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We consider the propagation of light beams through disordered lattices of coupled waveguides searching
for Anderson localization and investigating the evolution of nonclassical properties of injected quantum states.
We assume that the beam is initially in a variety of states, such as the complementary coherent state, the
reciprocal binomial state, and the polynomial state. The statistical properties of the evolved states were analyzed
numerically as functions of the localization and delocalization parameters averaged over many realizations of
disorder. We also numerically reconstruct the Wigner function of the output state. Interestingly, we find that
high values of disorder tend to preserve the quantum properties of some input states when we look at the input
waveguide despite of the coupling between it and the neighboring waveguides.
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I. INTRODUCTION

Nonclassical properties of quantized light field and its
generation, i.e., “quantum states engineering,” are essential
ingredients of quantum optics and quantum information. In-
deed, nonclassical states perform a crucial role in many
potential applications such as quantum teleportation [1–3],
quantum cryptography [4], quantum computation and quan-
tum communication [5], and quantum internet [6]. In this
direction, periodic photonic systems have emerged as a
platform to engineer new light field structures, presenting
numerous significant technological advances [7–10]. On the
other hand, the study of nonperiodic photonic structures, by
using small defects in periodic lattices [11–13] or disor-
dered and quasiperiodic structures [14–18], has demonstrated
a diversity of optical effects in the presence of Ander-
son localization, such as engineering of random lasers [19]
and structurally colored materials with precisely controllable
wavelength and angular dependence of scattering [20]. Re-
cently, it was demonstrated how to tune and freeze disorder in
photonic crystals by using percolation lithography [21].

Anderson localization—i.e., the suppression of transport
due to destructive interference of the many paths associated
with coherent multiple scattering from the modulation of a
disordered potential [22]—has been experimentally observed
in microwaves [23], light diffusive media [14,24], photonic
crystals [15,16], Bose-Einstein condensates [25,26], sound
waves [27], optical fiber arrays [28], etc. Inspired by these
experimental investigations, many theoretical studies have
been proposed by considering the system in the presence of
disordered potentials (see, for example, Refs. [29–39]).

Anderson localization of nonclassical light was investi-
gated for propagation in an array of waveguides in which
neighboring waveguides are evanescently coupled and dis-
order can be added in a controlled manner [40]. Specif-
ically, that work investigated the consequences of using

both sub-Poissonian and super-Poissonian input light on
the characteristics of Anderson localization, verifying the
enhancement in fluctuations of localized light and super-
bunching due to the medium’ s disorder. Also, an important
consequence of sub-Poissonian statistics of the incoming light
is to quench the total fluctuations at the output [40]. The
system employed in Ref. [40] is similar to that used in
Ref. [16] to experimentally investigate the evolution of linear
and nonlinear waves in the presence of Anderson localiza-
tion. Moreover, the disordered one-dimensional waveguide
lattice was also used to experimentally investigate an ex-
tensive list of phenomena: the signature of a localization
phase transition for light by directly measuring wave trans-
port inside the lattice [41], quantum correlations between
noninteracting particles evolving simultaneously in a disor-
dered medium [42], Hanbury-Brown–Twiss correlations of
Anderson-localized waves [43], the control of the polariza-
tion state of coherent light propagating through an optically
thick multiple-scattering medium by controlling only the
spatial phase of the incoming field with a spatial light
modulator [44], the coherent manipulation of two-photon
path-entangled states by multimode interference in multi-
mode waveguides [45], the observation of topological phase
transitions in photonic quasicrystals [46], the observation
of ensemble-averaged quantum correlations between path-
entangled photons undergoing Anderson localization [47], the
two-photon Anderson localization in a quadratic waveguide
array with the emergence of off-diagonal disorder [48], etc.

Here, inspired by the results obtained in Ref. [40], we
numerically investigate the propagation of light beams, pre-
viously prepared in nonclassical states of the electromagnetic
field, propagating in disordered lattices of waveguides and
undergoing Anderson localization. Our goal is to verify the
influence of Anderson localization on the statistical properties
of previously prepared input light field (nonclassical states).
To this end, we assume the beam in a variety of states, namely,
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the complementary coherent state [49], reciprocal binomial
state [50], polynomial state [51], thermal state, coherent state,
and squeezed state [52].

The rest of the paper is organized as follows: The theoreti-
cal model is considered in next section, where we present the
dynamical model of the system in Sec. II A, the characteri-
zation of the quantum states under consideration in Sec. II B,
and the numerical methods in Sec. II C. In Sec. III we present
the numerical results and our analyses. We conclude the paper
in Sec. IV.

