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Ultrastrong coupling of a qubit with a nonlinear optical resonator
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We study the interaction of a two-level atom with a single-mode nonlinear electromagnetic resonator, consider-
ing coupling strengths ranging from zero to the so-called deep strong coupling regime. When the qubit-resonator
coupling is very strong, the standard Kerr model for the resonator becomes questionable. Moreover, recently,
it has been shown that extra care is needed when constructing gauge-independent theories in the presence of
approximations as the truncation of the Hilbert space of the matter system. Such a truncation can ruin gauge
invariance leading to nonphysical results, especially when the light-matter interactions strength is very high.
Here we face and solve these issues to provide a consistent nonlinear-resonator quantum Rabi model satisfying

the gauge principle.
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I. INTRODUCTION

The quantum Rabi model (QRM) [1] provides the simplest
full quantum description of light-matter interaction. It is one
of the most studied models in quantum optics, and a corner-
stone of cavity quantum electrodynamics (QED) [2—4]. This
model describes the dipolar interaction of a two-level atom
(qubit) with a quantized mode of an electromagnetic resonator
[5-7]. The QRM can be realized in many physical systems
and settings, including flying atoms entering cavities [8,9],
superconducting circuits [10-12], hybrid quantum systems
[13-15], quantum dots [16], and trapped ions [17].

A natural generalization of the QRM is the Dicke model,
where the light mode couples simultaneously to N two-level
systems (qubits) [18]. It was first studied in the limit of large
N, because it could exhibit a phase transition to a super-
radiant state for strong coupling strengths [19-22]. The QRM
has also been extended to include N-state atoms adopting
a group-theoretical treatment [23]. Applications to quantum
information technology have renewed the interest in the small
N case [24,25]. For example, a model with three qubits allows,
in principle, the dynamical generation of Greenberger-Horne-
Zeilinger states [25,26].

Another relevant generalization of the QRM consists of
adding an interaction term describing the breaking of parity
symmetry of the artificial atom. This generalization describes
the violation of parity selection rules and can give rise to inter-
esting unusual phenomena [27-30]. In circuit QED systems,
symmetry breaking can be precisely controlled by applying an
external magnetic flux to a superconducting flux qubit [24,31—
34].

An interesting further generalization consists of consid-
ering a nonlinear resonator (with, i.e., a Kerr nonlinearity)
interacting with a two-level system (qubit). This model was
studied by several groups [10-12,35-38]. A Kerr-like non-
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linearity is interesting because it introduces various quantum
effects such as squeezing states [39] and photon/phonon
blockade effects [35,40—42], and can enable a number of
useful applications such as the creation of cat states [43—45]
and the implementation of universal quantum gates [46-50].

Two-level atoms are a key feature of the QRM and of
almost all its generalizations (of course Ref. [23] is an ex-
ception). Recent works have questioned the gauge invariance
of the quantum Rabi Hamiltonian. Specifically, it has been
shown that, while the electric dipole gauge provides valid
results, as long as the Rabi frequency remains much smaller
than the energies of all higher-lying levels, this is not the case
for the Coulomb gauge [51-53], especially when the light-
matter interaction strength enters the so-called ultrastrong
coupling (USC) regime [54,55], now experimentally accessi-
ble [56-58]. This is a major problem questioning the general
validity of the QRM, and can lead to nonphysical results as
gauge-dependent energy levels [52,59] and spectra [60]. The
origin of the breaking of gauge invariance was identified in
the two-level approximation, and a procedure to obtain consis-
tent results for matter systems described in truncated Hilbert
spaces, even for extreme coupling strengths, was proposed in
[59,61-64].

Here we investigate the gauge issues arising from consid-
ering a generalized QRM with a nonlinear electromagnetic
resonator. The aim of this work is to provide a nonlinear-
resonator QRM able to yield gauge-invariant predictions.
Moreover, as we will see, investigating gauge issues in the
presence of a nonlinear optical resonator is rather instructive
and can give rise to quite surprising results.

In recent works, it has been shown that using the stan-
dard dipole gauge quantum Rabi Hamiltonian is safe, since
it yields correct results even at very high coupling strengths
[52], if the operators in the expectation values have also
been transformed in this gauge [62]. In contrast, the cor-
rect QRM in the Coulomb gauge is very different from
the standard quantum Rabi Hamiltonian [59]. Here, we will
learn that in the presence of a nonlinear optical resonator,
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even the standard dipole gauge Hamiltonian can provide
wrong results.

