
PHYSICAL REVIEW A 105, 023707 (2022)

Dispersive readout with non-Markovian environments

H. Z. Shen ,1,2,* Q. Wang,1 and X. X. Yi1,2,†

1Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
2Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials

and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China

(Received 1 June 2021; revised 6 December 2021; accepted 23 December 2021; published 10 February 2022)

We study the non-Markovian dispersive readout of a single-mode bosonic (SMB) quantum system coupled
to the open cavity with two non-Markovian environments. Assuming that the SMB quantum system is initially
prepared in a thermal equilibrium state, the susceptibility of the measured SMB quantum system to the cavity
can be obtained by the nonequilibrium linear response theory, which provides the dispersive frequency shift of
the cavity. We analytically derive the transmission and reflection of the cavity in the non-Markovian regime
and discuss the non-Markovian dispersive readout of the SMB quantum system, which is in good agreement
with that obtained by the Markovian approximation. We show that the effect of non-Markovian dynamics on the
system’s behavior leads to the decrease of the transmission and shifts of the frequency corresponding to the peak
of the transmission in the dispersive regime compared with the Markovian case and the increase of the sum of
the transmission and reflection due to the excitation backflowing induced by the couplings of the cavity and two
non-Markovian environments, which could be applied to quantum secure direct communication with quantum
memory. Finally, we generalize the readout theory to the periodically driven SMB quantum system based on the
Floquet theory and quantum network, which contain all influences from the non-Markovian environments. The
formalism presented in this paper opens an alternative field of possible applications in quantum information and
quantum communication with non-Markovianity by manipulating the spectral densities of the environments.
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I. INTRODUCTION

The storage, manipulation, and readout of the states of a
quantum system are basic tasks in quantum information pro-
cessing [1–3]. Dispersive measurement is implementable for
the readout of quantum states of a qubit, when it strongly cou-
ples to a cavity [4–15]. The idea of the dispersive readout lies
in the following. During the measurement, the qubit couples
to the cavity off-resonantly, which results in the absence of
energy exchange between them [16,17]. With the qubit-cavity
system in the dispersive regime, frequency shifts occur for the
cavity owing to the interaction with the qubit, which depend
on the states of the qubit [15,18]. The shifts can be used to
infer the quantum states. To do this, one can monitor the phase
quadrature of the transmitted or the reflected radiation [15,19].
Alternatively, one measures the amplitude of the transmitted
signal. Theoretically, the frequency shifts can be observed
in the qubit-cavity Hamiltonian after a transformation to the
dispersive frame [15], which is usually performed within the
rotating-wave approximation (RWA).

With technological advancement, the dispersive readout
has been applied to various solid-state systems, including the
ac-driven quantum system [20,21], spin ensembles [22], quan-
tum circuits [23–25], hybrid superconductor-semiconductor
system [26], microwave resonator [27], cavity-coupled atom
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[28,29], periodically driven quantum systems [30], Majorana
fermions in a cavity [31], weakly coupled hybrid system
[32], qubit readout [33], solid-state spin sensor [34], room-
temperature spin qubits [35], and multilevel systems within
the RWA [36,37]. Furthermore, the dispersive readout has
been extended to the ultrastrong-coupling regime [21,38,39].
Indeed, strong- [14,40–43], ultrastrong- [44–47], and even
deep-strong-coupling [48] regimes have been reached in cir-
cuit quantum electrodynamics (QED) systems, but they are
still difficult to achieve for some other systems such as a
single electron spin coupled to a cavity, which still remains
in the weak-coupling regimes [5,6]. Experimental progress
also has motivated several generalizations such as the treat-
ment beyond the RWA [20,21,39,45,49]. Furthermore, the use
of dispersive measurement techniques has allowed photon-
number measurement [50–52] in cavity QED, which has been
applied to mechanical resonators [53] coupled to both optical
[54] and microwave cavities [55], the measurement of indi-
vidual [56,57], and coupled superconducting qubits in circuit
QED [58].

In recent years, with the rapid development of quantum
information technology [1,59], the role played by the open
quantum systems [60,61] has become more and more im-
portant. Generally speaking, all realistic quantum systems
are open due to the unavoidable coupling with the envi-
ronment [62–65]. The Markovian approximation for open
systems [60,61] is only valid when the coupling between
the system and environment is weak and the characteristic
times of the bath are sufficiently smaller than those of the
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quantum system under study. Otherwise we should consider
the effect of non-Markovian dynamics on the system’s be-
havior, which occurs in many quantum systems including
coupled cavities [66], optical fibers [67,68], trapped ions in
colored noises [69–71], photonic crystals [72,73], and cavities
coupled to waveguides [74–81]. The non-Markovian process
proves to be useful in quantum information processing includ-
ing quantum state engineering, quantum control, and quantum
channel capacity [65,82–85]. Non-Markovianity can be char-
acterized by the information flow between the system and
its environment [86–92], which leads to different measures
of non-Markovianity [93–98]. Thus the motivation of this
paper is to determine the effect of non-Markovianity on the
dispersive readout so that we can understand the fundamental
physical origins of the non-Markovianity as well as the dis-
persive readout. These motivate us to explore the theory of
dispersive readout in the non-Markovian regime.

In this paper we develop the theory of dispersive readout
in a single-mode bosonic (SMB) quantum system coupled to
the cavity by taking the effect of non-Markovian dynamics
on the system’s behavior into account. For this purpose, first
the exact non-Markovian input-output relation is derived and
then the susceptibility of the SMB quantum system to the
cavity field is obtained with nonequilibrium linear response
theory. The dispersive frequency shift of the cavity is also
provided in terms of the SMB quantum system susceptibil-
ity, which can be probed experimentally by measuring the
transmission spectrum of the cavity. We apply this theory to
the time-independent system subjected to the non-Markovian
environments and then find that the transmission spectrum
changes from the non-Markovian to Markovian regimes by
tuning the spectral densities of the environments. The non-
Markovianity decreases the amplitude of transmission and
shifts the frequency corresponding to the peak of the transmis-
sion compared with the Markovian case but increases the sum
of the transmission and reflection in the dispersive regime.
The non-Markovian dispersive readouts of the periodically
driven SMB quantum system and quantum network are in-
vestigated when their susceptibility is derived based on the
Floquet theory and quantum transmission line, which contains
all influences from the non-Markovian environments. Finally,
we demonstrate the feasibility of the theoretical scheme, indi-
cating that the present scheme can be realized in experiments
in the near future.

