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Large arrowhead matrices with randomly distributed entries describe a variety of important phenomena
where a degree of freedom is nonlocally coupled to a disordered continuum of modes, including central-spin
problems in condensed matter, molecular junctions, and quantum emitters in cavity QED. Here we provide
an exact solution of random arrowhead Hamiltonians with diagonal disorder in the thermodynamic limit. For
concreteness, we focus on the problem of N emitters homogeneously coupled to a nonlocal cavity mode,
corresponding to the disordered Tavis-Cummings model of cavity QED in the single-excitation limit, for which
we provide asymptotically exact formulas for static and dynamical quantities of interest. By varying the coupling
strength, we find that the distribution of energy spacing can be continuously tuned between Poisson statistics
and a distribution that is very close to semi-Poisson statistics, the latter statistics being usually associated with
the critical point of Anderson localization-delocalization transitions. We show that the system has a peculiar
diffusivelike behavior with an escape probability growing linearly with time for any finite coupling strength and
that the escape rate can be controlled by selecting the energy of the initial site. The escape rate averaged over the
disorder configurations is found to exhibit a maximum for intermediate coupling strengths, before saturating at
a lower, g-independent value for sufficiently large N in the collective strong-coupling limit, a cavity protection
effect. We investigate the system in a two-terminal configuration and show that the steady-state excitation current
exhibits features similar to the escape probability, thereby extending our cavity-protected transport scenario
to out-of-equilibrium situations. We finally demonstrate that dark states can provide a major contribution to
long-distance transport in disordered systems.
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I. INTRODUCTION

Random Hamiltonians involving N degrees of freedom are
typically described by N × N Hermitian matrices with ma-
trix elements that are independent and identically distributed
variables. As originally suggested by Wigner, looking at the
statistical properties of the distribution of eigenvalues in the
large-N limit can be relevant in physics [1–5]. Random ar-
rowhead [6–9] or bordered diagonal [10,11] matrices are
particularly simple examples of random matrices having most
of their matrix elements equal to zero except the ones along
the diagonal and along the last line and last column.

Large random arrowhead matrices naturally appear in the
common physical situation where a specific degree of freedom
is nonlocally coupled to a randomly disordered continuum of
modes acting as an environment (see Fig. 1) [12]. Among the
broad variety of possible physical systems, this occurs, for
instance, in molecular junctions, where a localized vibrating
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molecule interacts with the free-electron gas of a metallic
surface placed in close proximity [13,14] [see Fig. 2(a)]. The
random arrowhead Hamiltonian model is here highly relevant
to describe charge [16–18] and heat [19–21] currents flowing
through the junction. Other related situations are plasmonic
nanogap junctions [22], semiconductor quantum point con-
tacts [23,24], and a single molecule embedded in a plasmonic
nanocavity [22,25]. This model is also useful in central-spin
problems, where a single (central) spin nonlocally interacts
with a spin bath of localized modes [26–28]. Recent develop-
ments of quantum computation with solid-state qubits such as
quantum dots [29,30] [see Fig. 2(b)], superconducting qubits
[31], and nitrogen-vacancy centers in diamond [32] have re-
vived interest in this model, where proper understanding of
the decoherence mechanisms affecting the central spin is of
crucial importance.

Other important examples of random arrowhead Hamil-
tonians arise in cavity QED. In this case the central site
approximates a bosonic mode of the electromagnetic field,
which can be confined in either an optical cavity [33,34]
or a plasmonic structure [35] and is nonlocally coupled to
N quantum emitters (two-level systems) described by local
pseudospin operators with coupling strength g [see Fig. 2(c)].
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FIG. 1. Random arrowhead Hamiltonians appear when a specific
(central) degree of freedom with energy ωc is nonlocally coupled
to a randomly disordered ensemble of N modes with energies
ω1, ω2, . . . , ωN ∈ [−W/2,W/2] (W is the disorder strength), those
energies forming a continuum in the thermodynamic limit N → ∞.
Without loss of generality, the energy of the central mode can be
set to zero. In this paper, we focus on the situation with uniform
couplings g/

√
N between the central mode and all the others.

In the common situation where the transition frequencies
of these two-level systems are inhomogeneously broadened
(calling W the bandwidth), one ends up with a disordered
version of the famous Tavis-Cummings (TC) model [36]. The
TC model has been realized in a variety of physical systems,
including superconducting qubits [37,38], nitrogen-vacancy
centers in diamond [39,40], and atomic systems [34,41–44],
with recent implementations focusing on Raman laser dress-
ing of four-level atoms trapped in a cavity optical lattice
[43–45].

The disordered TC model and other closely related mod-
els for quantum-well exciton polaritons have already been
looked at to study the effect of inhomogeneous broadening
on the polariton spectrum [46–50] and on superradiance [51].
Similar models including a hopping term between nearest-
neighbor sites were also studied [52,53] in connection to
recent experiments on transport through molecular materi-
als strongly coupled to light [54–56]. In this case, diagonal
disorder (inhomogeneous broadening of molecular excitons),
off-diagonal disorder (inhomogeneous hopping) [57], and ori-
entational disorder [58] leading to inhomogeneous couplings
to the cavity electric field are all expected to play an important
role and cannot a priori be neglected. Theoretical investiga-
tions on the nontrivial interplay between disorder and strong
light-matter coupling are therefore highly desirable for further
developments of polaritonic material science.

In Ref. [59] we studied numerically the disordered TC
model in the presence of additional hopping of spin exci-
tations between nearest-neighboring sites. The purpose of
including such a hopping term was to investigate the effect
of the spin-cavity coupling on the metal-insulator Anderson

FIG. 2. Physical realizations of random arrowhead Hamiltoni-
ans. (a) Molecular junction consisting of a single molecule coupled
to metallic leads for charge and thermal transport (adapted from
Ref. [15]). The central (bosonic) mode corresponds to molecular
vibrations, which interact with two disordered continua of electron-
hole pairs in the leads. (b) A central quantum dot with a single
electron of spin + 1

2 is inhomogeneously coupled to an ensemble of
polarized nuclear spins − 1

2 via hyperfine interaction. (c) Cavity QED
setup consisting of a central cavity electromagnetic (bosonic) mode
coupled to an inhomogeneously broadened ensemble of two-level
systems (pseudospins), which is the focus of this paper.

transition [60,61]. It was shown that the cavity mode strongly
modifies the localization properties of the eigenstates, which
feature the novel character of being localized on multiple
noncontiguous sites, a behavior we dubbed semilocaliza-
tion. It was also shown that those semilocalized eigenstates
can efficiently contribute to coherent energy transport under
strong-coupling conditions, i.e., when the collective coupling
strength g exceeds the bandwidth of the disordered spin
ensemble. Such cavity-induced robustness of transport and
delocalization against disorder was also highlighted in other
very recent works [62–64], showing a growing interest in
cavity-protected transport.

Here we present a detailed analysis of the disordered TC
model (without hopping) in the single-excitation subspace,
providing asymptotically exact formulas for the spectrum,
average energy shifts induced by the coupling to the cavity
mode, and correlation functions for all coupling strengths
g/W . In particular, we show that the distribution of energy
spacings can be continuously tuned between Poisson statistics
and a distribution very close to semi-Poisson statistics for
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g/W � 1, the latter statistics usually being associated with
the critical point of Anderson localization-delocalization tran-
sitions. We also demonstrate that all the eigenstates consisting
of polaritons and a continuum of dark states are multifractal.
This indicates the existence of a critical semilocalized phase
for all values of g/W , where the dark states are localized
over multiple noncontiguous sites. The dark-state multifractal
spectrum and anomalous dimension are found to be identical
to those of the critical point of the Anderson model on the
Bethe lattice, which is commonly regarded as a mean-field
model (dimension d → ∞) of the localization-delocalization
transition.

Later in the paper we explain how the spectral properties
of the model can be harnessed to engineer transport through
the system of emitters. We show that the escape probability
of an excitation from some given site grows linearly with
time for any finite coupling strength g, similarly to a diffusive
motion, and that the escape rate can be fully controlled by
tuning the energy of the initial excitation across the disorder
distribution. We provide a Fermi-golden-rule-based interpre-
tation of these results using second-order perturbation theory,
where the nonlocal coupling of the emitters to the cavity
mode leads to an effective long-range hopping with amplitude
depending only on the disordered energies of the emitters, but
not on the distance between them. We show that the disorder-
averaged escape rate exhibits a maximum for intermediate
values of the coupling strength g/W ∼ 1, before saturating to
a lower, g-independent value for strong couplings g/W � 1,
a cavity-protection effect of transport that could find impor-
tant applications in, e.g., optoelectronic devices. Surprisingly,
we find that the saturation value increases with the disorder
strength, which indicates that not only does the cavity protect
transport against disorder, but the latter can also contribute
favorably to transport provided the light-matter coupling is
strong enough. We also compute the steady-state excitation
current when coupling the system to two external leads, with
relevance to mesoscopic physics experiments. In contrast to
common expectations from polaritonics, we demonstrate that
out-of-equilibrium transport is fully dominated by the con-
tribution of the dark states. The role the latter has played
in influencing dynamics has been attracting more and more
interest as a possible key aspect of polaritonic material science
and polaritonic chemistry [59,62,63,65,66].

The disordered TC model under consideration is described
by the Hamiltonian Ĥ = Ĥ0 + V̂ , with

Ĥ0 =
N∑

i=1

ωiσ̂
+
i σ̂−

i + ωcâ†â,

V̂ = g√
N

N∑
i=1

(âσ̂+
i + σ̂−

i â†). (1)

The first term Ĥ0 provides the energy of the disordered spin
ensemble and the cavity mode, with σ̂−

i (â) and σ̂+
i (â†) the ith

spin (cavity) annihilation and creation operators, respectively.
The cavity-mode energy ωc can here be set to zero without
loss of generality. The second term describes the coupling
between the spins and the cavity. Note that while the uniform
coupling assumption would not be a priori suitable for a

molecular ensemble, it is well justified in a scheme using ul-
tracold atoms, where the laser beam waist creating the lattice
potential is typically much broader than the atomic ensemble
[43,44]. In this paper we consider the coupling uniform and
leave the interesting situation with inhomogeneous coupling
for future investigations. Since the scaling of the coupling
with N comes from its dependence on the cavity-mode vol-
ume V as ∼1/

√
V [67], the collective coupling strength

g is the relevant physical parameter in the thermodynamic
limit N → ∞ as it remains independent of N for a fixed
density N/V .

The Hamiltonian (1) commutes with the excitation number
operator N̂ =∑i σ̂

+
i σ̂−

i + â†â. In the single-excitation sub-
space, the number operator is thus represented as an identity
matrix and this subspace is spanned by the N + 1 eigenstates
of H0, {|i, 0〉 , |G, 1〉}, where |i, 0〉 has the ith spin in its excited
state and |G, 1〉 has all spins in their ground state and one
photon in the cavity. In this basis, the Hamiltonian takes the
arrowhead matrix form

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1 0 . . . 0 g/
√

N
0 ω2 0

0 . . .
. . .

...
...

. . . 0
...

0 ωN−1 0
0 . . . 0 ωN g/

√
N

g/
√

N . . . g/
√

N 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2)

where the bare energies ω j , j = 1, . . . , N , are independent
and identically distributed random variables, drawn from a
probability distribution ρ(ω) [with

∫
ρ(ω)dω = 1] such that

the density of bare energies

N∑
j=1

δ(ω − ω j ) 	
N→∞

Nρ(ω) (3)

in the thermodynamic limit. For simplicity, we assume that
ρ(ω) is supported on an interval [ωmin, ωmax]. We write E[·]
for the expectation value taken with respect to the probability
distribution ρ(ω), i.e.,

E[O({ω j})] =
∫ ( N∏

i=1

ρ(ωi )dωi

)
O({ω j}) (4)

for any observable. O({ω j}), and we refer to it as the disorder
average. Throughout the paper, we work with a general func-
tion ρ(ω) supported on the interval [ωmin, ωmax]. However,
for comparison with numerics we find that it is convenient to
specialize to the case of a box distribution, i.e., the uniform
distribution with ρ(ω) = 1/W for ω ∈ [−W/2,W/2] and
ρ(ω) = 0 otherwise; W thus quantifies the disorder strength.

Important insights can be gained by writing the Hamil-
tonian (1) in terms of the collective Fourier operators b̂q =

1√
N

∑
j σ̂

−
j eiq j , with q = 0, 1, . . . , N − 1 [52]. These opera-

tors are bosonic in the single-excitation subspace since

〈G, 0| [b̂q, b̂†
q′ ] |G, 0〉 = δq,q′ .
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Let us assume for clarity that the bare energies ω j are dis-
tributed around a mean value ω = 1

N

∑
i ωi �= 0, i.e., ω j ∈

[ω − W/2, ω + W/2]. In this case the Hamiltonian (1) takes
the form

Ĥ = ωb̂†
0b̂0 + ωcâ†â + g(âb̂†

0 + b̂0â†)

+ ω
∑
q �=0

b̂†
qb̂q +

∑
q �=q′

Uq,q′ b̂†
qb̂q′ , (5)

with Uq,q′ = 1
N

∑
j ω jei(q−q′ ) j . At resonance (ω = ωc), the

first line of Eq. (5) can be diagonalized by the two polariton
eigenmodes p̂ = (b̂0 ± â)/

√
2 with energies ω ± g, separated

by the Rabi splitting 2g in analogy with the Autler-Townes
effect for driven two-level systems [67]. The polaritons thus
consist of a mix between cavity photons and the collective
homogeneous spin mode q = 0 often called the bright mode.
Note that the polariton energies are simply ±g when setting
ω = 0 as in the rest of the paper.