II. SIMPLE MODELS FOR THE NONLINEAR
ELECTROMAGNETIC RESONATOR

Let us consider the Hamiltonian of a single-mode electro-
magnetic resonator with a nonlinear self-interaction:

7:[0,01 = /}:ZEO) + ]>uu (1)
where 7:120) is the harmonic term,
HO = w.d'a. )

Assuming a third-order anharmonicity, a widely used non-
linear term is the standard Kerr self-interaction (¢ = K):

Ve =J w.a?a?. (3)

However, this term results from neglecting the counter-
rotating terms [rotating wave approximation (RWA)] in the
interaction terms (o = =),

N ch .
Ve =">@" +a

When the resonator interacts with qubits in the strong cou-
pling regime, the photon operator & (4') may contain also
negative (positive) frequency components. As a consequence,
a more careful RWA has to be applied.

Obtaining an explicit form for the nonlinear potential
operator Vy is a nontrivial task. Photon-photon interaction
in vacuum is a very rare process. Sizeable nonlinear opti-
cal processes require the interaction of photons with matter.
Specifically, effective photon-photon interactions, like, e.g.,
the Kerr effect, originate from the interaction of a medium
with photons in a spectral range corresponding to its trans-
parency window (dispersive regime).

A simple way to derive an effective Hamiltonian for a non-
linear optical resonator is to consider the classical expression
for the energy density of the electromagnetic field in a di-
electric medium. The contribution arising from the interaction
with the medium is

U=1E-P, 4)

where E is the electric field, and P is the polarization density.

It is sometimes possible to expand the polarization P; in-
duced in the medium in a power series in the electric field.
For example, the third-order nonlinear polarization can be
expressed as P(3) Xz(3k)lE E E;, where X(3) i8 the third-order
nonlinear optical susceptibility tensor. As a consequence,
these nonlinear processes are expected to provide a contribu-
tion to the total field energy proportional to the fourth power
of the electric field.

Considering the simplest case of a single-mode electro-
magnetic resonator, expanding the vector potential amplitude
as A = Ag(a + a") (here Ay is the zero-point amplitude of the
field coordinate and & and &' are the destruction and creation
photon operators), the amplitude electric field operator can
be written as £ = iw Ag(a — &"). As a consequence, we may
expect a nonlinear interaction term proportional to the fourth
power of the electric field operator: V. = (o, /6)(@a —a"y*.
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FIG. 1. Comparison between the lowest-energy eigenvalues of
the nonlinear Hamiltonians Hci and Hc x as a function of the
normalized nonlinear coefficient J. We assume the respective
ground-state energy equal to zero at each value of J. The bare cavity
frequency w, is opportunely renormalized as a function of J in the
Hamiltonians ?—Al(,,i so that transition frequency between the first
excited state and the ground state do coincide to that calculated for
the nonlinear Kerr Hamiltonian 7:10’ K-

However, this procedure is not very rigorous and a more mi-
croscopic approach should be carried out in order to eliminate
any concern.

It is worth noticing that ¥V, can be obtained from V_
by a simple unitary transformation & — ia, which leaves
unchanged the linear term 1-70(0). As a consequence, when con-
sidering the individual nonlinear optical resonator, described
by the Hamiltonian in Eq. (1), the two options Vs provide
exactly the same physical results. However, when considering
its interaction with an additional system, as, e.g., a qubit, the
two different potentials can determine different results. Notice
that the simple unitary transformation mentioned above, also
affects other quantities that depends on & and a', such as the
vector potential A.

We conclude this section by comparing the lowest-energy
eigenvalues of HC x with those of ’HL + (we use as zero the
ground-state energy at each value of J) as a function of the
nonlinear coefficient J (see Fig. 1). Since changing the param-
eter J affects the transition frequency between the first excited
state and the ground state only of ’}—Alf,i, the frequency w, in
ﬁc,i is modified as a function of J, so that these transition
frequencies do coincide.

Figure 1 shows that H. x and . . start displaying differ-
ent transition energies for values of J > 4 x 1072

In Sec. III, we will present a simple microscopic model
able to provide indications on the right choice for the effective
nonlinear potential.

