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The dynamics of open quantum systems is often modeled using master equations, which describe the
expected outcome of an experiment (i.e., the average over many realizations of the same dynamics). Quantum
trajectories, instead, model the outcome of ideal single experiments—the “clicks” of a perfect detector due
to, e.g., spontaneous emission. The correct description of quantum jumps, which are related to random events
characterizing a sudden change in the wave function of an open quantum system, is pivotal to the definition of
quantum trajectories. In this article, we extend the formalism of quantum trajectories to open quantum systems
with ultrastrong coupling (USC) between light and matter by properly defining jump operators in this regime.
In such systems, exotic higher-order quantum-state and energy transfer can take place without conserving the
total number of excitations in the system. The emitted field of such USC systems bears signatures of these
higher-order processes, and significantly differs from similar processes at lower coupling strengths. Notably, the
emission statistics must be taken at a single quantum trajectory level, since the signatures of these processes
are washed out by the “averaging” of a master equation. We analyze the impact of the chosen unraveling
(i.e., how one collects the output field of the system) for the quantum trajectories and show that these effects
of the higher-order USC processes can be revealed in experiments by constructing histograms of detected
quantum jumps. We illustrate these ideas by analyzing the excitation of two atoms by a single photon [Garziano
et al., Phys. Rev. Lett. 117, 043601 (2016)]. For example, quantum trajectories reveal that keeping track of the
quantum jumps from the atoms allows one to reconstruct both the oscillations between one photon and two atoms
as well as emerging Rabi oscillations between the two atoms.

DOI: 10.1103/PhysRevA.105.023720

I. INTRODUCTION

A. Interacting quantum systems, ultrastrong coupling,
and virtual processes

In a system consisting of two (or more) interacting subsys-
tems, coherent energy transfer can take place between these
subsystems. If the interaction is small and the subsystems
are resonant, a single excitation can be exchanged and the
total number of excitations is conserved along the dynamics.
Instead, if the interaction strength is ultrastrong [1,2], i.e.,
comparable to the bare transition frequencies of the individ-
ual subsystems, novel quantum processes can be realized,
where the excitation number is not conserved [1,3]. In this
regime, the transition from an initial state |i〉 to a final state

*V.M. and F.M. contributed equally to this work.
†vincenzo.macri@riken.jp
‡fabrizio.minganti@riken.jp

| f 〉, characterized by different numbers of excitations, but
the energy of which is comparable, can take place through a
series of virtual transitions (intermediate states). The effective
|i〉 → | f 〉 process can be described by an effective interaction
potential, the form of which can be determined by perturba-
tion theory involving a sum over all the possible contributing
virtual transitions.

Processes mediated by virtual transitions are common also
in open quantum systems, where the energy-conservation con-
dition is relaxed by the inclusion of dissipation. For example,
in nonlinear quantum optics [4] and polaritonics [5], the χ (3)

interaction is due to the virtual creation of electron-hole pairs.
Similarly to the Hamiltonian case, also in open quantum
systems an effective Hamiltonian can capture an emergent
coupling between different states. While the dynamics of
the closed system is completely determined by the effective
Hamiltonian, in the open system case, the presence of dissi-
pation can mix different Hamiltonian manifolds and affect the
dynamics in nontrivial ways.
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An interesting example of a system with virtual transi-
tions is that of ultrastrong coupling (USC) between light and
matter. While the Hamiltonian processes are characterized
by USC, the electromagnetic field cannot be isolated from
the environment, resulting in an open system dynamics. The
USC regime was defined for intersubband polaritons [6] and
experimentally observed in a microcavity-embedded doped
GaAs quantum well [7] and in circuit quantum electrodynam-
ics (QED) [8]. After that, USC has been reached in several
other experimental platforms, including cavity QED and cir-
cuit optomechanics (see Refs. [1,2,9] and references therein).
Following these experimental developments, interest in USC
has blossomed, stimulating many theoretical studies [10–32].
In particular, processes that do not conserve the total number
of excitations have attracted considerable attention [33–38].
Among them, the possibility of single photons simultaneously
exciting two or more atoms [39–41] will be used in this article
as an illustrative example. This intriguing process arises from
the interplay of a complex combination of higher-order virtual
processes.

B. Quantum trajectories

For a weakly coupled Markovian environment, the physics
of an open quantum system is described by a Lindblad master
equation (LME) [42–45]. The state of the system evolving
with the LME is captured by the density matrix, which repre-
sents the average state of the system over many experiments.
The effect of the environment on the system is described via
an ensemble of quantum jumps acting on the density matrix
through the dissipation superoperators.

Although the physics of the system can be encoded by
the LME, this theoretical treatment does not allow for an
easy description of a single experiment. For this purpose, the
stochastic evolution of the system’s wave function constitutes
an efficient alternative to the LME approach [46–48]. In quan-
tum trajectories, the interaction between the system and its
environment is modeled as a set of ideal detectors, which
continuously monitor the output field of the system [45].
Quantum jumps have been observed in many experimental
platforms, ranging from solid-state physics to superconduct-
ing circuits (see, e.g., Refs. [49–53]). The stochastic evolution
of the wave function under such a procedure is known as a
quantum trajectory [54–56]. Since the LME describes the av-
erage evolution of the system, it can be obtained by averaging
over an infinite number of quantum trajectories.

Even if the LME and quantum-trajectory approaches are
equivalent on average, there may exist behaviors witnessed by
single quantum trajectories that cannot be directly observed
at the LME level because (i) spontaneous decay processes,
induced by the environment, occur randomly and averaging
can cancel several features and (ii) there can be rare processes
the visibility of which is reduced by averaging. Examples of
such processes have been found in bosonic and spin systems,
both concerning the states explored by the dynamics and the
emergence of different timescales [44,57–60]. The first goal
of this article is the study of how such hidden processes can be
used to reveal USC in open quantum systems.

Experimentally, there exist different ways in which the
output field of a cavity can be monitored. Theoretically, this

translates into different types of evolution for the quantum
trajectories [61]. One such type is a non-Hermitian continuous
time evolution interrupted by abrupt changes in the wave
function due to quantum jumps. This is the widely used Monte
Carlo wave-function (MCWF) method [56]. Another type of
evolution is continuous stochastic infinitesimal changes of
the wave function due to a noise term. This is the quantum-
state-diffusion (QSD) method [62–65]. For photons escaping
an electromagnetic resonator, the MCWF method describes
the ideal photodetection of the output field, while the QSD
method describes homodyne measurements.

Furthermore, the access to the emitted field of a USC
system allows reconstructing some correlation functions of
the system [66]. In this regard, quantum trajectories allow
predicting the presence of USC phenomena by histogram-
ming the statistics of quantum jumps. While normally this
would be a nonessential remark, in USC it is often difficult
to reconstruct the presence of higher-order processes, due to
both the fragility of these processes with respect to exter-
nal perturbation (they are higher-order perturbative effects)
and the intrinsic difficulty in measuring the effects of virtual
excitations [20,67–69]. The second aim of this article is to
show that an accurate study of quantum trajectories allows
demonstrating the presence of higher-order USC processes.

C. Outline and original results of this article

In Sec. II, we first present the one-photon–two-atom sys-
tem, introduced in Ref. [39], and explain how higher-order
processes allow a single photon to excite two atoms, and vice
versa. We provide an effective Hamiltonian for the system
we study, and we then show how the formalism of quantum
trajectories can be adapted to handle such a USC system.
Moreover, within this section, we provide analytical results
by describing the one-photon–two-atom and the qubit-qubit
processes, where the latter is a second-order subprocess that
is part of the main effect.

We use this system as an example to show that individual
quantum trajectories can clarify the dynamic evolution of
interacting quantum systems by revealing hidden behavior
that cannot be trivially witnessed by the LME. We do it in two
cases: In Sec. III, we consider only local dissipation, while in
Sec. IV we introduce also a collective dissipation channel for
the two qubits [70].

We identify several dynamics stemming from higher-order
processes that are revealed by individual quantum trajectories.
In particular, we show that the quantum jump backaction
induces a dissipative quantum state transfer between the
two qubits, similar but not identical to what was shown in
Ref. [60].

In addition, we show how higher-order processes can be
identified also by constructing histograms of detection events.
This is a viable experimental technique, where photodetection
from multiple experiments allows one to reconstruct the cor-
relation functions. Finally, we conclude and give an outlook
for future work in Sec. V.

In the Appendices, we provide a detailed derivation of the
effective Hamiltonian for the system we study, a comparison
between this effective Hamiltonian and the full system Hamil-
tonian, and a more detailed analysis of all processes involved.
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Moreover, we analyze the quantum trajectories that arise when
the system output is detected by a homodyne measurement in-
stead of photodetection, demonstrating the importance of the
unraveling protocol. We conclude the Appendices showing
a comparison between the LME and MCWF approaches for
obtaining the averaged system dynamics.

Beyond the interest in interacting quantum systems, this
article provides a way to probe the presence of USC effects
in a light-matter system, a task which normally is challenging
since one cannot directly access the virtual photons populating
the dressed states of the system.

II. MODEL AND MATHEMATICAL TOOLS

The system studied in Ref. [39] is composed of two subsys-
tems: (i) two qubits noninteracting with each other and (ii) a
single cavity mode. The subsystems are ultrastrongly coupled,
and their Hamiltonian is (h̄ = 1 throughout this article)

Ĥ = ωcâ†â + 1

2

2∑
i

ω(i)
q σ̂ (i)

z

+ g(â + â†)
2∑
i

[
σ̂ (i)

x cos θ + σ̂ (i)
z sin θ

]
, (1)

where â† (â) is the creation (annihilation) operator for the pho-
tons in the cavity mode, σ̂ (i)

z and σ̂ (i)
x are the Pauli operators

for the ith qubit, and g is the coupling rate of each qubit to the
cavity mode. The common longitudinal (transversal) interac-
tion σ̂ (1,2)

z sin θ (σ (1,2)
x cos θ ) is obtained introducing two static

biases ε and ε′ in the standard Dicke Hamiltonian for N = 2
noninteracting qubits. The angle θ is related to the statics
biases in the original frame sin θ = ε/

√
(ω0 + �)2 + ε2 =

ε′/
√

(ω0 − �)2 + ε′2. Note that, in the identical qubit case,
there is a common static bias ε = ε′.

