
PHYSICAL REVIEW A 105, 023716 (2022)

Quantum interferometry for rotation sensing in an optical microresonator
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We theoretically propose a scheme to perform rotation sensing in a whispering-gallery-mode resonator setup.
With the assistance of a largely detuned two-level atom, which induces the effective coupling between clockwise-
and counterclockwise-propagating modes in the resonator, we realize an effective interferometry with SU(2)
algebraic structure. By studying the quantum Fisher information of the system, we find that the estimated
accuracy for the angular velocity of the rotation can achieve and even break the Heisenberg limit in the linear
and nonlinear setup, respectively. The high performance of quantum metrology is proved to be associated with
the state compressibility during the time evolution. We hope that our investigation will be useful in the design of
a quantum gyroscope based on spinning resonators.
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I. INTRODUCTION

The ultraprecise estimation of parameters, which was in-
troduced in quantum interferometry [1,2], has been widely
promoted to be the optical microresonator. The theory claims
that the quantum features such as entanglement and squeeze
can dramatically enhance the interferometer sensitivity [3–6].
In this community, the phase sensitivity of the interferometer
can approach the Heisenberg limit with �x ∼ 1/n (n is the
amount of the source employed) scaling, which is much better
than the classical astrict, named the standard quantum limit
with �x ∼ 1/

√
n scaling.

Quantum interferometry is achieved by measuring the in-
tensity difference at the output of the interferometer [7–10].
Typically, the sensitivity enhancements in different types
of interferometric schemes have been proposed in many
setups, such as Sagnac, Mach-Zehnder, Fabry-Pérot, and
SU(1,1) interferometers [11–20]. Nowadays, instead of ex-
ploring quantum metrology in the interferometer, quantum
sensors composed by, for example, quantum dot and cav-
ity QED systems, have made great achievements [21–31].
As one kind of the simple two-mode resonant cavities, the
whispering-gallery-mode (WGM) resonator has become a
versatile platform for measuring the angular velocity based
on the Sagnac effect [32,33].

The WGM supports the clockwise and counterclockwise
propagating optical modes, and the effective coupling be-
tween the two optical modes can be induced by coupling to
a largely detuned two-level atom. Adiabatically eliminating
the degree of freedom of the atom, we construct an effec-
tive interferometer with SU(2) Lie algebra structure in this
paper. It is thus similar to the Mach-Zehnder interferometer
and supplies us a way to perform the rotating sensing. The
underlying physics is to transform the information about the
angular velocity to the phase difference of the two optical
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modes. The study about the quantum Fisher information (QFI)
shows that the effective intermode coupling, which encodes
the information of rotation into both of the amplitudes and the
phases of the wave function, plays a decisive role in achieving
the Heisenberg limit for the estimation of angular velocity.
Moreover, we find that even a weak nonlinearity in the system
will further enhance the quantum metrology and defeat the
Heisenberg limit by achieving a 1/n3 scaling for the QFI.
We explain the enhancement by the compressibility of state
distribution during the time evolution.

The rest of the paper is organized as follows. In Sec. II,
we review quantum interferometry and present a feasible ex-
perimental scheme in the WGM optical microresonator. In
Sec. III, we discuss the effect of the nonlinearity in the system
for enhancing the quantum metrology. In Sec. IV, we give a
short summary. In the Appendixes, we present some detailed
calculations.

II. MODEL AND HAMILTONIAN

A. Mach-Zehnder interferometer

Let us first review the Mach-Zehnder interferometer, which
is sketched in Fig. 1(a). It consists of two 50:50 beam splitters
S1 and S2, the relative phase shift device φ = φ2 − φ1, and
the photodetectors D1 and D2. It is convenient to introduce
the Schwinger representation for a two-mode quantized light
field, that is,

Jx = 1

2
(ab† + a†b),

Jy = 1

2i
(ab† − a†b),

Jz = 1

2
(a†a − b†b),

J2 = J2
x + J2

y + J2
z , (1)

and

N = a†a + b†b. (2)
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FIG. 1. (a) Schematic diagram of the Mach-Zehnder interferom-
eter. It consists of two 50:50 beam splitters S1 and S2, the relative
phase shift device φ = φ2 − φ1, and the photodetectors D1 and D2.
(b) Sketch of a rotating whispering-gallery-mode optical resonator,
which couples to a largely detuned two-level atom.