II. LINEAR ARRAY OF WAVEGUIDES

The system we consider is a one-dimensional finite array
of monomodal waveguides where prescribed input states of
the electromagnetic field can propagate. Classically, fields
propagating in the array of waveguides are coupled through
evanescent waves passing over their boundary barriers; on the
quantum level, one says that photons can coherently tunnel
between neighboring waveguides so that the quantum state
represents the overall-overlapping superposition of the modes
of the waveguides [16]. The field can be injected into one
or a few waveguides and disorder can be implemented in
the array either by randomly adjusting the spacing among
the parallel waveguides along the x direction, the propagation
being in the z direction, or by randomly fixing the thicknesses
of the waveguides. This kind of system has been constructed
on an AlGaAs substrate [53,54] and direct identification and
measurements of Anderson localization of states have been
performed.

A. Theoretical model

The electromagnetic energy density in the array of waveg-
uides, assuming that all media are linear and nonmagnetic,
and that the relevant evanescent overlap occurs only between
neighboring waveguides, is given by

H =
∑

j

(
1

2
ε0n2E2

j + 1

2μ0
B2

j

)

+
∑
( j, j′ )

(
1

2
ε0n2E j · E j′ + 1

2μ0
B j · B j′

)
, (1)

where n is the refraction index, which is a function of the
transversal coordinates (x, y), and ( j, j′) denote next-neighbor
pairs. We consider monochromatic fields propagating along
the z direction. E j and B j are the electric and magnetic fields
of the single mode supported by the jth waveguide.

At the quantum level, the field mode in the jth waveguide
is written in terms of photon-annihilation and photon-creation
operators, a j and a†

j , respectively, and the evolution of the
system is dictated by a Hamiltonian in the form [42]

H =
∑

j

β ja
†
j a j +

∑
j

[Cj+1, ja
†
j+1a j + Cj, j+1a†

j a j+1], (2)

where β j is the propagation constant associated with the jth
waveguide and Cj+1, j and Cj, j+1 are coupling coefficients
between nearest-neighbor waveguides. These parameters de-
pend on the refraction index profile as well as on the geometry
and spacing of each waveguide; they could be obtained by

integrating the classical equation (1) using the proper form
for the field modes [55]. Notice that we are considering fields
with sufficiently low intensities to make nonlinear effects
negligible; also, in this paper unless stated to the contrary, we
use h̄ = 1 and c = 1. The creation and annihilation operators
satisfy the commutation relations

[a j, al ] = 0, [a†
j , a†

l ] = 0, [a j, a†
l ] = δ jl , (3)

and we assume the existence of eigenstates |ψ〉 such that
n j |ψ〉 = a†

j a j |ψ〉 = n j |ψ〉, where n j is the photon number of
the jth waveguide.

We will analyze arrays where we can fix a constant cou-
pling (tunneling rate) between neighbor waveguides, Cj+1, j =
Cj, j+1 = C, and introduce disorder by taking the coeffi-
cients β j as random variables with zero-mean Gaussian
distributions; the model then becomes isomorphic to the
one-dimensional quantum tight-binding model used by An-
derson [22], with β j being the on-site energy, and the system
should then present localization of states. This assertion is
experimentally feasible since these coefficients are related
with the guide geometry, which can be appropriately ad-
justed [41,43] to spatially modulate the index of refraction
n(x). In this case, the Heisenberg equations can be written
as [16,41,43,47,56]

i
∂a j

∂z
= [a j, H] = β ja j + C(a j+1 + a j−1), (4)

where z = ct/n, i.e., measurements of intensity distribution at
position z give the time evolution along the array.

Now we search for a solution of the Heisenberg equa-
tions (4), depending on the initial input state. Since the
Heisenberg equations are linear in the annihilation (or for the
creation) operators, it can be solved by finding the Green’s
function in such way that

aj (z) =
∑

l

G jl (z)al (0), (5)

where al (0) correspond to the input state (at z = 0) into the
lth waveguide. The Green’s function correlates fields in the
jth and the lth waveguides at all positions z. By inserting
Eq. (5) into Eq. (4), one gets the following set of first-order
differential equations for the Green’s functions,

i
∂Gjl

∂z
= β jG jl + C(Gj+1,l + Gj−1,l ). (6)

From our assumptions, Gjl (z) depend on the parameters β j ,
which vary randomly, and C that remains fixed; this is usually
referred to as diagonal disorder. These equations can be solved
numerically with great precision; taking specific distributions
of {β j} and a given value of C, solutions are obtained just
depending on the initial input state.