We indicate with ˜|n, g, e〉 (see Appendix A1a) the dressed
state with n photons in the cavity, qubit 1 in the ground state,
and qubit 2 in the excited state. The Hamiltonian in Eq. (1) is
the sum of two elements: a noninteracting part (the first two
terms), which describes the bare energy of the subsystems,
and the last term, which describes the USC light-matter inter-
action. Notably, the interaction contains the counter-rotating
terms σ

(i)
+ â† (σ (i)

− â), which create (destroy) two excitations,
and σ (i)

z â† (σ (i)
z â), which create (destroy) one excitation. The

latter term in Eq. (1) breaks the parity symmetry, and can be
realized in superconducting circuits [8].

As shown in Ref. [39], at the resonance condition ωc �
ω(1)

q + ω(2)
q , the counter-rotating terms enable virtual transi-

tions, allowing the system to oscillate between the two states
˜|1, g, g〉 and ˜|0, e, e〉, i.e., a single photon can excite both

qubits.

A. Effective system Hamiltonian

To observe the one-photon–two-atom process one must
avoid the Rabi oscillations between a single qubit and the
photonic mode. As such, the cavity-qubit detuning in Eq. (1)
is large compared to the coupling strength: g � (ωc − ω(i)

q ).

For interacting quantum systems that are strongly detuned,
an effective Hamiltonian can be derived using the general-
ized James effective Hamiltonian method [71]. To apply this
method to Eq. (1), we assume that the bare transition frequen-
cies are close to the resonance condition ωc � ω(1)

q + ω(2)
q =

2ω0. With this notation, we indicate that the qubits and cavity
have been finely tuned to take into account effective energy
shifts induced by the interaction “dressing” the bare states
(see also the discussion in Appendix A). Thus, considering
processes up to third order in the interaction, and neglecting
dressing energy shifts which have been reabsorbed by an ap-
propriate choice of the coefficients, the effective Hamiltonian
reads

Ĥeff = Ĥ (2)
eff + H (3)

eff . (2)

By defining the qubit detuning 2� = ω(1)
q − ω(2)

q (such
that ω(1)

q = ω0 + � and ω(2)
q = ω0 − �), we distinguish two

regimes of work for the effective Hamiltonian Ĥeff : (i) iden-
tical qubits (� = 0 and same dissipation rates) and (ii)
nonidentical qubits (� �= 0 and/or different dissipation rates).

A detailed derivation is provided in Appendix A, and in
Appendix B we show the excellent agreement between the
full model and the effective Hamiltonian near the resonance
ωc � ω(1)

q + ω(2)
q and for small enough �.

1. Identical qubits

If � = 0, we have

Ĥ (2)
eff = �

(2)
eff

(
σ̂

(1)
− σ̂

(2)
+ + σ̂

(1)
+ σ̂

(2)
−

)
, (3a)

Ĥ (3)
eff = �

(3)
eff

(
âσ̂

(1)
+ σ̂

(2)
+ + â†σ̂

(1)
− σ̂

(2)
−

)
. (3b)

The second- and third-order effective Hamiltonians Ĥ (2, 3)
eff

represent second- and third-order perturbative couplings, with
effective interactions

�
(2)
eff = −4g2 cos2 θ

3ω0
, (4a)

�
(3)
eff = −8g3 cos2 θ sin θ

3ω2
0

. (4b)

Ĥ (2)
eff in Eq. (3a) is an effective coherent resonant coupling

which describes oscillations between the states |0, e, g〉 and
|0, g, e〉. The coupling �

(2)
eff is thus relevant only when � �

�
(2)
eff . As we numerically show in Sec. III and analytically

discuss in Appendix C, Ĥ (2)
eff plays an important role when,

during the system evolution, one of the two qubit excitations
is lost into the environment.

The third-order effective Hamiltonian in Eq. (3b) is the one
responsible for the one-photon–two-atom process. Indeed, the
term âσ̂ 1

+σ̂ 2
+ (â†σ̂ 1

−σ̂ 2
−) destroys (creates) a photon and simul-

taneously creates (destroys) two qubit excitations. As such,

the states ˜|1, g, g〉 and ˜|0, e, e〉 are connected with the effective
resonant coupling rate �

(3)
eff .

2. Nonidentical qubits

If 0 < �
(2)
eff � �, the second-order effective interaction

Ĥ (2)
eff in Eq. (2) can be neglected, applying the rotating-wave
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approximation (RWA). However, the third-order effective
Hamiltonian can still couple |1, g, g〉 and |0, e, e〉 when the
resonance condition ωc � ω(1)

q + ω(2)
q = 2ω0 is satisfied. In

this case, Heff = Ĥ (3)
eff , where Ĥ (3)

eff is the one in Eq. (3b), but
the coupling rate now is

�
(3)
eff = −8g3 cos2 θ sin θ

(
3ω2

0 + �2
)

(
ω2

0 − �2
)(

9ω2
0 − �2

) . (5)

Notice that the case � = 0 can be trivially obtained from
Eq. (5).

B. Quantum jump operators in the USC regime

Having derived the effective Hamiltonians, we need to
correctly introduce the action of the environment. Any LME
contains a Hamiltonian part, describing a coherent unitary
evolution, and a series of dissipators D[Ôm] such that

∂t 
̂ = −i[Ĥ, 
̂] +
∑

m

γmD[Ôm]
̂, (6)

where γm is the dissipation rate of the operator Ôm and

D[Ôm]
̂ = Ôm
̂Ô†
m − Ô†

mÔm
̂ + 
̂Ô†
mÔm

2
. (7)

1. Dressed jump operators

When dealing with the light-matter coupling, the sponta-
neous emission in the LME must be modified to take into
account the presence of virtual excitations [29]. A general
approach to do that was developed in Ref. [43] and has been
the workhorse of various other studies of USC dissipative
systems [15,72–77]. Every field, coupling the system with
the environment, can be expressed as Ŝm = ŝm + ŝ†

m. When
the coupling is not too strong, e.g., a Jaynes-Cummings (JC)
model, there are no virtual excitations. Thus, the overall effect
of Ŝm is only to eject excitations into the environment, i.e.,
Ŝm = {â, σ̂−}.

Instead, in the USC regime a correct treatment of input-
output, dissipation, and correlation functions requires that the
coupling with the environment does not induce transitions
increasing the energy of the system for spontaneous emis-
sion. A physically consistent approach consists of separating
each operator Ŝm into its positive Ŝ+

m = ∑
j,k> j〈 j|Ŝm|k〉| j〉〈k|

and negative Ŝ−
m = (Ŝ+

m )† frequency components. Those are
expanded in terms of the eigenstates {| j〉, |k〉} of the total
system Hamiltonian, and k > j indicates that the energy of
|k〉 is larger than that of | j〉. This properly defines the jump
operators for any arbitrary LME as D[Ŝ+], which by con-
struction acts like an excitation annihilation operator. In this
dressed picture, the quantum jumps are between the dressed
states (the eigenstates) of the system Hamiltonian which, in
USC, contain contributions from bare states with an arbitrary
number of excitations [1].

Physically speaking, this procedure amounts to distin-
guishing between the bare and dressed excitations, i.e., those
excitations which cannot be detected versus those which can.
Not satisfying these conditions leads to the prediction of non-
physical behaviors, such as a continuous emission of photons
from the system ground state of an undriven USC system [78].

As such, when we compute 〈Ŝ−
m Ŝ+

m 〉 we are describing the
expected values of the dressed excitations inside the system,
which can be emitted into the environment.

2. Quantum trajectories in USC

Having obtained a well-defined LME, we can now properly
introduce the MCWF. Following Refs. [54,56], we introduce
the non-Hermitian Hamiltonian

Ĥ = Ĥ − i

2

∑
m

γm Ŝ−
m Ŝ+

m , (8)

describing the effect of the environment between two quantum
jumps. Here, Ĥ represents the Hamiltonian part of the dynam-
ics, and one can either use the full or the effective Hamiltonian
(for the right value of �). The evolution of a quantum tra-
jectory is thus dictated by a non-Hermitian evolution via Ĥ
interrupted by random quantum jumps.

The algorithm to obtain such a dynamics reads as follows.
(1) |ψ (t )〉 is the normalized wave function at the initial

time t .
(2) The probability that a quantum jump occurs through the

mth dissipative channel in a small amount of time dt is

δpm(t ) = dtγm 〈ψ (t )|Ŝ−
m Ŝ+

m |ψ (t )〉, (9)

such that δpm(t ) � 1.
(3) One randomly generates a real number ε ∈ [0, 1].
(4) If

∑
m δpm(t ) < ε, no quantum jump occurs, and the

system evolves as

|ψ (t + dt )〉 = 1 − idtĤ|ψ (t )〉 + O(dt2). (10)

(5) Otherwise, if
∑

m δpm(t ) > ε, a quantum jump occurs.
To decide which channel dissipates, a second random number
ε′ is generated, and each quantum jump is selected with prob-
ability δpm(t )/[

∑
n δpn(t )]. The wave function then becomes

|ψ (t + dt )〉 = Ŝ+
m |ψ (t )〉. (11)

(6) At this point, independently of whether a quantum jump
took place, the wave function |ψ (t + dt )〉 is renormalized and
used for the next step of the time evolution.

Any quantum jump corresponds to the projection of the
wave function associated with a generalized measurement
process (wave-function collapse through a positive operator-
valued measure) [45]. Although the results of MCWF recover
those of LME by averaging over an infinite number of tra-
jectories, noise effects determine the convergence rate. A
discussion on this point is provided in Appendix E, where
we compare the dynamics using both the LME and MCWF
approaches for the system under consideration.