Here a and b represent the annihilation operation of two
beams and the commutation relations satisfy the Lie algebra
of SU(2):

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy. (3)

It then yields

Jz| j, m〉 = m| j, m〉,
J2| j, m〉 = j( j + 1)| j, m〉, (4)

and

N | j, m〉 = n| j, m〉, (5)

where n = 2 j is the total number of photons and m is the
difference of photon number between the two ports.

For the sake of convenience, here and after, we set the
entangled initial state as |in〉 = (| j, 0〉 + | j, 1〉)/

√
2. In the

Schrödinger picture, the devices S1, S2, and φ = φ2 − φ1

will lead to transformations exp(−iπJx/2), exp(iπJx/2), and

exp(−iφJz ), respectively. The final state |out〉 is thus

|out〉 = U (φ)|in〉 = ei π
2 Jx e−iφJz e−i π

2 Jx |in〉. (6)

As an interferometer, the phase difference φ is the parame-
ter to be estimated. In the field of quantum metrology, the QFI
is a central quantity, giving a theoretically achievable limit on
the precision for an unknown estimated parameter φ. Consid-
ering the parameter φ as a random variable the mean-square

fluctuation of φ is defined as �φ =
√

φ̄2 − φ̄2. Accord-
ing to the quantum Cramér-Rao inequality, �φ is bounded
by [34–37]

�φ � 1√
νFφ

, (7)

where ν are the times of the independent measurements and
Fφ is the QFI with respect to φ. For a general quantum pure
state |ψ〉, the QFI is given by

Fφ = 4(〈∂φψ |∂φψ〉 − |〈ψ |∂φψ〉|2). (8)

Introducing a Hermitian operator

H = −iU †(∂U/∂φ) (9)

(U is the evolution operation), the QFI can be reduced to

Fφ = 4〈�2H〉, (10)

where �2H = 〈H2〉 − 〈H〉2.
Then we have

Fφ = 2 j( j + 1) − 1, (11)

so that �φ � √
2/n, that is, the fluctuation of φ is propor-

tional to 1/n, which is referred to as the Heisenberg limit.
Furthermore, we note that the QFI will decline dramatically
to 1 without the 50:50 beam splitters. In fact, the 50:50 beam
splitters, whose roles are described by e±i(π/2)Jx in Eq. (6), will
induce the effective coupling between the a and b modes and
therefore improve measurement accuracy.

B. Cavity QED setup

In the above subsection, we exhibited the effect of the
Mach-Zehnder interferometer in regard to achieving the
Heisenberg limit for the phase estimating. In this subsection,
mimicking the parametric process in the Mach-Zehnder in-
terferometer, we design the quantum sensors for rotation in a
WGM optical microresonator. The central idea is that the in-
formation of the angular velocity of the rotation is transferred
to the effective phase between the two ports.

As one of the most simple two-mode resonant cavity, the
WGM optical microresonator shows excellent performance
in measuring the angular velocity [38,39], and the similar
Sagnac-effect-based rotation rate sensitivity is reported to be
with sub-prad/s [33], which is even beyond the Earth’s ro-
tation rate (7.292 × 10−5 rad/s). We now apply the optical
microresonator, which couples to a two-level largely detuned
atom to perform a quantum sensing as illustrated in Fig. 1(b).
Here, the atom with energy separation ωa between the ground
state |g〉 and excited state |e〉 is placed near the resonator with
an optical resonance frequency ωl . The optical microresonator
supports two resonant modes, which are propagated clockwise
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(CW) and counterclockwise (CCW), and as shown below, the
two-level atom will induce a weak effective interaction be-
tween the two modes. Furthermore, we introduce two parallel
waveguides, which couple to the microresonator. The waveg-
uides can be applied to prepare the input state and perform
the measurement on the output photons of the CW and CCW
modes as shown in Fig. 1(b) [40].

