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Few-photon transport via a multimode nonlinear cavity: Theory and applications
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Few-photon transport via waveguide-coupled local quantum systems has attracted extensive theoretical and
experimental studies. Most of the study has focused on atomic or atomic-like local quantum systems due to
their strong light-matter interaction useful for quantum applications. Here we study few-photon transport via
a waveguide-coupled multimode optical cavity with second-order bulk nonlinearity. We develop a Feynman
diagram approach and compute the scattering matrix of the one- and two-photon transport. Based on the
calculated scattering matrix, we show highly nonclassical photonic effects, including photon blockade and
π -conditional phase shift, are achievable in the waveguide-coupled multimode optical cavity system via quantum
interference and linear response engineering. Our results might lead to significant applications of quantum
photonic circuits in all-optical quantum information processing and quantum network protocols.
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I. INTRODUCTION

The architecture of waveguide-coupled local quantum
systems enables coupling flying photons with stationary
qubits for light-matter interactions. A prime example is
the waveguide quantum electrodynamics, with several types
of local quantum systems demonstrated successfully, in-
cluding trapped atoms [1–3], solid state defects [4,5], and
superconducting qubits [6,7]. This architecture is also rel-
evant to quantum networks where optic fibers link local
quantum nodes for routing, storage, and processing of
quantum information encoded in individual photons [8]. In
parallel, a large body of theoretical work has been car-
ried out to study few-photon transport in the setting of
waveguide-coupled local quantum systems [9–14]. Most of
the theoretical and experimental work, though, has focused
on qubit-like quantum entities, which are sought to pro-
vide strong light-matter interactions for quantum information
tasks.

Here we study few-photon transport via a waveguide-
coupled multimode optical cavity with second-order bulk
nonlinearity. This is a common device setup used for cavity-
enhanced parametric nonlinear optical processes including
second-harmonic generation and parametric down-conversion
[15–22]. However, its property at the few-photon level has not
been fully explored, because bulk nonlinearity is generally
believed to be insubstantial to impact single photons. We
challenge this perspective by investigating the nonparametric
few-photon transport and its physical observations. Besides
using a systematic method from Ref. [14] to compute the
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scattering matrix (S-matrix) of few-photon transport, we de-
velop a Feynman diagram approach which provides further
physical insight into the obtained S-matrix while offering
mathematical simplicity in its computation. This method is
particularly suited for weak nonlinear systems where only
leading order Feynman diagrams are of interest. Exploiting
the result of the S-matrix, we then study observational effects
of few-photon transport via the waveguide-coupled multi-
mode cavity, including photon blockade, conditional phase
shift, and nonclassical two-mode correlations. Surprisingly,
while these effects are commonly believed to be associated
with strong light-matter interaction, we find they could be-
come substantial for waveguide-coupled optical cavities with
only weak nonlinearity.

These results reveal a general approach for creation
and control of few-photon correlations via quantum inter-
ference and linear response engineering. The few-photon
transport amplitude of waveguide-coupled local quantum sys-
tems is a superposition of the interaction-free, i.e., linear,
and interaction-mediated amplitudes. When the linear trans-
mission coefficient is comparable to the interaction-mediated
amplitude, quantum interference between the two pathways
leads to highly nonclassical correlations between the propa-
gating photons. For weak nonlinear systems, this might need
a tuned linear transmission which could be achieved, for
example, in a one-port waveguide-cavity configuration. How-
ever, this approach is distinct from the postselection method
where photon-photon correlations are induced by the mea-
surement. Our result might lead to significant applications in
quantum information science using quantum photonic circuits
beyond the parametric regime, including quantum nondemoli-
tion measurement of photons [23], two-photon quantum logic
gates [24], and nonlinearity-assisted entanglement swapping
[25].
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FIG. 1. (a) A χ (2) microring cavity with three resonances side-
coupled to a waveguide. Red, green, and blue lines correspond to
a1, a2, and a3 modes or photons, respectively. (b–d) Illustrations of
few-photon transport processes. |k〉 denotes the single-photon state
with momentum k.

II. SCATTERING MATRIX OF FEW-PHOTON TRANSPORT

The system under consideration is a waveguide-coupled
trimodal optical cavity made from χ (2) materials. A typical
realization of such an optical cavity is a microring resonator
[Fig. 1(a)] which supports traveling-wave resonances. These
resonances couple via the χ (2) nonlinearity when frequency-
matching and, if necessary, phase-matching conditions are
satisfied. Photons couple in and out of these resonances via
the waveguide and meanwhile dissipate in other loss channels.
In the Heisenberg-Langevin framework, this open quantum
system can be modeled by the following effective Hamiltonian
(h̄ = 1):

Heff =
(
ω1 − i

κ1

2

)
a†

1a1 +
(
ω2 − i

κ2

2

)
a†

2a2

+
(
ω3 − i

κ3

2

)
a†

3a3 + g(a1a2a†
3 + a†

1a†
2a3), (1)

where ω j and κ j are the frequency and photon loss rate
of the jth resonance, respectively, and g is the trimodal
coupling coefficient. For simplicity, we define a complex
frequency α j ≡ ω j − i κ j

2 . For the trimodal interaction to
be resonantly enhanced, the three modes need to satisfy
the frequency-matching condition ω1 + ω2 ≈ ω3. The cavity
photon loss includes both leakage into the waveguide and
intrinsic losses due to, for example, material absorption and

surface scattering, i.e., κ j = κ je + κ ji, where κ je is the cavity-
waveguide coupling rate and κ ji is the intrinsic photon loss
rate. Depending on the configuration of the waveguide-cavity
coupling, the relation between the states of the outgoing and
incoming photons in the waveguide is determined by the
input-output formalism [26]. In this paper, we specifically
consider the case of a cavity side-coupled to a waveguide
unidirectionally—typical for ring resonators—which has the
following input-output relation of the operators,

aout, j (t ) = ain, j (t ) − i
√

κ jea j (t ). (2)

It turns out such one-port cavity-waveguide configuration is
critical for realizing strong quantum correlations between
propagating waveguide photons coupled via a weak nonlinear
optical cavity. However, the computation method developed
here can be straightforwardly generalized to other waveguide-
cavity configurations. For the calculation below, we also
assume a linear dispersion of the waveguide, which is justified
given the linewidth of the cavity, and thus the operation band-
width of the system, is much smaller than the cavity frequency
[27].