In the following, we will indicate the expectation values
of a generic operator Ôm along a trajectory as 〈Ôm(t )〉 =
〈ψ (t )|Ôm|ψ (t )〉. We will specify when instead 〈Ôm(t )〉
indicates the expectation value using a Lindblad master equa-
tion (i.e., the average over infinite trajectories).

C. Analytical results for the time evolution in the general case

Now we want to show how, by analyzing a single quantum
trajectory, we can analytically describe the phenomena which
are taking place and, via the detection of the quantum jumps,
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reconstruct the one-photon–two-atom process and the higher-
order subprocesses (which are part of the main effect) that are
taking place. A more detailed discussion of this analysis can
be found in Appendix C.

We consider three quantum jump operators:
D[

√
κX̂ +], D[

√
γ1,2Ĉ

+
1,2],

D
[√

γC

2
(Ĉ+

1 + Ĉ+
2 )

]
. (12)

They represent the cavity loss, local qubit deexcitation, and
collective qubit emission through a common bath, respec-
tively. Here,

√
κX̂ + is the dressed operator for the cavity

field, and
√

γ1,2Ĉ
+
1,2 are the qubit ones derived from σ̂ (i)

x . As
such, κ , γ1,2, and γC describe the photon decay rate, individ-
ual qubit dissipation, and collective qubit dissipation [60,70],
respectively.

1. One-photon–two-atom process

One can describe the one-photon–two-atom process by
projecting the time-evolution operator Û (t ) = exp(−iĤt )

onto the two-dimensional subspace { ˜|1, g, g〉, ˜|0, e, e〉}, which
takes place independently of �. In this case, the time-
evolution operator Û (t ) will be

Û (t ) = e− 1
4 (κ+�)t

{[
cos(ηt/4) − κ − �

η
sin(ηt/4)

]
˜|1, g, g〉 ˜〈1, g, g|

− 4i�(3)
eff

η
sin(ηt/4)[ ˜|1, g, g〉 ˜〈0, e, e| + ˜|0, e, e〉 ˜〈1, g, g|]+

[
cos(ηt/4) + κ − �

η
sin(ηt/4)

]
˜|0, e, e〉 ˜〈0, e, e|

}
, (13)

where η =
√

(4�
(3)
eff )2 − (κ − �)2, and � = γ1 + γ2 + γC is the sum of the qubit loss rates. The time-evolution operator Û (t )

describes the un-normalized oscillations of the wave function. For |ψ (t )〉 initialized in ˜|1, g, g〉, we obtain

|ψ (t )〉 = e− 1
4 (κ+�)t

{[
cos(ηt/4) − κ − �

η
sin(ηt/4)

]
˜|1, g, g〉 − 4i�(3)

eff

η
sin(ηt/4) ˜|0, e, e〉

}
. (14)

By appropriately renormalizing the wave function we ob-
tain the mean photon number 〈X̂ −X̂ +〉 and mean excitation
numbers of the two qubits 〈Ĉ−

i Ĉ+
i 〉 (i = 1, 2):

〈X̂ −X̂ +〉 =
cos2

(
ηt
4

) + (
κ−�

η

)2
sin2

(
ηt
4

) − κ−�
η

sin2
(

ηt
2

)
1 − κ−�

η
sin

(
ηt
2

) + 2
(

κ−�
η

)2
sin2

(
ηt
4

) ,

〈Ĉ−
i Ĉ+

i 〉 =
(

4�
(3)
eff

η

)2
sin2

(
ηt
4

)
1 − κ−�

η
sin

(
ηt
2

) + 2
(

κ−�
η

)2
sin2

(
ηt
4

) . (15)

If η is real, the system oscillates. Interestingly, if one matches
the condition κ = � the system has a purely sinusoidal be-
havior, and the process takes place with the same rate as in
the purely Hamiltonian case even if the system is dissipative.
If, instead, κ �= �, the oscillation occurs with a reduced am-
plitude and a nonsinusoidal shape. This is a first remarkable
prediction of the open system case: by tuning the dissipation
rate, we can deduce the behavior of the system by consider-
ing how the emission statistics (depending on 〈X̂ −X̂ +〉 and
〈Ĉ−

i Ĉ+
i 〉) changes.

2. First quantum jump

Knowing the state at time t allows us to predict through
which channel, and with which probability, the system is
expected to lose an excitation. As such, analyzing the first
quantum jump allows us to reconstruct the oscillation pa-
rameter η. Indeed, by repeating the experiment several times,
the probability (of a quantum jump to take place) can be
reconstructed, and such a probability must oscillate with the
same period as |ψ (t )〉.

Thus, let us analyze what occurs when a quantum jump
takes place through the four possible dissipation channels
(for the sake of brevity, we indicate them with their rates
κ , γ(1,2), and γC). If there is a cavity jump κ , the wave

function is projected onto the state ˜|0, g, g〉. At this point,
the system does not evolve anymore. This behavior, shown
in Fig. 1(a), can occur in the presence of both local and
collective qubit dissipation for both identical and nonidentical
qubits.

On the other hand, an excitation can be detected from one
qubit γ(1,2) or via collective dissipation γC . In the case of a
local jump for qubit 1 via γ1, the wave function |ψ (t )〉 in
Eq. (14) is projected onto

|φ〉 = Ĉ+
1 |ψ (t )〉

[〈ψ (t )|Ĉ−
1 Ĉ+

1 |ψ (t )〉]1/2
= −i ˜|0, g, e〉, (16)

i.e., qubit 2 (qubit 1) is instantly excited (deexcited). Similarly,

if qubit 2 jumps the system ends up in ˜|0, e, g〉. In the case of
a collective qubit jump, |ψ (t )〉 is projected onto

|χ+〉 = [Ĉ+
1 + Ĉ+

2 ]|ψ (t )〉
[〈ψ (t )|[Ĉ−

1 + Ĉ−
2 ][Ĉ+

1 + Ĉ+
2 ]|ψ (t )〉]1/2

= −i√
2

( ˜|0, g, e〉 + ˜|0, e, g〉). (17)

3. Qubit-qubit interaction

By just collecting the first quantum jump of the system,
one cannot know if the expected simultaneous qubit excitation
takes place. Indeed, it is necessary not only to detect (at a
given time t) one excitation coming out from qubit 1, but to
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(a) (b)

(c) (d)

FIG. 1. Examples of single quantum trajectories, numerically
obtained with the full Hamiltonian in Eq. (1) and the dissipators in
Eq. (12) in the absence of collective qubit decay (γC = 0). All panels
show the time evolution of the mean photon number 〈X̂ −X̂ +〉 (blue
dashed curves) and of the mean excitation numbers of the two qubits
〈Ĉ−

i Ĉ+
i 〉 (i = 1, 2) (red dotted and black solid curves, respectively).

The system is always initialized in ˜|1, g, g〉 at the resonant condition
ωc � ω(1)

q + ω(2)
q . All the panels initially displa y the oscillation

in Eq. (14) until a quantum jump occurs. The panels represent a
quantum trajectory where (a) a cavity jump occurs. The detection

of an emitted cavity photon projects the wave function onto ˜|0, g, g〉,
where 〈X̂ −X̂ +〉 = 〈Ĉ−

i Ĉ+
i 〉 = 0. (b) Identical qubits case in which a

qubit 1 jump occurs, projecting the wave function onto a state with
qubit 2 excited. The qubits then start to exchange their excitation
between themselves until a second qubit jump takes place, projecting

the system onto the state ˜|0, g, g〉. (c) Nonidentical qubits case in
which a qubit 1 jump occurs. As in panel (b), the system is projected
onto a state where qubit 2 is excited. Being off resonance, this time
the qubits do not exchange an excitation and qubit 2 remains excited

until a jump projects the system to ˜|0, g, g〉. (d) Nonidentical qubits
case in which a qubit 2 jump occurs, leading to a dynamics similar
to panel (c). In all panels, the parameters are g = 0.1ω0, ωc � 2ω0,
κ = γ(1,2) = 4 × 10−5ω0, and γC = 0. In panels (a) and (b), ω(1)

q =
ω(2)

q (� = 0), while in panels (c) and (d) 2� = ω(1)
q − ω(2)

q = 0.3ω0.

be sure that qubit 2 was also excited at the same time as the
quantum jump occurred.

As such, the analysis of the dynamics between the first and
the second quantum jumps allows us to reconstruct all those
subprocesses which take place when there is an excitation
emitted from the qubits. Note that the only possible states

after the first quantum jump are ˜|0, g, g〉, ˜|0, e, g〉, ˜|0, g, e〉, or

( ˜|0, g, e〉 + ˜|0, e, g〉)/
√

2. So this demonstrates that the qubits
have been excited simultaneously. Thus, one needs to cor-
rectly describe the dynamics after the first quantum jump
to characterize the second quantum jump taking place. In
the three cases where the dissipation occurs via the qubits
(γ(1,2) or γC), each jump is followed by a new dynam-
ics. Notably, this occurs into the two-dimensional subspace

{ ˜|0, e, g〉, ˜|0, g, e〉, because the loss of one qubit excitation
makes it impossible to excite back the cavity. The Hamil-
tonian part of the evolution is captured by Ĥ (2)

eff , and we
recall that �

(2)
eff = 0 for � �= 0 (see Appendix A). As such,

we obtain

Û (t )

= e− 1
4 �t

{[
cos(ζ t/4)−δγ + i�

ζ
sin(ζ t/4)

]
˜|0, e, g〉 ˜〈0, e, g|

−i
4�

(2)
eff −iγC

ζ
sin(ζ t/4)[ ˜|0, e, g〉 ˜〈0, g, e|+ ˜|0, g, e〉 ˜〈0, e, g|]

+
[

cos(ζ t/4) + δγ + i�

ζ
sin(ζ t/4)

]
˜|0, g, e〉 ˜〈0, g, e|

}
,

(18)

where ζ =
√

(4�
(2)
eff − iγC )2 − (δγ + i�)2 is the new param-

eter determining the oscillation frequency, and δγ = γ1 − γ2.
Similarly to the previous case, the non-Hermitian evolution
operator Û (t ) captures the dynamics before a quantum jump
takes place. Note that, since we are in the manifold where only
the qubits are excited, the photon dissipation plays no role. No
matter which quantum jump occurs, this time the system ends

in ˜|0, g, g〉.
Having detailed the most general possible dynamics after

the first quantum jump, several different types of behavior can
take place, as detailed in Table I. Although all of them are
interesting to analyze, demonstrating the different effects of
the environment, hereafter we focus on particular cases to effi-
ciently characterize the presence of the one-photon–two-atom
process. This complete landscape of the possible behavior
of the system allows us to characterize the emission of the
system, so that one can undoubtedly know if the simultaneous
excitation of the two atoms by a photon has taken place in an
experiment.