The remainder of this paper is organized as follows. We
introduce the system-cavity model and Hamiltonian in Sec. II.
In Sec. III the exact non-Markovian input-output relation is
derived, which returns to the Markovian input-output rela-
tion in the Markovian limit. In Sec. IV the relation between
the cavity transmission and the susceptibility of the SMB
quantum system is given by the linear response theory and
input-output relations in both Markovian and non-Markovian
cases. The readout theory is applied to a time-independent
multilevel system with a focus on the non-Markovian correc-
tions in Sec. V. Section VI is devoted to the generalization
to the periodically driven SMB quantum system. In Sec. VII
we discuss the non-Markovian dispersive readout for a quan-
tum network. We present a discussion of the experimental
implementation of this scheme in Sec. VIII. We discuss and
summarize our results in Sec. IX.
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aout(1) aout(2)
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FIG. 1. Schematic of the proposed setup for the dispersive read-
out of the hybrid quantum system which consists of a SMB quantum
system (Ĥ0 = ωcĉ†ĉ) and an open cavity with coupling constant
g. The cavity couples to the input and output modes of two non-
Markovian environments. Here a(ν )

in and a(ν )
out (ν = 1, 2) are the input-

and output-field operators. The input field incident from the right
cavity mirror a(2)

in is in the vacuum state and does not contribute to
the average output fields.

II. MODEL HAMILTONIAN

To present the general model to realize the dispersive read-
out in non-Markovian regimes, we consider here that a hybrid
quantum system consists of a SMB quantum system and
the cavity interacting with two non-Markovian environments,
which is sketched in Fig. 1. The total system is governed by
the Hamiltonian (setting h̄ = 1)

Ĥ = ĤS + ĤI , (1)

with

ĤS = ωaâ†â + g(ĉ + ĉ†)(â + â†) + ωcĉ†ĉ,

ĤI =
∑

k

ωkb̂†
kb̂k +

∑
k

(gkâb̂†
k + g∗

kâ†b̂k )

+
∑

k

�kd̂†
k d̂k +

∑
k

(Gkâd̂†
k + G∗

k â†d̂k ), (2)

where â† (â) is the creation (annihilation) operator of the
cavity mode with frequency ωa, ĉ† (ĉ) is the creation (an-
nihilation) operator of the bosonic mode with frequency ωc,
and g is the coupling strength between the bosonic system and
the cavity. The cavity couples to the kth mode (eigenfrequen-
cies ωk and �k) of the non-Markovian environments, which
are modeled as collections of infinite modes via the creation
(annihilation) operators b̂†

k (b̂k) and d̂†
k (d̂k). The parameters

gk and Gk are coupling coefficients between the two environ-
ments and the cavity, respectively.

Due to the coupling strength g between the bosonic system
and the cavity, the cavity acts on the SMB quantum sys-
tem, while it experiences a backaction that shifts the cavity
frequency. This frequency shift allows one to infer the infor-
mation about the bosonic system inside the cavity by driving
the cavity with a laser and monitoring the changes of the
cavity transmission resulting from the coupling between the
SMB quantum system and the cavity.

III. EXACT NON-MARKOVIAN INPUT-OUTPUT
RELATIONS

We here analytically derive the exact non-Markovian input-
output relation, which contains all the influences of the
environments on the SMB quantum system. To treat the SMB
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quantum system and the cavity as a hybrid quantum system,
we move to the Heisenberg picture and use the Heisenberg
equations for operators of the hybrid system. This treatment
enables the calculation of the output fields at the ports of
the cavity, given the input fields [36,37,99,100]. Generally in
experiments, the cavity is probed by driving it with the input
field and detecting the transmitted field.

In the Heisenberg picture, all operators including the
cavity field, SMB quantum system, and environments
are given by â(t ) = U †(t )âU (t ), ĉ(t ) = U †(t )ĉU (t ),
b̂k (t ) = U †(t )b̂kU (t ), and d̂k (t ) = U †(t )d̂kU (t ), where
U (t ) = exp(−iĤt ), with Ĥ given by Eq. (1). The time
evolutions of the cavity and environment annihilation
operators satisfy Heisenberg equation as follows:

d

dt
â(t ) = −i[â(t ), Ĥ (t )] = −iωaâ(t ) − ig[ĉ(t ) + ĉ†(t )]

−i
∑

k

g∗
kb̂k (t ) − i

∑
k

G∗
k d̂k (t ), (3)

d

dt
b̂k (t ) = −iωkb̂k (t ) − igkâ(t ), (4)

d

dt
d̂k (t ) = −i�kd̂k (t ) − iGkâ(t ). (5)

Through simple calculations solving Eqs. (4) and (5), we
obtain the formal solutions of the environment operators for
0 � t , i.e.,

b̂k (t ) = b̂k (0)e−iωkt − igk

∫ t

0
dτ â(τ )e−iωk (t−τ ),

d̂k (t ) = d̂k (0)e−i�kt − iGk

∫ t

0
dτ â(τ )e−i�k (t−τ ). (6)

The first terms on the right-hand sides of Eqs. (6) represent
the freely propagating parts of the environment fields and the
second terms describe the influences of the cavity. Substitut-
ing Eq. (6) into Eq. (3) for the cavity annihilation operator, we
can obtain an integro-differential equation

d

dt
â(t ) = −iωaâ(t ) − ig[ĉ(t ) + ĉ†(t )] − K̂†

1 (t ) − K̂†
2 (t )