We can work with a great simplification if we consider that
the input field |�in〉 is injected into only one waveguide [40],
which we label by j0, that is, a j (0)|�in〉 = 0 for all j �= j0.
Thus, considering the light injection only into the j0th waveg-
uide, the mean-field intensity output by waveguide j as a
function of the lattice length z is given by

〈I j (z)〉 = 〈a†
j (z)a j (z)〉 = 〈|Gj, j0 (z)|2〉〈a†

j0
a j0〉, (7)
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where the mean value of the Green’s functions is a standard
statistical mean over several realizations for different values of
{β j}, while the mean 〈a†

j0
a j0〉 represents the quantum expecta-

tion value of the number operator a†
j0

(0)a j0 (0), which depends
only on the input state. Also, we can calculate the correlation
of the intensities between the output of two waveguides j and
l to be given by

〈I j (z)Il (z)〉 = 〈|Gj, j0 (z)|2|Gl, j0 (z)|2〉〈a†2
j0

a2
j0

〉
. (8)

Another important quantity to qualify the statistics of photons
propagating in the array is the second-order correlation func-
tion defined, for the jth waveguide, by

g(2)
j (z) =

〈
a†2

j (z)a2
j (z)

〉
〈a†

j (z)a j (z)〉2
= 〈|Gj, j0 (z)|4〉

〈|Gj, j0 (z)|2〉2

〈
a†2

j0
a2

j0

〉
〈a†

j0
a j0〉2

. (9)

The correlation function g(2)(z) indicates whether states
evolve in a Poissonian way, or if they present either bunching
or antibunching [g(2)(z) > 1 and g(2)(z) < 1, respectively] in
their photon distribution. In any case, all these quantities de-
pend on the initial state in the input of the array of waveguides.
The expressions for other quantities used to characterize the
output field are presented in the results section.

B. Characterization of the input quantum states

In Ref. [40], a theoretical study of Anderson localization
of light in an array of waveguides was presented, using coher-
ent, thermal, and squeezed states at the input, to investigate
the effects of nonclassicality. Here, we extend the work of
Ref. [40] by considering different input states that show more
general quantum statistics, and by presenting the evolution in
the Wigner representation. We consider specifically the com-
plementary coherent state (CCS) [49], the reciprocal binomial
state (RBS) [50], and the polynomial state (PS) [51] as input
states. These exotic states were proposed in the context of the
projection synthesis method and allow for the measurement
of the Husimi Q function, the phase distribution, and the
quadrature variances of field states [57]. They present peculiar
statistical properties and it is interesting to investigate how
they evolve along the array.

The complementary coherent state [49] is written in the
number basis as

|�CCS (α, N )〉 = ℵCCSe−|α|2/2 2−N

√
N!

N∑
k=0

√
k!α∗N−keikπ/2|k〉,

(10)
where the normalization constant ℵCCS is given by

ℵ2
CCS (α, N ) = N!e|α|2 22N∑N

k=0 k!|α|2(N−k)
. (11)

For these states we find the mean number of photons,

〈a†
j0

a j0〉CCS =
∑N

k=0 k!k|α|2(N−k)∑N
k=0 k!|α|2(N−k)

, (12)

and the mean 〈a†2
j0

a2
j0〉 is given by

〈
a†2

j0
a2

j0

〉
CCS =

∑N
k=0 k!k(k − 1)|α|2(N−k)∑N

k=0 k!|α|2(N−k)
. (13)

The reciprocal binomial state [50], written as

|�RBS (φ, N )〉 = ℵRBS

N∑
k=0

(
N
k

) 1
2

exp

[
ik

(
φ − π

2

)]
|k〉,

(14)
has normalization constant ℵRBS given by

ℵ2
RBS =

[
N∑

k=0

(
N
k

)]−1

. (15)

For the RBS, we find

〈a†
j0

a j0〉RBS = ℵ2
RBS

N∑
k=0

(
N
k

)
k (16)

and

〈
a†2

j0
a2

j0

〉
RBS = ℵ2

RBS

N∑
k=0

(
N
k

)
k(k − 1). (17)

The polynomial state [51] is defined by

|�PS (x, N )〉 = ℵPS

N∑
k=0

(
N
k

)− 1
2 HN−k (x/

√
2)e

ikπ
2√

(2N − 2k − 1)!!
|k〉, (18)

where HN−k (y) is a Hermite polynomial and k!! = k(k −
2)(k − 4) · · · is the double factorial symbol, with the normal-
ization constant ℵPS written as

ℵ2
PS =

[
N∑

k=0

(
N
k

)−1 H2
N−k (x/

√
2)

(2N − 2k − 1)!!

]−1

. (19)

For the polynomial state we find

〈a†
j0

a j0〉PS = ℵ2
PS

N∑
k=0

(
N
k

)−1 H2
N−k (x/

√
2)

(2N − 2k − 1)!!
k, (20)

and

〈
a†2

j0
a2

j0

〉
PS = ℵ2

PS

N∑
k=0

(
N
k

)−1 H2
N−k (x/

√
2)

(2N − 2k − 1)!!
k(k − 1).