In the following sections, we will numerically simulate
the full Hamiltonian and dissipative dynamics to prove the
validity of this analysis. A detailed analytical derivation of
these results (using the effective Hamiltonian) is provided in
Appendix C.

III. RESULTS I: SINGLE TRAJECTORIES WITHOUT
COLLECTIVE DISSIPATION

We now investigate the signatures of USC in the emission
spectrum by considering the simplest case, where only the
local dissipation γ(1,2) can act (γC = 0).

A. One photon exciting two atoms

In Fig. 1 and in the discussion below, we always initialize

the system in ˜|1, g, g〉 and we consider the case where the sum
of the energy of the two qubits is resonant with the energy of
the single photon (ωc � ω(1)

q + ω(2)
q ). As such, an oscillation

where one photon excites two qubits occurs (as seen from
all the panels in Fig. 1). This oscillation is well captured by
Eq. (15), as described in Sec. II C1. After the initial evolution
takes place, sooner or later, a quantum jump occurs. If it
is a photon emission, the wave function is projected onto
˜|0, g, g〉, where 〈X̂ −X̂ +〉 = 〈Ĉ−

i Ĉ+
i 〉 = 0 as shown in Fig. 1(a).

If, instead, γ1 or γ2 occurs, the wave function |ψ (t )〉 [see
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TABLE I. Evolution of the system in the qubit subspace { ˜|0, g, e〉, ˜|0, e, g〉} as it stems from Eq. (18). |φ〉 represents the initial state for the
evolution in the qubit-qubit excitation manifold after a local quantum jump of γ1 [see Eq. (16)]. |χ+〉 is the initial state for the evolution in the
qubit-qubit excitation manifold when a collective jump γC occurs [see Eq. (17)].

� = 0, δγ = 0 � �= 0, δγ = 0 � = 0, δγ �= 0 � �= 0, δγ �= 0

γC = 0 |φ〉 JC-like oscillations by
�

(2)
eff [Fig. 1(b)]

No evolution Û (t ) ∝ 1̂
[Fig. 1(c,d)]

Nonsinusoidal oscillations if
δγ < �

(2)
eff , exponential

decay otherwise (not
shown)

Û (t ) �∝ 1̂, |φ〉 is the
eigenstate of Û (t ): no
evolution (not shown)

γC �= 0 |φ〉 Damped JC-like
oscillations around the
Bell state
( ˜|0, g, e〉 −
˜|0, e, g〉)/

√
2

[Fig. 3(a)]

Competition between �

and γC generates
damping or small
oscillations (not
shown)

Competition among γC , δγ , and
�

(2)
eff generates damped

JC-like oscillations towards
a state different from the
Bell state
( ˜|0, g, e〉 − ˜|0, e, g〉)/

√
2

(not shown)

If γ1 > γ2: negligible state
transfer [Fig. 6(b)]. If
γ1 < γ2: dissipative state
transfer induced by
competition between �,
δγ , and γC (not shown
here, see Ref. [60])

|χ+〉 |χ+〉 is an eigenstate of
Û (t ): no evolution
[Fig. 3(b)]

Oscillation between the
Bell states
( ˜|0, g, e〉 ±
˜|0, e, g〉)/

√
2

(not shown)

|χ+〉 is not an eigenstate of
Û (t ): continuous undamped
oscillations around the Bell
state ( ˜|0, g, e〉 −
˜|0, e, g〉)/

√
2 (not shown)

δγ favors either ˜|0, g, e〉 or
˜|0, e, g〉, the dynamics

depending on δγ , γC ,
and � [examples are
given in Figs. 3(c)
and 3(d)]

Eq. (14)] is projected onto the new initial normalized state

|φ〉 = −i ˜|0, g, e〉 or onto |φ〉 = −i ˜|0, e, g〉. For the qubit emis-
sion, the new dynamics taking place between the two qubits is
due to the second-order processes, as described in Sec. II C3.

Histogram of quantum jumps

Let us detail how the statistics of quantum jumps allows
us to witness the behaviors described in the preceding sec-
tion. Although recording all the quantum jumps and then
postselecting trajectories corresponding to certain processes
is possible, e.g., in experiments with superconducting circuits
[79], it can be difficult, not only because the energy transfer
is a rare event, but especially when dealing with collective
jumps. As discussed in Ref. [60], a simple way to enable
observation of all the processes of interest is to reconstruct
them by creating histograms showing the distribution of the
local quantum jumps as a function of time.

To observe the one-photon–two-atom excitation process,
we need to collect all the local quantum jumps from the
cavity (D[X̂ +]) and from either of the two qubits (D[Ĉ+

1 ]
and D[Ĉ+

2 ]). Such a reconstruction of the process is shown
in Fig. 2(a). The characteristics of the energy exchange can
be determined up to arbitrary precision by collecting enough
data. Note that for finite-efficiency detectors that fail to detect
some jumps, the overall jump statistics is unaffected, since on
average the same amount of quantum jumps will be missed
from the cavity and from the qubits. Reaching the wanted
precision thus simply requires a higher number of realizations
for worse detectors.

Before considering the second-order processes, let us ex-
plain on mathematical grounds why such a procedure of
collecting the quantum jumps allows us to describe the dy-

namics. Since the initial state ˜|1, g, g〉 is X̂ −
˜|0, g, g〉, by

considering the dynamics of the first jump we are witnessing

the two-time correlation functions of the effective Hamilto-
nian of the system. For example, the emission of a cavity
quantum jump at time t can be described as

˜〈0, g, g|X̂ +(t )X̂ −(0) ˜|0, g, g〉. (19)

This is the definition of the two-time correlation function
of the real photon detection when no quantum jumps occur
[the blue bars in Fig. 2(a)]. Although this is not exactly the
Hamiltonian of the nondissipative process, by appropriately
determining the dissipation rates one can simulate the closed
system, as we also argued using Eq. (15).

B. Identical qubits

The system eventually undergoes a quantum jump. Either

it emits a photon, ending in ˜|0, g, g〉 as shown in Fig. 1(a), or

(a) (b)

FIG. 2. Histograms of the ratio of the total local quantum jumps
as a function of time. (a) Local quantum jumps due to X̂ + (the
cavity, blue bars), Ĉ+

1 (qubit 1, red bars), and Ĉ+
2 (qubit 2, unfilled

black bars surrounding the red ones). The histogram is constructed
from simulations of 2 × 105 trajectories. The system was initialized

in the state ˜|1, g, g〉. (b) Local quantum jumps due to Ĉ+
1 (qubit

1, red bars) and Ĉ+
2 (qubit 2, black bars) after an initial qubit 1

jump. The histogram was constructed from simulations of 4 × 105

trajectories and reveals oscillations like those in Fig. 1(b). Param-
eters for both panels: ω(1,2)

q = ω0 (� = 0), ωc � 2ω0, g = 0.1ω0,
κ = γ(1,2) = 4 × 10−5ω0, and γC = 0.
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the quantum jump leads the system to ˜|0, g, e〉 or ˜|0, e, g〉 as
shown in Figs. 1(b)–1(d). What now strongly depends on the
parameters is how the evolution takes place in the qubit-qubit
excitation manifold (see Sec. II C3 and Table I).

If we consider identical qubits, Ĥ (2)
eff in Eq. (3a) is nonzero

and ˜|0, g, e〉 (or equivalently ˜|0, e, g〉) is not an eigenstate of
the Hamiltonian. The cavity cannot be repopulated because
there is not enough energy in the system. Nevertheless, the
remaining energy continues to be exchanged between the
qubits until a qubit jump occurs and the system wave function

is projected onto the state ˜|0, g, g〉 (see Appendix C). For
example, γ1 emits a second time in Fig. 1(b).

Histograms of the qubit quantum jumps

To observe the excitation exchange between two resonant
qubits that follows when a local qubit jump occurs, we need
to be careful about how the quantum jumps are detected.
If we were to simply create a histogram of the time distri-
bution of the second quantum jump, we would not capture
this phenomenon, since this procedure would reproduce the
LME, which does not show the oscillations between the qubits
(see Appendix E). Instead, the procedure to obtain the correct
histogram is as follows.

(1) Monitor the dynamics until the first quantum jump
takes place.

(2) If the monitored event is a local quantum jump from
one of the two qubits, restart the clock.

(3) Monitor from which qubit the second jump takes place.
(4) Collect data and make the histogram for the second

quantum jump.
Suppose that at a time t there is a jump of Ĉ+

2 . As such,

the wave function collapses onto ˜|0, e, g〉. Mathematically, we
have

˜|0, e, g〉 = Ĉ−
1

˜|0, g, g〉. (20)

In other words, the procedure of monitoring the time t + τ

when the second quantum jump occurs is equivalent to

˜〈0, g, g|Ĉ+
1 (τ )Ĉ−

1 (0) ˜|0, g, g〉. (21)

This again is a well-defined two-time correlation function
describing a non-Hermitian Hamiltonian evolution, the char-
acteristics of which can be obtained from Eq. (18).

We plot the results of this histogram procedure in Fig. 2(b).
We focus on those events where the first jump is caused by
Ĉ+

1 . We see that a periodic exchange of an excitation between
the qubits takes place at a rate given by �

(2)
eff . This process is

much faster than the oscillation between the cavity and the two
qubits (for our parameters, �

(2)
eff � 10�

(3)
eff ), and thus requires

the time bins to be much shorter than in Fig. 2(a). Further-
more, the qubit-qubit oscillations only occur in a subset of all
processes. Thus, with respect to the case shown in Fig. 2(a),
one is required to repeat the experiment more times in order
to obtain sufficient statistics to generate Fig. 2(b). From it, we
obviously can reconstruct the oscillations in Fig. 1(b).