−
∫ t

0
dτ â(τ ) f1(t − τ ) −

∫ t

0
dτ â(τ ) f2(t − τ ),

(7)

where the externally driven environment operators K̂†
1 (t ) =

i
∑

k g∗
kb̂k (0)e−iωkt = ∫ ∞

−∞ dτ κ∗
1 (t − τ )a(1)

in (τ ) and K̂†
2 (t ) =

i
∑

k G∗
k d̂k (0)e−i�kt = ∫ ∞

−∞ dτ κ∗
2 (t − τ )a(2)

in (τ ). The cavity
couples to the incoming and outgoing modes of envi-
ronments at both ends; thus we define here the input-
field operators as a(1)

in (t ) = 1√
2π

∑
k e−iωkt b̂k (0) and a(2)

in (t ) =
−1√
2π

∑
k e−i�kt d̂k (0) and the impulse response functions are

κ1(t ) = −i√
2π

∑
k eiωkt gk and κ2(t ) = i√

2π

∑
k ei�kt Gk , or in the

continuum

κ1(t − τ ) = −i√
2π

∫
eiω(t−τ )g(ω)dω,

κ2(t − τ ) = i√
2π

∫
eiω(t−τ )G(ω)dω,

(8)

where we have made the replacements gk → g(ω) and Gk →
G(ω). The correlation functions are given by

f1(t ) =
∑

k

|gk|2e−iωkt =
∫

J1(ω)e−iωt dω,

f2(t ) =
∑

k

|Gk|2e−i�kt =
∫

J2(ω)e−iωt dω,

(9)

where J1(ω) = ∑
k |gk|2δ(ω − ωk ) and J2(ω) =∑

k |Gk|2δ(ω − �k ) represent the spectral densities of
the two environments and f1(t ) and f2(t ) denote the
memory functions of two environments, which describe
the non-Markovian fluctuation-dissipation relationship of the
environments.

In a similar manner, we obtain the formal solutions of the
environment operators for t1 � t , i.e.,

b̂k (t ) = b̂k (t1)e−iωk (t−t1 ) + igk

∫ t1

t
dτ â(τ )e−iωk (t−τ ),

(10)

d̂k (t ) = d̂k (t1)e−i�k (t−t1 ) + iGk

∫ t1

t
dτ â(τ )e−i�k (t−τ ).

Similarly, we can obtain another integro-differential equation
d

dt
â(t ) = − iωaâ(t ) − ig[ĉ(t ) + ĉ†(t )] − K̂ ′

1(t ) − K̂ ′
2(t )

+
∫ t1

t
dτ â(τ ) f1(t − τ ) +

∫ t1

t
dτ â(τ ) f2(t − τ ),

(11)

where we have defined the output-field operators
and the externally driven environment operators as
a(1)

out (t ) = 1√
2π

∑
k e−iωk (t−t1 )b̂k (t1) and a(2)

out (t ) = −1√
2π

∑
k

e−i�k (t−t1 )d̂k (t1), and K̂ ′
1(t ) = i

∑
k g∗

kb̂k (t1)e−iωk (t−t1 ) =∫ ∞
−∞ dτ κ∗

1 (t − τ )a(1)
out (τ ) and K̂ ′

2(t ) = i
∑

k G∗
k d̂k (t1)

e−i�k (t−t1 ) = ∫ ∞
−∞ dτ κ∗

2 (t − τ )a(2)
out (τ ), respectively.

By comparing Eq. (7) with Eq. (11), or summing of k to
Eqs. (6) and (10), the input and output fields are connected
by the non-Markovian input-output relation [101,102] for the
cavity mirror ν (ν = 1, 2) (setting t1 → t),

a(ν)
out (t ) − a(ν)

in (t ) =
∫ t

0
dτ κν (τ − t )â(τ ), (12)

where the concrete form of κν (t − τ ) is given by Eq. (8). In
the case of the Fabry-Pérot cavity [81], the spectral response
functions can be defined by

g(ω) =
√

	1

2π

λ1

λ1 − iω
,

G(ω) =
√

	2

2π

λ2

λ2 − iω
,

(13)

where λν (ν = 1, 2) is the environmental spectrum width and
	ν is the cavity decay rate through the input and output ports.
Thus the effective spectral density of the environments is
[60,102–106]

Jν (ω) = 	ν

2π

λ2
ν

λ2
ν + ω2

, (14)

which corresponds to the Lorentzian spectral density.
Specifically, the parameter λν is inversely proportional to the
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environmental correlation time. With Eqs. (13) and (14), we
obtain κ1(τ − t ) = −i

√
	1λ1e−λ1(t−τ )θ (t − τ ), κ2(τ − t ) =

i
√

	2λ2e−λ2(t−τ )θ (t − τ ), f1(t − τ ) = 1
2	1λ1e−λ1|t−τ |, and

f2(t − τ ) = 1
2	2λ2e−λ2|t−τ |, which represents a Gaussian

Ornstein-Uhlenbeck process [107–109], where θ (t − t ′) is
the unit step function, θ (t − t ′) = 1 for t � t ′ otherwise
θ (t − t ′) = 0. When λν tends to infinity, the environment
becomes memoryless. That is to say, in the wideband
limit (i.e., λν → ∞), the spectral density approximately

takes Jν (ω) → 	ν

2π
or, equivalently, g(ω) →

√
	1
2π

and

G(ω) →
√

	2
2π

. This describes the case in the Markovian limit.
Then, according to Eqs. (8) and (9), we have fν (t ) = 	νδ(t ),
κ1(t ) = −i

√
	1δ(t ), and κ2(t ) = i

√
	2δ(t ). Substituting

these results into Eq. (12), we can obtain the Markovian
input-output relation

a(1)
out (t ) − a(1)

in (t ) = − i
√

	1â(t ),

a(2)
out (t ) − a(2)

in (t ) = i
√

	2â(t ),
(15)

where we show that the Markovian input-output relation given
by Eqs. (15) is equivalent to that defined in Refs. [63,110,111]
and can return to the result of Refs. [63,110,111] by
the replacements gk → igk [g(ω) → ig(ω)] and Gk → iGk

[G(ω) → iG(ω)] in Eqs. (2), (8), and (15).