(21)
For sake of comparison, we also investigate the input states

used in Ref. [40]: thermal states (T S), mixed states with
density matrix

ρT S = 1

1 + n̄

∞∑
n=0

( n̄

1 + n̄

)n

|n〉〈n|, (22)

for which 〈a†
j0

a j0〉T S = n̄ and 〈a†2
j0

a2
j0〉T S = 2n̄2; coherent

states (CS),

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉, (23)

for which 〈a†
j0

a j0〉CS = |α|2 and 〈a†2
j0

a2
j0〉CS = |α|4; and

squeezed-vacuum states,

|ψSS (|ζ |eφ )〉 = 1

cosh |ζ |
∞∑

n=0

(−eiφ tanh |ζ |)n

√
(2n)!

2n n!
|2n〉,

(24)
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with squeezing parameter ζ = |ζ |eiφ , for which 〈a†
j0

a j0〉SS =
sinh2 |ζ | and 〈a†2

j0
a2

j0〉CS = sinh2 |ζ |(1 + 3 sinh2 |ζ |).

C. Computational method

Since we are assuming that the input light is injected only
in the j0th waveguide, all relevant quantities depend only on
the Green’s functions Gj, j0 , which satisfy

i
∂Gj, j0

∂z
= β jG j, j0 + C(Gj+1, j0 + Gj−1, j0 ). (25)

To get solutions numerically, these equations were discretized
and solved by using the Crank-Nicolson method [58] with step
size 
z = 0.001. In the numerical analysis, we consider an
array with 101 waveguides, which we label from 1 to 101 with
light injected only in the waveguide j0 = 51. Thus the initial
condition is that G51,51(0) = 1 while Gj,51(0) = 0 for all j �=
51; additionally, since the waveguide array is finite containing
M waveguides (here 101), we add the boundary conditions
G0,l (z) = GM+1,l (z) = 0 for all l = 1, 2, . . . , M.

Following Ref. [40], we assume that the random co-
efficients β j are independent of each other and follow a
zero-mean Gaussian probability distribution of the form

P(β ) = 1√
2π
2

exp

(−β2

2
2

)
, (26)

with the variance 
2 measuring the disorder in the waveguide
array. Although the Gaussian distribution is more natural,
numerical tests show that the results do not depend on the
specific distribution of the disordered parameter, but only on
its variance. For sake of simplicity but without loss of gen-
erality, we fix the interaction parameter C = 1 and take 
/C
quantifying the arrangement disorder.

To get the β j coefficients, we used the Box-Müller
method [59] that requires the generation of two random
numbers with uniform distribution, which was done using a
congruence method. For each set {β j} of disorder parame-
ters, Eqs. (25) are solved numerically (fixing C) to find the
relevant Green’s functions. The functions Gj, j0 (z) depend on
the disorder parameters β j and on the coupling parameter
C, and completely describe the dynamical evolution of any
state injected into the waveguide array, only through the 51st
waveguide. Naturally, to average over the sets of the random
coefficients β j one has to consider a reasonable number of
realizations of disorder, different sets {β j}. We observed that
the values of the output quantities do not change significantly
for around 500 realizations of disorder. Here we take 1000
realizations in each simulation.

In our study, we take all the input states with the same
energy, that is the same mean number of photons, specifically
nin(0) = 〈a†

51(0)a51(0)〉 = 10. To present the results obtained
by our simulations, we choose five states from the families we
have shown in Sec. II B, namely: two CCS states, named CCS1

[=|�CCS(0.1414, 10)〉] and CCS2 [=|�CCS(1.916, 11)〉]; two
PS states, referred to as PS1 [=|�PS (0.374, 12)〉] and PS2

[=|�PS (0.9345, 13)〉]; and, in the case of the RBS state,
|�RBS (φ, N )〉, we set N = 20 and φ = 0. For completeness
and comparison, we also consider as input states a thermal
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FIG. 1. Mean photon number distribution at the output of the
array of waveguides (numbered as n = 1, 2, 3, . . . , 101) for two
values of propagation distance z: solid (blue) curves are for out-
puts at z = 5, while dashed (black) curves correspond to outputs
at z = 20. The disorder parameters were fixed as (a) 
/C = 0,
(b) 
/C = 0.1, (c) 
/C = 0.5, and (d) 
/C = 1. These plots were
obtained by averaging over 1000 realizations, fixing the number of
photons in the injected (input) state (z = 0, at the 51st waveguide)
nin = 〈a†

51(0)a51(0)〉 = 10.

state (T S) with n̄ = 10, a coherent state (CS) with |α|2 = 10,
and a squeezed-vacuum state (SS) with sinh2 |ζ | = 10.