The goal of this section is to calculate the scattering ma-
trix (S-matrix) of the one- and two-photon transport via the
waveguide-coupled trimodal χ (2) cavity [Figs. 1(b)–1(d)]. We
first use a systematic method from Ref. [14] and apply it to
the present case of a multimode χ (2) cavity. We also develop
a Feynman diagram approach which provides further physical
insight of the photon transport while lessen the computation
complexity associated with the nonperturbative method of
Ref. [14], especially for weak nonlinear systems.

A. One-to-one-photon transport

We first consider the transport of a single photon
[Fig. 1(b)]. The amplitude of transport of an incoming photon
at time t ′ to an outgoing photon at time t is given by the
time-domain S-matrix

St ;t ′ ≡ 〈0|aout,1(t )a†
in,1(t ′)|0〉, (3)

where the photon is assumed to be in resonant with the a1

mode. As shown in Ref. [14], the time-domain S-matrix is re-
lated to the Green’s function of the local system, i.e., here the
nonlinear optical cavity, by applying Eq. (2) and the quantum
causality condition

[a(t ), I (t ′)] = [a†(t ), I (t ′)] = 0, for t � t ′, (4)

[a(t ), O(t ′)] = [a†(t ), O(t ′)] = 0, for t � t ′, (5)

where I (O)(t ′) is a shorthand notation for the input(output)
operators that represent either ain(out) (t ′) or a†

in(out)(t
′). Thus,

the single-photon S-matrix becomes

St ;t ′ = δ(t − t ′) − κ1eG(t ; t ′), (6)

where G(t ; t ′) = 〈0|T̂ [a1(t )a†
1(t ′)]|0〉 is the two-point Green’s

function, T̂ is the time ordering operator, and we have also
used [ain(out)(t ), a†

in(out)(t
′)] = δ(t − t ′) in the derivation.

The Green’s function of the local quantum system is calcu-
lated using operators time-evolved according to the effective
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Hamiltonian of 1 [14]. Thus, we proceed

G(t ; t ′) = 〈0|eiHefft a1e−iHefft eiHefft ′
a†

1e−iHefft ′ |0〉 θ (t − t ′)

= eiα1(t ′−t )θ (t − t ′), (7)

where θ (t − t ′) is the Heaviside step function.
The frequency-domain S-matrix quantifying the transport

amplitude between output and input photons with fixed fre-
quency or momentum is given by the Fourier transform of the
time-domain S-matrix. For the single-photon transport,

Sp1;k1 ≡ F {St ;t ′ }

=
∫

dt√
2π

eip1t
∫

dt ′
√

2π
eik1t ′

St ;t ′

= δ(p1 − k1) − κ1eG(p1; k1), (8)

where G(p1; k1) is the Fourier transform of the Green’s
function of (7). This definition of Fourier transform
leads to 〈k|k′〉 = δ(k − k′) given 〈t |t ′〉 = δ(t − t ′), where
|k〉 ≡ F {|t〉}. The momentum-space Green’s function

thus is

G(p1; k1) = i

k1 − α1
δ(p1 − k1). (9)

As a result, we have

Sp1;k1 =
(

1 − iκ1e

k1 − α1

)
δ(p1 − k1) ≡ tk1δ(p1 − k1), (10)

where tk1 is the single-photon transmission coefficient. The
derivation above straightforwardly applies to transport of a
single photon in resonant with other resonances. For the rest of
the paper, we use the subscript j in the momentum to indicate
photons in resonant with the jth resonance.

B. Two-to-one-photon transport and vice versa

Next, we consider the transport of two a1 and a2 photons
to one a3 photon enabled by the χ (2) cavity [Fig. 1(c)]. This
corresponds to the sum-of-frequency process in nonlinear op-
tics. Following a similar procedure, the time-domain S-matrix
of this process is found to be

St3;t ′
1t ′

2
≡ 〈0|aout,3(t3)a†

in,1(t ′
1)a†

in,2(t ′
2)|0〉

= i
√

κ1eκ2eκ3e〈0|T̂ [a3(t3)a†
1(t ′

1)a†
2(t ′

2)]|0〉
= i

√
κ1eκ2eκ3e

(〈0|a3(t3)a†
1(t ′

1)a†
2(t ′

2)|0〉 θ (t3 − t ′
1)θ (t ′

1 − t ′
2) + 〈0|a3(t3)a†

2(t ′
2)a†

1(t ′
1) |0〉θ (t3 − t ′

2)θ (t ′
2 − t ′

1)
)
.

(11)

We introduce |mnr〉 to denote the state with m, n, and r photons in mode a1, a2, and a3, respectively. One key property of the
χ2 trimodal system is that {|100〉}, {|010〉}, and {|110〉, |001〉} form three closed subspaces of the effective Hamiltonian of (1).
Based on this property, we proceed to compute Eq. (11):

〈0|a3(t3)a†
1(t ′

1)a†
2(t ′

2)|0 = 〈000|a3(t3)(|001〉〈001| + |110〉 〈110|)a†
1(t ′

1)|010〉〈010|a†
2(t ′

2)|000〉
= (〈001|e−iHefft3 |001〉〈001|eiHefft ′

1 |110〉 + 〈001|e−iHefft3 |110〉〈110|eiHefft ′
1 |110〉)e−iα2(t ′

1−t ′
2 )

= g√
	α2 + 4g2

e−iα2(t ′
1−t ′

2 )(eiλ2(t ′
1−t3 ) − eiλ1(t ′

1−t3 ) ), (12)

where 	α = α1 + α2 − α3 and λ1,2 = 1
2 (α1 + α2 + α3) ± 1

2

√
	α2 + 4g2 are the eigenvalues of Heff in the subspace spanned by

|110〉 and |001〉: [
α1 + α2 g

g α3

]
. (13)

The result of 〈0|a3(t3)a†
2(t ′

2)a†
1(t ′

1)|0〉 is obtained by exchanging the subscripts in Eq. (12). Finally, the momentum-space S-matrix,
Sp3;k1k2 ≡ F {St3;t ′

1t ′
2
}, is given by

Sp3;k1k2 ≡ i
√

κ1eκ2eκ3eG(p3; k1, k2) = −ig
√

κ1eκ2eκ3e√
2π

(k1 + k2 − α1 − α2)

