

1 − (	σ/	)2
[e−	σ τ − (	σ/	)e−	τ ], (A5)

with the limit g(2)
	,Pσ

(τ ) = 1 − e−	σ τ (1 + 	στ )/2 when 	 = 	σ , whereas the correlations of the coherently driven 2LS become

g(2)
	,
σ

(τ ) = 1 − j1,
σ

N+N−
e−	τ − j2,
σ

Rσ N+N−
e−3γσ τ/2, (A6)

where N± = R2
σ + (4	 ± 3γσ )2 and we have defined the functions

j1,
σ
= 24	γσ

(
R2

σ + 9γ 2
σ

)
, (A7a)

j2,
σ
= 16Rσ 	2(R2

σ + 16	2 − 27γ 2
σ

)
cos

(Rσ τ

4

)
+ 48	2γσ

(
3R2

σ + 16	2 − 9γ 2
σ

)
sin

(Rσ τ

4

)
. (A7b)

3. Double exponential

With this function, the expression for the time jitter correlations is given by

g(2)
	 (τ ) = 	

∫ ∞

0
dx g(2)(x)e−2	x[(1 + 2x	) cosh(2	τ )

− 2	τ sinh(2	τ )] − 	

∫ τ

0
dx g(2)(x){sinh[2	(τ − x)]

− 2	(τ − x) cosh[2	(τ − x)]}. (A8)

In this case, the correlations of the incoherently driven 2LS, with bare correlations given in Eq. (11), become

g(2)
	,Pσ

(τ ) = 1 − 16

�2
e−	σ τ + (	σ/	)[8 + �(1 + 2	τ )]

�2
e−2	τ , (A9)

where we have used the notation � ≡ 4 − (	σ/	)2. The counterpart for the coherent excitation is given by

g(2)
	,
σ

(τ ) = 1 − g1,
σ

N
σ

e−3γσ τ/4 − g2,
σ

N
σ

e−2	τ , (A10)

where we have introduced the functions g1,
σ
, g2,
σ

, and N
σ
as

g1,
σ
= 4096	4

[
Rσ

[(
R2

σ + 64	2
)2 − 18

(
5R2

σ + 192	2
)
γ 2

σ + 405γ 4
σ

]
cos

(
Rσ τ

4

)
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+ 3γσ

[
5R4

σ + 6R2
σ

(
64	2 − 15γ 2

σ

) + (
64	2 − 9γ 2

σ

)2]
sin

(
Rσ τ

4

)]
, (A11a)

g2,
σ
= 24Rσ 	γσ

(
R2

σ + 9γ 2
σ

) + {
R4

σ + 384R2
σ 	2 + 20 480	4 − 3456	2γ 2

σ + 81γ 4
σ

+ 2	
[
R2

σ + (8	 − 3γσ )2][R2
σ + (8	 + 3γσ )2]τ}

, (A11b)

N
σ
= Rσ

[
R4

σ + 2R2
σ

(
64	2 + 9γ 2

σ

) + (
64	2 − 9γ 2

σ

)2]
. (A11c)

4. Gaussian

With this function, the correlations with time jitter are given by

g(2)
	 (τ ) = 	

2
√

π

∫ ∞

0
g(2)(x){e−[(τ+x)	/2]2 + e−[(τ−x)	/2]2}dx. (A12)

The correlation with time uncertainty for the incoherently driven 2LS becomes

g(2)
	,Pσ

(τ ) = 1 − e(	σ /	)2

2
{e−	σ τ erfc(τ−) + e	σ τ erfc(τ+)}, (A13)

where erfc(τ ) is the complementary error function and we have defined

τ± = 	σ

	
± 	τ

2
.

The counterpart for coherent excitation has a more complicated structure

g(2)
	,
σ

(τ ) = 1 − �−
iRσ

e(�+/	)2
h1,
σ

− �+
iRσ

e(�−/	)2
h2,
σ

, (A14)

where we have introduced the functions h1,
 and h2,
 and the parameters �±, defined as

h1,
σ
= 2 cosh(�+τ ) + erf (λ1,+)e�+τ + erf (λ1,−)e−�+τ , (A15a)

h2,
σ
= 2 cosh(�−τ ) − erf (λ2,+)e�−τ − erf (λ2,−)e−�−τ , (A15b)

where we have used �± = (iRσ ± 3γσ )/4, λ1,± = �+/	 ± 	τ/2, and λ2,± = �−/	 ± 	τ/2 and Rσ is as defined in Eq. (14).