We consider a gyro setup where the waveguides are station-
ary while the microresonator is rotated with angular velocity
	. Such a spinning resonator was realized experimentally and
demonstrate the photonic nonreciprocal transmission [41].
Thanks to the rotation, the optical resonance frequency will be
modified ωl → ωl ± � due to the Sagnac effect [42], where

� = n0R	ωl

c

(
1 − 1

n2
0

− λ

n0

dn0

dλ

)
. (12)

Here n0 is the refractive index, R is the radius of res-
onator, and c is the speed of light in a vacuum. λ

is the wavelength of the probe light and the last term
λdn0/n0dλ originates from the relativistic effect. The
Hamiltonian of the system can be written as H = H0 + HI ,
where

H0 =
∑

γ

ωγ a†
γ aγ + ωa|e〉〈e|, (13)

and

HI =
∑

γ

(gγ aγ |e〉〈g| + H.c.). (14)

Here, γ = cw, ccw, and ωcw = ωl + �, ωccw = ωl − �. The
real gγ is the coupling strength between the γ mode and
the two-level atom. aγ and a†

γ are the annihilation and cre-
ation operators of the γ mode, respectively. By use of the
Frölich-Nakajima transformation (see Appendix A) and the
Schwinger representation, the approximate effective Hamilto-
nian of the system can be reduced to

H̃eff = f (�)Jz + dJx, (15)

where f = 2� and d = 2geff . Here, the effective coupling
strength between the two optical modes geff is (refer to Ap-
pendix A for detailed derivations)

geff = 1

2

(
1

�cw
+ 1

�ccw

)
gcwgccw, (16)

with �γ = ωa − ωγ (γ = CW, CCW). geff implies that the
photon in CW (CCW) mode is virtually absorbed by the atom,
and remitted it to the CCW (CW) mode, therefore, the two
modes couple to each other via a second-order process.

Similar to the Mach-Zehnder interferometer, the paramet-
ric process is governed by the evolution U = exp(−iH̃efft ).
We would like to emphasize that the roll of the beam splitters
is replaced by the atom, which induces the effective coupling
between the two modes and d in Eq. (15) characterizes the
coupling strength.

To calculate the QFI with respective to �, we give directly
the Hermitian operator in Eq. (9) as [43,44]

Heff = CxJx + CyJy + CzJz, (17)

where

Cx = df

r3

∂ f

∂�
[sin(rt ) − rt],

Cy = d

r2

∂ f

∂�
[cos(rt ) − 1],

Cz = −d2

r3

∂ f

∂�

[
sin(rt ) + f 2rt

d2

]
, (18)

and r =
√

f 2 + d2. Thus

Fφ =
[

n

2

(
n

2
+ 1

)
− 1

]
C2

x

+ 2

[
n

2

(
n

2
+ 1

)
− 1

2

]
C2

y + C2
z . (19)

Obviously, we have Fφ ∼ n2, which achieves the Heisenberg
limit. However, when d = 0, it will become Fφ = (∂ f /∂�)t2,
which is independent of n and is smaller than that for d �= 0.
It indicates that the effective coupling between two modes,
which is induced by the largely detuned atom, plays a piv-
otal role for enhancing quantum metrology and achieving the
Heisenberg limit.

The enhancement of QFI originates from the special
encoding scheme for a quantum state. Without intermode cou-
pling (i.e., d = 0), the information about � is only encoded
in the phase of the quantum state. However, the atom-induced
coupling makes not only the phase but also the amplitude
contain the information about rotation (�). As derived in
Appendix B, we will get an enhancement for QFI. Specifi-
cally, when d = 0, the dynamical evolution is obtained by
|ψ (t )〉 = exp(−i( f Jzt )|in〉 = (| j, 0〉 + exp(−i f t )| j, 1〉)/

√
2

and thus � is only encoded in the phase. However,
for d �= 0, the evolution will become complicated:
|ψ (t )〉 = exp[−i( f Jz + dJx )t]|in〉. Under this circumstance,
the information of � is not only carried in the phase, but also
in the probability amplitude, leading to an enhancement of
the quantum metrology.

