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Quantum theory of photonic vortices and quantum statistics of twisted photons
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The topological charge of a photonic vortex is an essential quantity in singular optics and the critical
parameter to characterize the vorticity of twisted light. However, the definition of the photonic topological
charge remains elusive. Here we put forth a theoretical formalism to provide a comprehensive treatment of
photonic vortices. We introduce quantum operators for the photon current density and helicity current density
based on the continuity equations from the paraxial Helmholtz equation. Our formalism allows us to introduce
flow velocity and circulation for photonic currents in parallel to their counterparts in superfluids. The quantized
circulation of the photonic currents is conserved during propagation and it gives an explicit definition of the
photonic topological charge as the winding number of a photonic vortex. In particular, we predict helicity current
generated pure-helicity vortices, in which the photon current vanishes. Finally, we show an interesting effect that
the quantum statistics of twisted photon pairs are essentially determined by their spin states.
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I. INTRODUCTION

In parallel to the outstanding advances in the orbital an-
gular momentum (OAM) of light [1–3], photonic vortices in
structured light with a helical wavefront have also been stud-
ied intensively in both theory and experiments [4–9]. Optical
vortex beams have been routinely generated in the laboratory
[10–14]. Single-photon sources for vortex pulses [15] and op-
tical vortex lattices [16,17] have also been achieved. Recently,
the concept of the photonic vortex has also been generalized
to spatiotemporal pulses [18–20], in which the energy den-
sity varies spatially and temporally. Vortex beams and pulses
have been widely applied in optical trapping [21], quantum
communication and quantum information [22–24], quantum
computation [25], biosensing [26], strong-field photoelectron
ionization [27], etc. However, the theoretical definition of the
photonic topological charge, which is an essential quantity
and critical parameter of photonic vortices, remains elusive.

Existing theories of photonic vortices have advanced over
the past two decades to capture a plethora of phenomena
related to phase singularities of light [28–34]. Based on
the helical phase of the complex field-amplitude function,
Berry defined the total vortex strength (photonic topological
charge) as the signed sum of all the vortices threading a large
loop including the propagating axis [31]. This seminal work
has triggered extensive interest in exploring photonic vor-
tices with fractional topological charges [34–39]. Akin to the
quantum vortices in superfluids, the most basic quantity of a
vortex is the corresponding current, which has not received the
attention it deserves for photonic vortices. The photon current
for a photonic polarization vortex has even been overlooked
completely [32,33]. Without the associated current, the es-
sential link between the photonic topological charge and the

vorticity of twisted light is missing. On the other hand, the
photon current defined as the gradient of the phase of the
complex electric field has no clear physical meaning [40],
since no continuity equation exists for this current.

In this paper we put forth a theoretical formalism to pro-
vide a comprehensive treatment of photonic vortices (see the
schematics in Fig. 1). We introduce an effective photonic
field operator, which allows us to handle photonic quanti-
ties (such as momentum, helicity, and OAM) in real space
within the standard framework of quantum mechanics. Specif-
ically, building on previous important works in the optical
Schrödinger equation for paraxial light [41–43], we define
quantum operators for the photon current density and helicity
current density. In parallel to superfluids in condensed-matter
physics, we introduce the flow velocities and the correspond-
ing circulations for these two currents. The conserved and
quantized circulation automatically connects the photonic
topological charge to the winding number of the photonic
vortex. We show a particularly interesting result that a pure-
helicity vortex with vanishing photon (particle) current can
be obtained via the superposition of left and right circu-
larly polarized laser beams. On the other hand, the quantum
statistics of the twisted light remain poorly studied in both
theory and experiments. Within the well-established theoreti-
cal framework for quantum optical coherence [44], we show
a particularly interesting effect that the quantum statistics of
twisted photon pairs are strongly affected by their spin states.
Two photons with the symmetric spin state tend to be bunched
and two photons with the antisymmetric polarization state
behave in a more antibunched way.

This article is structured as follows. In Sec. II we begin
by introducing a theoretical formalism for photonic quan-
tities in real space. In Sec. III we apply this formalism to
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(a) (b)

FIG. 1. Schematic of (a) a twisted beam carrying orbital angular momentum and (b) the in-plane photonic current generated vortex in the
transverse plane. The inset in (a) shows the cylindrical coordinate r = (ρ cos ϕ, ρ sin ϕ, z).

investigate photonic vortices by defining photonic currents,
flow velocities, and the corresponding circulations. In Sec. IV
we show how to apply our theory to study twisted laser beams
commonly used in experiments. In Sec. V we discuss the
quantum coherence and quantum statistics of twisted light. We
briefly summarize in Sec. VI.

II. PHOTONIC FIELD OPERATOR AND WAVE-PACKET
FUNCTION IN REAL SPACE

Here we introduce a quantum formalism to describe the
photonic observables in striking parallel to their electronic
counterparts. In particular, this rather general formalism leads
us to define the photon current and helicity current via the
continuity equation of paraxial beams (see Sec. III). The
quantized circulation of the current in a paraxial beam auto-
matically gives the topological charge (winding number) of
a photonic vortex [29,31,34,40,45] (Sec. IV). Moreover, this
formalism enables us to investigate the quantum statistics of a
twisted light (Sec. V).

We start with the effective two-component field operator
ψ̂ (r) = [ψ̂+(r), ψ̂−(r)]T for photons in real space [46] with

ψ̂λ(r) = 1√
(2π )3

∫
d3k âk,λeik·r, (1)

where âk,λ is the annihilation operator for the plane-wave
mode with wave vector k and the polarization index λ (λ =
+1 for left circular polarization and λ = −1 for right circular
polarization). Using the basic equal-time commutation rela-
tions of the ladder operators [âk,λ, â†

k′,λ′ ] = δλλ′δ(k − k′), we
can verify that our introduced photonic field operator obeys
the bosonic commutation relations

[ψ̂λ(r), ψ̂†
λ′ (r′)] = δλλ′δ(r − r′), (2)

[ψ̂λ(r), ψ̂λ′ (r′)] = [ψ̂†
λ (r), ψ̂†

λ′ (r′)] = 0. (3)

With this field operator, we can reexpress and evaluate
the photonic observables in real space, such as the photon

number N̂ = ∫
d3r ψ̂†(r)ψ̂ (r) and the linear momentum

of light P̂ = ∫
d3r ψ̂†(r) p̂ψ̂ (r) ( p̂ = −ih̄∇). We note that

the field operator ψ̂ (r) satisfies the wave equation, not
a Schrödinger-like equation, and no probability continuity
equation can be constructed [47]. Thus, in most cases, the
integral kernel cannot be interpreted as the corresponding
density operator (see Appendix A). However, as shown in
Sec. III A, the particle number density (PND) of a paraxial
light can be well characterized by

n̂(r) ≡ ψ̂†(r)ψ̂ (r) =
∑
λ=±

ψ̂
†
λ (r)ψ̂λ(r). (4)

We note that not all physical quantities of light can have
a simple and elegant form in this framework, such as the
Hamiltonian Ĥ = ∫

d3k
∑

λ h̄ωkâ†
k,λ

âk,λ and the photonic
spin operators, which can be handled more easily in k space
[46]. However, our formalism offers significant convenience
in dealing with quantities in real space, such as photonic helic-
ity, OAM (see Appendix A), vortices, and quantum coherence
of light. In the circular-polarization representation, the helicity
operator of photons is diagonal

	̂ = h̄
∫

d3r ψ̂†(r)σ̂zψ̂ (r), (5)

where σ̂z is the Pauli matrix.
The quantum state for a pulse or a laser beam (an extremely

long pulse) can be constructed with the photon-wave-packet
creation operator â†

ξ = ∫
d3k

∑
λ ξλ(k)â†

kλ
[46]. The pulse

shape is determined by the normalized spectral amplitude
function (SAF)

∑
λ

∫
d3k|ξλ(k)|2 = 1. The quantum states

for the most commonly encountered Fock-state and coherent-
state pulses are given by |nξ 〉 = (â†

ξ )n|0〉/√n! and |αξ 〉 =
D̂ξ (α)|0〉, respectively, with

D̂ξ (α) ≡ exp(αâ†
ξ − |α|2/2). (6)
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Utilizing the time-evolution operator exp(−iĤt/h̄), we can
obtain a quantum state at time t simply by replacing â†

ξ with

â†
ξ (t ) =

∫
d3k

∑
λ

ξλ(k)e−iωkt â†
kλ

=
∫

d3r
∑

λ

ξ̃λ(r, t )ψ̂†
λ (r).