IV. LINEAR RESPONSE THEORY

The response of the cavity to a probe field can be deter-
mined using the input-output theory, and the measurements of
the cavity response provide useful information about the SMB
quantum system embedded in the cavity. Both the amplitude
and phase of the transmitted signal provide useful information
about the SMB quantum system. For brevity, we restrict our
discussion to the cavity amplitude response. In this section,
by expressing the coupling operator Ô(t ) ≡ ĉ(t ) + ĉ†(t ) in
terms of â(t ) to analytically solve Eq. (7), together with the
non-Markovian input-output relation, we can obtain the trans-
mission and reflection of the cavity.

Since we are not interested in quantum fluctuations of the
cavity field, we consider Eq. (7) in its classical limit as an
equation of motion for the expectation value a(t ) ≡ 〈â(t )〉. To
obtain the expectation value of Ô(t ), we assume that in the
absence of the cavity, the SMB quantum system is described
by a density matrix ρ0(t ) = U (t )ρ0(0)U †(t ). Its dynamics is
determined by the Liouville–von Neumann equation ρ̇0(t ) =
−i[Ĥ0, ρ0(t )] ≡ −iL̂0(t )ρ0(t ), with the Liouvillian L̂0(t ). Due
to the interaction with the cavity, the SMB quantum system
experiences an additional driving from the cavity. In Eq. (2)
with â and â† replaced by classical amplitudes, the corre-
sponding Hamiltonian becomes Ĥex(t ) = ÔF (t ), with F (t ) =
g[a(t ) + a∗(t )]. When in the presence of the cavity, the dy-
namics of the SMB quantum system becomes

ρ̇ex(t ) = −iL̂0(t )ρex(t ) − iL̂ex(t )ρ0(t ), (16)

whose detailed derivation can be found in Appendix A. The
solution of Eq. (16) is given by

ρex(t ) = −i
∫ t

0
P(t, t ′)L̂ex(t ′)ρ0(t ′)dt ′, (17)

where L̂ex(t ′)ρ0(t ′) = [Ĥex(t ′), ρ0(t ′)] and P(t, t ′) =
T exp[−i

∫ t
t ′ L̂0(τ )dτ ] is the propagator of L̂0(t ) with the

time-ordering operator T . Then the change rate of the
expectation value for the operator Ô(t ) = eiĤ0t Ôe−iĤ0t reads

O(t ) ≡ Tr{Ôρex(t )} =
∫ t

0
dt ′χ (t, t ′)g[a(t ′) + a∗(t ′)], (18)

where the susceptibility

χ (t, t ′) = −i Tr{ÔP(t, t ′)[Ô, ρ0(t ′)]}θ (t − t ′)

= −i Tr{[Ô(t ), Ô(t ′)]ρ0}θ (t − t ′). (19)

Making a modified Laplace transformation [112–114]
η(ω) = ∫ ∞

0 eiωtη(t )dt to Eq. (7), where eiωt → eiωt−εt with
ε → 0+ makes η(ω) to converge to a finite value, we find the
cavity equation

−iωa(ω)

= −iωaa(ω) − a(ω) f1(ω) − κ̃1(ω)
[
a(1)

in (ω) − a(1)
in (iλ1)

]
− igO(ω) − a(ω) f2(ω) − κ̃2(ω)

[
a(2)

in (ω) − a(2)
in (iλ1)

]
,

(20)

with κ̃ν (ω) = ∫ 0
−∞ κ∗

ν (t ′)eiωt ′
dt ′, a(ν)

in (ω) =∫ ∞
0 a(ν)

in (t ′)eiωt ′
dt ′, and fν (ω) = ∫ ∞

0 fν (t ′)eiωt ′
dt ′. For

the undriven system, the susceptibility depends only on
the time difference t − t ′ such that the integration in
Eq. (18) is a convolution and in frequency space reads
O(ω) = gχ (ω)[a(ω) + a∗(−ω)], which leads to Eq. (20)
becoming

[−iω + iωa + f1(ω) + f2(ω)]a(ω)

+ig2χ (ω)[a(ω) + a∗(−ω)]

= −κ̃1(ω)
[
a(1)

in (ω) − a(1)
in (iλ1)

]
−κ̃2(ω)

[
a(2)

in (ω) − a(2)
in (iλ1)

]
. (21)

For a high-finesse cavity, small detuning ω − ωa, and suffi-
ciently small coupling g such that

|κ̃1(ω)|2, |κ̃2(ω)|2, |ω − ωa|, |g2χ (ω)| 
 ωa, (22)

the impact of a∗(−ω) is negligible (for the reasons,
see Appendix B), which means that the SMB quantum
system response is O(ω) = gχ (ω)a(ω). Then the
solution of Eq. (21) together with the non-Markovian
input-output relation given by Eq. (12) yields the cavity
transmission t̃c = a(2)

out (ω)/a(1)
in (ω) = tc + ϕ1 with ϕ1 =

−φ(λ1, ω)tc and φ(λ1, ω) = a(1)
in (iλ1)/a(1)

in (ω), and reflection
r̃c = a(1)

out (ω)/a(1)
in (ω) = rc + ϕ2 with ϕ2 = −φ(λ1, ω)rc amp-

litudes at frequency ω, where

tc = iκ̃1(ω)κ2(−ω)

ωa − ω − i[ f1(ω) + f2(ω)] + g2χ (ω)
,

rc = iκ̃1(ω)κ1(−ω)