In the absence of disorder, i.e., when all bare energies are
equal to ω, the last term proportional to Uq,q′ in the second
line of Eq. (5) vanishes and the spectrum thus consists of
the two polaritons plus N − 1 dark modes with energy ω that
do not interact with the cavity mode. A finite bandwidth W
for the disorder distribution changes this picture as the term
proportional to Uq,q′ leads to a scattering between the different
Fourier modes. In particular, the term U0,q is responsible for
a coupling of the dark modes to cavity photons via the bright
mode q = 0. Dark states are thus expected to acquire a finite
photon weight due to the presence of disorder, as was already
pointed out in Refs. [54,59,65]. Although polaritons and dark
modes are not exact eigenmodes of the Hamiltonian in the
presence of disorder, we will see in the following that the
spectrum can however be understood similarly in those terms.

A. Summary of the results

Having introduced the model and its underlying physical
motivations, we now provide a summary of the main results
of this paper.

1. Spectrum and energy shifts

In Sec. III we analyze the spectrum of the Hamiltonian H
and derive an asymptotically exact formula at large N for the
average energy shift of the disordered energy levels of the
emitters induced by the coupling to the cavity. We find that
the spectrum consists of two modes with unbounded energies
ε+ and ε− outside the interval [ωmin, ωmax], the support of
ρ(ε). For weak couplings (e.g., g  W for a box disorder
distribution of width W ) these modes are parametrically close
to the edges of the distribution at ωmin and ωmax and contain
a vanishing photon weight. In contrast, for strong couplings
(g � W ), they are hybrid modes composed of 50% cavity
photons and 50% emitters and are well separated from the
remaining N − 1 dark states whose energies εa are within the
support of ρ(ε) and close to the bare energies ω j . For clarity,
the two modes outside the interval [ωmin, ωmax] will always be
referred to as polaritons throughout the paper, even though this
term is usually employed only in the strong-coupling regime
in the literature.

Upon coupling to the cavity mode, the ath energy of the
dark state εa typically gets shifted by an amount of order
1/N . Defining the energy shift of a dark state �a = N[εa −
(ωa−1 + ωa)/2] for energies sorted in increasing order, we
determine the value �(ε) of the shift, averaged over a small
energy shell [ε − δε/2, ε + δε/2], to be

�(ε) 	
N→∞

1

πρ(ε)
arctan

[
ρ̃(ε) − ε

πg2

ρ(ε)

]
,

where ρ̃ is the Hilbert transform of ρ [see Eqs. (23) and
(29)]. This energy shift is closely related to the localization
properties of the dark states.

(i) For weak couplings (e.g., for g/W  1 for a box distri-
bution of width W ), the latter are very close to the bare energy
levels, i.e., �(ε) ≈ 1/2ρ(ε). The dark states thus follow the
same Poissonian statistics as the independent and identically
distributed bare orbitals. The Poisson statistics is a signature
of fully localized eigenstates.

(ii) For strong couplings (g/W � 1), in contrast, the dark
states lie roughly at equal distance from the two closest bare
energy levels, i.e., �(ε) ≈ 0, so they follow a statistics that is
close to the semi-Poissonian statistics introduced in Ref. [68].
In this regime, the dark states are localized on multiple non-
contiguous sites that are close in energy, a behavior referred
to as semilocalization [59].

(iii) For intermediate coupling strengths we find that the
level spacing statistics depends continuously on g and on the
energy ε (see Fig. 8).

2. Inverse participation ratio: Multifractality of the spectrum

In Sec. IV we provide an analytical calculation of the
so-called inverse participation ratio (IPR) at large N , which
is a useful quantity to characterize the localization properties
of the eigenstates [61,69–71]. By computing the scaling be-
havior of the IPR at large N , we show that all the eigenstates
are multifractal for all values of g/W . Multifractality is an
extension of the concept of fractal structures of geometric
sets, which are characterized by a single fractal dimension,
to probability distributions that possess some scale invariance
properties and characterized by continuously varying fractal
dimensions. We refer the reader to Ref. [72] for a detailed
introduction to multifractality. Importantly, the latter is well
known to be a meaningful feature of critical wave functions
at Anderson transitions [73], with a multifractal spectrum that
characterizes the universality class of the transition.

The IPR of the (normalized) eigenstate ψa is defined as

Pa(q) =
N+1∑
j=1

|ψa, j |2q =
N∑

j=1

|〈 j, 0 |ψa〉|2q + |〈G, 1 |ψa〉|2q.

(6)

For a delocalized eigenstate, all components are of order
∼1/N and one expects Pa(q) = O(N1−q ). In contrast, for
a localized eigenstate, a few components are of O(1) and
the others vanish; one thus expects Pa(q) = O(1). The q-
dependent IPR can be viewed as an analog of the Rényi
entropy for the probability distribution defined by the squared
amplitudes pj = |ψa, j |2. For small q, Pa(q) is sensitive to
the tails of that distribution, while for large q it is mostly
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FIG. 3. Scaling behavior of the IPR (see the text) as a function of N for (a) polaritons and (b) dark states. The lines are best fits of the form
aN−τq . (c) Multifractal exponents τq as a function of q for polaritons (blue squares) and dark states (black circles), extracted from the scaling
behavior in (a) and (b) for N = 100. The analytical results in the thermodynamic limit N → ∞ given by Eq. (7) are shown as dotted lines. The
other parameter is g/W = 2.

sensitive to the largest components p j . A qualitative change
of the behavior of Pa(q) as a function of q is a signature
of multifractality of the wave function [70,71]. Interestingly,
we find that all eigenstates of the TC Hamiltonian (2) exhibit
multifractality in that sense.

The scaling behavior of Pa(q) can be computed analyti-
cally at large N . In Sec. IV we show that, remarkably, the
Pa(q) changes as a function of q for all eigenstates of Eq. (2)
with the following scalings for the two polaritons and for the
N − 1 dark states, respectively:

P±(q) =
N→∞

{
O(N1−q ) if q < 1
O(1) if q > 1,

Pa(q) =
N→∞

{
O(N1−2q ) if q < 1

2

O(1) if q > 1
2 .

(7)

These scaling laws are illustrated in Figs. 3(a) and 3(b), where
we show Pa(q) given by Eq. (6) and computed numerically for
finite sizes from the eigenstates (18). For clarity, we display
the IPR averaged over the eigenstates: over the two polaritons
in Fig. 3(a) and over the N − 1 dark states in Fig. 3(b). Note
that only a single disorder realization is used here since the
large fluctuations of |ψa, j |2q are smoothened by the summa-
tion over the eigenstates.

These scalings are valid for all values of g �= 0 and thus
demonstrate multifractal behavior of all eigenstates of Eq. (2),
for any finite value of the light-matter coupling strength. This
is different from conventional disordered hopping models
where multifractal behavior is usually associated with the
single critical point at a localization-delocalization transition
[61].

In order to get a more precise picture of this multifractal be-
havior, let us imagine that the N spins lie on a d-dimensional
lattice of linear size L, then N ∼ Ld , and the IPR behaves as

Pa(q) ∼
L→∞

L−τq ,

which defines a set of multifractal exponents τq [61]. For the
dark states in our model, this standard definition provides

τq =
{

d (2q − 1) if q < 1
2

0 if q > 1
2 .

(8)

Then, subtracting the part expected for a normal metal where
the eigenstates are delocalized, one can define the anomalous
dimension �q = τq − d (q − 1) [61]. Usually, in models of
Anderson localization-delocalization transitions, this anoma-
lous dimension is expected to satisfy the exact symmetry
relation [74]

�q = �1−q. (9)

Remarkably, in our random arrowhead matrix model, the ex-
ponents (30) for the dark states correspond to the anomalous
dimension

�q = d
(

1
2 − ∣∣q − 1

2

∣∣), (10)

which does satisfy the symmetry relation (9). On the other
hand, for the two polaritons one gets �q = min[0, d (1 − q)]
from Eq. (7), so the symmetry relation is not satisfied by the
polariton eigenstates. The multifractal exponents τq for polari-
tons and dark states are computed numerically for N = 100
from the scaling of the IPR and shown in Fig. 3(c). We see
that finite-size effects are responsible for a smooth crossover
between the two regions q < 1

2 and q > 1
2 for dark states and

q < 1 and q > 1 for polaritons.
Our analysis suggests that the dark states (and only the dark

states) exhibit properties that are analogous to the ones of a
multifractal wave function at an Anderson transition. More-
over, the dark-state multifractal spectrum (30) and anomalous
dimension (10) turn out to be exactly the same as the ones
for the Anderson model on the Bethe lattice [61,75], which is
commonly regarded as a mean-field model (d → ∞) of the
localization-delocalization transition. Interestingly, the ran-
dom arrowhead matrix model thus reproduces some aspects
of the physics of the Anderson transition in the d → ∞ limit.

3. Photon weight and spectral function

In Sec. V we derive asymptotically exact formulas for the
photon weight and the closely related photon spectral func-
tion, sometimes referred to as the photon density of states, at
large N . The photon weight of an eigenstate ψa with energy
εa is defined as the weight of its (N + 1)th component, i.e.,
Wa = |ψa,N+1|2 ≡ |〈G, 1| |ψa〉|2. It is an important quantity
as it allows one to quantify the photon admixture of the
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W

FIG. 4. Photon spectral function A(ω) given by Eq. (15) for
different values of the collective coupling g and for a box disorder
distribution of width W = 1. From light to dark blue, g/W = 0
to g/W = 0.7 with 0.05 increments. For readability, each curve is
shifted vertically as A(ω) → A(ω) + 40g. For the plot we take the
convolution of Eq. (15) with a Lorentzian of width σ = 0.01. The
inset shows the photon weight W± given by Eq. (11) for the box
disorder distribution. We see that there are two distinct regimes
separated by a smooth crossover: For weak couplings (g  W ) the
weight of the two peaks outside the interval [−W/2,W/2] is strongly
suppressed, while for strong couplings (g � W ) most of the photon
weight is carried by those two peaks, which correspond to polariton
modes in that case.

eigenstates and therefore to characterize their hybrid nature
(see Fig. 4). The photon weight (or equivalently the photon
spectral function) also directly enters the definition of the
cavity transmission spectrum [76] and the power spectrum in
a resonance fluorescence experiment according to the Wiener-
Khinchin theorem [67].

We find that the photon weight of the two polaritons + and
− is always of O(1) when N → ∞, as expected, and that it is
given by

W± 	
N→∞

1

1 − πg2ρ̃ ′(ε±)
(11)

[ρ̃ ′ denotes the derivative of ρ̃; see Eq. (29)]. In contrast, the
photon weight of the dark states is of O(1/N ). Its average
value over a small energy shell [ε − δε/2, ε + δε/2] is

W (ε) 	
N→∞

1

N

1/(πg)2

ρ(ε)2 + [ρ̃(ε) − ε
πg2

]2 . (12)

The photon weight per dark state vanishes in the thermo-
dynamic limit, while the photon weight shared by all dark
states does not [it remains of O(1)] since the number of dark
states is O(N ). We find that this finite photon weight for
N → ∞ is crucial to the existence of semilocalization and
cavity-protected transport.

The photon spectral function is defined as the imaginary
part of the photon retarded Green’s function,

A(ε) = − 1

π
Im{[(ε − H + i0+)−1]N+1,N+1}. (13)

It is equal to the spectral density, weighted by the photon
weights of the eigenstates,

A(ε) =
N+1∑
a=1

Waδ(ε − εa). (14)

For large N , upon averaging over a small energy shell, the
dark-state contribution becomes (for ε ∈ [ωmin, ωmax])

A(ε) 	
N→∞

Nρ(ε)W (ε) = ρ(ε)/(πg)2

ρ(ε)2 + [ρ̃(ε) − ε
πg2

]2 (15)

All these formulas are exact in the large-N limit. At the
leading order in N the spectral function and the photon weight
(averaged over an energy shell) take deterministic values:
They are self-averaging quantities. The fluctuations of the
spectral function A(ε) around its mean value A(ε) are of
O(1/

√
N ) in the random arrowhead matrix model. We find

that, at this order, the fluctuations of the spectral function
A(ε) around its large-N value A(ε) are Gaussian, characterized
by a covariance which we compute exactly [see Eq. (41) for
the result and Fig. 11 for an illustration]. Thus, the random
arrowhead matrix model allows us to provide analytic expres-
sions for observables, i.e., the mean value and fluctuations
of the spectral function A(ε), that are of direct relevance to
spectroscopy experiments.