(k1 − α1)(k2 − α2)(k1 + k2 − λ1)(k1 + k2 − λ2)
δ(p3 − k1 − k2), (14)

where G(p3; k1, k2) is the momentum-space Green’s function.
For the degenerate case, i.e., a1 and a2 modes are the same mode, the matrix form of Heff in the subspace spanned by |110〉

(i.e., |20〉) and |001〉 is given by [
2α1

√
2g√

2g α3

]
. (15)

After a similar derivation, we obtain

Sp3;k1k2 = −2ig

√
κ2

1eκ3e√
2π

(k1 + k2 − 2α1)

(k1 − α1)(k2 − α1)(k1 + k2 − λ′
1)(k1 + k2 − λ′

2)
δ(p3 − k1 − k2), (16)
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where λ′
1,2 = 1

2 (2α1 + α3) ± 1
2

√
(2α1 − α3)2 + 8g2 are the

eigenvalues of the matrix of (15). It is worth pointing out that
λ1,2 (λ′

1,2) are functions of the trimodal coupling coefficient g,
and thus Eqs. (14) and (16) are nonperturbation result in terms
of g, contributed by all virtual processes. These processes
involving creation and annihilation of virtual photons will be
revealed using the Feynman diagram approach in Sec. III.

The reverse process of one-to-two-photon transport has an
S-matrix

St ′
1t ′

2;t3 ≡ 〈0|aout,1(t ′
1)aout,2(t ′

2)a†
in,3(t3)|0〉, (17)

whose Fourier transform satisfies

Sk1k2;p3 ≡ F
{
St ′

1t ′
2;t3

} = Sp3;k1k2 . (18)

C. Two-to-two-photon transport

Last, we consider the process of transport of two a1 and
a2 photons to two a1 and a2 photons, without conversion to
a3 photons [Fig. 1(d)]. We again start from the time-domain
S-matrix

St1t2;t ′
1t ′

2
≡ 〈0|aout,1(t1)aout,2(t2)a†

in,1(t ′
1)a†

in,2(t ′
2)|0〉

= δ(t1 − t ′
1)δ(t2 − t ′

2) − κ1e〈0|T̂ [a1(t1)a†
1(t ′

1)]|0〉δ(t2 − t ′
2) − κ2e〈0|T̂ [a2(t2)a†

2(t ′
2)]|0〉δ(t1 − t ′

1)

+ κ1eκ2e〈0|T̂ [a1(t1)a1(t2)a†
1(t ′

1)a†
2(t ′

2)]|0〉. (19)

The second and third terms are the single-photon Green’s function, which have been calculated [see Eq. (7)]. The last term is
new and involves six different time orderings:

〈0|T̂ [
a2(t2)a1(t1)a†

1(t ′
1)a†

2(t ′
2)

]|0〉 = 〈0|a2(t2)a1(t1)a†
1(t ′

1)a†
2(t ′

2)|0〉θ (t2 − t1)θ (t1 − t ′
1)θ (t ′

1 − t2)

+ 〈0|a2(t2)a1(t1)a†
2(t ′

2)a†
1(t ′

1)|0〉θ (t2 − t1)θ (t1 − t ′
2)θ (t ′

2 − t ′
1)

+ 〈0|a1(t1)a†
1(t ′

1)a2(t2)a†
2(t ′

2)|0〉θ (t1 − t ′
1)θ (t ′

1 − t2)θ (t2 − t ′
2)

+ 〈0|a1(t1)a2(t2)a†
2(t ′

2)a†
1(t ′

1)|0〉θ (t1 − t2)θ (t2 − t ′
2)θ (t ′

2 − t1)

+ 〈0|a1(t1)a2(t2)a†
1(t ′

1)a†
2(t ′

2)|0〉θ (t1 − t2)θ (t2 − t ′
1)θ (t ′

1 − t ′
2)

+ 〈0|a2(t2)a†
2(t ′

2)a1(t1)a†
1(t ′

1)|0〉θ (t2 − t ′
2)θ (t ′

2 − t1)θ (t1 − t ′
1). (20)

We first calculate 〈0|a2(t2)a1(t1)a†
1(t ′

1)a†
2(t ′

2)|0〉:

〈0|a2(t2)a1(t1)a†
1(t ′

1)a†
2(t ′

2)|0〉 = 〈000|a2(t2)|010〉〈010|a1(t1)(|110〉〈110| + |001〉〈001|)a†
1(t ′

1)|010〉〈010|a†
2(t ′

2)|000〉
= eiα2(−t2+t ′

2+t1−t ′
1 )(〈110|e−iHefft1 |110〉〈110|eiHefft ′

1 |110〉 + 〈110|e−iHefft1 |001〉〈001|eiHefft ′
1 |110〉)

= eiα2(−t2+t ′
2+t1−t ′

1 )

[(
1

2
− 1

2

	α√
	α2 + 4g2

)
e−iλ1(t1−t ′

1 ) +
(1

2
+ 1

2

	α√
	α2 + 4g2

)
e−iλ2(t1−t ′

1 )

]
. (21)

Similarly, the second and third terms in Eq. (20) are found to be

〈0|a2(t2)a1(t1)a†
2(t ′

2)a†
1(t ′

1)|0〉 = eiα2(t1−t2 )eiα1(t ′
1−t ′

2 )

[(
1

2
− 1

2

	α√
	α2 + 4g2

)
e−iλ1(t1−t ′

2 ) +
(

1

2
+ 1

2

	α√
	α2 + 4g2

)
e−iλ2(t1−t ′

2 )

]
,

(22)

〈0|a1(t1)a†
1(t ′

1)a2(t2)a†
2(t ′

2)|0〉 = eiα1(t ′
1−t1 )eiα2(t ′

2−t2 ). (23)

The other three terms in Eq. (20) are obtained by simply exchanging the indices 1 and 2 in Eqs. (21)–(23).
Finally, by Fourier transform of Eq. (20), we obtain the momentum-space Green’s function