A. Wigner functions

The Wigner function offers an interesting possibility to
visualize quantum states using the phase space formalism
[65-67]. It was used to describe several physical processes
and effects [68—71]; it was generalized to describe systems
having a finite number of orthogonal states [72]. More-
over, Wigner functions have been reconstructed in several
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FIG. 2. Comparison between the Wigner functions of lowest
eigenvectors relative to the three different nonlinear Hamiltonians
(ﬁc,i and ﬁC,K) for J/ = 0.1. Each column refers to a specific
Hamiltonian, each row to the eigenstates ranging from the ground
one (|0)) to the fourth level (|3)).

experiments [73-75]. For a nonrelativistic system with only
continuous degrees of freedom (no spin, for example), the
Wigner function can be considered the phase space formu-
lation of the density matrix able to represent an arbitrary
quantum state. Moreover, employing Wigner tomography
[76,77], it is possible to uniquely determine its generating
quantum state.

We calculated the Wigner functions generated by the first
four eigenstates of 7:16,1(, 7:lc,+, and ﬂc,,, respectively. The
results have been obtained using the PYTHON package QUTIP
[78]. In particular, Fig. 2 shows a panel of nine Wigner func-
tions: The ith row is relative to the ith quantum eigenstate |i)
(i=0,...,3) of the corresponding Hamiltonian indicated in
the columns (respectively, ’}-A{C,K, 7:[0!7, 7:lc,+). We calculated
also the normalized squeezing parameter for each Wigner

function defined as
2
52 = (%) , 5)

where ¢ is the principal squeezing parameter [79] defined as

¢* = H{Var(X) + Var(P)

— \/ [Var(X) — Var(P)]2 + 4 Cov*(X, P)}.  (6)

In the above equation, X = (& +a')/2 and P = i(a" — a)/2
are the amplitude operators, and we also have Var(A) =
(A%) — (A)? and Cov(X, P) = L (XP + PX) — (X)(P) [80].
Moreover, in Eq. (5), in order to have an unambiguous pa-
rameter describing the squeezing both for ground and excited
states, we normalized ¢2 by (¢2)? = 2n + 1, the squeezing pa-
rameter calculated for the nth eigenstate of the bare harmonic
oscillator Hamiltonian . In so doing, S is less then one
in the presence of noise reduction along a quadrature with re-
spect to the corresponding energy eigenstate of the harmonic
oscillator. The calculated values of S? for each state are shown
in Fig. 2. We observe that the eigenstates of ’ﬂc,_ (7:[c,+) show
a squeezing on the imaginary (real) part of «, respectively.
As expected, the eigenstates of 7{. x do not present any noise
reduction. This because ﬁc,K commutes with the harmonic
oscillator Hamiltonian (7—7,5,0)) and the eigenvectors of ’}-A[C,K
do coincide with those of H, hence they generate equiv-
alent Wigner function. Moreover, the normalized squeezing
observed increases as the nonlinear coefficient increases.

III. POLARITON MODEL OF THE NONLINEAR
RESONATOR

In order to find the effective nonlinear interaction term
on a more solid ground, in this section we develop a sim-
ple polariton model. As previously mentioned, a nonlinear
electromagnetic resonator results from the interaction in the
dispersive regime of a standard resonator with a matter sys-
tem. We model the matter system as a bosonic field describing
dilute collective electronic excitations under the influence of
a weak nonlinear potential.

In the dispersive regime one of the two resulting polariton
modes can be interpreted as the cavity mode dressed by the
interaction, while the other one as the dressed matter field.

We start neglecting the nonlinear potential of the matter
field, so that we can diagonalize exactly the resulting Hopfield
model. Then, we introduce the nonlinear term and express it in
terms of polariton operators. In so doing, we can directly iden-
tify the resulting nonlinear interaction term for the dressed
cavity mode.

We consider the polaritonic Hamiltonian (Hopfield model)
of a single-mode electromagnetic resonator interacting with
a single-mode bosonic collective matter excitation using the
dipole gauge [81]:

Hp =HO + AL + Vs, )

where the noninteracting contributions are H® = woa'a,
7:120) = a)clAﬂlA}, and the interaction term is

Vo = wolir@ —a)b+ b6 + 22+ b1, (8)