(7)
Here the Fourier transformation of the SAF,

ξ̃λ(r, t ) = 1√
(2π )3

∫
d3k ξλ(k)ei(k·r−ωkt ), (8)

also satisfies the wave equation. Within our introduced for-
malism, the mean value of a physical quantity can be obtained
via the relations

ψ̂λ′ (r′)|nξ (t )〉 = √
nξ̃λ′ (r′, t )|(n − 1)ξ (t )〉, (9)

ψ̂λ′ (r′)|αξ (t )〉 = αξ̃λ′ (r′, t )|αξ (t )〉, (10)

where we have used the identities[
ψ̂λ′ (r′),

(
â†

ξ (t )
)n] = nξ̃λ′ (r′, t )

(
â†

ξ (t )
)n−1

,[
ψ̂

†
λ′ (r′), (âξ (t ))n

] = −nξ̃ ∗
λ′ (r′, t )(âξ (t ))n−1.

In experiments, the superposition of multiple laser beams
has been routinely used to obtain various interesting struc-
tures. Here we emphasize that the corresponding quantum
state is not a simple superposition of the state of each beam.
We take the superposition of two beams with strengths α and
α′ and two-component SAFs ξ and ξ ′ as an example. The
corresponding quantum state is given by

|
〉 = 1√
N

D̂ξ (α)D̂ξ ′ (α′)|0〉, (11)

where N is a normalization factor given in Eq. (B5). We can
verify that ψ̂ (r)|
〉 = 
(r, t )|
〉 (see Appendix B). Here the
two-component function 
 = [
+, 
−]T , with 
±(r, t ) ≡
αξ̃±(r, t ) + α′ξ̃ ′

±(r, t ), also obeys the wave equation. In the
following, we only consider quantum pulses or beams. A
randomly polarized light [30] or thermal light, which cannot
be described with a pure quantum state, will not be addressed
in this work.

III. PHOTONIC VORTICES IN PARAXIAL BEAMS

Previously, the scalar electric field has been utilized to
study the photonic vortices [29,43,45]. In Ref. [31] Berry
defined the total vortex strength of a paraxial scalar wave with
complex amplitude ψ (r) ∝ exp(imϕ) as

C = lim
ρ→∞

1

2π

∫ 2π

0
dϕ

∂

∂ϕ
argψ (r), (12)

which was rewritten with the scalar electric field later [34] as

C = lim
ρ→∞

1

2π
Im

∫ 2π

0
dϕ

∂E (r)/∂ϕ

E (r)
, (13)

where C denotes the topological
charge. The strength of the phase singularity has also
been called the topological charge of photonic vortices. We
note that these two definitions are not exactly equivalent to
each other. More importantly, the physical meaning of the
defined topological charge in (12) and (13) is unclear.

There remain basic questions about photonic vortices hav-
ing not been clarified. The obtained topological charge may
not be conserved during propagation [5,29]. The existence of
fractional topological charges in a uniformly polarized light
beam will cause confusion [31,34,48], because the electro-
magnetic field proportional to exp(iαϕ) with noninteger α

is multiply valued. The strength of each vortex cannot be
quantitatively analyzed by (12) and (13). The fundamental
link between the photonic topological charges and winding
numbers of photonic vortices is unclear. All these problems
will be solved conclusively within our presented formalism.
More importantly, we predict the pure-helicity vortex with
vanishing photon flow, which can be measured with circular-
polarization-sensitive devices.

A. Photon current density and helicity current density

The concept of vortex originates from fluid mechanics. In
superfluids, the quantized circulation of the dissipationless
superflow leads to quantum vortices with integer winding
numbers [49,50]. We note that the cornerstone of quantum
vortices is the directly observable current density of the cor-
responding particle flow. Here we introduce the photonic
counterpart.

A paraxial laser beam propagating in the positive z di-
rection can be well described by a quasi-single-frequency
two-component function 
(r, t ) = 
PA(r) exp[i(k0z − ω0t )],
where ω0 = ck0 is its center frequency. The function

PA(r) slowly varying in z satisfies the paraxial Helmholtz
equation [51,52]

i∂z
PA(r) = − 1

2k0
∇2

T 
PA(r), (14)

where ∇T = ex∂x + ey∂y is the differential operator in the
xy plane and e j is the unit vector. Because the parame-
ter t only contributes a phase factor to 
(r, t ), we can set
the time at t = 0 and take the coordinate z as an effective
time to study the dynamics of the propagating beam. This
paraxial Helmholtz equation can be regarded as the effective
Schrödinger equation with effective mass k0 [42,43]. The two-
component function 
(r, t ), which serves as the many-body
wave function of paraxial light, is adequate to characterize a
uniformly polarized or a vector vortex beam [52].

We now introduce an operator to characterize the photon
current density in the xy plane

ĵN (r) = − i

2k0
{ψ̂†(r)∇T ψ̂ (r) − [∇T ψ̂†(r)]ψ̂ (r)}. (15)

With the help of the paraxial Helmholtz equation (14), we
obtained the continuity equation (see Appendix C)

∂

∂z
〈n̂〉 + ∇T · 〈 ĵN 〉 = 0, (16)

which reveals the fact that the total particle number within a
comoving transverse slice does not change as the light prop-
agates along the z axis. We note that this conservation law is
valid only under the paraxial approximation. Thus, for pho-
tonic vortices, multiple beams in superposition are required to
be parallel to each other [53]. The photon current is a special
dissipationless flow composed of noninteracting particles. Our
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formalism can also be generalized to vortices in nonlinear
media via adding an effective photon-photon interaction in the
paraxial Helmholtz equation [42,43]

i∂z
PA = − 1

2k0
∇2

T 
PA − κk0|
PA|2
PA,

where the last term comes from the nonlinear refractive index
change for a Kerr medium with a coefficient κ . In the follow-
ing, we only focus on the free-space case.

To characterize the dynamics of the local polarization of a
paraxial beam, we now introduce the helicity current density

ĵH (r) = − i

2k0
{ψ̂†(r)σ̂z∇T ψ̂ (r) − [∇T ψ̂†(r)]σ̂zψ̂ (r)}. (17)

From the paraxial Helmholtz equation, we obtain the corre-
sponding continuity equation

∂

∂z
〈n̂H 〉 + ∇T · 〈 ĵH 〉 = 0. (18)

Here the helicity density in the circular-polarization repre-
sentation is given by n̂H (r) = ψ̂†(r)σ̂zψ̂ (r). Without loss of
generality, both the helicity density and the corresponding cur-
rent are divided by the constant h̄. As shown in the following,
pure-helicity current and helicity vortices can be constructed
via the superposition of two OAM beams.

Similar to the superfluid in a condensate [49], our defined
PND and helicity density currents fundamentally stem from
the spatially varying phase φ±(r) of the paraxial many-photon
wave-packet function 
±(r) = |
±(r)| exp{i[φ±(r) + k0z]}.

〈 ĵN (r)〉 = 1

k0

∑
λ

|
λ(r)|2∇T φλ(r), (19)

〈 ĵH (r)〉 = 1

k0

∑
λ

λ|
λ(r)|2∇T φλ(r). (20)

We emphasize that the continuity equation is essential to
define a current. A similar photon current j = Imψ∇ψ (ψ
is a complex scalar function) has been given in [40]. How-
ever, its physical meaning is unclear, because no continuity
equation exists corresponding to this current. In principle,
we can also introduce the currents for the photonic spin and
OAM density [54,55]. However, the corresponding currents
are rank-2 tensors, which are extremely difficult to measure
in experiments. For a paraxial laser beam, the photon current
(15) and helicity current (17) are enough to characterize its
vorticity properties.