4. Escape probability

In Sec. VI we derive exact asymptotics of all components
of the Green’s function, or evolution operator Ĝ(t ) = e−iĤt ,
at the leading order in N . As an application of that result we
provide a solution to the following question: What is the prob-
ability Pj (t ) that an excitation, initially located on site j with
energy ω j , has escaped from this site at time t? This quantity
is related to the diffusion properties of excitations throughout
the system of emitters. We analyze the behavior of the escape
probability Pj (t ) = 1 − |Gj, j (t )|2 for times t much larger than
the width of the distribution ρ(ω), but also much smaller
than Nρ(ω) (i.e., 1  tW  N for a box distribution). In that
regime we find a diffusivelike behavior Pj (t ) = �(ω j )t , with
an exact formula for the escape rate

�(ω j ) = 2π

(
g√
N

)2

A(ω j ), (16)

involving the individual coupling strength g/
√

N . We also find
that the contribution of dark states to this escape dynamics
completely dominates over that of polariton states, consis-
tently with the semilocalization properties of the dark states
that are localized on multiple noncontiguous sites. The latter
are thus connected to each other via the dark states regardless
of the distance separating them, which allows long-range and
diffusivelike transfer of excitations throughout the system of
emitters.

The resemblance of Eq. (16) to Fermi’s golden rule is
striking, with the contribution of the dark states to the pho-
ton spectral function A(ω j ) [Eq. (15)] playing the role of
the photonic density of states. We present an interpretation
of this result using an effective Hamiltonian obtained after
integrating out the cavity mode in second-order perturbation.
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In this effective description the coupling to the cavity provides
a long-range hopping term with amplitude depending only on
the disordered energies of the emitters, but not on the distance
between them. Interestingly, such a diffusive behavior is found
for any strength of the coupling (in the thermodynamic limit),
meaning that arbitrarily small g/

√
N are sufficient to turn a

fully localized phase characterized by the complete absence of
diffusion without coupling to the cavity into a new phase with
diffusive properties. For any finite coupling strength, we also
find that the energy ω j of the initial site can serve as a knob
to control the escape dynamics, which could be exploited in
experiments using a narrow-band laser, for instance.

(i) For ω j = 0, i.e., injection in the middle of the distri-
bution (at resonance with the cavity mode), the escape rate
reaches its maximum possible value 2W/πN , independently
of g.

(ii) For ω j = ±W/2, i.e., injection on the edges of the box
distribution, the escape rate vanishes for all values of g.

(iii) In all other cases, the escape rate increases ∼g4 for
weak couplings g  W , reaches its maximum value 2W/πN
for intermediate couplings g ∼ W , and then saturates to a
lower, g-independent value.

This can be understood as the photon weight of the dark
states W (ω j ) [or equivalently the contribution of the dark
states to the photon spectral function A(ω j )] governing the
escape dynamics reaches its maximum value at the center
of the distribution and vanishes (logarithmically for a box
distribution) at the edges. Surprisingly, we find that the maxi-
mum escape rate 2W/πN increases with the disorder strength,
which means that the cavity not only protects transport against
disorder but also turns disorder into an ally that can contribute
favorably to transport.

Another observable relevant to experiments, using, e.g.,
a broadband laser, is the disorder-averaged escape rate
E[�(ω j )], which exhibits behavior similar to �(ω j ): It grows
as g2 for weak couplings g  W , reaches a maximum for
intermediate couplings g ∼ W , and then saturates to a lower
value for strong couplings g � W [Fig. 5(a)]. Moreover, this
saturation value is found to grow linearly with W , showing
that disorder can help transport also after disorder average,
provided coupling is strong enough.

Due to the nonlocal character of the coupling to the cavity,
we note that the escape dynamics does not correspond to a
standard diffusive motion as the initial excitation does not
propagate from one site to the next. A more accurate picture
is that the excitation gets immediately delocalized over all the
emitters, with occupation rising linearly with time, similarly
to a diffusive motion.

5. Out-of-equilibrium transport

In Sec. VII we investigate out-of-equilibrium transport
through the system of emitters in a two-terminal configura-
tion, in relevance to mesoscopic physics [77]. Here two sites
(e.g., j = 1 and j = N) are connected to reservoirs respec-
tively injecting and extracting spin excitations with the rates
�in and �out. We provide analytical expressions for the steady-
state excitation current flowing through the system of emitters,
which depends on a set of nonequilibrium Green’s func-
tions for the emitters and cavity photons, simply connected

FIG. 5. Cavity-protected transport. (a) Disorder-averaged escape
rate E[�] and (b) normalized output current E[Jout]/�in as a func-
tion of g and W for N = 500. The disorder-averaged escape rate
is given by Eq. (56), with the photon weights W± = |ψ±,N+1|2 =
|〈G, 1| |ψ±〉|2 obtained from the eigenstates (18). The output current
given by Eq. (62), with εa the eigenvalues of the non-Hermitian
matrix (17) computed numerically, is averaged over 1000 disorder
configurations. The strong- and weak-coupling regimes are separated
by the dotted line W = 2g, indicating where the energy splitting
between the two polaritons precisely equals the width of the disorder
distribution. The contribution of the dark states to E[Jout] is greater
than 99%.

to the evolution operator e−iĤt introduced in Sec. I A 4.
The former are conventionally referred to as lesser, Ĝ<(t );
greater, Ĝ>(t ); retarded, ĜR(t ); and advanced Green’s func-
tions, ĜA(t ), which are all defined in the Appendix. Similar
notation is used for the cavity-mode Green’s functions. We
derive the equations of motion of these Green’s functions,
assuming that the spin and bosonic operators can all be re-
placed by fermionic ones. This replacement is valid as long
as the system remains in the single-particle sector, which
we find to hold when rescaling the current injection rate as
�in → �̃in/N2.

Solving the equations of motion allows us to compute the
output current Jout = �outnN and the population at each site j,

n j =
∫

dω

2π
Im[G<

j, j (ω)],
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with G<
j, j (ω) the Fourier transform of the jth matrix element

of the lesser Green’s function. We derive analytical formulas
for the current and populations, which are found to depend on
the eigenvalues of the non-Hermitian arrowhead matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1 − i �in
2 0 · · · 0 0 g/

√
N

0 ω2
. . . 0 0 g/

√
N

...
. . .

. . .
. . .

...
...

0 0 . . . ωN−1 0 g/
√

N
0 0 · · · 0 ωN − i �out

2 g/
√

N
g/

√
N g/

√
N · · · g/

√
N g/

√
N 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(17)

The eigenvalues of this matrix correspond to polaritons and
dark states with complex energies due to the in and out cou-
plings to the reservoirs. The latter indeed contribute to the
total self-energy through the imaginary numbers i�in/2 and
i�out/2. This can be interpreted as saying that the eigenstates
have acquired a finite lifetime due to the coupling to the
environment, which drives the system out of equilibrium.

We find that the disorder-averaged current exhibits be-
havior similar to the escape rate: It grows as g2 for weak
couplings, reaches a maximum at intermediate couplings g ∼
W , and then saturates to a lower, g-independent value for
strong couplings [Fig. 5(b)]. While for a given g  W , the
current slightly decreases with the disorder strength W , it in-
creases with W for strong enough couplings. This confirms the
cavity protection effect observed with the escape dynamics.
We also find that the current scales as ∼1/N2, consistent with
the results of Ref. [62]. While this current is equally carried by
polaritons and dark states for small N , the contribution of the
(broadened) dark states fully dominates in the thermodynamic
limit, for all coupling strengths [Fig. 5(c)]. This demonstration
of efficient long-range quantum transport is solely mediated
by the nonlocal coupling to the cavity and entirely carried by
the dark states.

After this summary of our main results, we turn to the
detailed analysis of the spectrum and eigenstates of the ar-
rowhead Hamiltonian (2).

II. FINITE SIZE: ENERGY SPECTRUM, EIGENSTATES,
AND GREEN’S FUNCTION

We start by recalling some simple exact formulas about
arrowhead matrices [6]. For finite N , the eigenstates of the
Hamiltonian (2) are, for 1 � a � N + 1,

Hψa = εaψa, ψa = Na

⎛
⎜⎜⎜⎜⎜⎜⎝

g/
√

N
εa−ω1
g/

√
N

εa−ω2
...

g/
√

N
εa−ωN

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (18)

with a constant Na = (1 + 1
N

∑N
j=1

g2

(εa−ω j )2 )−1/2 ensuring nor-
malization. The energies εa are the solutions of the equation

εa = 1

N

N∑
j=1

g2

εa − ω j
(19)

FIG. 6. (a) Energy spectrum (in black) of the Hamiltonian (2)
for increasing values of g, here for N = 10 emitters with bare en-
ergies (in red) drawn from a uniform distribution in the interval
[− 1

2 , 1
2 ] (W = 1). The N − 1 eigenvalues comprised in the inter-

val [− 1
2 , 1

2 ] are denoted as dark states, while the two unbounded
eigenvalues at the edges of the spectrum are referred to as polari-
tons. The bare photon energy (ω = 0) is depicted in blue. (b) The
energy spectrum coincides with the N + 1 minima of the potential
V (x) = x2

2 − g2

N

∑N
j=1 log10 |x − ω j |, which is plotted with the same

bare energies as in (a) and with g = 1. There is exactly one minimum
between each pair of consecutive bare energies.

and are shown in Fig. 6(a). Note that it is a polynomial
equation of degree N + 1 for εa. From now on we work
with bare energies ω j that are sorted in increasing order:
ω1 � ω2 � · · · � ωN . Similarly, we label the energies of H
in increasing order. Then a very important fact is that the
eigenvalues of H are interlaced with the bare energies:

ε1 � ω1 � ε2 � ω2 � · · · � ωN−1 � εN � ωN � εN+1.

(20)

One elementary way of understanding this interlac-
ing is to observe that the εa are the N + 1 minima of
the potential V (x) = x2

2 − g2

N

∑N
j=1 log10 |x − ω j |, which is

shown in Fig. 6(b). This potential diverges when x →
−∞, ω1, ω2, . . . , ωN ,+∞, so it is clear that it possesses
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N + 1 minima which satisfy (20). It is interesting to note
that this particular interlacing of the spectrum with the bare
energies also appears in other models where long-range inter-
actions generate collective modes on top of a continuum of
individual excitations. This occurs, for instance, in an elec-
tron gas with Coulomb interactions, where the normal modes
are given by the zeros of the dielectric function computed
in, e.g. the random-phase approximation [78]. In this case,
these normal modes consist of slightly renormalized individ-
ual electron-hole excitations across the Fermi surface lying in
between the bare individual excitations, as well as a collective
unbounded plasmon mode with higher energy. Here the two
hybrid light-matter collective states with unbounded energies

ε1 and εN+1 will be referred to as polaritons, while the N − 1
other individual states with energies ε j ( j = 2, . . . , N) will be
referred to as dark states [Fig. 6(a)]. As already mentioned
in the Introduction, these dark states exhibit a small but finite
photon weight due to the presence of disorder.

In Sec. VI we will be interested in the propagator, or evolu-
tion operator, Ĝ(t ) = e−iĤt , which governs the time evolution
of the system described by the Hamiltonian (2). The compo-
nents of this (N + 1) × (N + 1) unitary matrix are the Green’s
functions, which are explicitly defined in the Appendix. One
can easily write these Green’s functions in closed form using
Eq. (18),

Gi, j (t ) = g2

N

N+1∑
a=1

e−iεat

(εa − ωi )(εa − ω j )
(
1 + 1

N

∑
k

g2

(ωk−εa )2

) (21a)

for 1 � i, j � N ,

Gj,N+1(t ) = g√
N

N+1∑
a=1

e−iεat

(εa − ω j )
(
1 + 1

N

∑
k

g2

(ωk−εa )2

) (21b)

for 1 � j � N, and

D(t ) ≡ GN+1,N+1(t ) =
N+1∑
a=1

e−iεat

1 + 1
N

∑
k

g2

(ωk−εa )2

. (21c)

Equation (21c) is the photon Green’s function, which plays a
distinguished role in the analysis of the model and for which
we derive the large-N asymptotics in Sec. V. In Sec. VI we
derive the large-N asymptotics of the other components (21a)
and (21b).

III. SPECTRUM AND MEAN ENERGY SHIFT AT LARGE N

Because of the interlacing (20), it is clear that the vast ma-
jority of energies fall in the same interval [ωmin, ωmax] as the
bare energies ω j . Only the two energy levels ε1 and εN+1 fall
outside that interval. In the thermodynamic limit, the N − 1
energies ε2, . . . , εN form a continuum of dark states with
the same density as the bare energies, i.e.,

∑N
a=2 δ(ε − εa) 	

Nρ(ε), to leading order in N [see Eq. (3) for the definition
of ρ]. The remaining two polariton energy levels are equal to
ε1 ≡ ε− < ωmin and εN+1 ≡ ε+ > ωmax, where ε± are the two
solutions of the equation

ε± = πg2ρ̃(ε±). (22)

Here ρ̃ is the Hilbert transform of ρ,

ρ̃(ε) = P
1

π

∫
ρ(ω)dω

ε − ω
, (23)

where P stands for the principal value of the integral. Note that
the principal value is needed in the definition when the argu-
ment ε lies in [ωmin, ωmax], the support of ρ. Equation (22) is
obtained by taking the continuum limit of Eq. (19). In the case
of a box distribution for the bare orbitals, i.e., ρ(ω) = 1/W
for ω ∈ [−W/2,W/2], with ωmin = −W/2 and ωmax = W/2,

Eq. (22) becomes

ε± = πg2 1

πW
log10

∣∣∣∣ε± + (W/2)

ε± − (W/2)

∣∣∣∣. (24)

For strong couplings g � W , one recovers ε± 	 ±g, i.e., the
polariton splitting is roughly twice the collective coupling
strength. While the disorder is responsible for an asymmetry
between the two polaritons that is clearly seen in Fig. 6(a), it
does not lead to important qualitative changes in the polariton
spectrum [46], in contrast to dark states.