III. NUMERICAL RESULTS

We start with two classical collective quantities of the prop-
agated field: the light intensity and the participation number.
Neither depend on the quantum characteristics of the input
state and show the output behavior of all the waveguides
composing the array. While the output intensity can show if
localization has happened for a fixed propagation distance,
the participation number shows how stable the localization or
the dispersion are along the propagation. In the sequence, we
focus on the quantum characteristics of the electromagnetic
field output by one single waveguide ( j0), for which we an-
alyze quantum fluctuation quantities as well as the state of
the propagated field through its Wigner function and photon
number distribution.

As explicitly shown in Eq. (7), which is valid whenever
light is injected into the j0th waveguide, the average output
intensity of the waveguide array depends on the average num-
ber of photons of the input state (here fixed as nin = 10) and
on the degree of disorder of the system, carried by the random
β coefficients, which is manifested by the Green’s functions;
the output intensity, that is the mean number of photons at the
end of the array, does not depend on any other characteristics
of the input state.

The average output intensity, as distributed among the 101
waveguides of the array, is shown in Fig. 1 for some values of

/C and two values of propagation distance z. As mentioned
before, 
/C measures the arrangement disorder, i.e., as the
value of 
 increases the coefficients β j become more distinct
from each other. In the absence of disorder [Fig. 1(a)], the
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FIG. 2. The same as in Fig. 1, but now using (a) 
/C = 1.5 and
(b) 
/C = 5.

light suffers only the standard dispersion. However, as the
disorder is increased [Figs. 1(b)–1(d)], a narrow peak of inten-
sity around the input ( j0th, number 51) waveguide emerges,
which characterizes the localization of the solution. For ra-
tios 
/C greater then 1.5, the output-intensity profile does
not change anymore with the increasing of the propagation
distance, which is shown by the exact overlapping of the solid
line (z = 5) and dashed line (z = 20) in Fig. 2.

In Fig. 3 we present, using a logarithmic scale, the mean
number of photons for some values of disorder (
/C) and
considering two values of propagation distance, z = 5 and
z = 20, respectively. The choice of using a logarithmic scale
is justified by the fact that an exponential decay of the light
intensity, in the waveguides different from the j0th one, would
signal the appearance of Anderson localization. We find that,
in all cases, there exist two regions of decreasing exponentials
and, except in the case of 
/C = 1.0, the pattern holds for
both propagation distances. It should be mentioned, however,
that plots of the output intensities (mean number of photons)
may not be sufficient to state whether the light beam presents
Anderson localization, since the system might have yet a small
diffusion, which would become more evident by increasing
the propagation distance.

To further investigate the occurrence of Anderson location,
we can also calculate the participation number defined by, and
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FIG. 3. The same as in Fig. 1, but now on a logarithm scale
and using the values (a) 
/C = 1, (b) 
/C = 3, (c) 
/C = 5, and
(d) 
/C = 10.
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FIG. 4. Participation number as a function of propagation dis-
tance for various values of the disorder parameter: (a) 
/C = 0,
0.1 and 0.5; (b) 
/C = 1, 1.5, and 2; (c) 
/C = 2.5, 2.8, and 3;
(d) 
/C = 3.5, 4, and 5; corresponding to solid-line (blue), dashed-
line (black) and dotted-line (red), respectively, in all cases. Results
were obtained after averaging over 1000 realizations.

given in our case by,

P (z) =
( ∑

j〈a†
j (z)a j (z)〉)2

∑
j〈a†

j (z)a j (z)〉2

= 1 +
∑

j �=k〈|Gj,51(z)|2〉〈|Gk,51(z)|2〉∑
j〈|Gj,51(z)|2〉2

. (27)

We see that the participation number is not only independent
of the mean number of photons of the input state but is actually
completely independent of the electromagnetic field mode
injected in the j0th waveguide of the array, the number 51;
it depends only on the waveguide array itself and its disorder
encoded in the Green’s functions.

The participation number indicates in how many waveg-
uides there are photons as a function of propagation distance;
thus, if P (z) increases, it means that the beam remains scat-
tering among the waveguides along propagation. It should be
emphasized that, in the case of no disorder, the dispersion
of P (z) is linear, as indicated by Fig. 4(a). Also, for a very
small amount of disorder, 
/C = 0.1, we find that the dif-
fusion occurs faster than in the absence of disorder, while
for 
/C = 0.5 dispersion still occurs, but with a growth rate
smaller than that in the case of no disorder. In all other cases
reported in Figs. 4(b)–4(d), for larger values of 
/C, the plots
of P (z) stabilize as z increases, characterizing localization of
the light in the array. Notice that some fluctuations are still
observed, but on a small scale when compared with 1, which
is the smallest value that can characterize a single waveguide.