B. Circulations of the density currents

To characterize the vorticity of the two currents, we now
introduce two flow velocities

vN (r) ≡ 〈 ĵN (r)〉
〈n̂(r)〉 , vH (r) ≡ 〈 ĵH (r)〉

〈n̂(r)〉 (21)

and the corresponding circulation (vorticity flux)

κN ≡
�

T
vN · dr, κH ≡

�
T

vH · dr, (22)

where the integral is taken along a closed curve in the xy plane
in the counterclockwise direction. Usually, the flow velocity
vN (H ) depends not only on the phase gradient ∇T φλ(r), but

also on the density distribution |
λ(r)|2. Thus, the two cir-
culations are path dependent. For a focused beam, the beam
waist increases and the density decreases when leaving the
focal plane. Thus, the circulations κN and κH for a fixed closed
loop in the xy plane are not conserved during propagation.

For a special case with |
+(r)|/|
−(r)| = C (C is a
coordinate independent constant), we can obtain conserved
path-independent circulations. In this case, the flow velocities
reduce to a simplified form

vN = 1

k0

(
C2

1 + C2
∇T φ+(r) + 1

1 + C2
∇T φ−(r)

)
, (23)

vH = 1

k0

(
C2

1 + C2
∇T φ+(r) − 1

1 + C2
∇T φ−(r)

)
. (24)

To show the conservation of the circulations κN and κH , we in-
troduce two velocities v± = ∇T φ±/k0 and the corresponding
circulations κ± =

�
T

v± · dr. From the hydrodynamic equa-
tions of v± (see Appendix C), we have

∂

∂z
κ± =

�
T

∇T

(
1

2k2|
±|∇
2
T |
±| − 1

2
v2

±

)
· dr = 0, (25)

since it is the integral of a perfect differential of single-valued
functions around a closed path. This guarantees that the cir-
culations κN and κH are conserved during propagating. This
is consistent with Kelvin’s theorem for an ideal classical fluid
[56]. We note that the paraxial approximation is essential to
the conservation of circulation. Accidental phase singularity
points can be generated by the superposition of two non-
coaxial beams [40]. These points are not stable and they will
disappear on propagation.

We note that for another case with ∇T φ+(r) = ∇T φ−(r),
we have vN = ∇T φ+/k0 and conserved path-independent
κN . However, the circulation of the helicity density current
does not necessarily have these good properties. We do not
present a detailed discussion about this case here. In the next
section we only focus on uniformly polarized paraxial beams.
We will show that there exists a direct link between the
photonic topological charge and the winding number of a
photonic vortex.

C. Quantized circulation in uniformly polarized
paraxial beams

For a uniformly polarized beam, its many-photon wave-
packet function 
(r) = αξ̃ (r)[c+, c−]T can be expressed by
the product of a constant amplitude α, a scalar wave-packet
function ξ̃ (r), and a constant normalized two-component
vector (i.e., |c+|2 + |c−|2 = 1). The polarization degree of
freedom does not contribute to the photonic vortices. Thus, the
positive-frequency part of a scalar electric-field function E (r)
has been routinely used to study the corresponding photonic
vortices [29,34]. Here we see that for a uniformly polarized
beam, 
(r) satisfies both conditions mentioned in preced-
ing section, i.e., |
+|/|
−| = |c+|/|c−| = C and ∇T φ+(r) =
∇T φ−(r). We show that the circulations of the two currents
are always quantized in this case and the associated photonic
vortices can be characterized by an integer winding number.
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With the reexpressed function ξ̃ (r) = |ξ̃ (r)| exp{i[φ(r) +
k0z]}, we obtain the flow velocity for the photon current

vN (r) = 1

k0
∇T φ(r). (26)

The helicity density flow velocity is obtained by multiplying
vN with a constant (C2 − 1)/(C2 + 1). The circulation of the
photon current is given by

κN =
�

T
vN (r) · dr = 1

k0
δφ(r), (27)

where δφ(r) is the change in the phase around this closed
curve and the nonvanishing circulation stems from the multi-
valuedness of the phase factor φ(r). The wave-packet function
of the light 
(r) is to be determined uniquely; thus we
must have δφ(r) = 2πm, where m is an integer. Therefore,
the circulation κN is quantized in units of 2π/k0 = λ0, i.e.,
κN = mλ0. This integer number corresponds to the winding
number of the phase φ(r) around the closed loop. Similarly,
the circulation κH of the helicity current is also quantized
in units of λ0(C2 − 1)/(C2 + 1) with the same quantum
number m.

Since the velocity is irrotational in the transverse plane,
i.e., ∇T × vN = 0 (but ∇ × vN �= 0), to obtain nonvanishing
circulation, the fluid must contain vortices in the xy plane, i.e.,
the multivalued phase factor induced diverging flow velocity.
Thus, this integer number m is also called the topological
charge of photonic vortices [29]. We also see that for a uni-
formly polarized beam, the obtained topological charge is
always an integer. This is significantly different from previ-
ous results [31,34], in which fractional topological charges
can exist. As shown in Sec. IV B, crossing a zero-amplitude
point, ψ (r) will experience an extra ±π phase jump, which
will lead to singularities in the flow velocity. These singu-
larities are essential to obtain quantized integer topological
charges (see Sec. IV C). We emphasize that the diverging flow
velocity cannot be detected in experiments. Only the well-
behaved densities and the corresponding currents are physical
observables.

D. Pure-helicity vortices

Previously, the normalized Stokes parameters have been
utilized to characterized polarization singularities in vector
beams [32,33,57,58]. However, for the same beam, there exist
three types of polarization vortices depending on the selected
polarization basis [59]. Our introduced helicity current and
the associated helicity vortices are uniquely defined. More im-
portantly, we show that there exist pure-helicity-vortex beams
in which the photon current and the corresponding vortices
vanish.

We first consider a beam by superposition of two circularly
polarized beams. The corresponding many-photon wave-
packet function is given by 
(r) = αξ̃ (r)[eiφ(r), e−iφ(r)]T /

√
2,

where the scalar function ξ̃ (r) does not contribute to the
currents in the xy plane, i.e., ∇T ξ̃ (r) = 0. We can easily
verify that 〈 ĵN 〉 = 0 and vN = 0. However, the helicity density
current and the corresponding flow velocity do not vanish,

〈 ĵH (r)〉 = 〈n̂(r)〉
k0

∇T φ(r), vH (r) = 1

k0
∇T φ(r), (28)

FIG. 2. Bloch sphere for photonic polarizations. In a circular-
polarization representation, the north and south poles denote the left
and right circularly polarized states, respectively. The polarization of
an arbitrary pure state can be characterized by the eigenstate of the
operator σ̂ = {σ̂x sin θB cos ϕB, σ̂x sin θB sin ϕB, σ̂z cos θB}.

where the PND is given by 〈n̂(r)〉 = |αξ̃ (r)|2. Thus, pure-
helicity vortices will be obtained from the quantized circu-
lation of the helicity current. This is similar to the net spin
current in condensed-matter physics. We also note that the
helicity density vanishes at every point in this case, i.e.,

〈n̂H (r)〉 = 1
2 |αξ̃ (r)|2[e−iφ(r), eiφ(r)]σ̂z[e

iφ(r), e−iφ(r)]T = 0.

We can also construct a pure-helicity vortex
with nonvanishing helicity density. With the help of
the Bloch sphere, the polarization of a uniformly
polarized beam can be characterized by a vector
σ̂ = {σ̂x sin θB cos ϕB, σ̂x sin θB sin ϕB, σ̂z cos θB} as shown
in Fig. 2. Here θB and ϕB are the polar angle and azimuthal
angle in the Bloch space, respectively, not in the real space.
The two normalized eigenstates of σ̂ are given by [7]

|↑〉 =
[

cos
θB

2
e−iϕB/2, sin

θB

2
eiϕB/2

]T

, (29)

|↓〉 =
[
− sin

θB

2
e−iϕB/2, cos

θB

2
eiϕB/2

]T

. (30)

We note that all the operators are expressed in the circular-
polarization representation. Thus, for θB = 0 or π , |↑〉 and
|↓〉 are circularly polarized states. For θB = π/2, |↑〉 and |↓〉
are linearly polarized states. Otherwise, |↑〉 and |↓〉 will be
elliptically polarized.