A more refined description of the spectrum of dark states
is obtained as follows. Since the energy εa (2 � a � N) lies
in the interval [ωa−1, ωa], it is typically at a distance of order
1/N from the middle of that interval,

εa = ωa−1 + ωa

2
+ 1

N
�a for 2 � a � N.

This defines the shift �a. The shift depends not only on the
intensive energy density ρ(ω) when N → ∞, but also on the
microscopic details of the distribution of bare energies. In
general, �a is a wildly fluctuating function of its index a and
of the bare energies ω j [see Fig. 7(a)].

By averaging over all eigenstates within a small energy
shell εa ∈ [ε − δε/2, ε + δε/2], one can define a mean energy
shift

�(ε) = 1

Nρ(ε)δε

∑
|εa−ε|�δε/2

�a. (25a)

For large N , this mean energy shift depends only on the
intensive distribution ρ and not on the microscopic details
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FIG. 7. Energy shift computed numerically from the spectrum of the arrowhead matrix (2) for a given disorder realization, g = 0.5, and
W = 1, (a) without energy binning (average over a small energy shell) for N = 1000 and (b) with binning according to Eq. (25a) for different
N . (c) Binned energy shift versus energy ε and coupling strength g. The energy shift wildly fluctuates, but its mean value after averaging over
a small energy shell converges to the formula (25b) (dotted line) in the thermodynamic limit N → ∞.

or correlations between the bare energies [see Fig. 7(b)]. We
find

�(ε) =
N→∞

1

πρ(ε)
arctan

[
ρ̃(ε) − ε

πg2

ρ(ε)

]
. (25b)

Hence, the spectrum of the N − 1 dark states has the same
distribution as the one of the bare energy levels only at
O(1); to O(1/N ) the energy levels are pushed by an average
amount (25b). As seen in Fig. 7(c), the energy shift averaged
over a small energy shell is close to 0.5 for weak couplings
g/W  1, meaning that the dark states are very close to the
bare energy levels. On the other hand, the dark states lie
at roughly equal distances from the two closest bare energy
levels for strong couplings g/W � 1, i.e., �(ε) = 0.

To arrive at Eq. (25b), one can rely on tricks from complex
analysis and contour integration. Let Ca be a counterclockwise
contour in the complex plane which encloses the interval
(εa, ωa) along the real axis. We assume that Ca does not

enclose any of the other points εa′ or ωa′ for a′ �= a. Then∮
Ca

dz

2π i
log10

(
z − ωb

z − εb

)
= (εa − ωa)δa,b.

Summing over b from 1 to N and adding the term
log10[−1/(z − εN+1)] in the sum (for which the contour in-
tegral around Ca, a � N , vanishes), one gets∮

Ca

dz

2π i
log10

(
−
∏N

b=1(z − ωb)∏N+1
c=1 (z − εc)

)
= εa − ωa.

The rational function inside the logarithm is nothing but

1
1
N

∑N
j=1

g2

z−ω j
− z

,

as can be checked by inspecting the zeros and poles of the
latter expression [see Eq. (19)]. For a large number of energy
levels εa in the small shell [ε − δε/2, ε + δε/2], one then
finds

�(ε) 	 1

ρ(ε)δε

[
δε

2
+

∑
|εa−ε|�δε/2

(εa − ωa)

]
= 1

2ρ(ε)
+ 1

ρ(ε)δε

∑
|εa−ε|�δε/2

∮
Ca

dz

2π i
log10

⎛
⎝ 1

1
N

∑
j

g2

z−ω j
− z

⎞
⎠.

We can rewrite this expression as a single contour integral, for a contour Cε,δε which encloses all the intervals (εa, ωa) in the
small energy shell [ε − δε/2, ε + δε/2]. That contour can be deformed close to the real axis, so one can think of it as the union of
the two intervals [ε − δε/2, ε + δε/2] + i0+ and [ε − δε/2, ε + δε/2] + i0−. Then one takes the N → ∞ limit in the integrand
and replaces 1

N

∑N
j=1

g2

z−ω j
− z by

∫ g2ρ(ω)dω

z−ω
− z. This leads to

�(ε) =
N→∞

1

2ρ(ε)
+ 1

ρ(ε)δε

(∫ ε+δε/2+i0−

ε−δε/2+i0−
−
∫ ε+δε/2+i0+

ε−δ/ε2+i0+

)
dz

2π i
log10

(
1

g2
∫

ρ(ω)dω

z−ω
− z

)

	 1

2ρ(ε)
− 1

ρ(ε)

1

2π i

[
log10

(∫
ρ(ω)dω

ε − ω + i0− − ε

g2

)
− log10

(∫
ρ(ω)dω

ε − ω + i0+ − ε

g2

)]

= 1

πρ(ε)

{
π

2
− 1

2i

[
log10

(
iπρ(ε) + πρ̃(ε) − ε

g2

)
− log10

(
−iπρ(ε) + πρ̃(ε) − ε

g2

)]}

= 1

πρ(ε)
arg

[
ρ(ε) + i

(
ρ̃(ε) − ε

πg2

)]
,

where we have used the Sokhotski-Plemelj formula. The last line is equivalent to Eq. (25b).
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To further characterize the distribution of dark-state en-
ergy levels, we investigate the statistics of nearest-neighbor
level spacings, within a small energy window [ε − δε/2, ε +
δε/2]. In that window we define the normalized spacings
as sa = Nρ(εa)(εa+1 − εa) and we numerically evaluate their
probability distribution, by averaging over many disorder re-
alizations, for N large enough so that the energy window
contains many levels. We find that the resulting distribution
of level spacings when N → ∞ is a one-parameter family
of probability distributions pα (s), parametrized by α, related
to the normalized mean energy shift ρ(ε)�(ε), which itself
depends on both the collective coupling g and the energy ε.
The parameter α is

α = tan[πρ(ε)�(ε)] =
ρ̃(ε) − ε

πg2

ρ(ε)
.

The probability distribution pα (s) may alternatively be de-
fined as follows, which is more convenient for numerical
purposes. Consider N independent and identically distributed
variables u j ( j = 1, . . . , N) drawn from a uniform distribution
in [0,1] and the set of N solutions of the equation

α + 1

N

N∑
j=1

1

tan[π (X − u j )]
= 0, X ∈ [0, 1]. (26)

One can study the distribution of that set of solutions
{Xa}1�a�N as a function of the parameter α. In particular,
ordering the solutions as 0 � X1 < X2 < · · · < XN � 1 and
defining the normalized level spacings as sa = N (Xa+1 − Xa)
for a = 1, . . . , N − 1 and sa = N (1 + X1 − XN ) for a = N ,
we can study numerically the distribution of level spacings
pα (s). Note that the level spacing statistics is invariant under
the transformation u j → −u j (mod1), α → −α, so we have
pα (s) = p−α (s).

When we replace Eq. (19) by Eq. (26), the idea
is that π/tan[π (Xa − u j )] ∼ 1/(Xa − u j ), so at small dis-
tances the statistics of the roots of both equations must
be the same. Moreover, because 1/tan[π (Xa + 1 − u j )] =
1/tan[π (Xa − u j )], the problem defined by Eq. (26) is the ana-
log of the one defined by Eq. (19), but with periodic boundary
conditions. The problem defined in this way is simpler, be-
cause it is translation invariant under uj → u j + U mod1 and
Xa → Xa + U mod1 for any U . This is particularly convenient
for numerical purposes, because it allows us to study the dis-
tribution of energy levels in the entire interval [0,1], without
having to restrict to a small energy window as above.

In Fig. 8 we compute the probability distribution pα (s)
numerically by sampling the level spacings between the so-
lutions of Eq. (26), by averaging over 104 realizations for
N = 50, 100, 200. We see in the inset that the results converge
quickly to a smooth probability distribution pα (s) when N
increases. The pα (s) coincides with the Poisson distribution
when α → ∞, which simply follows from the fact that Xj =
ω j in that limit. When α = 0, the result is close to a semi-
Poisson distribution. For finite values of α the one-parameter
family pα (s) smoothly interpolates between those two limit-
ing distributions.

To summarize, in this section we have characterized the
energy spectrum, in particular the spectrum of dark states by
computing the average energy shifts (25b) and the statistics

FIG. 8. Probability distribution of level spacings pα (s) in the
model defined by Eq. (26), evaluated numerically for N = 200, by
averaging over 104 independent disorder realizations. Since pα (s) =
p−α(s), we restrict to α � 0. When α → ∞ the distribution is simply
the one of independent levels pPoisson(s) = e−s; however, for finite α

it is a different distribution which depends continuously on α. When
α = 0, pα (s) is close to (but not exactly equal to) the semi-Poisson
distribution psemi-Poisson = 4se−2s of Ref. [68]. The inset shows the
same quantity evaluated for N = 50, 100, and 200, showing that the
results converge as a function N .

of the energy spacings. To compute the energy shifts, note
that we have used contour integrals techniques which are
sensitive only to the thermodynamic density of states Nρ(ω),
as opposed to higher moments of the disorder distribution. In
this paper we will encounter other quantities that share that
property and are sensitive only to the density of states, in
particular the photon Green’s function and the photon spectral
function. However, other quantities do depend on the higher
moments of the disorder distribution: This is the case for the
inverse participation ratio of the eigenstates, which we study
in the next section.

IV. INVERSE PARTICIPATION RATIO

In this section we turn to the localization properties of
the eigenstates of the arrowhead Hamiltonian (2) and set
g = 1/

√
π to lighten our formulas. We study the inverse par-

ticipation ratio of the eigenstates, which measures their degree
of localization and is defined as [see Eq. (18)]

Pa(q) =
N+1∑
j=1

|ψa, j |2q =
1 + 1

(πN )q

∑N
j=1

1
(εa−ω j )2q(

1 + 1
πN

∑N
j=1

1
(εa−ω j )2

)q . (27)

A. The IPR of the polaritons

The IPR of the two polaritons behaves as follows when
N → ∞:

P±(q) 	
N→∞

1 + 1
πqNq−1

∫
ρ(ω)dω

(ε±−ω)2q

[1 − ρ̃ ′(ε±)]q

=
⎧⎨
⎩N1−q

1
πq
∫

ρ(ω)dω

(ε±−ω)2q

[1−ρ̃ ′(ε± )]q if q < 1
1

[1−ρ̃ ′(ε± )]q if q > 1.
(28)
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Here ρ̃ ′(ω) denotes the derivative of ρ̃(ω), the Hilbert trans-
form of ρ(ω). For instance, for a box distribution of width W ,
i.e., ρ(ω) = 1/W , one has

ρ̃(ω) = 1

πW
log10

∣∣∣∣ω + (W/2)

ω − (W/2)

∣∣∣∣,
ρ̃ ′(ω) = 1

π

1

(W/2)2 − ω2
. (29)

Interestingly, we see that the polariton IPR exhibits a sharp be-
havior change as a function of q. For q < 1, it is of O(N1−q ),
i.e., it grows with N , while it is constant O(1) for q � 1.
Assuming that the N spins lie on a d-dimensional lattice of
linear size L, the multifractal exponent is defined as

Pa(q) ∼
L→∞

L−τq ,

which provides

τq =
{

d (q − 1) if q < 1
0 if q > 1.

(30)

The polaritons thus behave as metallic (delocalized) states for
q < 1 and as localized states for q > 1, which reflects the fact
that polaritons simultaneously share some properties of both
localized and delocalized states: They have one component
of O(1), like a localized state, and an extensive number of
components with weights of O(1/N ), like a delocalized state.

B. Scaling of the IPR for the dark states

The IPR of the dark states behaves differently. For
eigenenergies εa and bare energies ωa (2 � a � N) sorted in
increasing order, the eigenenergy εa lies between ωa−1 and ωa,
at a typical distance of O(1/N ). Then the scaling of the term∑N

j=1
1

(εa−ω j )2q is determined as follows. The terms with j such
that |εa − ω j | < δ/N for some fixed δ > 0 give a contribution
of O(N2q ), while the contribution of all the other terms can
be replaced by the integral N

∫
|ω−εa|>δ/N

ρ(ω)dω

(εa−ω)2q , which is of

O(N ). Thus, the numerator of Eq. (27) is of O(Nmax(2q,1)−q ),
while the denominator is of O(Nq). Hence,

Pa(q) =
{

O(N1−2q ) if q < 1
2

O(1) if q > 1
2 .

In contrast to conventional disordered hopping models
where multifractal behavior is usually associated with the crit-
ical point at a localization-delocalization transition [61], we
find that multifractality in our model occurs for any strength
of the light-matter coupling, thus signaling the existence of a
critical phase. On a d-dimensional lattice of size L → ∞, the
IPR of the dark states behaves as P (q) ∼ L−τq , with

τq =
{

d (2q − 1) if q < 1
2

0 if q > 1
2 .

Therefore, the anomalous dimension �q = τq − d (q − 1) for
the dark states reads �q = d ( 1

2 − |q − 1
2 |), which satisfy the

symmetry relation �q = �1−q like in models of Anderson
localization-delocalization transitions [61]. Interestingly, the
dark-state anomalous dimension �q turns out to be exactly the
same as in the Anderson model on the Bethe lattice [61,75],
which is commonly regarded as a mean-field model (d → ∞)
of the localization-delocalization transition.