Figures 5 and 6 show the second-order correlation function
g(2) of the field output by waveguide number 51, as a function
of the disorder degree for different input states, calculated
with Eq. (9), taking propagation distances z = 5 and z = 20,
respectively. We first notice that, for all input states analyzed,
taking measurements for a short propagation length (z = 5,
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FIG. 5. Second-order correlation function of the output state in
the 51st waveguide, at propagation distance z = 5, as a function of
the disorder parameter for different input states. Panel (a) displays
the curves corresponding to the states CCS1 in circles (blue), CCS2 in
boxes (black), RBS in pentagon (cyan), CS in triangles (red), PS1 in
down triangles (gray), and PS2 in diamond (green). For comparison,
panel (b) also presents the states SS in circles (magenta) and T S in
boxes (orange). All results were obtained with an average over 1000
realizations.

Fig. 5), the second-order correlation function increases as the
disorder degree (
/C) raises and reaches a maximum for

/C = 1 and then decreases to values greater than the value
of g(2) without disorder. Similarly, for longer arrays (z = 20,
Fig. 6), one finds peaks of g(2) somewhat higher than those
of Fig. 5 but occurring at a much lower disorder degree and
rapidly decaying for large disorder degree. Yet interestingly,
for the propagation distance z = 20, we find that only the
CCS1 state returns to the g(2) < 1 regime for large values of
disorder. Note also that the curves for the CCS2 and the RBS
states are nearly coincident due to the fact that, for these states,
〈a†2

51(0)a2
51(0)〉 are very close, 94.78 and 95, respectively.

The variance of the output field intensity, (
I )2 = 〈I2〉 −
〈I〉2, of the 51st waveguide, when the input field is injected
only in it, is obtained directly from Eqs. (7) and (8) as

[
I51(z)]2 = 〈|G51,51(z)|4〉〈a†2
51(0)a2

51(0)
〉

+〈|G51,51(z)|2〉〈a†
51(0)a51(0)〉

− 〈|G51,51(z)|2〉2〈a†
51(0)a51(0)〉2. (28)

To investigate the influence of the disorder on the inten-
sity variance of the output states, in Figs. 7(a) and 7(b) we
show these variances as functions of the disorder degree 
/C,
at z = 5 and z = 20, respectively, for different input states
injected into the 51st waveguide. We see that, for all states
discussed, when the degree of disorder increases, the vari-
ances increase, some of them tending to stabilize, as for states
PS1, PS2, and CS, while others, like the cases of the states
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FIG. 6. The same as in Fig. 5, but now with propagation distance
z = 20.
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FIG. 7. Variance of the output intensity of the 51st waveguide
as a function of the disorder parameter for the propagation distances
(a) z = 5 and (b) z = 20. We display the states CCS1 in circles (blue),
CCS2 in boxes (black), RBS in pentagon (cyan), CS in triangles
(red), PS1 in down triangles (gray), and PS2 in diamond (green),
respectively.

CCS1, CCS2, and RBS, reach a maximum and then decrease
for large values of the disorder parameter, the decreasing
rate being bigger for the state CCS1. It is interesting to notice
that the patterns of (
I )2 practically do not change when one
compares the results for the propagation lengths z = 5 and
z = 20, Figs. 7(a) and 7(b), respectively. Here, likewise for
Figs. 5 and 6, the curves for the CCS2 and the RBS states are
almost coincident.

For the sake of comparison, in Table I we present the values
of g(2) and 
I2 for the injected states and their corresponding
output values in waveguide 51 after a propagation distance
z = 20 in an array with 
/C = 10. It is clear that CCS1 is
the only state to output g(2) < 1, while PS2 is the only state
whose intensity variance decreases with propagation. From
the input intensity variance, we see that CCS1 is the closest to
a number state and the farther from a classical state in terms of
g(2), it helps understanding why it is the only one preserving
nonclassicality after propagation.