ωa − ω − i[ f1(ω) + f2(ω)] + g2χ (ω)
+ 1,

(23)

where κν (ω) = ∫ 0
−∞ κν (t ′)eiωt ′

dt ′, and we have assumed that

a(2)
in (ω) is in the vacuum state. Their dependence on χ (ω)

allows us to obtain the information about the SMB quantum
system by probing the reflection |rc|2 or transmission |tc|2.
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We find that ϕ1 = −φ(λ1, ω)tc and ϕ2 = −φ(λ1, ω)rc are
induced by non-Markovian effect and have no Markovian
counterparts, which are inhomogeneous terms depending on
the specific forms of the input field a(1)

in (t ). In Markovian
approximation, φ(λ1, ω) tends to zero for λ1 → ∞. In
order to see the effect of this inhomogeneous term, we now
assume that the input field a(1)

in (t ) has two concrete forms
as follows: damped oscillation a(1)

in (t ) = a1e−γ t sin(b1t2)
and Gaussian profile a(1)

in (t ) = a1e−γ t2
cos(b1t ) for γ >

0 and b1 > 0, which respectively correspond to φ(λ1, ω) =
{cos[ (γ+λ)2

4b1
][1 − 2 f c( γ+λ√

2πb1
)]+[1 − 2 f s( γ+λ√

2πb1
)] sin[ (γ+λ)2

4b1
]}/

{cos[ (γ − iω)2

4b1
][1 − 2 f c( γ−iω√

2πb1
)] + [1 − 2 f s( γ−iω√

2πb1
)]

sin[ (γ−iω)2

4b1
]} and φ(λ1, ω) = e

λ2+ω2+2b1(ω−iλ)
4γ {i + e

ib1λ

γ [i +
er f i( b1−iλ

2
√

γ
)] − er f i( b1+iλ

2
√

γ
)}/{i + e

b1ω

γ [i + er f i( b1−ω
2
√

γ
)] −

er f i( b1+ω
2
√

γ
)}, where f c(z) = ∫ z

0 cos(πt2/2)dt, f s(z) = ∫ z
0 sin

(πt2/2)dt, er f i(z) = er f (iz)/i with er f (z) = 2√
π

∫ z
0 e−t2

dt .
We show the inhomogeneous terms can not reveal

the properties of the SMB quantum system to be
tested. For two concrete input fields and given param-
eters, e.g., γ = 0.001ωa, b1 = 0.003ωa, we can evaluate
|φ(λ1, ω)| ∼ 10−3 for λ = 0.5ωa (non-Markovian regime),
and |φ(λ1, ω)| ∼ 10−6 for λ = 5ωa (weak non-Markovian ef-
fect) at the interval ω ∈ (0.9ωa, 1.2ωa) for the above two
cases. This means that the inhomogeneous terms |ϕ1| and |ϕ2|
are much smaller than the transmission |tc| and reflection |rc|,
which therefore can be ignored for these parameters, and leads
to t̃c ∼ tc and r̃c ∼ rc for two above input fields. Therefore, the
influences of the inhomogeneous terms on the cavity transmis-
sion and reflection will be not considered for plotting later.

In addition, we also can redefine the cavity transmis-
sion with non-Markovian regimes as tc = a(2)

out (ω)/[a(1)
in (ω) −

a(1)
in (iλ1)] = iκ̃1(ω)κ2(−ω)

ωa−ω−i[ f1(ω)+ f2(ω)]+g2χ (ω) given by Eq. (23) which
can reflect the properties of the SMB quantum system.

In the Markovian limit (i.e., λν → ∞), we have κ̃1(ω) →
i
√

	1, κ1(ω) → −i
√

	1, κ2(ω) → i
√

	2, and fν (ω) → 	ν/2.
Substituting these results into Eq. (23), we can obtain the
Markovian transmission and reflection amplitudes of the
cavity [21]

tcm = −i
√

	1	2

ωa − ω − i	/2 + g2χ (ω)
,

rcm = i	1

ωa − ω − i	/2 + g2χ (ω)
+ 1,

(24)

where the total cavity decay rate 	 ≡ 	1 + 	2. As compared
to the absence of the bosonic system, the maximum of the
transmission is shifted away from ω = ωa by g2Reχ (ω).

V. TIME-INDEPENDENT SINGLE-MODE
BOSONIC SYSTEM

So far, many works start from the coupled quantum
Langevin equations of the cavity and system, which are solved
within the RWA to obtain the cavity response [36,37,115–
117]. We consider the SMB quantum system (Ĥ0 = ωcĉ†ĉ)
initially prepared in a thermal equilibrium state with the tem-

perature T as

ρ0 = exp(−Ĥ0/κBT )/Tr exp(−Ĥ0/κBT )

=
∑

n

pn|n〉〈n|, (25)

where the population pn= 〈ĉ† ĉ〉n

(1+〈ĉ† ĉ〉n )n+1 (n = 0, 1, 2, . . .) with

〈ĉ†ĉ〉 = (eh̄ωc/κBT − 1)−1. Here κB is the Boltzmann constant.
The eigenequation is Ĥ0|n〉 = En|n〉 with the eigenvalues
En = ωcn. In this case, with Eq. (19), we can obtain [21]

χ (ω) =
∑
m,n

(pm − pn)|Omn|2
ω + Em − En + iγmn/2

, (26)

where γmn denotes the decay rate introduced phenomeno-
logically. Obviously, Reχ (ω) has peaks at ω = En − Em; for
resonant cavity input (ω = ωa), these peaks turn into dips in
the transmission. As χ (ω) has to be calculated at ω = ωa > 0,
terms with Em > En are off-resonant and smaller than the ones
with interchanged indices. Consequently, we can restrict the
summation to terms with m < n to obtain the RWA result for
the cavity response [36], while Eq. (26) generalizes the result
beyond the RWA and gives the non-RWA corrections [37,39].

The matrix element of the coupling operator
satisfies Omn = 〈m|Ô|n〉 = 〈m|ĉ + ĉ†|n〉 = √

nδm,n−1 +√
n + 1δm,n+1 and then |Omn|2 = nδm,n−1 + (n + 1)δm,n+1.