G(p1, p2; k1, k2) = − 1

(k1 − α1)(k2 − α2)
δ(p1 − k1)δ(p2 − k2) + M(p1, p2, k1, k2)δ(p1 + p2 − k1 − k2), (24)

where

M(p1, p2, k1, k2) = − ig2

2π

k1 + k2 − α1 − α2

(k1 − α1)(k2 − α2)(p1 − α1)(p2 − α2)(k1 + k2 − λ1)(k1 + k2 − λ2)
, (25)

and the momentum-space S-matrix

Sp1 p2;k1k2 = tk1tk2δ(p1 − k1)δ(p2 − k2) + κ1eκ2eM(p1, p2, k1, k2)δ(p1 + p2 − k1 − k2). (26)
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For the case of degenerate a1 and a2, after a similar derivation, we have

G(p1, p2; k1, k2)

= − 1

(k1 − α1)(k2 − α1)
[δ(p1 − k1)δ(p2 − k2) + δ(p1 − k2)δ(p2 − k1)] + M(p1, p2, k1, k2)δ(p1 + p2 − k1 − k2) (27)

and

Sp1 p2;k1k2 = tk1tk2 [δ(p1 − k1)δ(p2 − k2) + δ(p1 − k2)δ(p2 − k1)] + κ2
1eM(p1, p2, k1, k2)δ(p1 + p2 − k1 − k2), (28)

where

M(p1, p2, k1, k2) = −2ig2

π

k1 + k2 − 2α1

(k1 − α1)(k2 − α1)(p1 − α1)(p2 − α1)(k1 + k2 − λ′
1)(k1 + k2 − λ′

2)
. (29)

Equations (26) and (28) show that the S-matrix of two-to-two-
photon transport consists of an interaction-free component,
which is the product of two single-photon transmission co-
efficients, and an interaction-mediated component. The total
transport amplitude is given by the superposition of the two
components, representing the quantum interference between
the two pathways. This leads to profound consequences of the
photon-photon interaction via the waveguide-coupled nonlin-
ear optical cavities and applications in quantum information
science (see Sec. IV). The interaction-mediated component
was also interpreted as the two-photon bound state previously
[10].

III. FEYNMAN DIAGRAM APPROACH

In this section, we introduce a perturbation method based
on Feynman diagrams to calculate the momentum-space
Green’s function and S-matrix. The perturbation method,
suited for weak nonlinear systems with g/κ j < 1, reveals the
relevant physical processes contributing to the few-photon
transport amplitude. It is also mathematically simplified, es-
pecially when only the leading order Feynman diagrams are
of interest, compared to the previous method where careful
cancellation of divergence is needed when performing the
Fourier transform of the time-domain Green’s function involv-
ing the Heaviside step function. The Feynman diagram rules
here resemble those developed in quantum field theory (see,
e.g., Ref. [28]). In essence, the n-operator Green’s function
is calculated using all connected Feynman diagrams with n
external points, which are constructed from basic elements
including “propagator” and “vertex.” The propagator is the
two-point free-particle Green’s function, and the vertex cor-
responds to the bare interaction term of the Hamiltonian. For

the Hamiltonian of (1), the Feynman diagram rules are given
as follows:

Propagator: i
k−α

Vertex: −ig

Impose energy conservation at each vertex: 1√
2π

δ(
∑

k − ∑
p)

Integrate undetermined momentum:
∫

dk
∫

d p

Multiply the symmetry factor: m! for m propagators of
the same mode connecting two vertices or connecting a
vertex with external points.

The Feynman diagrams corresponding to the propagator
and vertex are shown in Fig. 2(a). A few differences from the
Feynman diagram rules for field operators in quantum field
theory are worth noting. Here, because the equation of motion
for the cavity mode operator is a linear differential equation,
the propagator, given by Eq. (9), is linearly dependent on
the momentum. Further, because the effective Hamiltonian of
the open quantum system already includes loss terms, i.e.,
iκ j , the propagator does not diverge at the real resonance
frequency, avoiding the addition of an infinitesimal imaginary
term in the propagator for performing the momentum inte-
grals.

The three- and four-point momentum-space Green’s func-
tions related to Eqs. (11) and (20) can be calculated using
the Feynman diagrams shown in Figs. 2(b) and 2(c), respec-
tively. These Feynman diagrams also illustrates the physical
processes, involving creation and annihilation of virtual pho-
tons, that contribute to the photon transport amplitude. After
computation of each Feynman diagram according to the rules
above, the three-point Green’s function is found to be

G(p3; k1, k2) = − g√
2π

1

(k1 − α1)(k2 − α2)(p3 − α3)

∞∑
n=0

(
g2

(p3 − α1 − α2)(p3 − α3)

)n

δ(p3 − k1 − k2), (30)

where the term of n = 0 corresponds to the first diagram on the right-hand side in Fig. 2(b) and each term of n > 0 corresponds
to the diagram with n repeated part in the parentheses. The four-point Green’s function is found to be

G(p1, p2; k1, k2) = − 1

(k1 − α1)(k2 − α2)
δ(p1 − k1)δ(p2 − k2) − ig2

2π

1

(k1 − α1)(k2 − α2)(p1 − α1)(p2 − α2)(k1 + k2 − α3)

×
∞∑

n=0

(
g2

(k1 + k2 − α1 − α2)(k1 + k2 − α3)

)n

δ(p1 + p2 − k1 − k2), (31)
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(a)

(b)

(c)

FIG. 2. (a) Feynman diagram rules for the propagator and vertex. Red, green, and blue lines corresponds to a1, a2, and a3 mode photons,
respectively.(b, c) Feynman diagrams contributing to the Green’s function of two-to-one-photon transport (b) and two-to-two-photon transport
(c). The part enclosed by the parentheses is repeated by n times.

where the first term corresponds to the first diagram on the right-hand side in Fig. 2(c), the term of n = 0 corresponds to the
second diagram, and each term of n > 0 corresponds to the diagram with n repeated part in the parentheses. One can confirm
that Eqs. (30) and (31) reproduce Eqs. (14) and (24), respectively, after performing the summation. As an example of applying
the Feynman diagram rules, we explicitly show the calculation of the n = 1 diagram in Fig. 2(b). Higher order diagrams are
essentially multiple repetition of the component in the parentheses of this basic diagram. The formula corresponding to this
diagram, following the Feynman diagram rules from left to right, is given by

i

k1 − α1

i

k2 − α2

−ig√
2π

∫
dq3δ(q3 − k1 − k2)

i

q3 − α3

−ig√
2π

×
∫

dq1dq2δ(q1 + q2 − q3)
i

q1 − α1

i

q2 − α2

−ig√
2π

δ(q1 + q2 − p3)
i

p3 − α3

= − g√
2π

δ(p3 − k1 − k2)
1

(k1 − α1)(k2 − α2)(p3 − α3)