Wigner representation

We can also study the influence of disorder in the prop-
agation of light in the waveguide array using the Wigner
representation of the quantum states. The Wigner function
(WF) of the output state in the 51st waveguide is given by

W51(α, z) = 1

π

∫
d2ξ exp(αξ ∗ − α∗ξ ) χ51(ξ, z), (29)

TABLE I. Second-order correlation function and variance of the
field intensity of the 51st waveguide for the initial states and propa-
gated states with 
/C = 10.

g(2) 
I2

State z = 0 z = 20 z = 0 z = 20

CCS1 0.90 0.98 2 × 10−3 6.9
CCS2 0.95 1.05 4.8 10.4
RBS 0.95 1.03 5.0 10.5
PS1 1.08 1.18 18.2 20.0
PS2 1.17 1.28 27.1 26.4
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with the symmetrically ordered characteristic function given
by

χ51(ξ, z) = Tr[ρ51(0)eξa†
51(z)−ξ∗a51(z)], (30)

where a51(z) = G51,51(z)a51(0) and the input state is given by
ρ51(0) = |ψ51〉〈ψ51|.

We take |ψ51〉 = ∑N
n=0 cn|n〉, which is the form of the

states described in Sec. II B. Then, the integral defining
W51(α, z) can be performed analytically, and writing α =
x + iy, we obtain

W (N )
51 (α, z)

= 2e−2(x2+y2 )
N∑

t=0

t∑
j=0

N∑
n=0

n∑
k=0

c∗
nct [G51,51(z)] j

× [G∗
51,51(z)]k

√
t!n!

(n − k)!
δ(n−k),(t− j)I jk (x, y), (31)

where

I jk (x, y) =
k∑

l=0

j∑
s=0

(−1)2 j+k i−(l+s)

(k − l )!l!( j − s)!s!
Ip(y)Iq(−x), (32)

with p = l + s and q = k − l + j − s and

Ir (u) = (2u)r +
e(r)∑
m=2

(−1)
m
2 2− m

2 r!(
m
2

)
!(r − m)!

(2u)r−m, (33)

where the summation is over even integers and e(r) is the
largest even integer not greater than r, i.e., e(r) = r if r is
even and e(r) = r − 1 for r odd.

We can use the WF, given by Eq. (31), to investigate the
propagation of states through the array, looking at the output
state in the 51st waveguide, when the input is a truncated state
in the number basis,

∑N
n=0 cn|n〉; Figs. 8 and 9 show examples

of this case. In Fig. 8, we present the WF when the input state
is the CCS1, in Fig. 8(a) for the input state (z = 0), and in
Figs. 8(b)–8(d) for the output states in the 51st waveguide,
for the length z = 20, considering the disorder parameters

/C = 0, 1, and 7, respectively. We find that, in absence of
disorder [
/C = 0; Fig. 8(b)], the WF is similar to the one
of the vacuum state; this is also confirmed by the photon
number distribution, as shown below. But, for small values
of the disorder parameter, Figs. 8(b) and 8(c), the WF profiles
present very important differences when compared with that
for the input state, showing that dispersion prevails. However,
by increasing the disorder parameter, the WF of the output
state becomes similar to that one for the input state; clearly
this behavior is directly linked to a strong localization, but not
necessarily of Anderson type.

In Fig. 9(a), we present the WF for the input state PS1 and,
in Figs. 9(b)–9(d), for the output state of the 51st waveguide
at z = 20 with the same values of the disorder parameter as in
Fig. 8, 
/C = 0, 1, and 7, respectively. Here, we observe that,
similarly to the results obtained for the CCS1 (Fig. 8), when
considering a zero disorder [Fig. 9(b)] or a small disorder
[here characterized by the value of the disorder parameter

/C = 1, Fig. 9(c)], the output state of the 51st waveguide at
z = 20 presents a configuration for the WF similar to that of
the vacuum state. Clearly, the weak disorder is not enough to
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FIG. 8. Panel (a) shows the Wigner function of the CCS1 input
state, while panels (b)–(d) show the WF of the output state in the
51st waveguide, at the propagation distance z = 20, considering the
disorder parameters 
/C = 0, 1, and 7, respectively. The plots con-
sist on an average over 100 realizations considering the step size of
dx = dy = 0.1.

ensure that the WF remains in the same shape, due to the inter-
action of the main guide (51st) with the neighboring guides.
On the other hand, as the disorder parameter increases [for
example, with 
/C = 7 displayed in Fig. 9(d)] the WF is now
preserved, which can be observed when comparing the panels
(a) and (d) of Figs. 8 and 9. In other words, by increasing
the disorder parameter, the WFs become more robust against
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FIG. 9. The same as in Fig. 8, but now considering the PS1 as the
input state.
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(a) (b)

FIG. 10. PND of the output state of the 51st waveguide shows
(a) the input state CCS1 and output state (at z = 20) for 
/C = 0 and
(b) the output states for 
/C = 1, 3, and 7. These results correspond
to an average over 100 realizations.

changes due to variations of the coupling between neighbor
waveguides. Also, it should be pointed out that, in all cases,
due to the computational cost the number of realizations to
produce the output state was reduced to 100.