Consequently, we can rewrite Eq. (26) as the sum of two
summations

χ (ω) =
∑

n

(pn−1 − pn)n

ω + En−1 − En + iγn−1,n/2

+
∑

n

(pn+1 − pn)(n + 1)

ω + En+1 − En + iγn+1,n/2
, (27)

which corresponds to the result beyond the rotating-wave
approximation. By neglecting the second summation, we can
obtain the RWA result (see Appendix C for more details). If
χ (ω) is real, we can readily find |rcm|2 + |tcm|2 = 1, which
reflects energy conservation. By contrast, in the case given by
Eq. (26) or (27) at thermal equilibrium with the temperature
T , we show that the sum of cavity transmission and reflection
is less than one, i.e.,

|rcm|2 + |tcm|2 < 1, (28)

since the imaginary part of susceptibility is less than zero in
the whole parameter regime, i.e., Imχ (ω) < 0, which implies
energy transfers from the cavity to the SMB quantum system
and the SMB quantum system dissipates energy with the de-
cay rate γmn. The detailed derivation of Eq. (28) can be found
in Appendix D. If one establishes some other mechanisms,
for example, the SMB quantum system transfers energy to the
cavity or the environmental photons flow back to the cavity
such that |rcm|2 + |tcm|2 might be greater than one in some
parameter regimes. We show that the non-Markovian disper-
sive readout belongs to the latter, which will be discussed in
Sec. V B.

A. Dispersive readout in the Markovian case

We consider that both environments have Lorentzian spec-
tra. In the Markovian limit (λν → ∞), we have derived the
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FIG. 2. (a) Cavity transmission spectra |tcm|2 given by Eq. (24) as
a function of ω and/or ωc at zero temperature. (b) The blue dashed
line (red solid line) represents |tcm|2 as a function of ω for ωc = 0.1ωa

(ωc = ωa). (c) The blue solid (dashed) line shows |tcm|2 as a function
of ωc in the beyond RWA (RWA) case with ω = ωa. The cavity is
symmetric (	1 = 	2 = 	/2 with Q = 1000) and the coupling g =
0.01ωa. The other parameter is γmn = 0.001ωc. Here and in other
figures, all plotted quantities are dimensionless.

Markovian input-output relation given by Eq. (15) and the
Markovian transmission and reflection amplitudes given by
Eq. (24). Figure 2(a) shows the anticrossing between the
cavity mode and the state of the SMB quantum system by
depicting the calculated transmission of the cavity |tcm|2 given
by Eq. (24) as a function of the driving frequency ω and
the level splitting ωc. For this time-independent multilevel
system, the level splitting occurs at ωc = En+1 − En. When
the driving frequency is near the cavity frequency, we can
see the emergence of two peaks. The characteristic frequency
splitting of the coupled modes gives the coupling rate of
g = 0.01ωa, which is greater than the linewidth of both the
cavity mode and the bosonic mode (	 ≡ ωa/Q and γmn =
0.001ωc, respectively). This indicates that the strong-coupling
regime g  	, γmn is achieved, which can be used to per-
form a quantum nondemolition measurement of the state of
the bosonic system in the nonresonant (dispersive) limit, i.e.,
g 
 |ωc − ωa|.

In Fig. 2(b) the vacuum Rabi splitting is readily observable
from the red solid line when ωc = ωa. As indicated with the
red arrows, the coupling strength g relates to the separation
between the two symmetric peaks, which is also described
as the vacuum Rabi frequency. The strong-coupling condition
is defined as having a sufficiently large interaction such that
two separated peaks are observable in the system response
[36]. However, when the transition frequency is away from the

cavity frequency, the blue dashed line shows that the vacuum
Rabi splitting disappears and a peak appears at ω = ωa, which
corresponds to the occurrence of the dispersive limit of the
interaction. In this dispersive regime, i.e.,

g 
 |ωc − ωa|, (29)

the probing of the cavity mode can be used to infer the
property and state of the SMB quantum system with a backac-
tion. Figure 2(c) demonstrates that when the cavity frequency
is close to the transition frequency, the interaction between
the bosonic system and the cavity results in a significantly
reduced cavity transmission, while far from resonance, the
cavity transmission is perfect. Actually, at zero temperature,
the transition between the excited states remains dark, which
can be explained by the vanishing populations pn = 0 (n >

0). However, most of the population is in the ground state and
correspondingly only the transition |0〉 → |1〉 is excited and
the corresponding transition frequency is in resonance with
the cavity frequency, i.e., E1 − E0 = ωc = ωa. Moreover, the
non-RWA term has a significant effect on the shape of the dip,
which may be relevant for quantitative comparisons between
experiment and theory.

In the present case, we are dealing with the bosonic sys-
tem at zero temperature, equivalently reducing to a two-level
system. In the usual scenario of a two-level system coupled
to an optical cavity, strong coupling results in light-matter
hybridization, as evidenced in the observation of vacuum
Rabi splitting and the corresponding anticrossing in the cavity
transmission spectrum when the level transition frequency
matches the cavity frequency. The two vacuum Rabi normal
modes are separated by the vacuum Rabi frequency, and the
linewidth of each mode reflects the average decoherence rate
of light and matter [118].

Next we consider the effect of the temperature on the cavity
transmission. In Fig. 3(a) we show the cavity transmission
|tcm|2 as a function of ωc and T . Figures 3(b) and 3(c) show the
horizontal and vertical cuts of this plot at different values of
ωc and T . From Fig. 3(b) we can see that when ωc = ωa, the
interaction between the bosonic system and the cavity results
in a significant reduction in the cavity transmission despite
the temperatures. As the temperature increases, the population
of the excited states pn (n > 0) increases and these states
start contributing to the cavity response. The cavity response
becomes weaker, which is visible in the reduced linewidth
(width of the dip). The transition |n〉 → |n + 1〉 can be excited
with En+1 − En = ωc = ωa. We can also see that the quality
of the RWA is expected to improve for higher temperature
from Fig. 3(b). Similarly, from Fig. 3(c) we can find that
|tcm|2 = 0 when ωc = ωa and |tcm|2 → 1 when ωc is far from
ωa. In the two cases, the temperature has almost no effect
on the transmission, but influences the transmission when ωc

is close to ωa (ωc = 0.9ωa). It is worth noting that, starting
from Fig. 3, the multilevel system is truncated into a finite
level (n = 25) in the numerical simulation, which makes no
difference to the result with an infinite level.