III. NONLINEAR EFFECT

In the above section, we outlined that the effective coupling
between the CW and CCW modes, which is induced by the
two-level atom, plays a vital role in achieving the Heisenberg
limit. To further improve the measurement accuracy, we con-
sider an extra nonlinear term in this section.

For the general nonlinear microcavity system, the Kerr type
is one of the most common forms, which is hosted in a cavity
that is filled by the atoms with a particular laser-driving four-
level structure [45,46]. Combining the above linear model,
the current system can be described by the Bose-Hubbard
Hamiltonian

H =
∑

γ

{ωγ a†
γ aγ + U (a†

γ aγ a†
γ aγ − a†

γ aγ )}

+ geff (a†
cwaccw + a†

ccwacw), (20)

where U is the on-side interaction strength and γ = cw, ccw.
In the Schwinger representation, it can be reduced to

H = (ωl + U )N + U

2
N2 + 2UJ2

z

+ 2�Jz + 2geff Jx. (21)
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FIG. 2. (a) QFI versus the photon number 2 j, f t = dt = 10.
(b) QFI versus the parameter f for j = 500, dt = 10. The param-
eters are set as e = 0 for linear scheme and e = 0.01d for nonlinear
scheme.

For a fixed photon number, the first two terms are constant
and the Hamiltonian is equivalent to H = H0 + H1, where H0

is given by Eq. (15) and

H1 = eJ2
z (22)

with e = 2U .
For the nonlinear system, it is complicated to compute the

QFI directly. However, considering a weak nonlinear effect
e 	 d , we keep to the first order of e and the results yield
Hnon = H0 + H1, where H0 is given by Eq. (17) and

H1 =
∑

α,β �=α

Cαβ{Jα, Jβ}

+Cxx
(
J2

x − J2
y

) + Cyy
(
J2

y − J2
z

)
(23)

and α, β = x, y, z, {Jα, Jβ} = JαJβ + JβJα , Cαβ , Cxx, and Cyy

are given in Appendix C.
The analytical results of the QFI are still tedious, so we

only give the numerical results here. The linear and nonlin-
ear contributions lead to a competition of the terms of QFI
with different dependence on the total photon number. In
Fig. 2(a), we compare the QFI as functions of the photon
number between linear (e = 0) and nonlinear (e �= 0) setups.
The difference between the red dashed and blue solid lines
demonstrates the nonlinear effect. The results show that the
nonlinear effect plays a leading role on QFI when the photon
number is large enough. In general, the nonlinear effect is
beneficial to break the Heisenberg limit [47–49]. Since the
complete expression of QFI [with H being given by Eq. (23)]
is too tedious, in Appendix C we only give one term in the
results by Eq. (C8), which achieves that scales as n3, being
much better than the Heisenberg limit n2 even within a low
nonlinear effect. Furthermore, while d = 0, the QFI will de-
grade into F = (∂ f /∂�)t2, which is consistent with the linear
one. In addition, in Fig. 2(b), we plot the QFI as a function of
the parameter f on a log-log scale for the linear and nonlinear
scheme. It can be observed clearly that the nonlinear curve
is much larger than the linear one for f � d . However, for
f � d , it becomes choppy in the linear region.

In fact, the distribution of the state has exerted a decisive
effect in the above metrology process. As an illustration,
we plot the function |〈 j, m|ψ (t )〉|2 versus m in Fig. 3. For
j = 100, in Figs. 3(a) and 3(b), we plot |〈 j, m|ψ (t )〉|2 for
linear and nonlinear scheme, respectively. It shows that the
distribution for the nonlinear scheme is radically different

FIG. 3. Distribution of |〈 j, m|ψ (t )〉|2 versus m for (a,c) linear
scheme and (b,d) nonlinear scheme. For (a) and (b), the parameters
are set as j = 100, f t = dt = 10, e = 0 for (a) and e = 0.01d for
(b). For (c) and (d), the parameters are set as j = 500, f t = dt = 10,
e = 0 for (c) and e = 0.01d for (d).