Finally, we can also use the WF [Eq. (31)] to obtain the
photon number distribution (PND) of the output state of the
51st waveguide, given by

P(N )
51 (n, z) = 1

π

∫
d2α W (N )

51 (α, z)Wn(α), (34)

where Wn(α) is the WF for the number state |n〉. The inte-
gral in Eq. (34) is calculated numerically and, as before, the
number of realizations to get the proper averages was reduced
to 100.

In Fig. 10 we show the PND in the 51st waveguide when
the input state is the CCS1 and the length of the array is z =
20. In Fig. 10(a), we plot together the PND of the input CCS1

state and the output PND [P(N )
51 (n, 20)] for null disorder, for

comparison. Interestingly, the PND of the state CCS1, which
has nCCS1 = 10, is very close to that of the number state |10〉,
P|10〉(n) = δn,10. On the other hand, the output state of the 51st
waveguide (at z = 20), in the absence of disorder, is close to
that for the vacuum state; this fact reinforces the results for the
Wigner functions presented in Figs. 8(b) and 9(b).

In Fig. 10(b) we show the PND for the output state in
the 51st waveguide considering three different values of the
disorder parameter, 
/C = 0, 1, and 7. We clearly see that
the increasing of disorder tends to favor the output PND to
become closer to that of the input state; that is, disorder tends
to preserve the PND.

In Fig. 11 we present the results of the PND, for the same
parameters as in Fig. 10, but considering the input state given
by the PS1. Now we see, from Fig. 11(a), that the PND of
the input PS1 state differs significantly from the PND for the

(a) (b)

FIG. 11. The same as in Fig. 10 but now considering the input
state being the PS1.

number state, distinctly to the case of the CCS1, although we
still have nPS1 = 10. However, also in agreement with the case
of the CCS1, we see in Fig. 11(b) that the PND of the output
state is clearly closer to that of the input state as greater is the
value of 
/C.

IV. CONCLUSION

We have discussed the evolution of quantum states of the
electromagnetic field propagating through a disordered plane
waveguide array. Specifically, we have analyzed the propaga-
tion of three truncated states (in the number basis), namely, the
complementary coherent state, the reciprocal binomial state,
and the polynomial state; we also considered a thermal state, a
coherent state, and a squeezed-vacuum state, for comparison.

In our numerical calculations, we considered arrays with
a 101 waveguides focusing in the injection and detection of
waves in the middle one, the 51st waveguide. The on-site
energy parameters β j were assumed to be independent of each
other and randomly taken following a zero-mean Gaussian
distribution with variance 
2, while the coupling between
neighbor waveguides were fixed as constant C; the disorder
parameter was defined as 
/C.

We investigated some quantities that qualify the nature of
the statistics of the state. First, we verified that increasing the
degree of impurity of the lattice, the mean photon-number
distribution tends to concentrate around the waveguide where
the input state is injected, with an exponential decay of the
light intensity in the others, for any injected state with a given
mean number of photons, here nin = 10; although this is not a
definitive indication of localization, it does signalize it.

We also analyzed the participation number, indicating in
how many waveguides there were photons, which shows the
effects of disorder in the array and is totaly independent of the
input state. We find, as the disorder parameter is increased,
from no-disorder to a high disorder regime, the participation
number changes from a linear increase with the propagation
distance, characteristic of dispersion, to a flat behavior with
very small fluctuations which represents a localization pattern.

We investigated second-order quantities as the g(2) function
and the output intensity variance at the central waveguide.
We observe for all input states that, although localized, the
average output state presents a classical behavior relatively
to the bunching feature. However, as the disorder increases,
the g(2) function decreases and even presents antibunching
again for the complementary coherent state and high disorder.
The variance in the output intensity at the central waveguide
increases with disorder and stabilizes to a final value for most
of the input states investigated.

To investigate how the propagation through the lattice
changes the input state, it is not enough to analyze quantities
quantum averaged over the input state. It can be noticed, for
example, when we look at the results for CCS2 and RBS, two
different states with different features, although presenting
nearly the same values of g(2) and intensity variance at the out-
put. To tackle this question we reconstructed the output state
by means of its Wigner function, which could also be used to
obtain the output probability distribution of number of pho-
tons. We observed a preservation of the characteristics of the
Wigner function for high disorder parameter values, although
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we also notice a suppression of negative values in average.
Moreover, as the output probability distribution of number of
photons changes with the features of the array as well as with
the input state, a well designed array of coupled waveguides
could be used to produce new states of the electromagnetic
field. Classically, it is well known that conveniently designing
the detuning and coupling coefficients of a waveguide array
can shape the output intensity of light [60]. What we observed
is that it can also be used to shape the quantum state output by
a single waveguide.
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