Now we construct a beam by the superposition of two
elliptically polarized light with the many-photon wave-packet
function


(r) = αξ̃ (r)[c↑eiφ(r)|↑〉 + c↓e−iφ(r)|↓〉]. (31)

For the case |c↑| = |c↓| = 1/
√

2, we have zero photon current
〈 ĵN (r)〉 = 0 but nonvanishing helicity density current

〈 ĵH (r)〉 = 〈n̂(r)〉
k0

cos θB∇T φ(r). (32)
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The corresponding PND and helicity density are given by

〈n̂(r)〉 = |αξ̃ (r)|2, 〈n̂H (r)〉
= |αξ̃ (r)|2 sin θB cos[2φ(r) + φ0], (33)

where the constant phase φ0 is determined by the relative
phase between c↑ and c↓. We can verify that the circulation
of the helicity current is quantized in units of λ0 cos θB.

The helicity density can be measured with a pixelated
polarization filter array, which has been routinely used in
polarization-sensitive imaging [60,61]. On the other hand,
atoms can have asymmetric circularly polarized light-induced
transitions. Thus, our predicted pure-helicity current and pure-
helicity vortex can be detected via imaging the created atomic
vortex via two-photon Raman processes [62].

IV. PHOTONIC VORTICES IN PARAXIAL BEAMS

Recently, the quantized topological charge of photonic
vortices in paraxial beams or pulses has been attracting
increasing interest [52,63,64]. We now apply the theory pre-
sented in the preceding section to investigate the properties
of vortices in a paraxial Laguerre-Gaussian (LG) beam and a
Bessel-Gaussian (BG) beam, which are widely used in exper-
iments. We explicitly calculate the associated PND, current
density, and specifically the flow velocity. We then analyze
the flow-velocity singularities due to the ill-defined phase at
the zeros of the many-photon wave-packet function and the
contribution of these singularities to the winding number of
a photonic vortex. In particular, we exemplify that no frac-
tional topological charge exists in a uniformly polarized beam.
Finally, we show the pure-helicity current and pure-helicity
vortex in a superposition of two BG beams.

A. Laguerre-Gaussian beam

We now apply the theory we presented in the previ-
ous section to study the properties of photonic vortices in
a paraxial linearly polarized LG beam. The correspond-
ing many-photon wave-packet function is given by 
(r) =
αξ̃LG,pm(ρ, ϕ, z)[1, 1]T /

√
2, where the complex constant

α denotes the strength of the beam. The pulse profile is char-
acterized by the wave-packet function [65]

ξ̃LG,pm(ρ, ϕ, z)

= Npm

(
1

q(z)

)2p+|m|+1

|q(z)|2p

(√
2ρ

w0

)|m|
L|m|

p

(
2ρ2

w2
0|q(z)|2

)

× exp

(
ik0z − ρ2

w2
0q(z)

+ imϕ

)
, (34)

where Lm
p (x) is the associated Laguerre polynomials with

a non-negative integer p and an integer m, q(z) = 1 +
iz/zR, zR = kw2

0/2 = πw2
0/λ0 is the Rayleigh length, and

w0 is the Gaussian beam waist radius. The constant fac-
tor Npm is determined by the normalization condition∫

V d3r|ξ̃LG,pm(ρ, ϕ, z)|2 = 1 and V is the effective volume of
the laser beam.

In the previous section we have shown that both the current
and flow velocity are in the transverse plane perpendicular to
the propagating direction. Without loss of generality, we only
consider the focal plane (z = 0) in the following. The PND in

the z = 0 plane is given by

〈n̂(ρ, ϕ, 0)〉 =
∣∣∣∣∣αNpm

(√
2ρ

w0

)|m|
L|m|

p

(
2ρ2

w2
0

)
e−ρ2/w2

0

∣∣∣∣∣
2

. (35)

For m �= 0, the mean PND vanishes on the z axis with scaling
∼ρ2|m|. We show the rescaled PND 〈n̂(ρ, ϕ, 0)〉/|αNpm|2 in
Fig. 3(a). We see that there is a hole at the center.

The corresponding in-plane photon current density is
given by

〈 ĵN (ρ, ϕ, 0)〉 = 〈n̂(ρ, ϕ, 0)〉 mλ0

2πρ
eϕ, (36)

which only has a tangent component. We see that this current
density is proportional to the PND and the integer m. It is
also modulated by the function 1/ρ. We note that the photon
current is well defined on the whole xy plane and it vanishes
on the z axis due to the vanishing PND (limρ→0〈n̂〉 ∝ ρ2|m|).
The rescaled photon current 〈 ĵT (ρ, ϕ, 0)〉/|αNpm|2 is shown
in Fig. 3(b). For m > 0, it flows in a counterclockwise direc-
tion. For a linearly polarized beam, both the helicity density
and helicity current density are zero (not shown).

The flow velocity of the photon current is given by

vN = mλ0

2πρ
eϕ +

∑
j

λ0

2
δ(ρ − ρZA, j )eρ. (37)

The Laguerre polynomial L|m|
p (x) has p zeros [66], which lead

to p zero-PND circles with radius ρZA, j in the xy plane (not
shown in Fig. 3), i.e., L|m|

p (2ρ2
ZA, j/w

2
0 ) = 0. We can see that

there are two types of singularities in the flow velocity. The
first type is a singularity point lying at the center of a vortex
as shown in Fig. 3(c) and the second type (not shown) comes
from the π -phase jump when the wave-packet function 


cross a zero-value curve. A closed velocity singularity curve
does not contribute to the winding number of a vortex, because
any integral loop in the xy plane will always cross the singu-
larity curve an even number of times. The accumulated phases
cancel each other. Thus, the topological winding number of
the vortex in this LG beam is m.

We note that the diverging flow velocity is unphysical and
cannot be observed in experiments. These singularities are
fully due to the ill-defined phase of the complex wave-packet
function 
(r) at the zero-value points. On the other hand,
no singularity exists in the truly observable PND and photon
current density.

B. Bessel-Gaussian beam

In this section we study the vortex in a
paraxial linearly polarized BG beam. The corresponding
many-photon wave-packet function is given by 
(r) =
αξ̃BG,pm(ρ, ϕ, z)[1, 1]T /

√
2, where the complex constant

α denotes the strength of the beam. The pulse profile is
characterized by the wave-packet function [67]

ξ̃BG,pm(ρ, ϕ, z) =Np
1

q(z)
Jp

(
βpρ

q(z)

)
exp

[
ik0z

(
1 − sin2 θp

2q(z)

)

− ρ2

w2
0q(z)

+ imϕ

]
, (38)
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FIG. 3. Photonic vortex in a paraxial Laguerre-Gaussian beam. (a) Rescaled particle number density 〈n̂(ρ, ϕ, 0)〉/|αNpm|2. (b) Rescaled
photon current density 〈 ĵN (ρ, ϕ, 0)〉/|αNpm|2. (c) Flow velocity vN (ρ, ϕ, 0). The diverging velocity at the center leads to the photonic vortex.
Here the parameters in the simulation are taken as p = 1, m = 1, and w0 = 10λ0. The length is in units of λ0 (center wavelength of the beam).

where Jp(x) is the Bessel function of the first kind with a non-
negative integer p, βp = k0 sin θp is the scaling factor of the
Bessel function, and θp is the half angle of a conical wave that
forms the Bessel beam. The constant factor Np is determined
by the normalization condition

∫
V d3r|ξ̃BG,pm(ρ, ϕ, z)|2 = 1.

The PND of a BG beam in z = 0 plane is given by

〈n̂(ρ, ϕ, 0)〉 = ∣∣αNpJp(βpρ)e−ρ2/w2
0
∣∣2

. (39)

We show the rescaled PND 〈n̂(ρ, ϕ, 0)〉/|αNp|2 in Fig. 4(a).
For p �= 0, there is a hole with vanishing PND on the z axis.
On the other hand, a Bessel function Jp(x) has an infinite
number of real zeros, and thus a Bessel beam will have an
infinite number of zero-amplitude circles in the transverse
plane (see the red dashed curves). Here ρZA, j denotes the
radius of the jth circle.