from the linear one, however, their distribution ranges are ap-
proximately the same. For j = 500, analogously to Figs. 3(c)
and 3(d), the function |〈 j, m|ψ (t )〉|2 versus m is plotted.
It is obvious that the distribution for the nonlinear scheme
[Fig. 3(d)] is more compressed than the one for the linear
scheme [Fig. 3(c)]. Recall that we showed in Fig. 2(a), the
linear QFI and the nonlinear QFI are almost unanimous for
j = 100, however, the nonlinear QFI is much larger than the
linear one for j = 500. Therefore, the nonlinearity can induce
the compressibility of state distribution, thereby enhancing the
QFI of system. The state distribution can be also illustrated
by the Husimi Q function, which represents the anisotropic
quasiprobability distribution in a spherical phase space. The
Q function is defined as [50,51]

Q(θ0, φ0) = 1

π
〈θ0, φ0|ρ|θ0, φ0〉, (24)

where |θ0, φ0〉 is the coherent spin state

|θ0, φ0〉 = exp{iθ0[Jx sin(φ0) − Jy cos(φ0)]}| j,− j〉 (25)

and ρ is the density matrix of the considered system. In
Figs. 4(a) and 4(b), we plot Q functions for the linear and
nonlinear schemes, respectively. Compared with the linear
scheme, the central area for the nonlinear one [here the non-
linearity strength is 20 times larger than that in Figs. 3(b)
and 3(d)] becomes much smaller. Combining the scale of the
color bar, we can see that the Q function distribution becomes
more uniform for the nonlinear setup. Meanwhile, we plot
|〈 j, m|ψ (t )〉|2 versus m under the same condition (the few
number of photons and the relatively big nonlinear effect) in
Figs. 4(c) and 4(d). In this case, the compressibility of the state
distribution for the nonlinear scheme is revealed again.
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FIG. 4. (a,b) Q function versus the angles θ0 and φ0 for linear
scheme and nonlinear scheme, respectively. The parameters are set
as j = 20, f t = dt = 10, e = 0 for (a) and e = 0.2d for (b). (c,d)
Distribution of |〈 j, m|ψ (t )〉|2 versus m for linear scheme and nonlin-
ear scheme, respectively. The parameters are same are set as j = 20,
f t = dt = 10, e = 0 for (c) and e = 0.2d for (d).

IV. CONCLUSION

In conclusion, with reference to the traditional SU(2) inter-
ferometer model, we implement a similar algebraic setup for
the rotation sensing in a microcavity. In our scheme, we em-
ploy a detuning two-level atom to create the effective coupling
between two optical modes, thanks to which the initial state is
extended to the entire Hilbert space during the time evolution.
We find that the accuracy of the parameter estimation can
be enhanced dramatically by the coupling, via encoding the
estimated angular velocity into both of the amplitudes and the
phase of the wave function. Moreover, we study the nonlinear
system which can be described by the Bose-Hubbard model
and find that the accuracy of the parameter estimation can
even break the Heisenberg limit with the large photon number.
This enhancement is associated with the compressibility of the
state distribution.

Our study suggests some viable strategies that may be
used to benefit the enhancement of the rotating sensing which
include the following: use a largely detuned atom to induce the
coupling between two optical modes; introduce some nonlin-
ear interaction in the system; rotate the system with a certain
angular velocity. We hope that our metrology scheme with the
assistance of detuning particle can be useful for the designing
of quantum gyroscope based on the Sagnac effect.
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APPENDIX A: FRÖLICH-NAKAJIMA TRANSFORMATION

For our model of the WGM optical microresonator which
couples to a two-level detuning atom, the Hamiltonian can be
described by Eqs. (13) and (14) in the main text. The rotating-
wave approximation demands that the coupling strength and
detuning satisfy, respectively, gγ 	 {ωγ , ωa} and |�γ | 	
{ωγ , ωa}, where �γ = ωa − ωγ .

To proceed, we assume gγ 	 �γ , the effective cou-
pling between two cavity modes are obtained by the
Frölich-Nakajima transformation [52–54], which is widely
used in condensed-matter physics and quantum optics. By
eliminating the degree of freedom of the atom, a weak cou-
pling will be established between the two modes. In what
follows, we will give the detailed derivations for the trans-
formation.