−g2

2π i

∫
dq1dq2δ(q1 + q2 − p3)

1

q1 − α1

1

q2 − α2

1

p3 − α3

= − g√
2π

δ(p3 − k1 − k2)
1

(k1 − α1)(k2 − α2)(p3 − α3)

g2

(p3 − α1 − α2)(p3 − α3)
, (32)

which yields the n = 1 term in Eq. (30).
We note Eqs. (30) and (31) are power series expansion in

terms of (g/κ )2, where κ is the shorthanded notation for κ j

or their sum, for input and output photons in resonant with
the cavity modes, i.e., k j, p j ≈ ω j , and a frequency-matched
cavity (ω1 + ω2 ≈ ω3). As a result, only leading order
Feynman diagrams are needed for weak nonlinear opti-
cal cavities, i.e., (g/κ )2 < 1, which significantly simplifies
the calculation. The computation here is also divergence
free, in contrast to the method used in the previous sec-
tion which encounters divergences during Fourier transform
of the time-domain Green’s function and thus requires careful
cancellations [14].

IV. OBSERVATIONAL EFFECTS OF
FEW-PHOTON TRANSPORT

In this section, we discuss several observational effects
associated with the few-photon transport via a waveguide-
coupled χ (2) cavity. Throughout this section, we consider
input photons in a weak coherent state, which are commonly
used for single-photon level experiments.

A. Single-photon down-conversion

We first consider the down-conversion process of a3 pho-
tons to a1 and a2 photons. The input weak coherent state of
monochromatic a3 photons can be written as

|ψin〉 = |0〉 + α|1t 〉 + α2

√
2
|1t 1t 〉 + O(α3), (33)

where α is the amplitude of the coherent state and |1t 〉 =
|1〉e−ikt represents a monochromatic single-photon state with
momentum k in the time domain. Note |1t 〉 	= |t〉. We are in-
terested in the second-order correlation function of the output
a1 and a2 photons:

g(2)(τ ) = 〈ψin|a†
out,1(t )a†

out,2(t + τ )aout,2(t + τ )aout,1(t )|ψin〉
〈ψin|a†

out,1(t )aout,1(t )|ψin〉〈ψin|a†
out,2(t )aout,2(t )|ψin〉

,

(34)

which can be calculated using the momentum-space S-matrix.
To do so, we first perform a Fourier transform of |ψin〉:

F {|ψin〉} =
∫

dt√
2π

eik′t |1〉e−ikt =
√

2π |1〉δ(k′ − k). (35)
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Thus we define Fourier-transformed monochromatic single-photon state to be
√

2π |1k〉. Keeping the leading order term in |ψin〉,
we have

〈ψin|a†
out,1(t )a†

out,2(t + τ )aout,2(t + τ )aout,1(t )|ψin〉 = |α|2〈1t |a†
out,1(t )a†

out,2(t + τ )aout,2(t + τ )aout,1(t )|1t 〉
= |α|2〈1t |a†

out,1(t )a†
out,2(t + τ )|0〉〈0|aout,2(t + τ )aout,1(t )|1t 〉

= |α|2
2π

∫
d p1d p2〈1k|a†

out,1(p1)a†
out,2(p2)|0〉eip1t+ip2(t+τ )

×
∫

d p̃1d p̃2〈0|aout,2( p̃2)aout,1( p̃1)|1k〉e−i p̃1t−i p̃2(t+τ )

= |α|2
2π

∫
d p1d p2S∗

p1 p2;keip1t+ip2(t+τ )

×
∫

d p̃1d p̃2Sp̃1 p̃2;ke−i p̃1t−i p̃2(t+τ )

=
{ |α|2g2κ1eκ2eκ3e

|(k−λ1 )(k−λ2 )|2 e−κ2τ , τ > 0,
|α|2g2κ1eκ2eκ3e

|(k−λ1 )(k−λ2 )|2 eκ1τ , τ < 0,
(36)

where Sp1 p2;k is given by Eq. (18), and

〈ψin|a†
out,1(t )aout,1(t )|ψin〉 = |α|2〈1t |a†

out,1(t )aout,1(t )|1t 〉

= |α|2
∫

d p1d p̃1〈1k|a†
out,1(p1)aout,1( p̃1)|1k〉eip1t−i p̃1t

= |α|2
∫

d p1d p̃1〈1k|a†
out,1(p1)

(∫
d p2|p2〉〈p2| +

∫
d p2i|p2i〉〈p2i|

)
aout,1( p̃1)|1k〉eip1t−i p̃1t

= |α|2
(∫

d p1d p̃1d p2Sp1 p2;kS∗
p̃1 p2;k + κ2i

κ2e

∫
d p1d p̃1d p2iSp1 p2i ;kS∗

p̃1 p2i;k

)
eip1t−i p̃1t

= |α|2 κ2

κ2e

∫
d p1d p̃1d p2Sp1 p2;kS∗

p̃1 p2;keip1t−i p̃1t

= |α|2 κ1e

κ1

g2(κ1 + κ2)κ3e

|(k − λ1)(k − λ2)|2 , xs (37)

where |p2i〉 represents the state of a2 photons in the intrinsic
loss channel. Because the states in the waveguide and the
intrinsic loss channel combined form a complete Hilbert space
of the leaked photons from the cavity, we have the identity

∫
d p2|p2〉〈p2| +

∫
d p2i|p2i〉〈p2i| = I. (38)

In other words, 〈ψin|a†
out,1(t )aout,1(t )|ψin〉 measures the total

a1 photon flux, regardless of the place of a2 photons, which
could either be in the waveguide or the intrinsic loss channel.
Thus, we have to insert Eq. (38) into Eq. (37). We have
also used the fact that the S-matrix involving |p2i〉 will be
proportional to

√
κ2i, by replacing

√
κ2e in Eq. (14). Ex-

changing subscripts 1 and 2 in Eq. (37) yields the result of
〈ψin|a†

out,2(t )aout,2(t )|ψin〉. The intracavity photon-pair gener-
ation rate is inferred from Eq. (37) to be