The two histograms in Fig. 2 allow us to reconstruct both
the amplitude and the frequency of the oscillations. Combined
together, not only do they demonstrate that a single photon

excites the two atoms, but they also show the dynamics be-
tween the two qubits as part of the main effect. This dynamics
(enabled by a quantum jump) is completely missed by other
protocols (see Appendix D) and by the averaging process
of the Lindblad master equation (hidden by the averaging
processes as in Appendix E). Signatures of such an oscilla-

tion could not be witnessed starting from ˜|1, g, g〉, but would

require us to initialize the system in ˜|0, e, g〉 or ˜|0, g, e〉 (see
Appendix B).

C. Nonidentical qubits

For nonidentical qubits (� > �
(2)
eff ), the second-order ef-

fective terms Ĥ (2)
eff in Eq. (3a) can be neglected thanks to the

RWA. Although a nontrivial dynamics can occur in this man-

ifold due to the different decay rates of ˜|0, g, e〉 and ˜|0, e, g〉
[see Eq. (18)], this effect cannot be witnessed along a single
quantum trajectory, since after a quantum jump the state will

never be a superposition of ˜|0, g, e〉 and ˜|0, e, g〉 due to the na-
ture of the local quantum jumps (see the discussion in Sec. IV,
where a jump of γC will, instead, unveil this effect). Thus,
the qubits cannot exchange the remaining excitation anymore.
This process is shown in Figs. 1(c) and 1(d), where a quantum
jump first takes place in qubit 2 (qubit 1) and then in the other
qubit.

Histogram of the quantum jumps

As we previously stated, in the case of different qubits no
exchange of excitations takes place between the two qubits.
This fact can be used as an immediate witness of the si-
multaneous excitation of the two qubits by a single photon.
Indeed, once one of the qubit emits, for instance, qubit 1, the

state of the system remains in ˜|0, g, e〉. Therefore, the only
possible event is an emission from qubit 2. In this case, we
expect that the number of qubit jumps is identical for qubit 1
and qubit 2 independently of the dissipation rates γ1 and γ2.
This indirectly demonstrates that the photon is simultaneously
exciting both atoms. A more detailed time analysis reveals that
the first quantum jump occurs more frequently in the more
dissipative qubit, and then the less dissipative qubit follows.
We numerically verified this analysis (not shown here), and
we stress that this prediction is true only for γC = 0.

IV. RESULTS II: SINGLE TRAJECTORIES CONSIDERING
BOTH LOCAL AND COLLECTIVE DISSIPATION

The previous section conclusively demonstrates the pres-
ence of the main one-photon–two-atom process in the case
γC = 0. However, in actual experimental realization, collec-
tive dissipation naturally emerges due to the coupling of the
qubits with a common environment. In this case, although the
evolution operator for the one-photon–two-atom process in
Eq. (13) depends on γC , the plots in Fig. 3 do not significantly
deviate from those in Fig. 1 for small-enough γC . As we detail
below, such a coupling deeply changes the characteristics of
the qubit-qubit dynamics, requiring a different analysis if the
two qubits can lose their excitations via the collective jump

operator
√

γC

2 (Ĉ+
1 + Ĉ+

2 ). We again study the cases of identi-

cal and nonidentical qubits separately.
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FIG. 3. Examples of single quantum trajectories, numerically
analyzed using the full Hamiltonian in Eq. (1) and the dissipators in
Eq. (12) in the presence of collective qubit decay (γC �= 0). All panels
show the time evolution of the mean photon number 〈X̂ −X̂ +〉 (blue
dashed curves) and of the mean excitation numbers of the two qubits
〈Ĉ−

i Ĉ+
i 〉 (i = 1, 2) (red dotted and black solid curves, respectively).

The system is always initialized in ˜|1, g, g〉 and all the panels, starting
in the resonant condition of the one-photon–two-atom process, ini-
tially display the oscillation in Eq. (14) until a quantum jump occurs.
The panels represent a quantum trajectory where (a) for the identical
qubits case a qubit 1 jump occurs projecting the wave function
onto the excited state of qubit 2. The two qubits start to exchange

their excitation around the superposition state |χ−〉 = ( ˜|0, g, e〉 −
˜|0, e, g〉)/

√
2, slowly converging towards this state until another

qubit jump occurs (local or collective), projecting the system onto the

state ˜|0, g, g〉 (as discussed in Sec. IV A). (b) For the identical qubits
case, a collective qubit jump occurs projecting the wave function

onto the superposition state |χ+〉 = −i( ˜|0, g, e〉 + ˜|0, e, g〉)/
√

2. De-
spite this being the “bright” state (see Sec. IV A), the system remains
in this state until another jump occurs, projecting the system onto

the state ˜|0, g, g〉. (c) For the nonidentical qubits case, a collective
qubit jump occurs with nonidentical relaxation rates as discussed in
Sec. IV B. Since γ1 = 4 × 10−4ω0 > γ2 = 4 × 10−5ω0, the proba-
bility of measuring qubit 1 (qubit 2) in its excited state decreases
(increases) as time increases until another jump occurs, projecting

the system onto the state ˜|0, g, g〉. (d) For the nonidentical qubits
case, a collective qubit jump occurs with nonidentical relaxation rates
but with the values of γ1 and γ2 interchanged with respect to panel
(c), leading to the opposite process. In all panels, the parameters
are g = 0.1ω0, ωc � 2ω0, κ = 4 × 10−5ω0, and γC = 5 × 10−4ω0.
In panels (a) and (b) ω(1,2)

q = ω0 (� = 0) while in panels (c) and
(d) 2� = ω(1)

q − ω(2)
q = 0.3ω0.

A. Identical qubits

After a local qubit jump, as in Fig. 3(a), the cavity cannot
be repopulated and the two qubits start exchanging an excita-
tion as in the case of Fig. 1(b). However, differently from the
other case, the collective dissipation forces the system toward

the superposition state |χ−〉 = ( ˜|0, g, e〉 − ˜|0, e, g〉)/
√

2 until
a collective or local qubit jump occurs, projecting the wave

function onto the state ˜|0, g, g〉. Such a peculiar behavior can
be argued from the action of the three dissipation channels.
Indeed, any state in the qubit-qubit manifold can be de-

scribed via the superposition of Bell states |χ±〉 = ( ˜|0, g, e〉 ±

(a)

(b)

(c)

FIG. 4. Histograms of the ratio of the total local quantum jumps
as a function of time, due to Ĉ+

1 (qubit-1, red bars) and Ĉ+
2 (qubit

2, black bars), after an initial qubit 1 jump. As time progresses from
panel (a) to panel (c), the oscillation amplitude decreases reaching

the superposition state |χ−〉 = ( ˜|0, g, e〉 − ˜|0, e, g〉)/
√

2. The his-
tograms are constructed from simulations of 8 × 105 trajectories and
reconstruct dynamics similar to Fig. 3(a). Parameters are the same as
in Fig. 2, except for γC = 5 × 10−4ω0.

˜|0, e, g〉)/
√

2. While the local dissipations γ(1,2) act identically
on |χ±〉, the collective one does not affect the evolution of
|χ−〉. As such, the presence of γC forces the system onto
the “dark state” |χ−〉, because the “bright” state |χ+〉 decays
more rapidly even when quantum jumps do not occur (see the
discussion in Appendix C and in Ref. [60]). Thus, no matter
the details of the initial state, the wave function tends towards
the superposition state |χ−〉.

When the collective dissipation acts, the wave function is
instead projected onto the superposition state proportional to
|χ−〉 [see Eq. (17)]. Since |χ−〉 is an eigenstate of the effective
Hamiltonian Ĥeff in Eq. (2), the state does not evolve with
Eq. (18), as shown in Fig. 3(b).

Histograms in the presence of collective dissipation

Even in the presence of collective dissipation, we can use
the histogram of the local quantum jumps to characterize
the phenomena taking place. While the one-photon–two-atom
process remains almost identical, the qubit excitation ex-
change is affected by γC as just described. Using the same
procedure as in Sec. III B, we can again obtain the two-time
correlation functions allowing us to witness the presence of
the damped-oscillation behavior. This is plotted in Fig. 4,
where we see that the qubit-qubit oscillations gradually de-
crease in amplitude towards the value 1/2. This is due to the
system converging to the Bell state |χ−〉 (see the discussion
in the Appendix C).

Although for collective dissipation we only plot cases in
which the two qubits were exactly on resonance, the technique
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demonstrated here can also be applied to cases where � �=
0 and γ1 �= γ2. In the latter case, the competition between
these several processes can induce interesting behaviors, the
discussion of which goes beyond the purpose of this article,
requiring a detailed study of the competing ratios. We refer
the interested reader to Ref. [60], and we note that regardless
these histograms can be used to extract the effective couplings
�

(2)
eff and �

(3)
eff as well as the collective dissipation rate γC .

B. Nonidentical qubits

For nonidentical qubits the second-order effective terms
Ĥ (2)

eff in Eq. (3a) can be neglected. Although there is no Hamil-
tonian interaction, the presence of the collective dissipation
enables a non-Hermitian coupling between the qubits (see
the discussion in Appendix C and Ref. [60]). Mathematically,
this can be seen by the action of the off-diagonal terms of
the time-evolution operator activated by γC , as it stems from
Eq. (18). At first, let us consider the collective-qubit jump case
where the wave function after the jump |χ−〉 [see Eq. (17)]
evolves as

|ψ (t )〉 = − ie− 1
4 �t

√
2

{[
cos(ζ t/4)−γC

ζ
sin(ζ t/4)

]
[ ˜|0, e, g〉

+ ˜|0, g, e〉]−δγ+i�

ζ
sin(ζ t/4)[ ˜|0, e, g〉 − ˜|0, g, e〉]

}
,

(22)

where � = γ1 + γ2 + γC and ζ =
√

(� − iδγ )2 − γ 2
C .