FIG. 9. Multifractality of the dark states. Shown are the compo-
nents |ψa, j |2q of Pa(q) for a given dark state ψa with energy εa =
−0.24 (a) as a function of the site position j and (b) sorted according
to the energies ω j of the sites. The fractal structure visible in (a) is
caused by the sites random ordering: When the squared amplitudes
are sorted according to the energy ω j , they are a smooth function of
ω j decaying as ∼1/(εa − ω j )2 (see the text). (c) and (d) Display of
four cuts (q = 0.1, 0.3, 0.5, 1) in (a) and (b), respectively, to better
highlight such a power-law decay of the components |ψa, j |2q. The
line in (d) for q = 1 is a Lorentzian fit.

The multifractality of the spectrum is illustrated in Fig. 9,
where the components |ψa, j |2q of the IPR of the dark states
are computed numerically. The multifractal behavior of the
dark states arises in an extremely simple way in the random
arrowhead matrix model. We find that for independent and
identically distributed variables ω j , the probabilities p j =
|ψa, j |2 look like a random distribution which exhibits a fractal
structure [Figs. 9(a) and 9(c)]. However, when one sorts the
amplitudes in order of increasing ω j , then the probability p j

turns out to be a smooth function of ω j [Figs. 3(b) and 3(d)].
In fact, it simply decays as a power law,

p j ∼ 1

(εa − ω j )2
. (31)

This observation follows directly from the expression of the
eigenstates (18) of the matrix (2). It is straightforward to see
that the power-law form (31) implies the scaling of the IPR
(7) and therefore also the anomalous scaling dimension (10).
It is remarkable that the multifractal behavior shown in Fig. 9,
which is usually associated with much more complex models
in the context of localization-delocalization transitions [61],
emerges in such an elementary way in our arrowhead matrix
model.

C. An exact formula (not valid for the random
disorder distribution)

We have not been able to find a closed analytical formula
for the IPR of an eigenstate ψa as a function of its energy
εa, even after averaging over an energy shell [ε − δε/2, ε +
δε/2]. In contrast with the energy shift �(ε) studied in the
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FIG. 10. Inverse participation ratio Pa(q = 2) ≡ P (ε) of the dark states (ε denotes the energies of the eigenstates εa) computed numerically
from Eq. (27) for a given disorder realization, g = 0.5, and W = 1, (a) without energy binning for N = 1000 and (b) with binning for different
N . (c) Binned IPR of the dark states versus energy ε and coupling strength g. While the fluctuations of P are reduced as N is increased, the
IPR does not converge to the formula (33) obtained for an equally spaced distribution. However, the formula (33) still captures its qualitative
behavior as a function of g and ε [contour lines in (c)].

preceding section or with the photon spectral function A(ε) or
the photon weight W (ε) studied below, we find that the IPR
(27) cannot be expressed in terms of contour integrals that
allow us to extract its large-N behavior as a functional of the
thermodynamic density of states Nρ(ω) [see Eq. (3)]. Unlike
these quantities, the IPR remains sensitive to the details of the
microscopic distribution of bare energies in the large-N limit.

To illustrate this, we have studied the case of a determinis-
tic distribution of bare energies that are locally equally spaced,
with thermodynamic density of states Nρ(ω). Such a distri-
bution is easily constructed as follows: For a given function
ρ(ω), one asks that the bare energies ω1 < ω2 < · · · < ωN

satisfy

ωa+1 − ωa = 1

Nρ[(ωa+1 + ωa)/2]
. (32)

Importantly, this distribution leads to the correct density of
states Nρ(ω) in the thermodynamic limit; however, its corre-
lations between energy levels are clearly very different from
the ones obtained from N independent and identically dis-
tributed variables as in the random arrowhead Hamiltonian.
In particular, independent and identically distributed bare en-
ergies would lead to rare pairs of neighboring energies that
could be very close to each other, while the equally spaced
distribution (32) automatically prevents this and thus exhibits
some kind of level repulsion.

For the deterministic equally spaced distribution defined
by (32), we have computed the IPR of the dark states (a =
2, . . . , N). Using the fact that

N∑
j=1

1

(εa − ω j )4
	

N�1

π4N4

ρ(εa)4

(
1 − 2

3 cos2[πρ(εa)�(εa)]

cos4[πρ(εa)�(εa)]

)
,

we find that the IPR (for q = 2) has the large-N asymptotics

Pa(q = 2) =
N→∞

ρ(εa )2

3 + [ρ̃(εa) − εa
πg2

]2
ρ(εa)2 + [ρ̃(εa) − εa

πg2

]2 . (33)

This analytical formula is compared to the numerically evalu-
ated P (q = 2) for the eigenstates of the random arrowhead

Hamiltonian in Fig. 10. In Fig. 10(a) we compute Pa(q =
2) ≡ P (ε) as a function of ε for N = 1000 and a single disor-
der realization, while in Fig. 10(b), P (ε) is binned into groups
of equal energy width and disorder-averaged in each bin for
different N . While the fluctuations of the IPR for independent
and identically distributed bare energies are reduced upon
increasing N , we see that the IPR does not converge to the
formula (33) (black dotted line) obtained for the deterministic
equally spaced distribution.

This is because, in contrast with the energy shift �(ε) or
the photon weight W (ε), the asymptotic value of the IPR at
large N is sensitive not only to the density of states Nρ(ω), but
also remains highly sensitive to the microscopic fluctuations
of the bare energy levels.

We note, however, that P (q = 2) is well captured qualita-
tively by the formula (33) [see contour lines in Fig. 10(c)]. For
a box disorder distribution of width W and for weak couplings
g/W  1, the dark states are essentially fully localized with
P (q = 2) ≈ 1, except for the states lying in the band center
that can always hybridize together via the cavity mode [59].
The dark states thus follow the same Poissonian statistics
as the independent and identically distributed bare orbitals.
For strong couplings, all dark states can be thought of as
semilocalized states, i.e., localized over multiple noncontigu-
ous sites, since they exhibit an intermediate value P (q = 2) ≈
0.4. The dark states lie roughly at equal distances from the two
closest bare energy levels and thus follow a statistics that is
close to the semi-Poissonian statistics introduced in Ref. [68].
For intermediate coupling strengths g ∼ W , the level spacing
statistics depends continuously on g and on the energy ε and
can therefore be continuously tuned between different statis-
tics.

Now that we have characterized the localization properties
of the eigenstates of the Hamiltonian (2) through their inverse
participation ratios, we turn to the large-N behavior or the
photon Green’s function.

V. PHOTON GREEN’S FUNCTION

As hinted in Sec. III, a central role in the analysis of
large-N properties of arrowhead Hamiltonians is played by
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the photon Green’s function in frequency space (see the Ap-
pendix),

D(z) =
[

1

z − H

]
N+1,N+1

.

Here z ∈ C and, as explained in the Appendix, the limit of
D(z) when z approaches a point ω on the real axis from above
(below) is the retarded (advanced) Green’s function DR(ω) ≡
D(ω + i0+) [DA(ω ≡ D(ω + i0−)]. To evaluate D(z), one can
take the Fourier transform of Eq. (21c), which leads to

D(z) =
N+1∑
a=1

1

z − εa

1

1 + 1
πN

∑N
j=1

1
(εa−ω j )2

= 1

z − 1
πN

∑N
i=1

1
z−ω j

=
∏N

j=1(z − ω j )∏N+1
a=1 (z − εa)

. (34)

The equalities in the second and third lines are easily checked
by inspecting the zeros and poles of these expressions. The
result in the third line makes it clear that the function D(z)
is very special. It encodes all the spectral properties of our
arrowhead Hamiltonian (2): The zeros and poles of D(z) are
the bare energies and the eigenvalues of H , respectively.

A. Large-N limit

The large-N limit of D(z) turns out to be an important tool
in the analysis of the properties of large arrowhead Hamil-
tonians. First, we introduce the photon self-energy �(z) =

1
πN

∑N
j=1

1
z−ω j

and its large-N limit

�(z) = lim
N→∞

1

πN

N∑
j=1

1

z − ω j
= 1

π

∫ ωmax

ωmin

ρ(ω)dω

z − ω
,

where [ωmin, ωmax] is the support of ρ. Here �(z) is analytic in
C \ [ωmin, ωmax] and it has a discontinuity along that interval:
�(ω + i0±) = ρ̃(ω) ∓ iρ(ω). Then the large-N limit of the
photon Green’s function is

D(z) = lim
N→∞

D(z) = 1

z − �(z)
.

Here D(z) has the following properties.
(i) It is analytic in C \ ([ωmin, ωmax] ∪ {ε+, ε−}).
(ii) It has two poles at ε+ and ε−: D(z) 	

z→ε±

1
[1−ρ̃ ′(ε± )](z−ε± ) .

The residues at these poles are the photon weights of the two
polaritons (see next section).

(iii) It has a branch cut along the support of ρ, i.e.,
[ωmin, ωmax]. Indeed, for ω along the real axis, D(ω + i0±) =

1
ω−ρ̃(ω)±iρ(ω) . Thus, D(z) has a discontinuity

D
A

(ω) − D
R

(ω)

2iπ
= δ(ω − ε+)

1 − ρ̃ ′(ε+)
+ δ(ω − ε−)

1 − ρ̃ ′(ε−)

+ ρ(ω)/π

ρ(ω)2 + (ρ̃(ω) − ω)2
. (35)

(iv) It behaves as D(z) 	 1
z at infinity.

Below we show how physical quantities such as the photon
weight or the photon spectral function are fixed by the ana-
lyticity properties of D(z), to leading order in N when N is
large. Before that, we discuss the fluctuations of D(z) around
its asymptotic value D(z).

B. Fluctuations of the photon Green’s function

When the bare energies ω j are independent and identically
distributed random variables, the function D(z) also has a
nondeterministic subleading part. Our goal is to characterize
the fluctuations of D(z) around its mean value. Let us start by
introducing the random function

φ(z) =
√

N

(
1

πN

N∑
j=1

1

z − ω j
− �(z)

)
(36)

which measures the fluctuations of the photon self-energy
�(z) around its large-N limit. Note that φ(z) has zero mean
value for the disorder average (4),

E[φ(z)] = 0.

The factor
√

N in Eq. (36) is introduced such that the covari-
ance of φ(z) is of order one:

cov[φ(z1)φ(z2)] = E[φ(z1)φ(z2)]

= 1

N

∑
i, j

E

[(
1

π

1

z1 − ωi
− �(z1)

)

×
(

1

π

1

z2 − ω j
− �(z2)

)]

= 1

π2N

N∑
j=1

E

[
1

z1 − ω j

1

z2 − ω j

]

−�(z1)�(z2)

= 1

π2

∫
ρ(ω)dω

(z1 − ω)(z2 − ω)
− �(z1)�(z2)

= −�(z1) − �(z2)

π (z1 − z2)
− �(z1)�(z2). (37)

More generally, the connected part of the pth-order corre-
lation of φ(z) scales as ∼N−p/2, so at large N it vanishes for
all p � 3,

E[φ(z1)φ(z2) · · · φ(zp)]conn −→
N→∞

0 if p � 3.

Thus, the random function φ(z) is Gaussian, with mean value
zero and covariance (37). The fluctuations of the photon
Green’s function are then obtained as

D(z) = 1

z − �(z) − 1√
N
φ(z)

= 1

z − �(z)
+ 1

[z − �(z)]2

1√
N

φ(z) + · · ·

= D(z) + 1√
N

D
2
(z)φ(z) + O

(
1

N

)
. (38)
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Thus, the fluctuations of D(z) around its large-N value D(z)
are also Gaussian and of order 1/

√
N and they are directly

determined by the two-point function (37).

C. Photon spectral function: Mean value
and fluctuation statistics

The photon spectral function is proportional to the cavity
transmission and fluorescence emission spectra, which can
be directly accessed by, e.g., Fourier transform spectroscopy
[67,76]. It is obtained from the imaginary part of the retarded
Green’s function (see the Appendix),

A(ω) = − 1

2iπ
[DR(ω) − DA(ω)] = − 1

π
ImDR(ω). (39)

In the large-N limit this is equal to [using the poles of the
function D(z) and Eq. (35)]

A(ω) 	
N→∞

δ(ω − ε+)

1 − ρ̃ ′(ε+)
+ δ(ω − ε−)

1 − ρ̃ ′(ε−)

+ ρ(ω)/π

ρ(ω)2 + [ρ̃(ω) − ω]2
. (40)

Note that the spectral function should satisfy the sum rule∫
A(ω)dω = 1, which is a consequence of Eq. (14) and of

the normalization of the eigenstates. The fact that the sum
rule is satisfied by (40) follows from contour integration. Inte-
grating the function D(z) along a counterclockwise contour
C that encloses both the interval [ωmin, ωmax] and the two

points ε±, one gets 1
2π i

∮
C D(z)dz = ∫ A(ω)dω. The contour

C can then be deformed to infinity, and one concludes that
1

2π i

∮
C D(z)dz = 1 using the above property (iv) of the func-

tion D(z).
With the formalism of the preceding section, we can go

beyond the leading order (40) and calculate the O(1/
√

N )
fluctuations of A(ω) around its mean value E[A(ω)] = A(ω).
Combining Eqs. (39) and (38), one sees that the connected
correlations of A(ω) can be expressed in terms of those of
φ(ω). In particular, the covariance of A(ω) can be expressed
in terms of the known covariance of φ(ω) through

cov[A(ω1), A(ω2)] ≡ E[A(ω1)A(ω2)] − E[A(ω1)]E[A(ω2)]

= −1

(2π )2
cov[DR(ω1) − DA(ω1), DR(ω2) − DA(ω2)]

= −1

(2π )2

1

N
{[DR

(ω1)]2[D
R

(ω2)]2cov[φR(ω1), φR(ω2)]

− [D
A

(ω1)]2[D
R

(ω2)]2cov[φA(ω1), φR(ω2)]

− [D
R

(ω1)]2[D
A

(ω2)]2cov[φR(ω1), φA(ω2)]

+ [D
A

(ω1)]2[D
A

(ω2)]2cov[φA(ω1), φA(ω2)]}
+ O(N−3/2).