R = |α|2 g2(κ1 + κ2)κ3e

|(k − λ1)(k − λ2)|2 . (39)

Finally, we have

g(2)(τ ) = |(k − λ1)(k − λ2)|2
2|α|2g2(κ1 + κ2)κ3e

2κ1κ2

κ1 + κ2
×

{
e−κ2τ , τ > 0,

eκ1τ , τ < 0,

(40)

and in the limit g � κ1,2,3,

g(2)(τ ) ≈
[
(k − ω1 − ω2)2 + (

κ1+κ2
2

)2][
(k − ω3)2 + (

κ3
2

)2]
2|α|2g2(κ1 + κ2)κ3e

× 2κ1κ2

κ1 + κ2
×

{
e−κ2τ , τ > 0,

eκ1τ , τ < 0.
(41)

Interestingly, Eq. (41) is identical to the result of spontaneous
parametric down-conversion derived via a semiclassical ap-
proach by assuming nondepleted classical pumps and using
the Gaussian moment factoring theorem [16,29].

B. Photon blockade

Next, we consider transport of a1 photons via a cavity
with degenerate a1 and a2 modes. For input of a1 photons in
this case, there will be probability of up-conversion to output
a3 photons; however, we focus on the process without such
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up-conversion, which could be separated apart from the up-
converted a3 photons because a1 and a3 photons are disparate
in frequency. Assuming monochromatic input a1 photons in
a weak coherent state given by Eq. (33), we compute the
second-order self-correlation function of the transported a1

photons:

g(2)(τ ) = 〈ψin|a†
out,1(t )a†

out,1(t + τ )aout,1(t + τ )aout,1(t )|ψin〉
〈ψin|a†

out,1(t )aout,1(t )|ψin〉〈ψin|a†
out,1(t )aout,1(t )|ψin〉

.

(42)

By keeping the leading order terms in |ψin〉, we have

〈ψin|a†
out,1(t )aout,1(t )|ψin〉

= |α|2〈1t |a†
out,1(t )aout,1(t )|1t 〉

= |α|2〈1t |a†
out,1(t )|0〉〈0|aout,1(t )|1t 〉

= |α|2
∫

d peipt 〈1k|a†
out,1(p)|0〉

∫
d p̃e−i p̃t 〈0|aout,1( p̃)|1k〉

= |α|2
∫

d peipt S∗
p;k

∫
d p̃e−i p̃t Sp̃;k

= |α|2|tk|2 (43)

and

〈ψin|a†
out,1(t )a†

out,1(t + τ )aout,1(t + τ )aout,1(t )|ψin〉

= |α|4
2

〈1t 1t |a†
out,1(t )a†

out,1(t +τ )aout,1(t + τ )aout,1(t )|1t 1t 〉

= |α|4
2

∫
d p1d p2〈1k1k|a†

out,1(p1)a†
out,1(p2)|0〉eip1t+ip2(t+τ )

×
∫

d p̃1d p̃2〈0|aout,1( p̃2)aout,1( p̃1)|1k1k〉e−i p̃1t−i p̃2(t+τ )

= |α|4
4

∫
d p1d p2S∗

p1 p2;kkeip1t+ip2(t+τ )

×
∫

d p̃1d p̃2Sp̃1 p̃2;kke−i p̃1t−i p̃2(t+τ )

= |α|4|t2
k + T (k, τ )|2, (44)

where the S-matrix is given by Eq. (28) and

T (k, τ ) = − 2g2κ2
1e

(2k − λ′
1)(2k − λ′

2)(k − α1)2
e−i|τ |(α1−k). (45)

Note the additional factor of 1/2 in the third equality of
Eq. (44) comes from the definition of Fock state |1k1k〉 =
|2k〉 = 1√

2
a†2

in (k)|0〉. Finally, we have

g(2)(τ ) =
∣∣t2

k + T (k, τ )
∣∣2∣∣t2

k

∣∣2 . (46)

This result is remarkable in that even when |T (k, τ )| is
small, which is the case for practical χ (2) nonlinear optical
cavities with g/κ � 1, highly nonclassical correlations of
transported photons, i.e., g(2)(τ ) 	= 1, could be achieved by
making |t2

k | close to |T (k, τ )|. This is due to the quantum
interference between the interaction-free and interaction-
mediated amplitudes of the two-photon transport, as indicated

FIG. 3. g(2)(τ ) for various κ1e/κ1i, given k = ω1, g/κ1i = 0.02,
κ3i = 2κ1i, κ3e = 0.1κ1i.

by the S-matrix [Eq. (26)], especially when the two ampli-
tudes are compatible. To illustrate this more explicitly, for the
one-port, phase-matched cavity (2ω1 = ω3) and on-resonance
input photons (k = ω1),

t2
ω1

=
(κ1i − κ1e

κ1i + κ1e

)2

(47)

and

T (ω1, 0) = − 8g2κ2
1e

κ2
1 (κ1κ3/2 + 2g2)

. (48)

Thus, by making κ1i and κ1e such that t2
ω1

≈ −T (ω1, 0), one
obtains g(2)(0) ≈ 0, which indicates the photon blockade. Re-
markably, this can be achieved even for g/κ1,3 � 1, if κ1i ≈
κ1e, i.e., close to the critical coupling between the cavity and
waveguide. We note the minus sign of T (ω1, 0) is important
in cancellation with t2

ω1
; intuitively, this is because during the

interaction-mediated process the state |20〉 undergoes a Rabi
flip with the virtual state |01〉 and back again, which yields a
Berry phase of π .

Moreover, the statistical properties of the output a1 photons
can be altered, e.g., from antibunching to bunching [g(2)(0) >

g(2)(τ )], by controlling t2
k via κ1e or κ1i. This is shown in

Fig. 3. For these plots, we have used experimentally achiev-
able device parameters of a state-of-the-art χ (2) nonlinear
photonic platform with g/κ1i in the range of a few percent
[22]. The correlation functions of finite wave packets can
also be calculated using the S-matrix, taking into account
of the spectral distribution of the wave packet. The result is
included in Appendix B, which shows the averaging effect
on the nonclassical correlation due to the finite spectral width
of the wave packet. However, this is not surprising because
the cavity-based mechanism is expected to work only for
wave packets with spectral width much smaller than the cavity
linewidth.
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FIG. 4. Nonlinear phase shift for various κ1e/κ1i, given g/κ1i =
0.02, κ3i = 2κ1i, κ3e = 0.1κ1i.