The corresponding photon current density is given by

〈 ĵN (ρ, ϕ, 0)〉 = 〈n̂(ρ, ϕ, 0)〉 mλ0

2πρ
eϕ. (40)

The rescaled photon current 〈 ĵT (ρ, ϕ, 0)〉/|αNp|2 is shown
in Fig. 4(b). We see that this current is modulated by the
PND and it flows in a counterclockwise direction for m >

0. We note that the photon current also has a hole on the

z axis for p > 0 due to the vanishing PND (〈n̂〉 ∝ ρ2p →
0), but it diverges when ρ → 0 if p = 0 and m �= 0. How-
ever, in this case, the transverse component of the wave
vector diverges [53], i.e., −i
∇T 
 → ∞, and thus the
paraxial approximation loses its validity on the z axis. On
the other hand, the kinetic energy diverges in this case [50]
(i.e., − ∫

d3r 
∇2
T 
/2k0 → ∞); thus an infinitely high laser

power is required to prepare this vortex beam with p = 0 but
nonzero m.

Similar to the LG beam, the flow velocity for a BG light
beam also has a radial component

vN = mλ0

2πρ
eϕ +

∑
j

λ0

2
δ(ρ − ρZA, j )eρ, (41)

where the diverging radial velocity comes from the π -phase
jump at zeros of the Bessel function and ρZA, j denotes the
radius of the jth zero-amplitude circle. As explained in pre-
ceding section, only the first term in vN will contribute to the
vortex. Thus, the topological winding number of the vortex in
this BG beam is m.

FIG. 4. Photonic vortex in a Bessel-Gaussian beam. (a) Rescaled particle number density 〈n̂(ρ, ϕ, 0)〉/|αNp|2. Red dashed curves denote
the zero-amplitude circles at ρZA, j resulting from Jp(βpρZA, j ) = 0. (b) Rescaled photon current density 〈 ĵN (ρ, ϕ, 0)〉/|αNp|2. (c) Flow velocity
vN (ρ, ϕ, 0). The diverging radial component of the flow velocity proportional to eρδ(ρ − ρZA, j ) on the zero-amplitude circles is not shown.
Here the parameters in the simulation are taken as p = 1, m = 1, w0 = 10λ0, and θp = 0.05π .
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FIG. 5. Photonic vortex in a superposition of two Bessel-Gaussian beams. (a) Rescaled particle number density 〈n̂(ρ, ϕ, 0)〉/|αNp|2. Red
dashed lines denote the zero-amplitude cut lines at φ = π (2 j − 1)π/|m − n| ( j = 1, 2, . . . , |m − n|) [see Eq. (44)]. (b) Rescaled photon
current density 〈 ĵN (ρ, ϕ, 0)〉/|αNp|2. (c) Flow velocity vN (ρ, ϕ, 0). The diverging terms due to crossing the zero-amplitude curves are not
shown. Here the parameters in the simulation are taken as p = 1, m = 1, n = 4, w0 = 10λ0, and θp = 0.05π .

C. Fractional topological charge controversy

In previous studies, photonic vortices with fractional
topological charge were found in both theory [31,34] and
experiments [35,36]. In Sec. III we showed that the circulation
of a paraxial beam is not quantized and even not conserved
in most cases. However, for a uniformly polarized beam, the
circulation is conserved during propagation and the corre-
sponding winding number must be an integer. Now we show
that half-integer topological charges obtained in a uniformly
polarized beam are due to the improper evaluation of the
circulation.

To resolve the controversy, we look at a simple example
of the superposition of two coaxial BG beams with the same
polarization, strength, and beam profile, but with different
helical phase factors. The many-photon wave-packet function
can be expressed in the form 
(r) = [c+, c−]T αξ̃ (r) with
normalized constants |c+|2 + |c−|2 = 1. In the z = 0 plane,
the wave-packet function is given by

ξ̃ (ρ, ϕ, 0) = NpJp(βpρ)e−ρ2/w0 (eimϕ + einϕ ) (42)

= 2NpJp(βpρ)e−ρ2/w0 cos
m − n

2
ϕei(m+n)ϕ/2.

(43)

In Fig. 5(a) we plot the rescaled PND for two mixed beams
with m = 1 and n = 4,

〈n̂(ρ, ϕ, 0)〉/|αNp|2 =
∣∣∣∣2Jp(βpρ)e−ρ2/w0 cos

m − n

2
ϕ

∣∣∣∣
2

.

(44)
Here we see that except for the zero-amplitude circles (not
shown) due to the Bessel function Jp(x), there are |m − n| = 3
zero-amplitude cut lines from the center to infinity (the red
dashed lines). The photon current density is given by [see
Fig. 5(b)]

〈 ĵN (ρ, ϕ, 0)〉 = 〈n̂(ρ, ϕ, 0)〉m + n

2

λ

2πρ
eϕ. (45)

Different from Eq. (36), a half-integer enters the photon
current here.

We note that the winding number of the photonic vortex is
still an integer in this case. The flow velocity now contains the
contributions from three parts

vN =m + n

2

λ0

2πρ
eϕ +

∑
j

λ0

2
δ(ρ − ρZA, j ) eρ

−
|m−n|∑

j=1

(−1) j λ0

2
δ

(
ϕ − 2 j − 1

|m − n|π
)

eϕ. (46)

As explained in previous sections, the first term determines
the position of the vortex core, the second term results from
π -phase jump when crossing the zero-amplitude circles, and
the third term comes from the π -phase jump crossing the
cut lines.

The half-integer topological charge has been obtained [34]
in a linear combination of optical vortices with the def-
inition in Eq. (13). However, we note that this fractional
topological charge is because the definition in Eq. (13) has
not taken the contribution from the third term in Eq. (46).
Different from the closed zero-amplitude curve, the open
zero-amplitude lines can contribute to the winding number of
the vortex. If m + n is an even integer, then |m − n| must also
be an even integer and the third term vanishes. The topological
winding number of the vortex is (m + n)/2. If m + n is an
odd integer, then |m − n| must also be an odd integer and the
third term will contribute an extra π phase. The topological
winding number of the vortex is (m + n + 1)/2. Similarly, a
cut line connecting two vortices [68] will also contribute to
the circulation of each vortex. Here we see that the fractional
topological charge cannot be obtained by superposition of
uniformly polarized OAM beams.

D. Helicity vortex

In this section we investigate the pure-helicity current and
pure-helicity vortex in the superposition of two BG beams.
The many-photon wave-packet function in the focal plane is
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FIG. 6. Pure-helicity vortex in a superposition of two Bessel-Gaussian beams. (a) Rescaled helicity density 〈n̂H (ρ, ϕ, 0)〉/|αNp|2.
(b) Rescaled helicity current density 〈 ĵH (ρ, ϕ, 0)〉/|αNp|2. (c) Helicity flow velocity vH (ρ, ϕ, 0). The diverging terms due to crossing the
zero-amplitude curves are not shown. Here the parameters in the simulation are taken as p = 1, m = 1, w0 = 10λ0, and θp = 0.05π .

given by


(ρ, ϕ, 0) = αNpJp(βpρ)e−ρ2/w0 (c↑eimϕ |↑〉 + c↓e−imϕ |↓〉),
(47)

with |c↑|2 = |c↓|2 = 1
2 . The PND in this plane is the same as

a BG beam as given in Eq. (39) [see Fig. 4(a)]. Different from
the PND, the helicity in this plane has also been modulated by
the azimuth angle

〈n̂H (ρ, ϕ, 0)〉 = 〈n̂(ρ, ϕ, 0)〉 sin θB cos(2mϕ + φ0). (48)

We plot the helicity density in the focal plane in Fig. 6(a) with
θB = π/4 and φ0 = 0. The zero-amplitude circles due to the
zeros of the Bessel function also exist (not shown).

The photon current vanishes in a pure-helicity vortex beam
described by (47). However, the helicity current is given by

〈 ĵH (ρ, ϕ, 0)〉 = 〈n̂(ρ, ϕ, 0)〉 cos θB
mλ0

2πρ
eϕ. (49)

The helicity flow velocity vH is obtained by multiplying the
velocity vN in Eq. (41) by a factor cos θB [see Fig. 6(c)].
Similar to the vortex of the photon current in a BG beam,
the zero-amplitude circles do not contribute to the winding
number of the vortex. The topological charge of this pure-
helicity vortex is also m.