This Hamiltonian can be diagonalized by a Hopfield-
Bogoliubov transformation [82]:

a= Y AP+ A, P, )
n=1,2
and
b= B, +B,P], (10)
n=1,2
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where P, and IA’J (n =1, 2) are the lower (n = 1) and upper
(n = 2) polariton (bosonic) operators, and A,, A, B,, B), are
complex numbers (see Appendix A for their explicit form).
The resulting diagonal form can be written as

fp =) w.bP. (11)
n=1,2

Inverting the relations (9) and (10), the polariton operators
can be expanded in terms of the bare photon and matter
operators: P, = A*a+ Bib—Ala' — B,b'. The Hopfield-
Bogoliubov diagonalization procedure determines both the
polariton eigenfrequencies w, and the Hopfield coefficients
Ap, By, A}, and B),. In particular it is possible to obtain the
eigenfrequencies w, from the dispersion relation:

42 2wow, a)g
1+ 55— =—. (12)

wp—op o

We now introduce an additional nonlinear term to the
matter system Hamiltonian. In most cases, anharmonicity in
matter systems as atomic systems, collective excitations, or
superconducting artificial atoms, arises from the presence of
nonlinear potentials. Assuming here an even potential, and
considering the lowest higher order term beyond the harmonic
(quadratic) one, we consider a nonlinear potential term pro-
portional to the fourth power of the matter field coordinate
2%, where £ = xo(l; + F), being x( the zero-point-fluctuation
amplitude. The total system Hamiltonian can be expressed as

Jba)c
6

We now express this nonlinear term in terms of the polari-
ton operators:

H="Hp+ (b + b, (13)

b+b"=>"(B,+B)P, +Hc. (14)
n

By inspecting the phases and moduli of the Hopfield coeffi-
cients (see Appendix A), the nonlinear term in Eq. (13) can be
written as

7:[ = wlﬁfﬁl —+ a)ngpz
Jy . L A A R
+g@m—ﬂHQ®+@m (15)

where C, = |B,|[2w0/ (@, + wo)]-

In the dispersive regime, when the detuning |A| >> wyA,
light-matter hybridization is rather small. As a consequence,
the resonance frequency of one polariton mode will be close to
that of the bare photon mode (photonlike), while the other one
will have a resonance frequency close to that of the bare matter
field (matterlike). In other words the photonlike polariton can
be interpreted as a dressed photon mode. This latter interpreta-
tion is also supported by the fact that the polariton quanta are
those really detected in photodetection measurements [83].

When describing processes and experiments occurring in a
spectral range well separated by wy, it is possible to discard the
contributions of the matterlike polariton. Assuming w, > @,
the resulting approximate Hamiltonian is

Jow,

6

Hp, = o PP + — (P, — P[)*, (16)

with J = J,(C))*. The operators P; and PIT can be regarded
as photon operators displaying a nonlinear self-interaction.
Specifically, the interaction with the matter field has deter-
mined a frequency shift w, — @ >~ w, as well as an effective
nonlinear self-interaction. This result shows that the correct
interaction form in Eq. (1) is Vo = Jw.(a — a")*, where
the photon operator a actually corresponds to the polariton
operator ﬁl. Notice that a bare photonic mode is not affected
by any self-interaction nonlinear term.

IV. NONLINEAR-RESONATOR QUANTUM RABI MODEL

We now consider the interaction of a qubit with the non-
linear electromagnetic resonator presented in Sec. II. We start
neglecting the nonlinear self-interaction term, thus consider-
ing the quantum Rabi model.

In general, it has been shown that, in the dipole approxima-
tion, the Coulomb-gauge Hamiltonian, able to implement the
gauge principle, even in the presence of approximations, can
be obtained (i) by writing the sum of the field ﬁph and matter
H,, free Hamiltonians, and (ii) by applying a suitable unitary
transformation to the free matter Hamiltonian [59]:

He = Hy, + UR,UT, (17)

where the unitary operator U coincides with the Hermitian
conjugate of the operator 7 = U’ which implements the
gauge transformation from the Coulomb to the multipolar
gauge (also known as the dipole gauge, when considering the
dipole approximation). As a consequence, the dipole gauge
Hamiltonian can be directly obtained as

Hp =THT" = 0 H W0 + H,. (18)

Equations (18) and (19) show that, in general, while the
Coulomb gauge can be correctly implemented by applying
a unitary transformation (generalized minimal coupling re-
placement) to the bare matter Hamiltonian, the dipole gauge
Hamiltonian can be obtained by applying a generalized min-
imal coupling replacement (with opposite coupling constant)
to the free-field Hamiltonian.