C. Nonlinear phase shift

The photon-photon interaction in the χ (2) cavity also in-
duces a nonlinear phase shift of the transported photons. To
compute the nonlinear phase shift, we point out the numerator
of the second-order correlation function [Eq. (42)] actually
gives the norm of the time-domain wave function of the
transported two photons (see Appendix A). Thus, the wave
function of the transported two photons can be written as

〈t, t + τ ||ψout〉 = e−ik(2t+τ )
[
t2
k + T (k, τ )

]
. (49)

The wave function of two photons without the interaction is

〈t, t + τ
∣∣∣∣ψ (0)

out

〉 = e−ik(2t+τ )t2
k . (50)

The nonlinear phase shift due to the photon-photon interaction
thus is

ϕn ≡ Arg[〈t, t + τ |ψout〉] − Arg
[〈

t, t + τ
∣∣ψ (0)

out

〉]
= Arg

[
1 + T (k, τ )

t2
k

]
. (51)

By making |t2
k | ≈ |T (k, τ )|, large nonlinear phase shift can

be achieved, which is possible even for the weak coupling
regime g � κ1. Such a nonlinear phase shift is a key enabler
for quantum nondemolition measurement of photons [23] and
conditional quantum logic gates [24,30].

Figure 4 shows the calculated nonlinear phase shift (for
τ = 0) using experimentally achievable parameters of a state-
of-the-art χ (2) nonlinear photonic platform [22]. It is seen that
large and even π -nonlinear phase shift can be achieved in
practical devices. Actually, π -nonlinear phase shift is always
achieved at k = ω1 as long as t2

ω1
< −T (ω1, 0).

D. Two-mode nonclassical correlation

In Secs. IV B and IV C, we considered a cavity with de-
generate a1 and a2 modes. Here we consider a cavity with
nondegenerate a1 and a2 modes which satisfy the frequency-
matching condition ω1 + ω2 ≈ ω3 and show nonclassical
two-mode correlations could be generated. We assume now
the input state to be the product of two weak coherent states

in modes a1 and a2,

|ψin〉 = |α〉1|β〉2

=
(

|0〉 + α|1t 〉1 + α2

√
2
|1t 1t 〉1 + O(α3)

)
×

(
|0〉 + β|1t 〉2 + β2

√
2
|1t 1t 〉2 + O(β3)

)
. (52)

The two-mode and single-mode correlations are, respectively,

G12(τ )

= 〈ψin|a†
out,1(t )a†

out,2(t + τ )aout,2(t + τ )aout,1(t )|ψin〉

=|αβ|2
∫

d p1d p2〈1k1 1k2 |a†
out,1(p1)a†

out,2(p2)|0〉eip1t+ip2(t+τ )

×
∫

d p̃1d p̃2〈0|aout,2( p̃2)aout,1( p̃1)|1k1 1k2〉e−i p̃1t−i p̃2(t+τ )

= |αβ|2
∫

d p1d p2S∗
p1 p2;k1k2

eip1t+ip2(t+τ )

×
∫

d p̃1d p̃2Sp̃1 p̃2;k1k2 e−i p̃1t−i p̃2(t+τ )

= |αβ|2|tk1tk2 + T̃ (k1, k2, τ )|2, (53)

where the S-matrix is given by Eq. (26) and

T̃ (k1, k2, τ )

=
{

− g2κ1eκ2e

(k1+k2−λ1 )(k1+k2−λ2 )(k1−α1 )(k2−α2 ) e
−iτ (α2−k2 ), τ > 0,

− g2κ1eκ2e

(k1+k2−λ1 )(k1+k2−λ2 )(k1−α1 )(k2−α2 ) e
iτ (α1−k1 ), τ < 0,

(54)

and

G11(τ )

= 〈ψin|a†
out,1(t )a†

out,1(t + τ )aout,1(t + τ )aout,1(t )|ψin〉

= |α|4
2

∫
d p1d p2〈1k1 1k1 |a†

out,1(p1)a†
out,1(p2)|0〉eip1t+ip2(t+τ )

×
∫

d p̃1d p̃2〈0|aout,1( p̃1)aout,1( p̃2)|1k1 1k1〉e−i p̃2t−i p̃1(t+τ )

= |α|4
4

∫
d p1d p22t∗

k1
t∗
k1
δ(p1 − k1)δ(p2 − k1)eip1t+ip2(t+τ )

×
∫

d p̃1d p̃22tk1tk1δ(p1 − k1)δ(p2 − k1)e−i p̃2t−i p̃1(t+τ )

= |α|4|tk1 |4, (55)

and similarly,

G22(τ ) = |β|4|tk2 |4. (56)

In Eq. (55) we have used the fact that the transport of two a1

photons via a nondegenerate cavity is interaction-free because
2ω1 	= ω3.

To measure the nonclassicality of the two-mode correla-
tion, we define

ζ (τ ) ≡ G12(τ )√
G11(τ )G22(τ )

= |1 + T̃ (k1, k2, τ )

tk1tk2

|2. (57)
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ζ (τ ) > 1 leads to violation of the Cauchy-Schwartz inequality
and indicates nonclassical two-mode correlations [31]. Given
the similarity of Eq. (57) and Eq. (B6), it is obvious that
ζ (τ ) > 1 can be achieved when |tk1tk2 | is sufficiently smaller
than |T̃ (k1, k2, τ )|.

V. CONCLUSION

In summary, we have theoretically studied few-photon
transport via a waveguide-coupled, multimode χ (2) optical
cavity. We used both nonperturbative method and a new per-
turbation method based on Feynman diagrams to compute
the S-matrix associated with the few-photon transport. The
Feynman diagram approach provides physical insight into
the transport process and is mathematically convenient. The

S-matrix shows that the two-photon transport involves quan-
tum interference between linear transmission and interaction-
mediated transport. This effect leads to rather unexpected
result that strong quantum correlations could be realized in
weak nonlinear systems by matching the linear transmis-
sion coefficient with the interaction-mediated amplitude. We
numerically showed several pronounced quantum optical ef-
fects, including photon blockade and π -conditional phase
shift, could be achieved in state-of-the-art nonlinear quantum
photonic platforms, which might have a significant impact
on using these systems for quantum information science
applications.
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APPENDIX A: THE WAVE FUNCTION OF TRANSPORTED PHOTONS

Here we prove the second-order correlation actually gives the norm of the output two-photon wave function.