APPENDIX B: FREQUENCY FILTERING

The seven coefficients Gi which, together with the coherence times (39), yield the general two-photon autocorrelation function
g(2)

σ (τ ) for the coherently driven 2LS according to Eq. (38) are given below. They also consist of intricate combinations of the
various rates involved, this time also involving subtractions, so that we upgrade Eq. (40) as explained in the text with a bar over
the number meaning that it is negative:

G1 ≡ 512	2γ11

2
σ

(
γ11γ12 + 16
2

σ

){
	γ12γ11(γM + γσ ) + 8[14	2 + 2γσ (γM + γσ ) − 	(7γM + 17γσ )]
2

σ − 512
4
σ

}
× {γ11γ12γ21[	(γM − 3γσ ) + 2γσ (γM − γσ )] + 8

[
8	3 + 32	γ 2

σ − 2γ 2
σ (γM − 7γσ ) + 	2(γM + 25γσ )

]

2

σ + 256	
4
σ

}
× [

γM(γM−	)(γM−γσ )(γM+γσ )2(γM+γσ − 2	)(γM+3γσ − 4	)(γM+3γσ − 2	)
(
γ11γ21 + 8
2

σ

)(
γ 2

11γ12 + 8	
2
σ

)2]−1
,

(B1)

G2 ≡ G1 with γM ↔ −γM, (B2)

G3 ≡ 2
	γσγ11[γ12γ

3
11γ

2
21γ

2
12 + 8γ 2

11γ12

2
σ

(
17	3 + 12	2γσ + 6	γ 2

σ + 4γ 3
σ

) + 256γ 2
11


4
σ

(
5	2 + 6	γσ + 4γ 2

σ

) + 2048	2
6
σ ]

γ12(γ11γ21 + 8
2
σ )(γ12γ11 + 16
2

σ )(γ 2
11γ12 + 8	
2

σ )2

(B3)

G4 ≡ 2
2	3

(
γ 2

σ + 8
2
σ

)(
γ11γ12 + 16
2

σ

)(
γ 2

11γ
2
12γ31 + 48	γ 2

11

2
σ − 256γσ 
4

σ

)
γ11γ31

(
γ 2

M − γ 2
21

)(
γ11γ21 + 8
2

σ

)(
γ 2

11γ12 + 8	
2
σ

)2 , (B4)

G5 ≡ 2
( − 1024	2γ11


4
σ

{
γ 2

11γ
2
12γ21γ31γ32

[
2	2(γM − 3γσ ) − 	γσ (γM + 3γσ ) − 2γ 2

σ (γM − γσ )
]

+ 8γ11γ12

2
σ [−108	6 + 	5(215γM − 1203γσ ) + 3	4γσ (239γM − 1081γσ ) + 	3γ 2

σ (1051γM − 3947γσ )

+ 	2γ 3
σ (803γM − 2465γσ ) + 10	γ 4

σ (31γM − 77γσ ) + 48γ 5
σ (γM − 2γσ )]

+ 128
4
σ

[
6	6 + 	5(131γM − 227γσ ) + 	4γσ

(
546γM − 776γσ

) + 	3γ 2
σ (889γM − 933γσ )
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+ 	2γ 3
σ (724γM − 488γσ ) + 	γ 4

σ (296γM − 96γσ ) + 48γMγ 5
σ

]
+ 2048
6

σ [74	4 + 2	3(6γM + 109γσ ) + 5	2γσ (3γM + 61γσ ) + 2	γ 2
σ (−γM + 103γσ ) − 4γ 3

σ (γM − 13γσ )]

+ 131 072	γ21

8
σ

})
× [

γ21γM(γM + 	)(γM − γσ )(γM + γσ )2(γM − γ23)
(
γ11γ21 + 8
2

σ

)(
γ 2

11γ12 + 8	
2
σ

)2(
γ31γ32 + 16
2

σ

)]−1
, (B5)

G6 ≡ G5 with γM ↔ −γM, (B6)

G7 ≡ {
32	2γ11

(
γ 2

σ + 8
2
σ

)[(
γ11γ12 + 16
2

σ

)(
γ11γ12γ

2
21γ

2
31γ32γ11γ12γ21

)
+ 8γ31


2
σ

(
142	7 + 239	6γσ − 241	5γ 2

σ − 677	4γ 3
σ + 77	3γ 4

σ + 832	2γ 5
σ + 580	γ 6

σ + 128γ 7
σ

)
+ 64
4

σ

(
219	6 + 386	5γσ + 565	4γ 2

σ + 344	3γ 3
σ − 98	2γ 4

σ − 208	γ 5
σ − 56γ 6

σ

)
+ 1024
6

σ

(
15	4 − 11	3γσ − 4	2γ 2

σ − 16	γ 3
σ − 8γ 4

σ

) − 16384
8
σ γσ γ21

]}
× [

γ21γ31γ11

(
γ 2

M − γ 2
23

)(
γ 2

M − γ 2
43

)(
γ11γ21 + 8
2

σ

)(
γ11γ12 + 8
2

σ

)(
γ31γ32 + 16
2

σ

)]−1
. (B7)

While these expressions are not particularly enlightening, they provide the most general and exact closed-form formula for the
filtered coherently driven 2LS. One cannot but marvel at how mathematics introduces unexpected factors to thwart cancellations
of these expression so as to ultimately provide what we interpret in physical terms, such as an elbow in a curve, that correspond
to the Mollow triplet splitting into three spectral lines.
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