Considering now the quantum Rabi model, the matter
system Hamiltonian is 7:[((10) = w,6,/2, and the free-field
Hamiltonian is 7—220) = w.a'a, while the unitary operator im-
plementing the gauge principle is i = exp[iné,(a + a"))]. The
resulting quantum Rabi Hamiltonian in the Coulomb gauge is

He = O+ AROU = RO
w . a” A
+ EZ{@ cos[2n(a + a")] + &, sin[2n(a + aMH1}. (19)
Introducing the Coulomb-gauge Pauli operators [62],

6! =U6U" =6, cos2n(@ + a)] + 6, sinl2n@" + a)],
(20

the Hamiltonian in Eq. (17) HC can be rewritten in a more
compact way as

A A w,
He=HO + 7" 5. (21)
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The quantum Rabi Hamiltonian in the dipole gauge can be
obtained from

Hp =UAOU+ . (22)
The result is
Hp = HO + AO + P, 23)

where the interaction term is

6?2 (24)

X

Vp' = inoc@ — ).+ n’o;

belng 1 the normalized qubit-cavity coupling strength and
= I just corresponds to the identity operator. Introducing
the dipole gauge photon operators [62],

o =TaT' =a+ iné,,

" =Ta' T =a' —iné,, (295)
Equation (23) can be written as
Hp = 0 d"d +H. (26)

Of course, the two gauges, being related by a unitary trans-
formation, provide the same physical results [62]. We also
notice that, while the correct Coulomb-gauge quantum Rabi
Hamiltonian is very different from the corresponding standard
quantum Rabi Hamiltonian [52,84], the standard dipole gauge
model is not affected by gauge issues as shown by Eq. (23).

Since the dipole gauge leads to a more simple total Hamil-
tonian, it is convenient to use this gauge when extending the
treatment considering a nonlinear optical resonator interacting
with the qubit. It seems trivial to write down immediately the
resulting Hamiltonian simply adding to Eq. (23) the nonlinear
photonic self-interaction term:

HY = Hp + V. (27)

Actually, this result violates the gauge principle if V, does
not commute with I/ (o # %). In fact, transforming Eq. (27)
to obtain the Coulomb-gauge Hamiltonian, we obtain a result
which differs from the minimal coupling:

AR = He + UV # Hew = He + Ve (28)

So the question is: how to obtain the correct model in the
dipole gauge? Correct results in the dipole gauge can be di-
rectly obtained by applying the generalized minimal coupling
shown in Eq. (18). In the specific case, we obtain

HYy =UHeall +H. (29)

Using Eq. (29) is equivalent to transforming each photon
operator @ — a' = =U'all in Hw [see Eq. (25)], including
those in the nonlinear self-interaction term. While this pro-
cedure does not affect V., it changes significantly V_ and
Vk. In other words, using any of the three nonlinear interac-
tion terms V.., V_, and Vx can provide results satisfying the
gauge principle, if the correct procedure is adopted. Hence,
in order to choose the correct one, it is necessary to consider
the microscopic model presented in Sec. III as a guidance.
Still, we think that it can be interesting to compare the energy
eigenvalues of the different Hamiltonians, in order to check
the impact of using incorrect nonlinear photonic potentials.
We present the results in the following section.

a

N

w

N

Energy levels E/w..

—_

a

N

w

N

Energy levels E/w.

Normalized coupling n

FIG. 3. Comparison of the lowest energy energy eigenvalues of
the Hamiltonians 7:15_0’ ﬁﬁ), and 7—25, as functions of the resonator-
qubit normalized coupling 7, for (a) J/ = 0.05 and (b) J = 0.1. The
eigenvalues of H,, HX,, and #{}, are compared setting at zero the
respective ground-state energy at each value of 7.

V. ENERGY SPECTRA OF NONLINEAR-RESONATOR
QUANTUM RABI MODELS

Here we present a set of numerical calculations clarifying
the impact of using the different models above described, and
the impact on the energy spectra of violating gauge invariance.

In Fig. 3 we show a comparison of the energy eigenvalues
of the Hamiltonians with the standard light-matter interaction
term: 7:{,5_1) and 7—AlfD with the one satisfying the gauge principle:
7:15. The plots display the eigenvalues as functions of the
normalized coupling strength 7. We considered two specific
values of the normalized nonlinear coefficient J = 0.05 (a)
and J = 0.1 (b). We also considered the zero-detuning case:
wg/w. = 1.