For γ1 = γ2 (and sufficiently small γC), ζ is real and the
state |χ+〉 oscillates between the two Bell states |χ±〉 (see
Table I). Indeed, the effect of � can be seen as a term inducing
a rotation of the Bell states. By selecting the correct δγ one
can fix the initial state that remains in the initial superposition
state |χ−〉, until a jump projects the wave function onto the

state ˜|0, g, g〉. Otherwise, the state oscillates but the expecta-
tion values remain constant and 〈Ĉ−

1 Ĉ+
1 〉 = 〈Ĉ−

2 Ĉ+
2 〉 = 1/2 as

shown in Fig. 3(b).
In the case γ1 = γC � γ2, we find that the probability

of measuring qubit 1 in its excited state decreases as time
increases, while the probability of qubit 2 being in its excited
state increases. This behavior is due to the difference between
the loss rates, which imply that, if no jump occurs, it is more
likely for the system to be in the excited state of qubit 2,
since that state has a lower probability of leading to a jump,
as shown in Figs. 3(c) and 3(d). A more detailed analytical
discussion can be found in Appendix C.

V. CONCLUSION AND OUTLOOK

We have shown how to apply the theory of quantum tra-
jectories to systems with ultrastrong coupling between light
and matter. This has at least two applications. First, we can
now obtain the time evolution of dissipative ultrastrongly cou-
pled systems by averaging over the stochastic wave functions
of several quantum trajectories instead of using a Lindblad
master equation for the system density matrix. In some cases,
the quantum-trajectory method is preferable to use, since the
density-matrix dynamics requires more computer resources
than the wave function one.

The second application of quantum trajectories for ultra-
strongly coupled systems is that individual trajectories can
reveal behaviors of the system, connected to measurement
backaction, that are hidden by the averaging inherent in a
master-equation approach. We illustrated this for the setup in
Ref. [39], where two atoms (qubits) are ultrastrongly coupled
to a cavity mode.

When the energies of the two qubits sum up to the en-
ergy of a single photon in the cavity, the USC enables a
process where the system state oscillates back and forth
between having one photon in the cavity and having both
qubits excited. By studying quantum trajectories where the
system output is measured with photodetectors, we showed
that if a quantum jump in one of the qubits is detected,
the system dynamics switch from the oscillation between
one photon and the two qubits to oscillation between the
two qubits.

We further studied the example with the one-photon–two-
atom excitation process for the qubits on and off resonance
with each other, with and without collective qubit dissipation.
We showed how these different cases can modify the behavior
that the system displays after detecting a quantum jump from
one of the qubits.

We also put forward an experimental protocol for observ-
ing the above-mentioned effects using photodetection. In such
an experiment, which we believe is feasible using circuit
QED, the output photon flux emitted by a resonator can be
measured in a photodetection experiment, while qubit emis-
sion can be detected by coupling it to an additional microwave
antenna [80].

Looking to the future, we hope that the theoretical meth-
ods presented herein will find applications in experiments on
systems with USC that take advantage of individual measure-
ments to characterize processes that otherwise are hidden by
averaging. The literature contains many examples beyond that
of Ref. [39], which was analyzed here. Furthermore, having
the theoretical description of quantum trajectories should en-
able the development of feedback schemes that could control
ultrastrongly coupled systems in new ways.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In order to derive the effective Hamiltonian in Eq. (2), we
start from Eq. (1) in Sec. II A of the main text, transforming it
to the interaction picture to obtain

ĤI(t ) = gcos θ â†
2∑

i=1

[
σ̂

(i)
− ei(ωc−ω(i)

q )t + σ̂
(i)
+ ei(ωc+ω(i)

q )t
]

+ g sin θ â†
2∑

i=1

σ̂ (i)
z ei2ω0t + H.c., (A1)

where H.c. denotes the Hermitian conjugate. Taking the res-
onant cavity frequency ωc = ω(1)

q + ω(2)
q = 2ω0 and defining

2� = ω(1)
q − ω(2)

q , such that ω(1)
q = ω0 + � and ω(2)

q = ω0 −
�, we can define the five operators

ĥ1eiω1t = gcos θ â†σ̂
(1)
− ei(ω0−�)t ,

ĥ2eiω2t = gcos θ â†σ̂
(2)
− ei(ω0+�)t ,

ĥ3eiω3t = gcos θ â†σ̂
(1)
+ ei(3ω0+�)t ,

ĥ4eiω4t = gcos θ â†σ̂
(2)
+ ei(3ω0−�)t ,

ĥ5eiω5t = g sin θ â†
2∑

i=1

σ̂ (i)
z ei2ω0t . (A2)

In terms of these operators, the system Hamiltonian in
Eq. (A1) can be written as

ĤI(t ) =
5∑

m=1

[
ĥmeiωmt + ĥ†

me−iωmt
]
. (A3)

We now apply the generalized James effective Hamiltonian
method [71] which at the second order gives

Ĥ (2)
I (t ) =

∑
j,k

1

ωk

[
ĥ j ĥ

†
kei(ω j−ωk )t − ĥ†

j ĥke−i(ω j−ωk )t
]
, (A4)

while at the third order it gives

Ĥ (3)
I (t ) =

∑
i, j,k

[
ĥiĥ

†
j ĥkei(ωi−ω j+ωk )t + ĥ†

i ĥ j ĥ
†
kei(−ωi+ω j−ωk )t + ĥiĥ j ĥ

†
kei(ωi+ω j−ωk )t + ĥ†

i ĥ†
j ĥkei(−ωi−ω j+ωk )t

ωk (ω j − ωk )

+ ĥ†
i ĥ j ĥkei(−ωi+ω j+ωk )t + ĥiĥ

†
j ĥ

†
kei(ωi−ω j−ωk )t

ωk (ω j + ωk )

]
. (A5)

In the RWA, all frequency contributions which are sig-
nificantly different from zero can be neglected. Since the
frequencies ωm are all different, we only keep the terms in
Ĥ (2)

I (t ) [Ĥ (3)
I (t )] where the sum of any two (three) frequencies

is zero for both identical (� = 0) and nonidentical (� �= 0)
qubit cases.

1. Identical qubits

For the identical-qubit case, the second-order effective
Hamiltonian [Eq. (A4)] in the interaction picture reads

Ĥ (2)
I = −2g2 cos2 θ

3ω0

(
σ̂ (1)

z + σ̂ (2)
z

)(
â†â + 1

2

)

− g2 sin2(θ )

2ω0

(
σ̂ (1)

z + σ̂ (2)
z

)2

− 4g2 cos2 θ

3ω0

(
σ̂

(1)
− σ̂

(2)
+ + σ̂

(1)
+ σ̂

(2)
−

)
. (A6)

We are always interested in the processes between the states
that characterize the one-photon–two-atom manifold and
those that characterize the qubit-qubit excitation manifold.

a. One-photon–two-atom manifold

In the one-photon–two-atom manifold, the first two terms
in Eq. (A6) dress the two bare states {|1, g, g〉, |0, e, e〉} by
inducing a positive and negative shift in their energy. For this

reason we refer to { ˜|1, g, g〉, ˜|0, e, e〉} as the dressed states. As
such,

Ĥ (2)
shift = 4g2 cos2 θ

3ω0
( ˜|1, g, g〉 ˜〈1, g, g| − ˜|0, e, e〉 ˜〈0, e, e|).

(A7)
This diagonal shift can be always eliminated by appropriately
tuning ωc and ω(i)

q in Eq. (1). As such, we do not report these
terms in the main text, but we always specify ωc � 2ω0. The
third term of Eq. (A6), instead, plays no role because it is
always zero in the one-photon–two-atom manifold.

The main term leading to the one-photon–two-atom ex-
citation exchange is described by the third-order effective
Hamiltonian which, starting from Eq. (A5) and obtaining
Eqs. (3b) and (4b) in the main text, reads

H (3)
eff = −8g3 cos2 θ sin θ

3ω2
0

(
âσ̂

(1)
+ σ̂

(2)
+ + â†σ̂

(1)
− σ̂

(2)
−

)
. (A8)

b. Qubit-qubit manifold

In the qubit-qubit excitation manifold, the first term
Eq. (A6) is the only contribution that dresses the two
bare states {|1, g, g〉, |0, e, e〉} by inducing a shift in their

energy.For this reason we refer to { ˜|0, e, g〉, ˜|0, g, e〉} as
the dressed states. The last term is an effective Jaynes-
Cummings–like qubit-qubit interaction, which in the main
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text [see Eqs. (3a) and (4a)] we write as

Ĥ (2)
eff = −4g2 cos2 θ

3ω0

(
σ̂

(1)
− σ̂

(2)
+ + σ̂

(1)
+ σ̂

(2)
−

)
. (A9)

The third-order term in Eq. (A6) plays no role in this manifold.
Equations (A8) and (A9) yield the effective Hamiltonian

Ĥeff = Ĥ (2)
shift + Ĥ (2)

eff + Ĥ (3)
eff , (A10)

which is equivalent to Eq. (2) in the interaction picture (see
Sec. II A in the main text).

2. Nonidentical qubits

For the nonidentical qubits (� � 4g2 cos2 θ/3ω0), in the
Schrödinger picture Eq. (A4) is written as

Ĥ (2)
I = Ĥ (2)

shift =
[

2ω0 − 2g2 cos2 θ (ω0 + �)

(ω0 − �)(3ω0 + �)
σ̂ (1)

z − 2g2 cos2 θ (ω0 − �)

(ω0 + �)(3ω0 − �)
σ̂ (2)

z

]
â†â − g2 sin2 θ

2ω0

(
σ̂ (1)

z + σ̂ (2)
z

)2

+
[
ω0 + � − g2 cos2 θ (ω0 + �)

(ω0 − �)(3ω0 + �)

]
σ̂ (1)

z +
[
ω0 − � − g2 cos2 θ (ω0 − �)

(ω0 + �)(3ω0 − �)

]
σ̂ (2)

z . (A11)

Notice that the second-order effective Hamiltonian does not
induce any coherent resonant coupling between the two
qubits, since they are out of resonance, but it still induces
an energy shift (which can be compensated by an appropriate
choice of the parameters).