Using the result (37), the Sokhotski-Plemelj formula, and
combining all the terms, one arrives at the result for the covari-
ance of the photon spectral function for ω1, ω2 ∈ [ωmin, ωmax],

cov[A(ω1), A(ω2)]

E[A(ω1)]E[A(ω2)]
= 1

Nρ(ω1)
δ(ω1 − ω2)

+ 1

N

2
π

(ω2−ρ̃2 )(ρ2
1 +ρ̃2

1 −ω2
1 )−(ω1−ρ̃1 )(ρ2

2 +ρ̃2
2 −ω2

2 )
ω1−ω2

− (ρ2
1 + ρ̃2

1 − ω2
1

)(
ρ2

2 + ρ̃2
2 − ω2

2

)
[ρ2

1 + (ρ̃1 − ω1)2]
[
ρ2

2 + (ρ̃2 − ω2)2
] + O(N−3/2), (41)

with ρ1,2 = ρ(ω1,2) and ρ̃1,2 = ρ̃(ω1,2).

Equation (41) entirely characterizes the fluctuations of
the photon spectral function around its mean value (40), at
O(1/N ). The non-Gaussianity of the fluctuations appears only
at higher order. In Fig. 11 we display typical results for A(ω)
for different disorder realizations: The fluctuations around the
mean value A(ω) is clearly visible [see the inset of Fig. 11(a)].
We also display the numerical estimate of the covariance
cov[A(ω1), A(ω2)], obtained by averaging over 1000 disorder
realizations for a system size N = 50 [see Fig. 11(b)]; the re-
sult matches Eq. (41), as expected. We note that the covariance
carries distinct features for weak and strong couplings. In the
latter case, deviations with respect to the mean value of the
spectral function are correlated (same sign) only along the
diagonal ε1 = ε2 [Fig. 11(b)]. For weak couplings, however,
there are other regions where both correlations and anticorre-
lations (opposite sign) are observed.

Now that we have characterized the large-N behavior of
the photon spectral function A(ω), including its fluctuations,
we turn to the closely related photon weight.

D. Photon weights

The photon weight of an eigenstate ψa with energy εa is de-
fined as the weight of its (N + 1)th component [see Eq. (18)],
i.e., Wa = |ψa,N+1|2 ≡ |〈G, 1| |ψa〉|2. Using the definitions of
Sec. V, one can easily see that the photon weight precisely
corresponds to the quasiparticle weight of the eigenstates

A(ε) =
N+1∑
a=1

Waδ(ε − εa). (42)

The photon weight of the two polaritons + and − is directly
obtained from Eq. (40) and reads

W± 	
N→∞

1

1 − ρ̃ ′(ε±)
.

It is of O(1) (i.e., independent of N) in the thermodynamic
limit and goes asymptotically to 1

2 for g → ∞. For instance,
for a flat disorder distribution in the interval [−W/2,W/2],
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FIG. 11. (a) Photon spectral function A(ω) for g = 1.5, W = 1, and N = 100, for three different disorder configurations (blue curves),
compared to the analytical formula (40) valid in the thermodynamic limit (black curve); A(ω) is computed using Eq. (42), where the Dirac
delta δ(ω − εa ) is replaced by the Lorentzian σ/π/[(ω − εa )2 + σ 2] of width σ = 0.03. We clearly see the two large peaks at the lower and
upper polariton energies ε± [see Eq. (40)]. Here A(ω) is displayed for three different disorder realizations (blue curves). The inset is a close-up
of the window ω ∈ [ωmin, ωmax] = [−W/2,W/2]: We see that the spectral function fluctuates around its mean value A(ω) given by Eq. (40),
drawn in black. In the text, we show that the fluctuations of A(ω) around its mean value are of O(1/

√
N ) and that they are Gaussian at that

order. (b) Numerical evaluation of the covariance cov[A(ω1), A(ω2)] and comparison with the analytic formula (41). The numerical estimate
of the covariance is obtained by averaging over 1000 independent disorder realizations. Both the numerical and the analytic curves include a
convolution with the Lorentzian of width σ = 0.03. (c) Same as in (a), with g = 0.2 (and W = 1, N = 100, and σ = 0.03). The three blue
curves are typical results for different disorder realizations. The black line is the analytic formula (40) and the orange line is its convolution
with the Lorentzian of width σ = 0.03. (d) Same as in (b), for g = 0.2.

one finds W± ≈ 1
2 − W 2

24g2 for g/W � 1. In this regime, the
polaritons are collective light-matter states, half composed
of the N excited emitters [each with a weight O(1/N )] and
the photon. Instead, for weak coupling, polaritons lose their
collective nature. For a flat disorder distribution, one can show
using Eq. (24) that, for g/W  1,

W± 	
N→∞

(
W

g

)2

e−W 2/2g2 →
g/W →0

0.

The photon weight of the dark states (2 � a � N) is more
complicated. Like the mean energy shift, it fluctuates wildly
as a function of the index a and of the bare energy levels.
However, its average value over eigenstates within a small

energy shell [ε − δε/2, ε + δε/2],

W (ε) = 1

Nρ(ε)δε

∑
|εa−ε|�δε/2

Wa, (43)

is independent of the microscopic details of the distribution of
bare energies and takes a simple form in the limit N → ∞.
Using Eqs. (40) and (42), we find that

A(ε) 	
N→∞

Nρ(ε)W (ε),

with

W (ε) = 1

N

1/π

ρ(ε)2 + [ρ̃(ε) − ε]2
. (44)
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FIG. 12. Photon weight of the dark states computed numerically from the eigenvectors (18) for a given disorder realization, g = 0.5 and
W = 1, (a) without energy binning for N = 1000 and (b) with binning according to Eq. (43) for different N . (c) Binned photon weight of the
dark states versus energy ε and coupling strength g. The color bar is in logarithmic scale. Similarly to the energy shift, the photon weight wildly
fluctuates but its mean value after averaging over a small energy shell converges to the formula (44) (dotted lines) in the thermodynamic limit
N → ∞.

Thus, one finds that the photon weight of the dark states,
which is inherited from the indirect coupling between these
dark states and the cavity mode in the presence of disorder,
is of O(1/N ). It is interesting to note that for a finite but
arbitrarily small g/W , the photon weight of the polaritons sat-
urates to a finite value as N grows, which results in the photon
weight being mostly concentrated on the two polaritons even
for weak couplings, provided N is large enough.

The photon weight of the dark states is plotted in Fig. 12.
For a given disorder realization, one finds that W (ε) wildly
fluctuates in the large-N limit [Fig. 12(a)], while the ampli-
tude of fluctuations is reduced upon averaging over a small
energy shell (energy binning). Upon increasing N , the binned
photon weight W (ε) converges to the exact formula (44)
[Fig. 12(b)]. While being nonzero only at the cavity energy
ε = 0 for g = 0, the binned photon weight is spread over the
dark states as g is increased for a fixed N . For strong couplings
g � W , the photon weight is mostly concentrated in the two
polariton states, while the dark states retain a photon weight
∼O(1/N ).

VI. REAL-TIME GREEN’S FUNCTIONS AT LARGE N
AND APPLICATION TO THE ESCAPE PROBABILITY

So far we have analyzed the model defined by the arrow-
head Hamiltonian (2) from the point of view of its spectral
properties: We have focused on its spectrum composed of
two polariton modes and of a continuum of dark states in
the N → ∞ limit and on the photon Green’s function in
frequency space, closely related to the photon spectral func-
tion and to the photon weights of the eigenstates. In this
section we turn to the real-time dynamics of the model. We
first compute the real-time Green’s functions in the large-N
limit and provide explicit formulas for those. We then exploit
these exact results to analyze the probability that an excitation
initially located on site j has escaped from that site after
time t . We interpret our result for the escape rate in terms of
Fermi’s golden rule in an effective model, where the cavity
mode has been integrated out in second-order perturbation.
We demonstrate the existence of a diffusive dynamics solely
mediated by the coupling to the cavity and a cavity-protection

effect for strong enough couplings, where transport properties
are enhanced with increasing disorder. Cavity-enhanced out-
of-equilibrium transport occurring when coupling the system
of emitters to two external leads is investigated in the next
section.

A. Large-N asymptotics of the real-time Green’s functions

Here we return to the real-time Green’s functions (21a)–
(21c) and analyze their large-N asymptotics. We start with the
photon Green’s function: In real time, we have [see Eq. (21),
with our convention πg2 = 1]

D(t ) ≡ GN+1,N+1(t ) =
N+1∑
a=1

e−iεat

1 + 1
πN

∑
k

1
(ωk−εa )2

=
∮

C

dz

2π i
e−izt D(z),

where D(z) is given in (34) and the counterclockwise contour
C encloses all the eigenvalues of H . To take the large-N limit,
we can replace D(z) by D(z) and evaluate the contour integral
using the analyticity properties of D(z) [see Sec. V and in
particular Eq. (35)]. This gives

GN+1,N+1(t ) =
N→∞

e−iε+t

1 − ρ̃ ′(ε+)
+ e−iε−t

1 − ρ̃ ′(ε−)

+ 1

π

∫
e−iωtρ(ω)dω

ρ(ω)2 + [ρ̃(ω) − ω]2
.

Importantly, that result does not depend of the microscopic
details of the distribution of bare energies. The real-time pho-
ton Green’s function is not sensitive to fluctuations of that
distribution in the large-N limit; in other words, the real-time
Green’s function is sensitive only to the average density of
states Nρ(ω) [Eq. (3)].

The other Green’s functions (21a) and (21b) share that
property and they can be obtained in a similar way. For the
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component Gj,N+1(t ) (1 � j � N) we find

Gj,N+1(t ) = 1√
πN

N+1∑
a=1

e−iεat

(εa − ω j )
(
1 + 1

πN

∑N
k=1

1
(ωk−εa )2

) = 1√
πN

∮
C

dz

2π i

e−izt

z − ω j
D(z)

=
N→∞

1√
πN

[
e−iε+t

(ε+ − ω j )[1 − ρ̃ ′(ε+)]
+ e−iε−t

(ε− − ω j )[1 − ρ̃ ′(ε−)]

+ P
1

π

∫
e−iωtρ(ω)dω

(ω − ω j ){ρ(ω)2 + [ρ̃(ω) − ω]2} + 1

π

e−iω j t [ρ̃(ω j ) − ω j]

ρ(ω j )2 + [ρ̃(ω j ) − ω j]2

]
,

where P denotes the Cauchy principal value of the integral. The large-N asymptotics of Gi, j (t ) with 1 � i �= j � N also follows
from that result, because

Gi, j (t ) = 1

πN

N+1∑
a=1

e−iεat

(εa − ωi )(εa − ω j )
(
1 + 1

πN

∑N
k=1

1
(ωk−εa )2

) = − 1√
πN

Gi,N+1(t ) − Gj,N+1(t )

ωi − ω j
.

Finally, for 1 � j � N we find

Gj, j (t ) = 1

πN

N+1∑
a=1

e−iεat

(εa − ω j )2
(
1 + 1

πN

∑N
k=1

1
(ωk−εa )2

) =
∮

C

dz

2π i

e−izt

(z − ω j )2

[
(z − ω j ) + D(z)

πN

]

=
N→∞

e−iω j t + 1

πN

{
e−iε+t

(ε+ − ω j )2[1 − ρ̃ ′(ε+)]
+ e−iε−t

(ε− − ω j )2[1 − ρ̃ ′(ε−)]
+ it

e−iω j t [ρ̃(ω j ) − ω j]

ρ(ω j )2 + [ρ̃(ω j ) − ω j]2

+ F
1

π

∫
e−iωtρ(ω)dω

(ω − ω j )2{ρ(ω)2 + [ρ̃(ω) − ω]2} + e−iω j t∂ω j

(
ρ̃(ω j ) − ω j

ρ(ω j )2 + [ρ̃(ω j ) − ω j]2

)}
, (45)

where F stands for the Hadamard finite part of the integral. We now turn to a concrete example to illustrate how such formulas
can be exploited, by evaluating the probability that an excitation, located on site j at time t = 0, is found elsewhere at time t > 0.

B. Application to the escape probability

As a simple application of the above results for the real-
time Green’s functions, we study the probability that an
excitation, initially on a given site j ( j = 1, . . . , N), has es-
caped from this site at time t :

Pj (t ) = 1 − |Gj, j (t )|2. (46)

We are mostly interested in the behavior of Pj (t ) at large time
t � ρ(ω), but not too large so that the continuum limit still
holds, i.e., t  Nρ(ω). So we take the N → ∞ limit first and
then consider large time t . The N → ∞ limit of Gj, j (t ) is
given by Eq. (45), so we need to analyze the large-t behavior
of that expression.