A general characteristic of the QRM is that for n > 1 the
bare energy of the qubit can be treated as a small perturbation.
In the limit n — oo, this perturbation becomes negligible
as compared to the interaction term, leading to a pairwise
degeneration of the eigenvalues [62]. It can be shown that,
in this limit, where this perturbation becomes negligible, the
QRM shows the same energy levels obtained at zero coupling
(n = 0) (see Appendix B). We observe that only the eigen-
values of 7:15 show this behavior at high values of coupling
strength, becoming independent from 7. On the contrary, the
eigenvalues of 7-Als_D and 7—AlfD, maintain their dependency on 7
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FIG. 4. Comparison between the lowest energy energy levels of
7:13 and 7—?5 as functions of the normalized coupling 7 for (a) J =
0.05 and (b) J = 0.1. The eigenvalues of 4 and A are compared
assuming the respective ground-state energy equal to zero at each
value of 7.

and their value increases for large values of the normalized
coupling strength.

We also observe that the eigenvalues of 7, and H%) agree
with those of 7:15 only for very low coupling values and for the
lowest energy levels. We notice that in this very limited range,
the eigenvalues of H prov1de a better approximation of the
correct values than those of Hp,. As the nonlinear coefficient
increases [see Fig. 3(b)], the discrepancies between the three
sets of eigenvalues are even more pronounced.

Our analyses in Secs. III and IV show that the consistent
nonlinear-resonator QRM in the dipole gauge is provided
by 7:15. It is also interesting to compare its energy levels
with different models which, however, are consistent with
the gauge principle (see Fig. 4). As before, we considered
the zero-detuning case (w;/w. =1) and two specific val-
ues of the normalized nonlinear coefficient J/ = 0.05 (a) and
J =0.1(b).

A first observation is that in this case the three sets of eigen-
values show the correct behavior at high coupling, becoming
asymptotically independent on 5 (light-matter decoupling).
This shows, once more, how critical it is to satisfy the gauge
principal in order to obtain consistent results at high coupling
strengths. We also observe that the eigenvalues of 7:L$ display
a decoupling effect starting at a bit higher values of 1. We also

observe that the eigenvalues of 7—]5 display the largest differ-
ences with respect to those of ’}:[5, since they also show an
offset on the energy of the excited levels for n = 0. Increasing
the normalized nonlinear coefficient to J = 0.1 [see Fig. 4(b)],
the differences become more relevant and even the fourth ex-
cited eigenvalues of the three Hamiltonians display significant
differences, already at moderate coupling strengths.

VI. CONCLUSIONS

We studied the energy spectrum of a generalized QRM,
consisting of a two-level atom interacting with a single-mode
nonlinear electromagnetic resonator. We considered normal-
ized coupling strengths ranging from zero to the so-called
deep strong coupling regime.

For strong coupling rates, comparable with the transition
frequency of the atom, or the resonance frequency of the cav-
ity mode, the standard Kerr model for the resonator becomes
questionable. The specific range of validity of the standard
Kerr model depends on the normalized coefficient J of the
photonic nonlinearity, on the qubit-oscillator normalized cou-
pling strength 7, and on the considered energy levels, as
shown in Fig. 4. We started analyzing different models of
single-mode third-order nonlinear optical resonators. Then,
by using a microscopic model, based on polaritons in the
dispersive regime, we determined a consistent model for the
nonlinear electromagnetic resonator.

Recently, it has been shown that approximations as the
truncation of the Hilbert space of the matter system can ruin
gauge invariance leading to nonphysical results, especially
when the light-matter interaction strength is very high. Here
we have analyzed the gauge issues arising from considering a
generalized QRM with a nonlinear electromagnetic resonator,
and provided a nonlinear-resonator QRM able to yield gauge-
invariant predictions. While using the standard dipole gauge
quantum Rabi Hamiltonian gives correct results (in contrast
to using the Coulomb-gauge Hamiltonian), we have found that
also the standard dipole-gauge interaction violates the gauge
principle, and provides wrong results, in the present case of a
nonlinear optical resonator. In this article, we have shown that,
correct gauge invariant results can be obtained, by applying
the gauge principle and unitary gauge transformations valid
for truncated Hilbert spaces [59,64].

These results can be easily generalized to multilevel atoms
and to multimode resonators and constitute a starting point for
obtaining gauge-invariant results when studying the quantum
dynamics of few-level systems interacting with nonlinear op-
tical resonators.