Despite the absence of a coherent interaction between the
qubits in the qubit-qubit interaction manifold, the main one-
photon–two-qubit process can still take place. Indeed, from
Eq. (A5) we obtain

Ĥ (3)
I = H (3)

eff = − 8g3 cos2 θ sin θ
(
3ω2

0 + �2
)

(
ω2

0 − �2
)(

9ω2
0 − �2

)
(
âσ̂

(1)
+ σ̂

(2)
+ + â†σ̂

(1)
− σ̂

(2)
−

)
. (A12)

Notice that Eq. (A12) recovers Eq. (A8) for � = 0.

APPENDIX B: COMPARISON OF ENERGY LEVELS
OBTAINED USING THE EFFECTIVE AND THE FULL

SYSTEM HAMILTONIAN

Here, we compare the lowest energy levels obtained for
the effective Hamiltonian in Eq. (2) with those calculated
using the full system Hamiltonian in Eq. (1). Figure 5(a)
shows the lowest energy levels of the full system Hamiltonian
(blue solid curve) and those obtained by diagonalizing the
effective Hamiltonian (red dotted curves), as a function of
the frequency difference of the bare qubits �. The results
are plotted for parameters fulfilling the resonance condition
ωc � ω(1)

q + ω(2)
q and show excellent agreement. In the inset

[Fig. 5(b)] an enlarged view of the first avoided level crossing
[marked by a small black dashed rectangle in Fig. 5(a)] is
shown. As expected, at its minimum (� = 0, green square)
the energy difference between the Hamiltonian eigenstates is
twice the effective resonant coupling �

(2)
eff . This coupling is

only important when the qubits are almost identical (� ≈ 0).
For � � �

(2)
eff , instead, the Jaynes-Cummings–like effective

interaction is negligible due to the RWA (red dots), meaning
that there is no longer a Hamiltonian coupling between the
two qubits. The large dotted black rectangle in the center of
Fig. 5(a) delimits the region for which the one-photon–two-
atom excitation process occurs. This region is quite large,
meaning that for various values of � the coherent resonant

coupling �
(3)
eff between the two states ˜|1, g, g〉 and ˜|0, e, e〉 does

not change significantly. However, when the energies of the
qubits become too different the coherent resonant coupling
�

(3)
eff tends to be too small and the one-photon–two-atom ex-

citation process becomes less likely. For even larger values,
the energy of one qubit becomes comparable to that of the

(b)

(a)

FIG. 5. Energy levels for the system at the resonance ωc �
ω(1)

q + ω(2)
q that enables the one-photon–two-atom excitation pro-

cess. (a) Lowest energy levels as a function of �/ω0 of the full
Hamiltonian from Eq. (1) (blue solid curves) and the effective
Hamiltonians for identical (green dot) and nonidentical (red dotted
curves), obtained for g/ω0 = 0.1. The large dotted black rectangle
delimits the region where the avoided level crossing (related to the
one-photon–two-atom excitation process) appears. The red arrows
indicate the limit of validity of the approximation. For large �,
the coherent resonant coupling �

(3)
eff tends to become too small, so

that the one-photon–two-atom excitation process becomes less likely.
(b) An enlarged view of the first avoided level crossing [the small
black dashed rectangle in panel (a)]. The avoided level crossing is
due to the second-order effective interaction �

(2)
eff in Eq. (3a) which

is non-negligible only for � = 0 (green squares).
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cavity, and the James approximation breaks, as marked by the
deviation of the red dots indicated by the red arrows.

APPENDIX C: ANALYTICAL RESULTS

Here, we carry out analytical calculations using the
non-Hermitian Hamiltonian in Eq. (8) with the effective
Hamiltonian in Eq. (2). The main one-photon–two-atom pro-
cess has already been described in the main text. Here, we
focus on the second-order processes occurring in the qubit-
qubit manifold once the first quantum jump takes place. We
recall that

ζ =
√(

4�
(2)
eff − iγC

)2 − (δγ + i�)2,

δγ = γ1 − γ2. (C1)

1. Single trajectories considering only local qubit
jump operators

We suppose that a quantum jump γ1 or γ2 occurs, and the
wave function |ψ (t )〉 is |φ〉 = −i|0, g, e〉 in Eq. (16) (the other
case being just a relabeling). For the sake of simplicity, we
identify t with the elapsed time after the first jump takes place.

The evolution of an initial state ˜|0, g, e〉 is given by

|φ(t )〉 = −ie− 1
4 �t

{[
cos(ζ t/4) + δγ

ζ
sin(ζ t/4)

]
˜|0, g, e〉

− 4i�(2)
eff

ζ
sin(ζ t/4) ˜|0, e, g〉

}
. (C2)

Until another quantum jump occurs, and appropriately
renormalizing |φ(t )〉, the qubit excitation numbers evolve as

〈Ĉ−
1 Ĉ+

1 〉 =
(

4�
(2)
eff

ζ

)2
sin2

(
ζ t
4

)
1 + δγ

ζ
sin

(
ζ t
2

) + 2
(

δγ

ζ

)2
sin2

(
ζ t
4

) ,

〈Ĉ−
2 Ĉ+

2 〉 =
cos2

(
ζ t
4

) + (
δγ

ζ

)2
sin2

(
ζ t
4

) + δγ

ζ
sin2

(
ζ t
2

)
1 + δγ

ζ
sin

(
ζ t
2

) + 2
(

δγ

ζ

)2
sin2

(
ζ t
4

) .

(C3)

a. Identical qubits

Since Ĥ (2)
eff in Eq. (3a) is nonzero for identical qubits, and

δγ = � = 0, ˜|0, g, e〉 is not an eigenstate of the system and

the oscillations with ˜|0, e, g〉 are sinusoidal. In the case shown
in Fig. 1(b), the wave function |φ(t )〉 is projected onto the state
|0, g, g〉 = |〈φ(t )|φ(t )〉|−1/2Ĉ+

i |φ(t )〉 after γ1 emits a second
time.

b. Nonidentical qubits

For nonidentical qubits there are two cases to take into
consideration. First, if � = 0 the shape and form of the os-
cillations depend on the difference between the emission rates
δγ . For large values of δγ the oscillations are completely sup-
pressed. Indeed, the condition δγ > 4�

(2)
eff makes ζ imaginary

and the oscillations become exponential decays (not shown in
the figures).

For � �= 0, the second-order effective terms Ĥ (2)
eff (t ) in

Eq. (3a) can be neglected thanks to the RWA. The time-
evolution operator then acquires the simple form

Û (t ) = e− 1
2 γ1t

˜|0, e, g〉 ˜〈0, e, g|
+ e− 1

2 γ2t
˜|0, g, e〉 ˜〈0, g, e|. (C4)

Starting from the state |φ〉 = ˜|0, g, e〉 (which now is an eigen-
state of the system effective Hamiltonian), the system does not
evolve. Thus, the time evolutions of the qubit excitation num-
bers are simply 〈Ĉ−

1 Ĉ+
1 〉 = 0 and 〈Ĉ−

2 Ĉ+
2 〉 = 1. This process

is shown in Figs. 1(c) and 1(d), where a quantum jump first
takes place in qubit 2 (qubit 1) and then in the other qubit.

2. Single trajectories considering local and collective qubit
jump operators

Here we analyze the case γC �= 0. If the first jump is γ1, the
time-evolution operator in Eq. (18) to the (normalized) initial

state |φ〉 = ˜|0, g, e〉 gives

|φ(t )〉 = −ie− 1
4 �t

{[
cos(ζ t/4) + δγ

ζ
sin(ζ t/4)

]
˜|0, g, e〉

− i
4�

(2)
eff − iγC

ζ
sin(ζ t/4) ˜|0, e, g〉

}
. (C5)

If, instead, the first quantum jump is γC , the initial state χ+ =
( ˜|0, g, e〉 + ˜|0, e, g〉)/

√
2 evolves as

|χ (t )〉 = − ie− 1
4 �t

√
2

{[
cos(ζ t/4) − i

4�
(2)
eff − iγC

ζ
sin(ζ t/4)

]
( ˜|0, e, g〉 + ˜|0, g, e〉) − δγ + i�

ζ
sin(ζ t/4)( ˜|0, e, g〉 − ˜|0, g, e〉)

}
.

(C6)

We do not report the general formulas for 〈Ĉ−
1,2Ĉ

+
1,2〉, but

we provide them for the specific cases below

a. Identical qubits

For a γ1 jump, and contrary to the case γC = 0, this time
ζ is always a complex number, meaning that the system

dynamics will have an oscillating part with exponential de-
cay. Considering the case γ = γ1 = γ2 �= γC as in Fig. 3(a),
Eq. (C5) becomes

|φ(t )〉 = −ie− 1
2 γ t

2

{
ei�(2)

eff t [ ˜|0, g, e〉 − ˜|0, e, g〉]

+ e− 1
2 γCt e−i�(2)

eff t [ ˜|0, g, e〉 + ˜|0, e, g〉]}. (C7)
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(a) (b)

FIG. 6. Time evolution of the mean qubit excitation numbers 〈Ĉ−
1 Ĉ+

1 〉 (red dotted curves) and 〈Ĉ−
2 Ĉ+

2 〉 (black solid curves) after (a) a
collective qubit jump, as given by Eq. (C11), and (b) a local qubit 1 jump, as given by Eq. (C9). In both cases, the parameters 2� = ω(1)

q −
ω(2)

q = 0.3ω0, γ1 = γC = 4 × 10−4ω0, and γ2 = 4 × 10−5ω0 were used.