At first, we introduce a unitary transformation H̃ =
exp(−λS)H exp(λS), which can be expanded via Taylor ex-
pansions

H̃ ≈ H0 + λ(HI + [H0, S])

+ λ2([HI , S] + [[S, [S, H0]]) + O(λ), (A1)

where λ is introduced to mark the order of perturbation and
would be set to 1 after all calculations. S is an anti-Hermitian
operator. Then, setting the first-order perturbation term HI +
[H0, S] = 0, we obtain

S = gcwacw|e〉〈g| + gccwaccw|e〉〈g| − H.c. (A2)

Considering the dispersive interaction between the atom and
resonator modes, we approximate that the atom prepared in
initial state |g〉 will always be in the ground state |g〉. Ne-
glecting the high-frequency terms, the effective Hamiltonian
satisfies

H̃ = Heff ⊗ |g〉〈g|. (A3)

At last, up to second-order interactions, our effective
Hamiltonian is obtained as Heff = Heff,ω + Heff,I , where

Heff,ω =
∑

γ

(
ωγ+

|gγ |2
�γ

)
a†

γ aγ , (A4)

and

Heff,I =
∑

γ ,γ ′ �=γ

1

2
(

1

�γ

+ 1

�γ ′
)gγ gγ ′a†

γ aγ ′ . (A5)

We further define

geff = 1

2

(
1

�cw
+ 1

�ccw

)
gcwgccw, (A6)

in the interaction picture and Schwinger representation, the
effective Hamiltonian can be reduced

H̃eff = exp(iHeff,ωt )Heff,I exp(−iHeff,ωt )

= 2�Jz + 2geffJx, (A7)

which is Eq. (15) in the main text.
To verify the above approach, we respectively employ

the exact Hamiltonian [see Eqs. (13) and (14)] and the ap-
proximate Hamiltonian H̃eff to illustrate the dynamics of the
system. Choosing the initial state as |in〉 = (|n, n, g〉 + |n +
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FIG. 5. Dynamics of the system which is governed by the exact
and approximate Hamiltonian. The parameters are set as n = 20,
� = g, ωl = 1600g, ωa = 2000g, and geff = g2/(ωa − ωl ).

1, n − 1, g〉)/
√

2 and |in〉 = (|n, n〉 + |n + 1, n − 1〉)/
√

2 for
exact and approximate approaches respectively. We compare
the dynamics of of the system in Fig. 5. Here, we plot the
dynamics of Pexac = |〈n, n|ψexac(t )〉|2 (the blue dotted line)
and the detuning atom Pa = |〈e|ψexac(t )〉|2 (the black dotted
line) for the exact solution. Moreover, for the approximate
solution, we plot the dynamics of Pappr = |〈n, n|ψappr (t )〉|2
(the red solid line). The agreement between Pexac and Pappr

shows the validity of our approach. The fact Pa ≈ 0 during
the time evolution gives a numerical verification of Eq. (A3).

APPENDIX B: QFI IN DIFFERENT STATES

In the main text, we mentioned that the QFI is enhanced by
encoding the parameter � into both of the amplitudes and the
phase of the wave function. We will give more details in this
Appendix. To this end, we now define a general pure state

|ψ〉 =
∑

n

an exp (iϕn)|ψn〉, (B1)

where ϕn and an are the real phase and the amplitude of
the state |ψn〉, respectively, and the normalization condition
demands

∑
n a2

n = 1. To analyze the QFI in a different state,
we consider the following two situations.

First, we consider the case that only the phases are depen-
dent on the estimated parameter, that is, ϕn = ϕn(�). Then the
QFI is

F1,� = 4

[∑
n

a2
n

(
∂ϕn

∂�

)2

−
∣∣∣∣∑

n

a2
n

∂ϕn

∂�

∣∣∣∣
2
]
. (B2)

Second, when the phases and the probability amplitudes
are both related to �, the QFI can be obtained by

F2,� = F1,� + 4
∑

n

(
∂an

∂�

)2

. (B3)

Here, the second term 4
∑

n( ∂an
∂�

)2 is the contribution from
the probability amplitudes with parameter �. Obviously, en-
coding the information of � into both of the phases and the
amplitudes is beneficial for parameter estimation.