We next show the cavity transmission plotted as a function
of ω and T in Fig. 4. We can see that the vacuum Rabi splitting
(only the transition |0〉 → |1〉) appears at zero temperature
when the SMB quantum system is in resonance with the
cavity, i.e., ωc = ωa. However, there still exists the splitting
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FIG. 3. (a) Cavity transmission spectra |tcm|2 given by Eq. (24)
as a function of ωc and/or the temperature T . (b) The solid (dashed)
lines correspond to the beyond RWA (RWA) results representing
|tcm|2 as a function of ωc at different temperatures. (c) Lines show
|tcm|2 as a function of T for different ωc. The other parameters are
the same as those in Fig. 2 but with ω = ωa.

as the temperature increases, which originates from the transi-
tion |n〉 → |n + 1〉 with En+1 − En = ωc = ωa. There are also
two peaks for the finite temperature in Fig. 4(a), where the
splitting between the two peaks decreases as the temperature
increases. Therefore, it cannot be called vacuum Rabi splitting
for the finite temperature, while for ωc = 0.1ωa, there is no

FIG. 4. Cavity transmission spectra |tcm|2 given by Eq. (24) as a
function of ω and T , with (a) ωc = ωa and (b) ωc = 0.1ωa. The other
parameters are the same as those in Fig. 2.

FIG. 5. Non-Markovian cavity transmission spectra |tc|2 given
by Eq. (23) as a function of ω with different values of ωc: (a) ωc =
1.1ωa, (b) ωc = 11ωa, (c) ωc = 0.1ωa, ωc = 0.9ωa, and (d) ωc =
0.95ωa. The magenta solid lines in all panels and the black dash-
dotted line in (c) represent the beyond RWA results and the blue
dashed lines in all panels and the black dotted line in (c) represent
the RWA results. We choose the parameters λ1 = λ2 = 0.5ωa and
g = 0.01ωa; the other parameters are the same as those in Fig. 2.

Rabi splitting despite the temperatures, as shown in Fig. 4(b).
Comparing the two panels, from the color coding we also can
see that the amplitude of the transmission in Fig. 4(a) is much
smaller than that in Fig. 4(b).

B. Dispersive readout in the non-Markovian case

For open quantum systems, the Markovian approximation
is only valid when the coupling between the quantum system
and the environment is weak and the characteristic time of the
environment is sufficiently shorter than that of the quantum
system. The effect of the non-Markovian dynamics on the
system’s behavior should be taken into account when the
coherent time (or environmental correlation time) is long.

As we know, the RWA needs to meet two conditions,

g 
 ωc + ωa,

|ωc − ωa| 
 ωc + ωa,
(30)

which are derived in Appendix E. In general, the RWA does
not work if we break one of the conditions, and the non-RWA
(beyond RWA) results are not the same as the RWA results.
From the magenta solid lines and the blue dashed lines in
Figs. 5(a) and 5(d) given by Eq. (23), we can see that the
beyond RWA results give the same dispersive frequency shift
as the RWA results when both conditions of the RWA hold.
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In these two cases, the coupling satisfies g < |ωa − ωc| but
not g 
 |ωa − ωc|, which means the dispersive readout is less
effective. However, from the magenta solid lines and the blue
dashed lines in Figs. 5(b) and 5(c) it is easy to find that g 

|ωa − ωc| holds but |ωc − ωa| 
 ωc + ωa breaks. In Fig. 5(b)
the two results overlap precisely, which means that the disper-
sive readout is very effective with g = 0.01ωa 
 |ωa − ωc| =
10ωa even though the RWA is violated, while in Fig. 5(c) the
frequency shift of the RWA result is different from the beyond
RWA result when g = 0.01ωa 
 |ωa − ωc| = 0.9ωa and the
RWA is violated. That is to say, the dispersive readout is effec-
tive but not better than that in Fig. 5(b); however, the readout
beyond the RWA in Fig. 5(c) shows great agreement with the
results in Fig. 5(b). From Figs. 5(c) and 5(d) we can see that
the dispersive shift moves right as ωc/ωa changes from 0.1
to 0.95. Similarly, the dispersive shift moves left as ωc/ωa

changes from 11 to 1.1, shown Figs. 5(b) and 5(a). In the next
figure, we will choose the result beyond the RWA with the
parameters g = 0.01ωa and ωc = 0.1ωa to show the effects of
the non-Markovianity on the dispersive readout. From Fig. 5,
in this dispersive regime, we show that the shift (ωM − ωa)
between the frequency ωM corresponding to the peak value of
the transmission and the bare cavity frequency induced by the
effects of non-Markovian dynamics on the system’s behavior
can be obtained by the root ωM of

z(ω)t∗
c + z∗(ω)tc = 0, (31)

with

z(ω) = [ωa + z1(ω) − ω]ż2(ω) − z2(ω)[ż1(ω) − 1]

[ż1(ω) − ω + ωa]2 , (32)

which originates from the derivative of the transmission tc
given by Eq. (23) to the frequency, where z1(ω) = g2χ (ω) −
i[ f1(ω) + f2(ω)], z2(ω) = iκ̃1(ω)κ2(ω).

We next discuss the effects of the non-Markovianity on
the dispersive readout with the Gaussian Ornstein-Uhlenbeck
process. We restrict the discussion to rather low temperature,
at which thermal excitations do not play a role. In the disper-
sive limit, the dispersive pull of the cavity frequency by the
SMB quantum system can be used to entangle the state of the
SMB quantum system with that of the photons transmitted or
reflected by the cavity [15]. It is interesting to note that such
entangled states may be used to couple the SMB quantum
system in distant resonators and allow quantum communica-
tion [119]. From Fig. 6(a) we can see that the non-Markovian
transmission |tc|2 at λ1 = λ2 = 300ωa denoted by the black
solid line overlaps precisely with the Markovian transmission
|tcm|2 denoted by the yellow diamond dashed line. As the two
symmetric spectrum widths decrease, the dispersive pull of
the cavity increases. It is easy to see that |tc|2 also decreases
with reduced linewidth for smaller spectrum widths (i.e., λ1 =
λ2 = 0.5ωa, corresponding to the case in the non-Markovian
regime) compared to that with larger spectrum widths. Inter-
estingly, the cavity transmission with asymmetric spectrum
widths (i.e., λ1 �= λ2) shows some different phenomena in
Fig. 6(b). When λ1 = 0.5ωa and λ2 = 300ωa, corresponding
to the case that one environment is Markovian but the other
is non-Markovian, the cavity transmission shows a smaller
amplitude and larger linewidth compared to the case with