The right-hand side of Eq. (45) is a sum of six terms; of all
these terms, four are clearly bounded as a function of t . The
two terms that are not bounded are

it

πN

e−iω j t [ρ̃(ω j ) − ω j]

ρ(ω j )2 + [ρ̃(ω j ) − ω j]2

and

1

πN
F

1

π

∫
e−iωtρ(ω)dω

(ω − ω j )2{ρ(ω)2 + [ρ̃(ω) − ω]2} . (47)

While it is not entirely obvious that the latter term diverges
with t , one can check using the definition of the Hadamard
finite part that it behaves as

− t

πN

e−iω j tρ(ω j )

ρ(ω j )2 + [ρ̃(ω j ) − ω j]2
(48)

when t → ∞. Assuming that the denominators of (47) and
(48) are of order ρ(ω j )2, we indeed find that these terms dom-
inate the other ones responsible for an oscillatory behavior
∼O(1) in Eq. (45) when t � ρ(ω j ).

Plugging this into Eq. (46), we find that the escape proba-
bility grows linearly with t in the regime ρ(ω)  t  Nρ(ω)
(i.e., 1  tW  N for a box distribution),

Pj (t ) 	 1 −
∣∣∣∣1 + t

πN

−ρ(ω j ) + i[ρ̃(ω j ) − ω j]

ρ(ω j )2 + [ρ̃(ω j ) − ω j]2

∣∣∣∣
2

	 �(ω j )t,

with the following escape rate (here we reinstate the factors
g
√

π ):

�(ω) = 2πg2

N

ρ(ε)/(πg)2

ρ(ε)2 + [ρ̃(ε) − ε
πg2

]2 = 2π

(
g√
N

)2

A(ω).

(49)

It is interesting to note that Eq. (49) has a form similar to
that given by Fermi’s golden rule, with the photon spectral
function playing the role of the usual density of states. More-
over, it is the individual coupling strength g/

√
N and not the

collective one that enters the escape rate. We now provide an
interpretation of that result based on a second-order perturba-
tive approach.
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C. Fermi’s golden rule for an effective long-range
hopping Hamiltonian

To second order, the light-matter coupling term V̂ in the TC
Hamiltonian (1) affects the bare orbitals as follows. Reinstat-
ing the cavity-mode frequency ωc for clarity, the eigenstates
| j, 0〉(2) read

| j, 0〉(2) = | j, 0〉 + g

(ω j − ωc)
√

N
|G, 1〉

+
∑
i �= j

g2

N (ω j − ωi )(ω j − ωc)
|i, 0〉 . (50)

The photon weight of the perturbed eigenstate | j, 0〉(2) is
W (ω j ) = |〈G, 1 | j, 0〉(2) |2 = g2/(ω j − ωc)2N . The perturba-
tive expansion is valid as long as the latter remains small,
i.e., when the individual coupling strength g/

√
N is a small

fraction of the detuning between the site j and the cavity.
This excludes spin energies too close to the cavity resonance,
where a reversible energy exchange between the spin and
the cavity would take place (strong-coupling physics). In-
stead, the perturbative expansion is only relevant for weak
couplings. For a box distribution and g  W , one indeed
recovers the perturbative result W (ω j ) = g2/(ω j − ωc)2N
starting from the exact formula (12). Note that for a spin
energy far enough from resonance, i.e., ω j − ωc ∼ W , the
perturbative criterion g/(ω j − ωc)N  1 is automatically sat-
isfied in the thermodynamic limit.

Starting with an excitation localized on site j at time t = 0,
we would now like to compute the escape probability to other
sites i at time t . From energy conservation, one can already
expect that these processes imply ωi = ω j , and therefore the
perturbative expansion (50) does not appear to be well suited
as the third term on the right-hand side diverges. It is instead
convenient to use a Schrieffer-Wolff transformation on the
Hamiltonian (1), which results in a disentanglement of light
and matter degrees of freedom [79]. The new Hamiltonian is
written as Ĥ ′ = eŜĤe−Ŝ . Under the assumption that the eigen-
values of the generator Ŝ remain small (discussed below), one
can expand Ĥ ′ in series as Ĥ ′ = Ĥ + [Ŝ, Ĥ ] + 1

2 [Ŝ, [Ŝ, Ĥ ]] +
· · · . Replacing the kinetic energy

∑
i ωiσ̂

+
i σ̂−

i in Eq. (1) by
the equivalent term

∑
i ωiσ̂

z
i /2 for convenience (σ z

i denotes
the third Pauli matrix), the linear coupling V̂ can be removed
from the expansion with the choice

Ŝ =
∑

j

g

(ω j − ωc)
√

N
(âσ̂+

j − σ̂−
j â†),

which provides [Ŝ, Ĥ0] = −V̂ . The new Hamiltonian takes the
form

Ĥ ′ = Ĥ0 + 1
2 [Ŝ, V̂ ] + O(V̂ 3), (51)

and the condition to be satisfied if one is to keep only the
first two terms on the right-hand side of Eq. (51) is therefore
g/

√
N  ω j − ωc, which is identical to the condition of valid-

ity of the expansion (50). Calculating the commutator [Ŝ, V̂ ],
we obtain

Ĥ ′ =
∑

i

ωiσ̂
+
i σ̂−

i + g2

2N

∑
i, j

(
1

ωi − ωc
+ 1

ω j − ωc

)
σ̂+

i σ̂−
j

+
(

ωc + 1

N

∑
i

g2

ωi − ωc
σ̂ z

i

)
â†â, (52)

up to a constant term. The second term corresponds to an
effective hopping between two arbitrarily distant sites, with
diverging amplitude when the two sites are in resonance with
the cavity. The third term results in a renormalization of the
cavity frequency depending on the two-level emitter states.
Equivalently, the emitter energies get shifted by cavity pho-
tons, which is usually referred to as dispersive Stark shift.
This term does not contribute to transitions between states
with one excited emitter and zero photon and can therefore
be dropped out of the calculation. As eigenstates of Ĥ0, these
states (denoted by | j〉 for convenience) satisfy Ĥ0 | j〉 = ω j | j〉
and | j(t )〉 = e−iω j t | j〉. Calling V̂ ′ the second term on the
right-hand side of Eq. (52), the Schrödinger equation

i
∂ |�(t )〉

∂t
= Ĥ ′ |�(t )〉 ,

with the ansatz |�(t )〉 =∑ j c j (t )e−iω j t | j〉, provides the
probability amplitudes c j (t ) as solutions of

∂c j (t )

∂t
= −i

∑
i

ci(t )〈i|V̂ ′| j〉ei(ω j−ωi )t . (53)

Starting with an excitation on site j at time t = 0 corresponds
to |�(0)〉 = | j〉, i.e., c j (0) = 1 and ci �= j (0) = 0. One can then
solve Eq. (53) with this initial condition and sum over all
possible final states to obtain the escape probability from site
j as

Pj (t ) =
∑
i �= j

|ci(t )|2 = 4
∑
i �= j

|〈i|V̂ ′| j〉|2 sin2[(ωi − ω j )t/2]

(ωi − ω j )2
,

(54)

which features a sharp peak of width ∼1/t about ω j = ωi. Un-
der the condition that this characteristic width largely exceeds
the mean level spacing 1/ρ(ω)N (equal to W/N for a box
distribution), the summation in Eq. (54) can be replaced by an
integral. With the density of final states Nρ(ω) [see Eq. (3)],
we obtain

Pj (t ) = 2tN
∫ ωmax

ωmin

dω ρ(ω)|〈i|V̂ ′| j〉|2ξ j (t, ω). (55)

We also assume that the time t is large enough for the width
of the function

ξ j (t, ω) = sin2[(ω − ω j )t/2]

(ω − ω j )2t/2

to be much smaller than the extent of the integration domain
ωmax − ωmin ∼ 1/ρ(ω) (equal to W for a box distribution),
in which case ξ j (t, ω) → πδ(ω − ω j ) can be replaced by a
δ function. With the matrix element

〈i|V̂ ′| j〉 = g2

2N

(
1

ωi − ωc
+ 1

ω j − ωc

)
,

the escape probability (55) can be written as Pj (t ) = �(ω j )t ,
where the escape rate

�(ω j ) = 2πg2W (ω j )ρ(ω j ) = 2π (g/
√

N )2A(ω j )

has the same form as in Eq. (49). Note that the probability
Pj (t ) must remain small compared to one, and the conditions
1  tW  N (for a box distribution) and Pj (t )  1 ensuring
validity of Fermi’s golden rule can be satisfied simultaneously
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in the thermodynamic limit, provided the coupling is weak
enough (g  W ).

D. Physical properties of the escape dynamics

The g dependence of the escape rate �(ω j ) given by
Eq. (49) exhibits some interesting features, which we now
illustrate using our usual box distribution of width W . In this
case, we recall that ρ = 1/W for ω j ∈ [−W/2,W/2] and ρ =
0 otherwise, and the Hilbert transform ρ̃ is given in Eq. (29).
Injecting the excitation in the middle of that distribution,
i.e., ω j = 0, the escape rate is independent of g and reads
�(0) = 2W

πN , which can be made arbitrary large by increasing
the disorder strength W . Conversely, injecting exactly on the
edges of the distribution ω j = ±W/2, the escape rate vanishes
for all values of g, i.e., �(±W/2) = 0. In all other cases,
the escape rate grows as ∼2πg4/ω2

jW for weak couplings
g  W , reaches a maximum 2W/πN for

g =
√

ω j

πρ̃(ω j )

(which typically corresponds to intermediate coupling
strengths g ∼ W ), and then saturates to a lower, g-independent
value

2W

πN

(
1

1 + W 2ρ̃2(ω j )

)

for strong couplings g � W . It is remarkable here that both
the maximum escape rate and the saturation value increase
with the disorder strength W , which originates from the
enhancement of the photon weight of the dark states [or
equivalently the contribution of the dark states to the spectral
function A(ω)], as can be seen from Eqs. (12) and (15).

The disorder-averaged escape rate

E[�(ω j )] = = 1

W

∫ W/2

−W/2
�(ω)dω

= 2πg2

NW
(1 − W+ − W−) (56)

exhibits similar features and is shown in Fig. 5(a). Note
that since the photon weight is a normalized quantity, i.e.,∑N+1

a=1 Wa = 1, the quantity in parentheses entering the right-
hand side of Eq. (56) is nothing but the photon weight of the
dark states [see Eq. (44)] integrated over the support of ρ. For
weak couplings one finds E[�] ∼ 2πg2

NW (grows as ∼g2) and
E[�] reaches a maximum at intermediate coupling strengths
g ∼ W and then saturates for strong couplings to a lower,
g-independent value πW

6N , which increases with W .

VII. OUT-OF-EQUILIBRIUM TRANSPORT

Now that we have identified and discussed cavity-
protection effects for the escape probability, it is interesting
to look at the excitation current flowing through the system
of emitters in an out-of-equilibrium situation. Such a situa-
tion occurs when connecting two particular emitter sites to
Markovian baths: The source injects excitations at site j = 1,
while the drain extracts excitations at site j = N . (In this
section we do not assume that the bare energies are sorted

in increasing order, so the energies of the in and out sites
ω1 and ωN need not be the minimum and maximum bare
energies.) Since we are working in the single-excitation sub-
space, we can replace the spin operators by fermionic ones for
simplicity, i.e., σ̂−

i → σ̂i and σ̂+
i → σ̂

†
i (i = 1, . . . , N), with

{σ̂i, σ̂
†
j } = δi, j . The excitation current and populations across

the system of emitters are computed using the nonequilibrium
Green’s function formalism. The system is described by the
Hamiltonian Ĥneq = Ĥ + Ĥr , with Ĥ given by Eq. (1) and

Ĥr =
∑

α

ωασ̂
†
α,inσ̂α,in +

∑
α

ωασ̂
†
α,outσ̂α,out

+
∑

α

λin
α (σ̂1σ̂

†
α,in + σ̂α,inσ̂

†
1 )

+
∑

α

λout
α (σ̂N σ̂

†
α,out + σ̂α,outσ̂

†
N ).

Here α denotes some quantum number running over a
continuum of states in each reservoir. For a given func-
tion fα , summations of the type

∑
α fα are replaced with∫

dω d (ω) f (ω), with d (ω) the density of states in the reser-
voirs and ω ≡ ωα the energy of the state α. The operator
σ̂α,l (σ̂ †

α,l ) annihilates (creates) a fermion in the reservoir
l = in, out and the real parameters λin

α and λout
α are the cou-

pling strengths between the reservoirs and the two ends of the
system. The steady-state excitation current flowing through
the emitters can be computed from either the input current

Jin =
〈
∂N̂in

∂t

〉
= i〈[Ĥneq, N̂in]〉

or the output current

Jout =
〈
∂N̂out

∂t

〉
= i〈[Ĥneq, N̂out]〉,

since these two are equal in magnitude. Here N̂l =∑
α σ̂

†
α,l σ̂α,l is the number of fermions in the reservoir l =

in, out and 〈· · · 〉 is the expectation value in the steady state
[80].