APPENDIX C: QFI FOR NONLINEAR EFFECT

In the Eq. (23) of the main text, we obtained the formal so-
lution of the Hermitian operator H. Here, we give the concrete

expression and derivation process through the Baker-Hausdoff
formula [43,44,55]

H = −t
∂H

∂�
+ i

∞∑
n=1

(it )n+1

(n + 1)!
H×n ∂H

∂�
, (C1)

where the super operator H×n denotes an nth-order nested
commutator operation, H×(·) = [H, ·]. Then we have

H = CxJx + CyJy + CzJz + Cxx
(
J2

x − J2
y

)
+Cyy(J2

y − J2
z ) + Cxy(JxJy + JyJx )

+Cyz(JyJz + JzJy) + Czx(JzJx + JxJz ), (C2)

where

Cxy = − e

6 f 2

∂ f

∂�

{
2A1

r2
[cos(rt ) − 1]

− A1 − B1/η

�2
1

[cos(�1t ) − 1]

− A1 + B1/η

�2
2

[cos(�2t ) − 1]

}
, (C3)

Cyz = e

3 f d

∂ f

∂�
{A2

r2
[cos(rt ) − 1]

− A2 + B2/η

2�3
1

[cos(�1t ) − 1]

− A2 − B2/η

2�3
2

[cos(�2t ) − 1]}, (C4)

Czx = e

3 f 2d

∂ f

∂�

{
A3 + f 2d2

r3
[sin(rt ) − rt]

− A3 + B3/η

2�3
1

[sin(�1t ) − �1t]

− A3 − B3/η

2�3
2

[sin(�2t ) − �2t]

}
, (C5)

Cxx = − e

6 f

∂ f

∂�

{
2A1

r3
[sin(rt ) − rt]

− A1 − B1/η

�3
1

[sin(�1t ) − �1t]

− A1 + B1/η

�3
2

[sin(�2t ) − �2t]

}
, (C6)

and

Cyy = e

3 f

∂ f

∂�

{
2A2

r3
[sin(rt ) − rt]

− A2 + B2/η

�3
1

[sin(�1t ) − �1t]

− A2 − B2/η

�3
2

[sin(�2t ) − �2t]

}
, (C7)

where �1 = [(3 f 2 + 3d2 − η)/2]1/2, �2 = [(3 f 2 + 3d2 +
η)/2]1/2, η = [ f 4 + d4 + 14 f 2d2]1/2, and

A1 = d2 − 4 f 2, B1 = ( f 2 − d2)(4 f 2 + d2),
A2 = f 2 − d2, B2 = f 4 − d4 + 6 f 2d2,

A3 = 2 f 4 + d4 − 6 f 2d2, B3 = 2 f 6 + d6+8 f 4d2+ f 2d4.
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The complete expression for the QFI F� = 4(〈H2〉 −
〈H〉2) [with H being given by Eq. (23)] possesses 36 terms,
which is too tedious to be given term by term here. However,
we note that {Cxx,Cyy,Cxy,Cyz,Czx} ∝ e1 and {Cx,Cy,Cz} ∝
e0. Therefore, in the expression of the QFI, six terms are
proportional to e0, 15 terms are proportional to e1 while the
remaining 15 terms are proportional to e2. The first six terms
in the order of e0 are exactly the QFI without the nonlinear in-
teraction, which is given by Eq. (19) in the main text. The last

15 terms in the order of e2 can be neglected in the situation of
small e. Now, we give one typical term which is proportional
to e1, for example,

CxCxx
{〈

Jx
(
J2

x − J2
y

) + (
J2

x − J2
y

)
Jx

〉 − 2〈Jx〉
〈
J2

x − J2
y

〉}
∝ 1

8CxCxx[( j − 1)( j + 2)
√

j( j + 1)]. (C8)

Since j = n/2, it shows that we here achieve a n3 scaling for
the QFI, which is beyond the Heisenberg limit.
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