〈ψin|a†
out(t )a†

out(t + τ )aout(t + τ )aout(t )|ψin〉

= 1

(2π )2

∫
d p1d p2d p3d p4ei[p1t+p2(t+τ )−p3(t+τ )−p4t]〈ψin|Ŝ†Ŝa†

out(p1)Ŝ†Ŝa†
out(p2)Ŝ†Ŝaout(p3)Ŝ†Ŝaout(p4)Ŝ†Ŝ|ψin〉

= 1

(2π )2

∫
d p1d p2d p3d p4ei[p1t+p2(t+τ )−p3(t+τ )−p4t]〈ψout|a†

in(p1)a†
in(p2)ain(p3)ain(p4)|ψout〉

= 1

(2π )2

∫
d p1d p2d p3d p4ei[p1t+p2(t+τ )−p3(t+τ )−p4t]〈ψout|a†

in(p1)a†
in(p2)|0〉〈0|ain(p3)ain(p4)|ψout〉

= 1

(2π )2

∫
d p1d p2ei[p1t+p2(t+τ )]〈p1, p2|ψout〉∗

∫
d p3d p4e−i(p3(t+τ )+p4t )〈p3, p4|ψout〉

= |〈t, t + τ |ψout〉|2, (A1)

where |t, t + τ 〉 represents the state of two photons at time t and t + τ , respectively, and thus the end result gives the time-domain
wave function of the output two photons. We have used Ŝ to represent the operator corresponding to the S-matrix defined in the
momentum space, which satisfies the unitary condition Ŝ†Ŝ = Î . We have also assumed the input and output states contain up to
two photons, which is consistent with Eq. (33).

APPENDIX B: CORRELATION FUNCTIONS FOR PHOTON WAVE PACKETS

We consider the input state being a photon wave packet, i.e., |ψin〉 = exp(αa† − α∗a)|0〉, where a = ∫
dk f (k)ak and f (k) is

the spectral distribution centered around k0 and satisfying
∫ | f (k)|2dk = 1. The first- and second-order correlation functions for

the photon wave packet are given by

〈ψin|a†
out,1(t )aout,1(t )|ψin〉 = |α|2

∫
dk1dk̃1 f (k1) f (k̃1)〈1k1 |a†

out,1(t )aout,1(t )|1k̃1
〉

= |α|2
∫

dk1dk̃1 f (k1) f (k̃1)〈1k1 |a†
out,1(p1)aout,1( p̃1)|1k̃1

〉ei(p1−p̃1 )t

= |α|2
∫

dk1d p1 f (k1)eip1t S∗
p1k1

∫
dk̃1d p̃1 f (k̃1)e−i p̃1t Sp̃1 k̃1

= |α|2
∫

dk1 f (k1)eik1t t∗
k1

∫
dk̃1 f (k̃1)e−ik̃1t tk̃1

= |α|2 |̃t (k0, t )|2, (B1)
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FIG. 5. g(2)(0) as a function of wave packet width γ . Other parameters used in the calculation are k0 = ω1, g/κ1i = 0.02, κ1i/κ1e = 1.04,
κ3i = 2κ1i, κ3e = 0.1κ1i.

where t̃ (k0, t ) = ∫
dk1 f (k1)e−ik1t tk1 , and

〈ψin|a†
out,1(t )a†

out,1(t + τ )aout,1(t + τ )aout,1(t )|ψin〉

= |α|4
2

∫
d p1d p2dk1dk2〈1k1 1k2 |a†

out,1(p1)a†
out,1(p2)|0〉eip1t+ip2(t+τ ) f (k1) f (k2)

×
∫

d p̃1d p̃2dk̃1dk̃2〈0|aout,1( p̃2)aout,1( p̃1)|1k̃1
1k̃2

〉e−i p̃1t−i p̃2(t+τ ) f (k̃1) f (k̃2)

= |α|4
4

∫
d p1d p2S∗

p1 p2;k1k1
eip1t+ip2(t+τ ) f (k1) f (k2)

×
∫

d p̃1d p̃2Sp̃1 p̃2;k̃1 k̃2
e−i p̃1t−i p̃2(t+τ ) f (k̃1) f (k̃2)

= |α|4 |̃t (k0, t )̃t (k0, t + τ ) + T̃ (k0, t, τ )|2, (B2)

where

T̃ (k0, t, τ ) = 1

2

∫
dk1dk2d p1κ

2
1eM(p1, k1 + k2 − p,k1, k2)e−ip1t−i(k1+k2−p1 )(t+τ ) f (k1) f (k2). (B3)

To illustrate the effect of finite spectral width of wave packets, we consider a spectral distribution of f (k) =
√

2
πγ

γ 2

(k−k0 )2+γ 2

which leads to

t̃ (k0, t ) =
{√

2πγ [e−i(k0−iγ )t (1 − iκ1e
k0−iγ−α1

) − e−iα1t 2γ κ1e

(α1−k0 )2+γ 2 ], t > 0,√
2πγ e−i(k0+iγ )t (1 − iκ1e

k0+iγ−α1
), t < 0

(B4)

and

T̃ (k0, t = 0, τ ) = − 4πg2κ2
1eγ

(k0 + iγ − α1)2(2k0 + 2iγ − λ′
1)(2k0 + 2iγ − λ′

2)
×

{
e−iα1τ , τ > 0,

e−2i(k0+iγ )τ+iα1τ , τ < 0.
(B5)

We assume the wave packet to be sufficiently long and thus ignore the temporal wave packet shape. The normalized second-order
correlation function thus is given by, setting t = 0,

g(2)(τ ) = |̃t (k0, 0)̃t (k0, τ ) + T̃ (k0, 0, τ )|2
|̃t (k0, 0)|2 |̃t (k0, τ )|2 . (B6)

We plot g(2)(0) as a function of γ in Fig. 5 for a parameter set which yields g(2)(0) = 0 for γ → 0, i.e., the continuous-wave
limit. The averaging effect is observed due to the spectral span of the photon wave packet, leading to g(2)(0) increasing from 0
to 1. However, g(2)(0) remains sufficiently small for γ � 10−2κ1.
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