Notice that the symmetric superposition ˜|0, g, e〉 + ˜|0, e, g〉
decays faster than the antisymmetric one due to the factor
e−γCt/2. Therefore, the antisymmetric superposition is a dark
state of the evolution without quantum jumps, while the sym-
metric superposition plays the role of a bright one. With the

state |φ〉 = i ˜|0, e, g〉 we end up in the same situation (ne-
glecting a collective phase factor). Thus, no matter the details
of the initial state, normalizing |φ(t )〉 in Eq. (C7), we see
that it tends towards the superposition state |φ(γCt � 1)〉 �
( ˜|0, g, e〉 − ˜|0, e, g〉)/

√
2.

The time evolutions of the qubit excitation numbers are
given by

〈Ĉ−
1 Ĉ+

1 〉 = 1

2
− e− 1

2 γCt
[
1 − 2 sin2

(
�

(2)
eff t

)]
1 + e−γCt

,

〈Ĉ−
2 Ĉ+

2 〉 = 1

2
− e− 1

2 γCt
[
1 − 2 cos2

(
�

(2)
eff t

)]
1 + e−γCt

, (C8)

which have sinusoidal oscillations with exponential decay
(depending on γC) towards the value 〈Ĉ−

1 Ĉ+
1 〉 = 〈Ĉ−

2 Ĉ+
2 〉 =

1/2. The two qubits keep exchanging their excitation around
the superposition state |φ(γCt � 1)〉 until a collective or local
qubit jump occurs, projecting the wave function onto the state
˜|0, g, g〉, as shown in Fig. 3(a). With the same parameters,

the superposition state |χ+〉 resulting from a collective jump
[see Eq. (17)] is an eigenstate of the effective Hamiltonian
Ĥeff in Eq. (2), and |χ (t )〉 does not evolve, as shown in
Fig. 3(b).

b. Nonidentical qubits

For a local qubit jump γ1 and |φ〉 = i ˜|0, g, e〉 the mean
qubit excitation numbers are

〈Ĉ−
1 Ĉ+

1 〉 = a′
1(cos[Im(ζ )t/4] − cos[Re(ζ )t/4])

c′
1 cos[Im(ζ )t/4] + c′

2 cos[Re(ζ )t/4] − c′
3 sin[Im(ζ t/4] + c′

4 sin[Re(ζ )t/4]
,

(C9)

〈Ĉ−
2 Ĉ+

2 〉 = b′
1 cos[Im(ζ )t/4] + b′

2 cos[Re(ζ )t/4] − c′
3 sin[Im(ζ )t/4] + c′

4 sin[Re(ζ )t/4]

c′
1 cos[Im(ζ )t/4] + c′

2 cos[Re(ζ )t/4] − c′
3 sin[Im(ζ )t/4] + c′

4 sin[Re(ζ )t/4]
,

where the coefficients are

a′
1 = γ 2

C ,

b′
1 = |ζ |2 + δγ 2 + �2, b′

2 = |ζ |2 − δγ 2 − �2,

c′
1 = |ζ |2 + δγ 2 + �2 + γ 2

C , c′
2 = |ζ |2 − δγ 2 − �2 − γ 2

C , c′
3 = i�Re(ζ ) + δγ Im(ζ ), c′

4 = i�Im(ζ ) + δγ Re(ζ ).
(C10)

In the cases considered in Fig. 6(b), Eqs. (C9) correctlty predict almost no evolution in the system.
When considering instead a collective γC jump, i.e., the initial state is |χ+〉 in Eq. (22), the mean excitation number of qubits

for |χ (t )〉 is

〈Ĉ−
1 Ĉ+

1 〉 = 1

2

a1 cos[Im(ζ )t/4] + a2 cos[Re(ζ )t/4] + a3 sin[Im(ζ )t/4] − a4 sin[Re(ζ )t/4]

c1 cos[Im(ζ )t/4] + c2 cos[Re(ζ )t/4] + c3 sin[Im(ζ t/4] − c4 sin[Re(ζ )t/4]
,

〈Ĉ−
2 Ĉ+

2 〉 = 1

2

b1 cos[Im(ζ )t/4] + b2 cos[Re(ζ )t/4] + b3 sin[Im(ζ )t/4] − b4 sin[Re(ζ )t/4]

c1 cos[Im(ζ )t/4] + c2 cos[Re(ζ )t/4] + c3 sin[Im(ζ t/4] − c4 sin[Re(ζ )t/4]
, (C11)
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FIG. 7. Quantum trajectories for fully and partial homodyne measurement of the system output. The plots show the expectation value of
the mean photon number 〈X̂ −X̂ +〉 (blue dashed curves) and the mean excitation numbers of the two qubits 〈Ĉ−

i Ĉ+
i 〉 (i = 1, 2) (red dotted

and black solid curves). (a) A quantum trajectory where the output fields of all subsystems are detected through homodyne detection. (b) A
quantum trajectory where only the output field of the cavity is measured with homodyne detection, while the qubit outputs are measured with
photodetection. For both panels, parameters are the same as in Figs. 1(a) and 1(b).

where the coefficients are

a1 = |ζ |2 + (δγ + �)2 + γ 2
C , a2 = |ζ |2 − (δγ + �)2 − γ 2

C ,

a3 = Im(ζ )(γC + δγ ) + iRe(ζ )�, a4 = Re(ζ )(γC + δγ ) + iIm(ζ )�,

b1 = |ζ |2 + (δγ − �)2 + γ 2
C , b2 = |ζ |2 − (δγ − �)2 − γ 2

C ,

b3 = Im(ζ )(γC − δγ ) − iRe(ζ )�, b4 = Re(ζ )(γC − δγ ) − iIm(ζ )�,

c1 = |ζ |2 + δγ 2 + �2 + γ 2
C , c2 = |ζ |2 − δγ 2 − �2 − γ 2

C , c3 = γCIm(ζ ), c4 = γCRe(ζ ). (C12)

Equation (C11) is in agreement in describing a single tra-
jectory after a collective qubit jump has occurred, as shown
in Figs. 3(c) and 3(d) for the cases γ1 > γ2 and γ1 < γ2,
respectively. For γ1 = γ2, 〈Ĉ−

1 Ĉ+
1 〉 = 〈Ĉ−

2 Ĉ+
2 〉 = 1/2. In this

case, the system oscillates between the Bell states ˜|0, g, e〉 ±
˜|0, e, g〉 and ˜|0, g, e〉 ± i ˜|0, e, g〉.

APPENDIX D: QUANTUM TRAJECTORIES
FOR HOMODYNE DETECTION

To appreciate the importance of the unraveling protocol
and of detecting single quantum jumps, let us now consider
how the system would evolve under homodyne detection. We
can choose to mix a reference coherent field with the output
field from either all the subsystems or only some of them. In
the continuum limit (infinite amplitude for the reference field),
the detector continuously reads a signal, but the backaction of
this signal on the quantum trajectory is minimal. With this
protocol, the evolution of the system is diffusive, and dictated
by a non-Hermitian Hamiltonian [45]

ĤHom = Ĥ − i

2

∑
m

[
γ 2

m〈(Ŝ−
m − Ŝ+

m )〉 + γmξm(t )
]
Ŝ+

m , (D1)

where ξm(t ) = dWm/dt is a noise process stemming from
the Wiener increment dWm, which has zero mean and vari-
ance dt . Similarly to quantum trajectories for photodetection,
the diffusive stochastic evolution contains the non-Hermitian
Hamiltonian Ĥ from Eq. (8). However, the effect of quantum
jumps is modified by the reference field and enters as the
second part of Eq. (D1).

Two examples of the resulting diffusive quantum tra-
jectories are plotted in Fig. 7, where we reanalyze the
one-photon–two-atom excitation process without collective
dissipation as plotted in Figs. 1(a) and 1(b). In Fig. 7(a),
the outputs from all subsystems contribute to the measured
homodyne current. In this case, the evolution is damped and
no instantaneous change takes place. This demonstrates the
importance of the correct unraveling in order to witness all
the processes taking place.

To further demonstrate the importance of the collection of
the qubit jumps, Fig. 7(b) shows a trajectory where we detect
the cavity output through a homodyne measurement, while
the output of the qubits is collected by photodetection. The
trajectory shows that a quantum jump of one of the qubits
can take place, allowing the two qubits to exchange their
remaining excitation as in Fig. 1(b).

APPENDIX E: COMPARISON OF SYSTEM DYNAMICS
OBTAINED USING THE LME AND MCWF APPROACHES

Here, we compare the dynamics of the LME and of
averaged MCWF trajectories for the one-photon–two-atom
excitation process. In doing this, we consider all the numer-

ical simulations are carried out taking ˜|1, g, g〉 as the initial
state and using the full system Hamiltonian [see Eq. (1) in
the main text] near the resonance condition ωc � ω(1)

q + ω(2)
q .

In Figs. 8(a) and 8(b), we show the main one-photon–two-
atom excitation process without collective qubit dissipation
included. We clearly see that the MCWF approach (right col-
umn) is in complete agreement with the LME approach (left

023720-15
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(a) (b)

(c) (d)

FIG. 8. Comparison of system dynamics for the one-photon–two-atom excitation process using the (a), (c) LME and (b), (d) MCWF
approaches. In panels (a) and (b) the collective qubit dissipation is γC = 4 × 10−5ω0 while in panels (c) and (d) γC = 0. The plots show the
time evolution of the mean photon number 〈X̂ −X̂ +〉 (blue dashed curves) and the mean excitation numbers of the two qubits 〈Ĉ−

i Ĉ+
i 〉 (i = 1, 2)

(red dotted and black solid curves). All the numerical simulations are carried out taking ˜|1, g, g〉 as the initial state and using the full system
Hamiltonian [see Eq. (1) in the main text] near the resonance condition ωc � ω(1)

q + ω(2)
q for a normalized coupling strength g = 0.1ω0.

column), which was used in Ref. [39]. However, the average
washes out the qubit-qubit dynamics. Such a hidden behavior
is completely lost due only to the averaging (the quantum
trajectory protocol is identical to the single one shown in

the main text). Since this quantum-jump induced process is
fundamental to demonstrate the presence of the main one-
photon–two-atom process, it is thus fundamental to collect
single trajectories without averaging them.
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