Finally, we observe that the approach of constructing
gauge-invariant effective models adopted here can also be ex-
tended to include nonretarded qubit-qubit interactions. In this
case, such a pure longitudinal interaction term is unaffected
by the interaction with the photon field when adopting the
dipole gauge [see Eq. (29)]. On the contrary, when using the
Coulomb gauge,

HE = Uy H o, + Hea (30)

the light-matter coupling can also affect the qubit-qubit inter-
action term in the qubit system Hamiltonian "Hqs Here Hqs 18
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the Hamiltonian describing a system of interacting qubits, and

Uys = exp |:i(£1 +ah Yy j&;ﬂ}, (31)
J

where 6)5] ) is the Pauli matrix for the Jjth qubit, and 7; is

the normalized coupling strength for the jth qubit. If the

qubit-qubit interaction term depends only on 6, the inter-

action term commutes with Z:lqs and remains unaffected by the

interaction with the photon field.
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APPENDIX A: COEFFICIENTS

Here we show the procedure used to obtain the explicit ex-
pression for the Hopfield coefficients. We define the polariton
operator B, = A*a + B*b — A/ a" — B/ b" that must satisfy the
commutation relation:

[B,, ip] = Q.B,. (A1)

Then, we solve the resulting system for the coefficients ob-
tained from Eq. (Al) and after some algebra, we obtain the
following expressions:

.l = ailloi — o2

2((1)71 - wc)

“ ! i@t /2)
2
\/(a)g — a),zl) wpwe + 422 0yw;)
2 202 2
A = ’wO - wnHwn _wc|
! 2(w, + wc)

(A2)

y ! it /2)

\/(a)(z) — cz)%)za),,cuC + 4 wyw,

Mot o)

_ )»a)ﬂa)g — a),lea),% —w

‘|
B, =

c

(wﬁ - a)g) (w, — wp)

1 .
« e*t(tﬁﬂrﬂ)’ (A4)

\/(a)(z) - w,%)za)na)c + 4 wyw)
¢
c

_ )\a)ﬂa)é — wﬁHa)ﬁ —w
(02 — 02)(w, + wo)
1

X e
2
\/(a)(z) — a)ﬁ) wpwe + 4 wyw)

B/

iPn

_ . @ = @) g,

" (wn + @) (83)

The value of the phases can be obtained by imposing that
lim, _.¢ P, is either a or b. For example, if we choose w. < wyq
we obtain that ¢; = 7 /2 and ¢, = 7, and, in the A — O limit,

the lower polariton P; results the photonic operator & while P,
is the operator b (see also text for further considerations).

APPENDIX B: DECOUPLING

In this section we show that for n — oo the eigenvalues
have a pairwise degeneration and their value corresponds to
that for n = 0.

We start considering Hp [Eq. (23) in the main text]:

) J
Ay = %az +odd + 2@ - a) (B1)

‘We recall that

=a" —iné,. (B2)

Yq

When nw,. >> w,, the term =6, can be treated as a perturba-
tion and can be neglected in the limit 7 — oco. The resulting
Hamiltonian commutates with &, thus we can project it into
the eigenstates of &, (|=£)):

9 ? 1T Al J AL A
Hp — Hy, = wealld, + 2@ —al)', B3

where we have now defined

al =a"Fin. (B4)

The operators &, and &i are just bare creation and an-
nihilation operators &' and & displaced by a quantity in.
By using the displacement operator D(a) = exp(ad’ — a*a)
(in our case o = =%in), the unitary condition D(a)D () =
Df(@)D(a) =1 and D (a) = D(—a), it can be shown that
Eq. (B3) corresponds to the Hamiltonian of a displaced an-
harmonic oscillator:

HY, = D(iin)<wca% + é(aﬂ — a)4)DT(iin). (B5)

Since the transformation D(in) is unitary, it does not affect
the eigenvalues. Hence, in the limit » — oo, the eigenvalues
of ’;QD are those of the anharmonic oscillator 7—2; =wata+
L@t —a)*.
6

It is worth noticing that this is a general behavior of gen-
eralized QRMs satisfying the gauge principle. Specifically, it
can be applied to every general quantum Rabi Hamiltonian,
whose expression is

A w, - A
Hpipole = 7‘151 +wd"d +V, (B6)

as long as [V,6,]=0.
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