From Eqs. (48) and (49) we see that the superposition of
two circularly polarized beams with θB = 0 or π gives the
largest helicity current but vanishing helicity density and the
superposition of two linearly polarized beams with θB = π/2
gives the largest helicity density but vanishing helicity current.
The superposition of two elliptically polarized beams leads to
nonvanishing helicity density and current.

V. QUANTUM COHERENCE OF TWISTED LIGHT

In his seminal work [44], Glauber introduced a succes-
sion of quantum correlation functions and quantum coherence
functions for optical light, laying the foundation for modern
quantum optics. We now reexpress the quantum coherence
functions of light with our introduced field operator ψ̂ (r). We
also propose a quantum correlation function for the photonic
helicity density, which can be directly measured in experi-
ments. When applying to twisted photon pairs, we find an
interesting phenomenon that two photons with a symmetrical

spin state tend to be bunched and two photons with an an-
tisymmetric polarization state behave in a more antibunched
manner. The quantum statistics of a twisted photon pair are
strongly dependent on its spin (polarization) state.

The quantum statistics of light are essentially characterized
by its high-order correlations, which can be measured via
high-order quantum interference experiments [69]. Without
loss of generality, we only take the most commonly used
second-order correlation in coincidence measurements as an
example,

G(2)(r, r′) =
∑
λλ′

〈ψ̂†
λ (r)ψ̂†

λ′ (r′)ψ̂λ′ (r′)ψ̂λ(r)〉. (50)

The corresponding second-order coherence function in real
space is given by

g(2)(r, r′) = G(2)(r, r′)
〈n̂(r)〉〈n̂(r′)〉 . (51)

We emphasize that a paraxial approximation is also required
here; otherwise the physical meaning of n̂(r) is unclear.
In Glauber’s original work, the electric-field operator was
used to define the quantum coherence function. It is actu-
ally based on the energy-density correlation function instead
of photon-number-density correlation addressed here. On the
other hand, we only consider equal-time correlation and co-
herence functions in the following. The time dependence can
be easily recovered with the field operator ψ̂λ(r, t ) in the
Heisenberg picture or with time-varying quantum states in the
Schrödinger picture.

We now propose a new correlation function corresponding
to the photonic helicity density,

G(2)
H (r, r′) =

∑
λλ′

λλ′〈ψ̂†
λ (r)ψ̂†

λ′ (r′)ψ̂λ′ (r′)ψ̂λ(r)〉, (52)

which can be exploited to reveal the correlation information
about the polarization degree of freedom of light. Here we do
not consider the correlation functions for the photonic spin
and OAM densities. A 3 × 3 correlation matrix is needed
to fully characterize the corresponding quantum correlations
[46]. On the other hand, it is currently extremely challenging
to measure the spin or OAM density correlation at the few-
photon level.
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We first check the quantum coherence of the pure-
helicity vortex laser beam with the many-photon wave-packet
function (31). We can verify that a coherent-state light
(even with highly sophisticated structure) has a constant
quantum coherence function, i.e., g(2)(r, r′) = 1. Its helicity
correlation function is simply the product of the helic-
ity density at each point, i.e., G(2)

H (r, r′) = 〈n̂H (r)〉〈n̂H (r′)〉.
Nontrivial quantum coherence only exists in truly quantum
light, such as Fock-state photon pulses and squeezed light
pulses. In the following, we focus on entangled photon pairs
[70–72], which have been extensively explored for testing of
Bell’s inequality [73], quantum key distribution [74], ghost
imaging [75,76], etc.

The quantum state of a photon pair can be written as [77]

|Pξ 〉 = 1√
2

∑
λ1λ2

∫
d3k1

∫
d3k2ξλ1,λ2 (k1, k2)â†

k2,λ2
â†

k1,λ1
|0〉.

(53)
The normalization requirement of the state |Pξ 〉 requires∑

λ1λ2

∫
d3k1

∫
d3k2|ξλ1,λ2 (k1, k2)|2 = 1. On the other hand,

photons are bosons; thus the two-photon SAF should also be
symmetric, i.e., ξλ1,λ2 (k1, k2) = ξλ2,λ1 (k2, k1). Via the Fourier
transformation, we can also reexpress |Pξ 〉 with the field
operators

|Pξ 〉 = 1√
2

∑
λ1λ2

∫
d3r1

∫
d3r2ξ̃λ1,λ2 (r1, r2)ψ̂†

λ2
(r2)ψ̂†

λ1
(r1)|0〉,

(54)

where the two-photon wave packet in real space

ξ̃λ1,λ2 (r1, r2)

= 1

(2π )3

∫
d3k1

∫
d3k2ξλ1,λ2 (k1, k2)ei(k1·r1+k2·r2 ) (55)

is also normalized
∑

λ1λ2

∫
d3r1

∫
d3r2|ξ̃λ1,λ2 (r1, r2)|2 = 1

and symmetric.
We now give the quantum correlation and coherence func-

tions for an arbitrary two-photon pulse. The PND and helicity
density correlations are given by

G(2)(r, r′) = 2
∑
λλ′

|ξ̃λλ′ (r, r′)|2 (56)

and

G(2)
H (r, r′) = 2

∑
λλ′

λλ′|ξ̃λλ′ (r, r′)|2, (57)

respectively. Here the factor 2 comes from the fact that there
are two photons in the pulse. The quantum coherence function
can be easily obtained with the help of the PND at each
point 〈n̂(r)〉 = 2

∑
λλ′

∫
dr′|ξ̃λλ′ (r, r′)|2. The helicity density

is given by 〈n̂H (r)〉 = 2
∑

λλ′ λ
∫

dr′|ξ̃λλ′ (r, r′)|2.

Spin-state dependent quantum statistics

It is well known that the statistics of identical particles are
strongly dependent on their spin property. For fermions with
the same spin state, the two-particle correlation vanishes when
|r − r′| → 0, i.e., g(2)(r, r) = 0. For photons in a thermal light,
we have g(2)(r, r) = 2. Here we show an exotic phenomenon
for entangled twisted photon pairs. The spatial distribution

of the quantum coherence function g2(r, r′) is controlled by
the photonic spin state. The g(2) function is reversed when the
photonic spin state changes from symmetric to antisymmetric.

We now apply our theory to investigate the quantum corre-
lations of elliptically polarized photon pairs with a symmetric
spin state ∼|↑〉 ⊗ |↓〉 + |↓〉 ⊗ |↑〉. For simplicity, we consider
a photon pair with the two-photon SAF,

ξλ1,λ2 (k1, k2) = N�λ1λ2η(k1)η(k2)[eim(ϕk1 −ϕk2 ) + c.c]. (58)

Here the function η(k), which determines the pulse shape and
transverse-plane distribution, is independent of ϕk [46]. The
polarization of the photon pair is described by a symmetric
2 × 2 matrix

� =
[
�++ �+−
�−+ �−−

]
=

[− sin θBe−iϕB cos θB

cos θB sin θBeiϕB

]
. (59)

The normalization of state |Pξ 〉 requires
∫

d3k|η(k)|2 = 1 and
N = [4(1 + δm,0)]−1/2. This type of photon pair can be gen-
erated by a two-atom light source [78]. Deterministic photon
pairs can be generated via bundle-emission processes [79,80].

The two-photon wave packet in real space can be expressed
in the form of (see Appendix D)

ξ̃λλ′ (r, r′) = N η̃m(r)η̃−m(r′)�λλ′[eim(ϕ−ϕ′ ) + c.c.], (60)

where we have used the property of the Bessel function
Jm(x) = (−1)mJ−m(x). The PND and helicity density are
given by 〈n̂(r)〉 = 2|η̃m(r)|2 = 2|η̃−m(r)|2 and 〈n̂H (r)〉 = 0,
respectively. This vanishing net helicity density results from
the fact that we have required the two photons in the pulse
to have opposite helicity. The corresponding correlation func-
tions are given by

G(2)(r, r′) = 8N2|η̃m(r)|2|η̃m(r′)|2{1 + cos[2m(ϕ − ϕ′)]},
(61)

G(2)
H (r, r′) = −G(2)(r, r′) cos 2θB. (62)

We obtain a simple relation between G(2)(r, r′) and G(2)
H (r, r′)

for noninteracting photons in free space. A more sophisticated
and interesting photon helicity correlation structure can be
obtained in a nonlinear medium, such as the Rydberg-atom
array induced photon-photon interaction [81,82]. In experi-
ments, the helicity correlation can be measured via nanoscale
quantum sensors [83].