We force injection and extraction of particles at the first and
last sites, respectively, assuming nin(ω) ≡ 〈σ̂ †

α,inσ̂α,in〉 = 1 and

nout (ω) ≡ 〈σ̂ †
α,outσ̂α,out〉 = 0 for all energies ω in the range of

interest. Following Ref. [81], it can be shown that, in this case,
the input and output currents take the forms Jin = −�in(1 −
n1) and Jout = �outnN , with Jin = −Jout, �in ≡ 2πd (ω)λ2

in(ω)
and �out ≡ 2πd (ω)λ2

out (ω) the injection and extraction rates
assumed to be frequency independent (Markovian baths), and

n j =
∫

dω

2π
Im[G<

j, j (ω)] (57)

the population on site j [82]. Here G<
i, j (ω) denotes the lesser

Green’s function, which is defined in the Appendix.

A. Equations of motion

The transport properties of the model are thus encoded
in the nonequilibrium Green’s function G<

i, j (ω). The latter
can be computed by first deriving the equations of motion
of the retarded and advanced Green’s functions, which are
themselves obtained by computing their first time derivative
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(and therefore the commutator of σ̂i with the different parts
of the Hamiltonian Ĥneq [81]). In the frequency domain, the
equations of motion can be written in the Dyson form [80]∑

k

{[
G0β

i,k (ω)
]−1 − �

β

i,k (ω)
}
Gβ

k, j (ω) = δi, j, (58)

with β = A, R, the noninteracting Green’s functions G0β
i, j (ω)

given in the Appendix, and the self-energies

�R
j,k (ω) = g2

N
DR

0 (ω) − i

2
δ j,k (δ j,1�in + δ j,N�out )

and �A
j,k (ω) = [�R

j,k (ω)]∗. Here DR
0 denotes the retarded

noninteracting cavity Green’s function also given in the Ap-
pendix. The lesser Green’s function is obtained from the
Keldysh equation

G<
i, j (ω) =

∑
k,p

GR
i,k (ω)�<

k,p(ω)GA
p, j (ω),

with the lesser self-energy

�<
k,p(ω) = i�inδk,pδk,1. (59)

Another useful quantity is the cavity photon population given
by [82]

nc =
∫

dω

2π
Im[D<(ω)].

In order to compute the lesser cavity photon Green’s function
D<(ω), we proceed as before and derive the equations of
motion of the retarded and advanced cavity Green’s functions.
In the frequency domain, these equations of motion take the
form {[

Dβ

0 (ω)
]−1 − �β (ω)

}
Dβ (ω) = 1,

with β = A, R, and the cavity self-energies

�R(ω) = g2

N

∑
j

1

ω − ω j + i
2 (δ j,1�in + δ j,N�out )

and �A(ω) = [�R(ω)]∗. Again, the lesser cavity Green’s
function is obtained from the Keldysh equation D<(ω) =
DR(ω)�<(ω)DA(ω), with

�<(ω) = g2

N

i�in

(ω − ω1)2 + (�in/2)2
.

B. Analytical formulas for the current and populations

The Dyson equation (58) can be solved exactly using ma-
trix inversion carried out with the Sherman-Morrison formula.
This leads to

GR
i, j (ω) = g2

N

DR(ω)

(ω − ω̃i )(ω − ω̃ j )
for i �= j,

GR
i,i(ω) = 1

ω − ω̃i
+ g2

N

DR(ω)

(ω − ω̃i )2
, (60)

and GA
i, j (ω) = [GR

i, j (ω)]∗, with ω̃1 = ω1 − i�in
2 , ω̃N = ωN −

i�out
2 , and ω̃ j = ω j for all j �= 1, N . In order to compute the

steady-state populations and current according to Eq. (57),
we use the Keldysh equation G<(ω) = GR(ω)�<(ω)GA(ω),

with �<(ω) given by Eq. (59) and GR(ω) given by Eq. (60).
The integration in frequency domain is performed using the
residue theorem, with the factorization of the cavity-mode
Green’s functions,

DR(z) =
∏N

j=1(z − ω̃ j )∏N+1
a=1 (z − εa)

, DA(z) = [DR(z)]∗,

and εa the N + 1 solutions of the polynomial equation

z
N∏

j=1

(z − ω̃ j ) − g2

N

N∑
j=1

∏
i �= j

(z − ω̃ j ) = 0.

These solutions all have negative imaginary parts and
correspond to the eigenvalues of the complex symmetric (non-
Hermitian) arrowhead matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω̃1 0 · · · 0 0 g/
√

N

0 ω̃2
. . . 0 0 g/

√
N

...
. . .

. . .
. . .

...
...

0 0 . . . ω̃N−1 0 g/
√

N
0 0 · · · 0 ω̃N g/

√
N

g/
√

N g/
√

N · · · g/
√

N g/
√

N 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(61)
The real part of these eigenvalues exhibits a structure simi-

lar to the equilibrium case (without coupling to the reservoirs):
N − 1 dark states with energies comprised between −W/2
and W/2, and two polaritons emerging from the continuum of
dark states for g � W/2. In contrast to the equilibrium case,
these eigenstates exhibit a finite imaginary part (lifetime) due
to the coupling to the two reservoirs. Using the results of
Secs. VII A and VII B, the integration in Eq. (57) provides
the population at site j �= 1,

nj = �in
g4

N2

∑
a

τaφa

(εa − ω̃ j )(εa − ω̃∗
j )

, (62)

the population at the injection site j = 1,

n1 = 1 + �in
g4

N2

∑
a

τaφa

(εa − ω̃1)(εa − ω̃∗
1 )

+ g4

N2

∏
k �=1(ω̃1 − ω̃k )(ω̃1 − ω̃∗

k )∏
a(εa − ω̃1)(ε∗

a − ω̃1)

+ 2g2

N
Re

{∏
k �=1(ω̃1 − ω̃∗

k )∏
a(ω̃1 − ε∗

a )

}
,

and the population of the cavity mode,

nc = �in
g2

N

∑
a

τaφa,

with τa ≡ −1/2 Im(εa) the lifetime of the eigenstates and

φa =
∏

k �=1(εa − ω̃k )(εa − ω̃∗
k )∏

a′ �=a(εa − εa′ )(εa − ε∗
a′ )

.

Importantly, we find that the total population N = nc +∑N
j=1 n j = O(N ), which violates the single-excitation as-

sumption. Our fermion model for transport thus does not
map onto the disordered TC model. A proper rescaling of the
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FIG. 13. Out-of-equilibrium transport: (a) disorder-averaged (over 2000 configurations) total population E[N ], (b) output current E[Jout],
and (c) proportion of the current carried by the different eigenstates, as a function of N for g = 1. The other parameters are �in = 0.1/N2 and
�out = 1.

current injection rate �in → �̃in/N2 (while keeping �̃in fixed)
allows us to circumvent this issue as it results in a total popu-
lation O(1) [Fig. 13(a)]. This ensures that the system remains
in the single-excitation subspace so that the identification of
our simple fermionic model for transport with the disorder TC
model holds.

C. Cavity-protected transport

Using this rescaling of the injection rate and averaging the
steady-state output current

Jout = �outnN = �out�̃in
g4

N4

∑
a

τaφa

(εa − ω̃N )(εa − ω̃∗
N )

(63)

over disorder, we find that E[Jout] ∼ 1/N2 [Fig. 13(b)]. This
can be understood from Eq. (63) by observing numerically
that the lifetime of the eigenstates τa ∼ N2. Moreover, since
Eq. (63) involves a summation over the eigenstates of the
matrix (61), one can easily extract the contribution of these
eigenstates to the disorder-averaged current. While for small
N the latter is equally carried by polaritons and dark states,
we find that it is fully dominated by the dark states in the
thermodynamic limit [Fig. 13(c)]. For a single disorder re-
alization, fixed N , and weak coupling g  W , the current
scales as ∼g4, as can be seen from Eq. (63). Interestingly, after
disorder averaging we find that E[Jout] ∼ g2, similarly to the
escape rate discussed in Sec. VI D. Output current and escape
rate share common features also beyond weak couplings [see
Figs. 5(a) and 5(b)]: E[Jout] reaches a maximum for interme-
diate coupling strengths g ∼ W and then saturates to a slightly
lower value for strong couplings. Importantly, the value of the
plateau is found to increase with W , which means that not only
does the out-of-equilibrium current exhibit some robustness
against disorder, but also that the latter can be used to enhance
transport for large couplings g � W .

VIII. CONCLUSION

We have investigated in detail a class of large arrowhead
matrices that are relevant to many physical systems, ranging
from molecular junctions to central-spin problems and cav-
ity QED. We have derived asymptotically exact formulas in
the thermodynamic limit for different quantities of physical

interest such as the spectrum, average energy shifts, inverse
participation ratio, and correlation functions. We have shown
that the spectrum and the distribution of energy spacing ex-
hibit characteristics usually associated with the critical point
of disordered hopping models for Anderson localization-
delocalization transitions. We have studied how those peculiar
spectral properties are connected to dynamical quantities such
as the escape probability and the out-of-equilibrium current,
showing that the latter can be efficiently protected by the
cavity. Even more significantly, it was shown that disorder
can help transport for strong enough couplings. Interesting
perspectives include experimentally relevant unbounded dis-
order distributions (e.g., Gaussian), the effect of dissipation
that would typically be included by adding finite imaginary
parts to the diagonal elements of the arrowhead matrix Hamil-
tonian, and many-body effects occurring for larger excitation
densities. It is another exciting prospect to investigate whether
the combined effects of disorder, light-matter coupling, and
particle statistics could lead to nonclassical states of light
when driving the cavity with a laser field or upon injecting
and removing spin excitations in a transport situation.
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APPENDIX

In this Appendix we provide definitions of the different
Green’s functions used throughout the paper, as well as a de-
tailed derivation of the mean energy shift given by Eq. (25b).

The different Green’s functions are defined through the
evolution operator Ĝ(t )= e−iĤt , which is an (N+ 1)×(N+ 1)

023714-22



LARGE RANDOM ARROWHEAD MATRICES: … PHYSICAL REVIEW A 105, 023714 (2022)

unitary matrix, i.e., Ĝ†(t ) = Ĝ−1(t ) = Ĝ(−t ). They corre-
spond to the components of that matrix

Gi, j (t ) = 〈i, 0|Ĝ(t )| j, 0〉
= 〈σ̂−

i (t )σ̂+
j (0)〉 (A1a)

for 1 � i, j � N ,

Gj,N+1(t ) = 〈 j, 0|Ĝ(t )|G, 1〉
= 〈σ̂−

j (t )â†(0)〉 (A1b)

for 1 � j � N , and

D(t ) ≡ GN+1,N+1(t )

= 〈G, 1|Ĝ(t )|G, 1〉
= 〈â(t )â†(0)〉, (A1c)

where 〈· · · 〉 = 〈· · · 〉G, 0 denotes the expectation value in the
ground state |G, 0〉 of both Hamiltonians Ĥ0 and Ĥ . The oper-
ators σ̂±

j (t ) = eiĤt σ̂±
j e−iĤt and â(†)(t ) = eiĤt â(†)e−iĤt are de-

fined in the Heisenberg picture. In order to simplify notation,
we call D(t ) the cavity photon Green’s function throughout
the paper, which corresponds to the (N + 1)th element of
the evolution operator. We introduce the Fourier transform
Ĝ(ω) = ∫ dt eiωt Ĝ(t ), where Ĝ(t ) = i[ĜR(t ) − ĜA(t )] can be
expressed as the sum of a retarded ĜR(t ) = −iθ (t )e−iĤt and
an advanced ĜA(t ) = iθ (−t )e−iĤt propagator (θ denotes the
Heaviside function) in such a way that

ĜR(ω) = 1

ω − Ĥ + i0+ ,

ĜA(ω) = 1

ω − Ĥ + i0− .

Of particular interest is the photon spectral function

A(ω) ≡ − 1

π
ImDR(ω),

which is a positive-definite operator characterizing the spec-
trum of the system and which can be directly accessed in

experiments by measuring the cavity transmission or fluores-
cence emission spectra. It is also often convenient to introduce
the lesser and greater Green’s functions as

G<
i, j (t ) = i〈σ̂+

j (0)σ̂−
i (t )〉,

G>
i, j (t ) = −i〈σ̂−

i (t )σ̂+
j (0)〉.

Note that G>
i, j (t ) corresponds up to a −i factor to Gi, j (t ) as

defined in Eq. (A1a) at equilibrium (in the absence of cou-
pling to external reservoirs as in Sec. VII). In this situation,
G<

i, j (t ) vanishes since 〈· · · 〉 denotes the expectation value in
the ground state |G, 0〉. Similar definitions hold for the cavity
photon Green’s functions:

D<(t ) = i〈â†(0)â(t )〉,
D>(t ) = −i〈â(t )â†(0)〉.

Note that retarded and advanced functions are related to lesser
and greater ones by

ĜR(t ) = θ (t )[Ĝ>(t ) − Ĝ<(t )],

ĜA(t ) = θ (−t )[Ĝ<(t ) − Ĝ>(t )],

and similarly for cavity photons. The noninteracting retarded
and advanced Green’s functions, i.e., in the absence of light-
matter interactions and coupling to external reservoirs, read

G0R
i, j (ω) = δi, j

ω − ωi + i0+ ,

G0A
i, j (ω) = [G0R

i, j (ω)
]∗

for spins and

DR
0 (ω) = 1

ω + i0+ ,

DA
0 (ω) = [DR

0 (ω)
]∗

for cavity photons (when treated as fermions as in Sec. VII).
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