The striking property of the twisted photon pair is that
its quantum coherence function is now modulated by the
azimuthal angle difference of the two photons

g(2)(r, r′) = 1

2(1 + δm,0)
{1 + cos[2m(ϕ − ϕ′)]}. (63)

For the m = 0 case, the quantum coherence function reduces
to a constant g(2) = 1

2 for an untwisted two-photon Fock state.
For the m �= 0 case, the g(2) function reaches it maximum 1
when ϕ − ϕ′ = 0. Thus, the two photons in a twisted photon
pair tend to be bunched compared to a regular untwisted pair.
For a twisted photon pair with symmetric spin state |↑〉 ⊗ |↑〉
or |↓〉 ⊗ |↓〉, the quantum coherence function is the same as
Eq. (63). However, the helicity density is not zero for these
two cases, 〈n̂H (r)〉 = ±2|η̃m(r)|2 cos θB.
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FIG. 7. Quantum coherence of twisted photon pairs. Each disk
shows the g(2) as a function of azimuthal angle difference of the two
photons ϕ − ϕ′ ∈ [0, 2π ) and the red dashed line denotes the case
ϕ − ϕ′ = 0. The top and bottom rows denote the g(2) function of
twisted photon pairs with symmetric and anti-symmetric spin states,
respectively.

Another interesting phenomenon is that the quantum statis-
tics of twisted photon pairs are reversed if their spin state
is antisymmetric ∼|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉. The corresponding
two-photon SAF is given by

ξλ1,λ2 (k1, k2) = N�λ1λ2η(k1)η(k2)[eim(ϕk1 −ϕk2 ) − c.c.], (64)

where m �= 0. The polarization of the photon pair is now
described by an antisymmetric constant matrix

� =
[
�++ �+−
�−+ �−−

]
=

[
0 1

−1 0

]
. (65)

The quantum coherence of photons for this type of twisted
photon pairs is given by

g(2)(r, r′) = 1
2 {1 − cos[2m(ϕ − ϕ′)]}. (66)

In contrast to Eq. (63), the g(2) function now reaches it mini-
mum 0 when ϕ − ϕ′ = 0. Thus, the two photons in a twisted
photon pair tend to be antibunched compared to a regular
untwisted pair.

In Fig. 7 we contrast the g(2) function for twisted photon
pairs with a symmetric spin state (the top row) and with an
antisymmetric spin state (the bottom row). We find that the
two rows are precisely complementary to each other. Thus, the
quantum statistics of twisted photon pairs are reversed when
their spin state changes from symmetric to antisymmetric.
Here we use two simple examples to show the influence of
the photon spin on the quantum statistics of light. The SAF
of entangled photon pairs generated via a spontaneous para-
metric down-conversion process will be more complicated
[84,85]. However, we have revealed the essential feature of
spin-dependent statistics in twisted photon pairs.

In the upper two examples, the spin and spatial degrees
freedom of the photon pairs are highly entangled. Thus,
the photon-number-density and helicity-density correlations
exhibit almost the same correlation behavior. However, the
properties of these two correlations could be significantly
different in more general cases, such as randomly polarized
Fock-state photon pairs. Quantum correlation can still exist

in the photon-number density, but the helicity density will be
completely uncorrelated.

VI. CONCLUSION

We have put forth a quantum framework for structured
quantum light in real space by introducing the effective field
operator of photons. We exploited our presented theoretical
formalism to study the photonic vortices. We showed the
analogy between the photonic vortex and its counterpart in
superfluids by defining quantum operators for the photonic
currents. We also gave an unambiguous definition of the topo-
logical charge of a photonic vortex: the winding number of
the photonic currents. We predicted the pure-helicity vortex,
which could be measured in experiments.

We also studied the quantum statistics of twisted light with
our proposed theoretical formalism. We showed an interesting
effect: The statistical behaviors are essentially different for
twisted photon pairs with symmetric and antisymmetric spin
states. Entangled twisted photons, which possess a spatially
varying quantum coherence function in the transverse plane,
can be utilized to enhance resolution in quantum imaging [86]
and detect the texture of a target in the quantum-illumination-
based radar system [87,88].
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APPENDIX A: PHOTONIC OAM OPERATORS IN REAL
SPACE

Historically, the discovery of the optical OAM has boosted
the development of optical phase singularity research [40].
Here we show how to evaluate the OAM of light in real
space within our proposed theoretical framework in this work.
The directly observable part of the photonic OAM is given
by L̂

obs = ε0
∫

d3r Ê j
⊥(r, t )(r × ∇)Â j

⊥(r, t ) [89], which can be
rewritten with the photonic field operator as [46]

L̂
obs =

∫
d3r ψ̂†(r)(r × p̂)ψ̂ (r) ≡

∫
d3r ψ̂†(r)l̂ψ̂ (r).

(A1)

To obtain the quantum uncertainties of the photonic OAM, we
need the square of its three components

(
Lobs

j

)2 =
∫

d3r
∫

d3r′ψ̂†(r)ψ̂†(r′)l̂ j l̂
′
jψ̂ (r)ψ̂ (r′)

+
∫

d3r ψ̂†(r)l̂2jψ̂ (r). (A2)

In a Cartesian coordinate, the three components of the
differential operator l̂ = (l̂x, l̂y, l̂z ) are given by

l̂x = −ih̄

(
y

∂

∂z
− z

∂

∂y

)
, (A3)

l̂y = −ih̄

(
z

∂

∂x
− x

∂

∂z

)
, (A4)
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l̂z = −ih̄

(
x

∂

∂y
− y

∂

∂x

)
. (A5)

It is more convenient to evaluate the OAM of a paraxial pulse
or beam in a cylindrical coordinate as shown in Fig. 1(a). Then
the three differential operators are given by

l̂x = −ih̄

(
ρ sin ϕ

∂

∂z
− z sin ϕ

∂

∂ρ
− z

ρ
cos ϕ

∂

∂ϕ

)
, (A6)

l̂y = ih̄

(
ρ cos ϕ

∂

∂z
− z cos ϕ

∂

∂ρ
+ z

ρ
sin ϕ

∂

∂ϕ

)
, (A7)

l̂z = −ih̄
∂

∂ϕ
. (A8)

For a laser pulse or a beam, the mean value of the OAM
is obtained by simply replacing the field operators ψ̂ (r) and
ψ̂†(r) with the functions 
(r) and 
∗(r), respectively. This
is also the reason that the OAM of light has usually been
handled classically [90–92]. We emphasize that no paraxial
approximation [90,91] is required for the global quantities.
Our theory provides a powerful and versatile tool to handle
the OAM of all classes of quantum structured light pulses in
real space, specifically for the one with spatiotemporal optical
vortices [18–20].

We note that the integral kernel in Eq. (A1) cannot be
interpreted as the photonic OAM density, which by definition
is given by

l̂
obs
M (r) = ε0Ê j

⊥(r)(r × ∇)Â j
⊥(r). (A9)

With the plane-wave expansion of Ê⊥ and Â⊥ [46], we have

l̂
obs
M (r) ≈ −ih̄

(2π )3

∑
λλ′

∫
d3k

∫
d3k′

√
ωk

ωk′
e∗(k, λ) · e(k′, λ′)

× â†
k,λ

e−ik·r(r × ∇)âk′,λ′eik′ ·r, (A10)

where we have neglected the counterrotating wave terms
a†

k,λ
â†

k′,λ and âk,λâk′,λ. In the paraxial limit, we have e∗(k, λ) ·
e(k′, λ′) ≈ δλλ′ exp[iλ(ϕk − ϕk′ )], where we have used the
relations

e(k, λ) = e−iλϕk cos2 θk

2
eλ − eiλϕk sin2 θk

2
e−λ − 1√

2
sin θkez,

(A11)

and eλ = (ex + iλey)/
√

2 [46]. Thus, even for a quasi-
single-frequency paraxial beam with

√
ωk/ωk′ ≈ 1, the OAM

density only reduces to

l̂
obs

(r, t ) ≈ ˆ̃ψ†(r)(r × p̂) ˆ̃ψ (r), (A12)

where

ˆ̃ψλ(r) ≡ 1√
(2π )3

∫
d3k âk,λei(k·r−λϕk ). (A13)

It is more convenient to evaluate both the photonic spin and
OAM densities in k space. The angular momentum density
of light will be of increasing interest for experiments in the
near future.

APPENDIX B: QUANTUM STATE OF THE
SUPERPOSITION OF MULTIPLE LASER BEAMS

A laser beam can be regarded as a quantum light pulse
with an extremely long pulse length and enormous number
of photons. The corresponding quantum state is given by

|αξ 〉 = D̂ξ (α)|0〉 = e−|α|2/2
∞∑

n=0

αn

n!

(
â†

ξ

)n|0〉, (B1)

where the operator D̂ξ is given in Eq. (6) and â†
ξ is the photon-

wave-packet creation operator. It can be easily verified that
two operators D̂ξ1 (α1) and D̂ξ2 (α2) commute with each other,
i.e., [D̂ξ1 (α1), D̂ξ2 (α2)] = 0, because only creation operators
â†

k are involved in D̂ξ .
The superposition of multiple laser beams can be described

by the quantum state

|
〉 = 1√
N

∏
j

D̂ξ j (α j )|0〉 (B2)

= 1√
N

exp

[∑
j

(
α j â

†
ξ j

− 1

2
|α j |2

)]
|0〉. (B3)

Using the relation

exp

(∑
j

α∗
j âξ j

)
exp

(∑
j

α j â
†
ξ j

)

= exp

(∑
j

α j â
†
ξ j

)
exp

(∑
j

α∗
j âξ j

)

× exp

(∑
j, j′

α∗
j α j′ [âξ j , â†

ξ j′
]

)
, (B4)

we obtain the normalization factor

N = exp

(∑
j �= j′

α∗
j α j′

[
âξ j , â†

ξ j′

])
, (B5)

with the overlap of the SAFs of the two pulses[
âξ j , â†

ξ j′

] =
∑

λ

∫
d3k ξ ∗

j,λ(k)ξ j′,λ(k) (B6)

=
∑

λ

∫
d3r ξ̃ ∗

j,λ(r, t )ξ̃ j′,λ(r, t ). (B7)

Utilizing the relation[
ak, D̂ξ (α)

] = αξ (k)D̂ξ (α),

we show that ψ̂ (r)|
〉 = 
(r, t )|
〉, with 
(r, t ) =∑
j α j ξ̃ j (r, t ) satisfying the wave equation (∇2 −

1
c2

∂2

∂t2 )
(r, t ) = 0. We note that our presented formalism
is significantly different from the previous one based
on a six-component photon wave function [93,94]. Our
introduced two-component field operator ψ̂ (r) satisfies the
wave equation [46] and is compatible with the light-matter
interaction. However, the six-component wave function
satisfies a Schrödinger-like equation and is incompatible with
the light-matter interaction.
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In the circular-polarization representation, a linearly polar-
ized laser pulse can be described by a state

|αξ,λ=1〉 = exp

[
1√
2
α(â†

ξ,+ + â†
ξ,−) − |α|2

2

]
|0〉, (B8)

|αξ,λ=2〉 = exp

[
i√
2
α(â†

ξ,+ − â†
ξ,−) − |α|2

2

]
|0〉, (B9)

with

ψ̂ (r)|αξ,λ=1〉 = 1√
2

[αξ (r, t ), αξ (r, t )]T |αξ,λ=1〉, (B10)

ψ̂ (r)|αξ,λ=2〉 = i√
2

[αξ (r, t ),−αξ (r, t )]T |αξ,λ=2〉. (B11)

Elliptically polarized quantum pulses can be constructed in a
similar way.

APPENDIX C: HYDRODYNAMICS OF VORTICES IN
PARAXIAL LASER BEAMS

A laser beam can be regarded as a coherent-state pulse with
an extremely long pulse length, i.e., very narrow linewidth in
the frequency domain. In this case, we obtain the Helmholtz
equation for this quasi-single-frequency beam(∇2 + k2

0

)

±(r, t ) = 0. (C1)

For a well-collimated beam, we can take the paraxial approx-
imation. To extract the primary propagating factor out of the
wave-packet function, we let


±(r, t ) = 
PA,±(r)ei(k0z−ωt ), (C2)

where the function 
PA,±(r) is a slowly varying function of z,
i.e., ∂z
PA,± � 
PA,±/λ0 ∼ k
PA,±. Using the relations

∂2
z 
PA,± � k∂z
PA,± � k2

0
PA,±, (C3)

we obtain the paraxial Helmholtz equation

i∂z
PA,±(r) ≈ − 1

2k0
∇2

T 
PA,±(r), (C4)

where we have neglected the ∂2
z 
PA,± term.

Similar to the probability current in quantum mechanics,
we can define a photon current in the xy plane for a laser beam

〈 ĵN (r)〉 = − i

2k0

∑
λ

[
∗
PA,λ(r)∇T 
PA,λ(r)

− 
PA,λ(r)∇T 
∗
PA,λ(r)]

= − i

2k0

∑
λ

[
∗
λ (r)∇T 
λ(r) − 
λ(r)∇T 
∗

λ (r)]

= − i

2k0
〈ψ̂†(r)∇T ψ̂ (r) − [∇T ψ̂†(r)]ψ̂ (r)〉. (C5)

The paraxial Helmholtz equation gives the continuity
equation (16) with 〈n̂〉 = ∑

λ |
λ(r)|2.
For a laser beam, the wave-packet function is a contin-

uous function of r. We can always rewrite it as 
±(r) =
|
±(r)| exp[iφ±(r)]. Here we emphasize that the norm of

± is still continuous, but the phase φ± can have singu-
larity points and discontinuous steps. Splitting the paraxial

Helmholtz equation into real and imaginary parts [50,95], we
obtain two equations

∂

∂z
φ± = 1

2k0

[
1

|
±|∇
2
T |
±| − (∇T φ±)2

]
(C6)

and

∂

∂z
|
±| = − 1

2k0
[|
±|∇2

T φ± − 2(∇T |
±|) · (∇T φ±)].

(C7)

The second one can be used to derive the continuity
equations (16) and (18).

The divergence of the first one gives the hydrodynamic
equations for v± ≡ ∇T φ±/k0,

∂

∂z
v± = ∇T

[
1

2k2
0 |
±|∇

2
T |
±| − 1

2
v2

±

]
, (C8)

which can be rewritten as an analog of the Euler equation

∂

∂z
v± + v± · ∇T v± = ∇T

[
1

2k2
0 |
±|∇

2
T |
±|

]
, (C9)

without an external force term. The term on the right-hand
side has been referred to as the quantum pressure term, which
describes forces due to spatial variations in the magnitude of
the wave-packet function [50].

APPENDIX D: WAVE PACKET
IN REAL SPACE

It can be easily verified that the Fourier transformation of
the SAF ξ (k) = η(k) exp(imϕk ) can be written in the form

ξ̃ (r) =
∫

d3k ξ (k)eik·r =
∫

d3k η(k)eimϕk eik·r (D1)

=
∫ ∞

−∞
dkz

∫ ∞

0
ρkdρk

∫ 2π

0
dϕk

η(k)√
(2π )3

× ei[kzz+ρρk cos(ϕ−ϕk )+mϕk ]

≡ η̃m(r)eimϕ, (D2)

where

η̃m(r) = im

√
(2π )

∫ ∞

−∞
dkz

∫ ∞

0
ρkdρkη(k)eikzzJm(ρρk ) (D3)

is independent of ϕ and Jn(x) is the nth Bessel function of the
first kind. We can verify that ψ (r) is also normalized, i.e.,

∫
d3r|ηm(r)|2 =

∫
d3r|ξ̃ (r)|2 =

∫
d3k|η(k)|2 = 1. (D4)
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