FIG. 6. Non-Markovian cavity transmission spectra |tc|2 given
by Eq. (23) as a function of ω, with (a) a symmetric spectrum width
(λ1 = λ2) and (b) an asymmetric spectrum width (λ1 �= λ2). The
inset is an enlargement of the region in (a). Note that as the envi-
ronmental spectrum width λν increases, the non-Markovian readout
effect gradually shifts the frequency corresponding to the peak of the
transmission in the dispersive regime and tends to the case of the
Markovian limit (λν → ∞). We choose the parameter ωc = 0.1ωa;
the other parameters are the same as those in Fig. 2.

two non-Markovian environments (i.e., λ1 = λ2 = 0.5ωa) and
shifts the frequency corresponding to the peak of the transmis-
sion in the dispersive regime compared with the Markovian
approximation. We also consider another two asymmetric
cases of λ1 = 0.5ωa and λ2 = 10ωa denoted by the green
crosses and λ1 = 10ωa and λ2 = 300ωa denoted by the red
circles, which show information similar to that of the cases of
λ1 = 0.5ωa and λ2 = 300ωa denoted by the black dash-dotted
line and λ1 = λ2 = 300ωa denoted by the black solid line,
respectively.

Figure 7(a) shows that the sum of transmission and reflec-
tion |tcm|2 + |rcm|2 is bounded by 1 in the Markovian regime
because the SMB quantum system absorbs energy from the
cavity when the cavity response is sensitive to the SMB quan-
tum system and the information decays into the environments
(for more details, see Appendix F). There also exist, however,
regions in which

|tc|2 + |rc|2 > 1 (33)

in the non-Markovian regime in Fig. 7(b) (for the derivations,
see Appendix F). This special effect can be explained by the
fact that the lost energy and information flow back to the
hybrid system (SMB quantum system plus the cavity) from
the non-Markovian environments, which indicates that the
non-Markovianity can compensate the energy and information
compared with the Markovian case.
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FIG. 7. Sum of the cavity transmission and reflection as a func-
tion of ω and ωc in(a) the Markovian regime given by Eq. (24) (λ1 =
λ2 = 300ωa) and (b) the non-Markovian regime given by Eq. (23)
(λ1 = λ2 = 0.5ωa), demonstrating the energy absorption (blue) and
emission (red). All other parameters are the same as those in Fig. 2.

VI. GENERALIZATION TO THE PERIODICALLY
DRIVEN SMB QUANTUM SYSTEM

In this section we consider that the non-Markovian disper-
sive readout may generalize to the periodically driven SMB
quantum system [20,21,120], in which the cavity response is
different from that in the time-independent system. For a peri-
odically time-dependent system with driving frequency � =
2π/T , the evaluation of Eq. (19) is hindered by the fact that
the susceptibility χ (t, t ′) generally depends on both times.
However, time periodicity allows a simplification in the long-
time limit, because after a transient stage, the T periodicity
of the Hamiltonian Ĥ0(t ) leads to χ (t, t ′) = χ (t + T, t ′ + T )
[120]. Therefore, introducing the time difference τ = t − t ′
allows one to conclude that χ (t, t − τ ) is T periodic in time
t such that it can be written as a combination of the Fourier
series and integral, i.e.,

χ (t, t − τ ) =
∑

k

∫
dω

2π
e−ik�t−iωτχ (k)(ω), (34)

where k is an integer, i.e., k = 0,±1,±2,±3, . . .. Equation
(34) implies the Fourier representation of Eq. (18) as O(ω) =
g
∑

k χ (k)(ω − k�)[a(ω − k�) + a∗(−ω + k�)], which re-
flects the frequency mixing inherent in the linear response
of the driven SMB quantum system. In the good cavity limit
	 
 ωa,�, together with Eq. (22), we can safely neglect the
terms a∗(−ω + k�). Therefore, we have

O(ω) = g
∑

k

χ (k)(ω − k�)a(ω − k�). (35)

The computation of χ (k)(ω) [121] starts by solving
[Ĥ0(t ) − i∂t]|um(t )〉 = sm|um(t )〉 in the extended Hilbert
space [122–127] to obtain the Floquet states |um(t )〉 =
|um(t + T )〉 and the stationary solutions of the Schrödinger
equation |ψm(t )〉 = e−ismt |um(t )〉 with the quasienergy sm.
The corresponding expression for the propagator U (t, t ′) =∑

m e−ism (t−t ′ )|um(t )〉〈um(t ′)| allows us to deal with the op-
erators in χ (t, t ′). Moreover, the periodically driven SMB
quantum system [121] in the basis formed by the Floquet
states can be written as ρ0(t ) = ∑

m pm|um(t )〉〈um(t )|, with
pm the occupation probability of the Floquet states [21]. With
these components, we find from Eq. (34) the susceptibility

χ (k)(ω) =
∑

m,n,k′

(pm − pn)O∗
mn,k′−kOmn,k′

ω + sm − sn + k′� + iγmn/2
, (36)

where Omn,k denotes the kth Fourier component of the T -
periodic transition matrix element Omn(t ) = 〈um(t )|Ô|un(t )〉,
i.e., Omn,k = ∫ T

0
dt
T eik�t 〈um(t )|Ô|un(t )〉, in which the level

broadening γmn of the Floquet states has been introduced
phenomenologically.

When the cavity frequency matches the level energy dif-
ference, Eq. (27) predicts a signal for the time-independent
system. Moreover, we can also obtain the natural generaliza-
tion to the periodically driven SMB quantum system, namely,
that the level energy is replaced by the quasienergy shifted by
multiples of the driving frequency �. In this case, by iterating
Eq. (20) with Eq. (35), we obtain

a(ω) = iκ̃1(ω)[a(1)
in (ω) − a(1)

in (iλ1)]

ωa − ω + g2χ (0)(ω) − i[ f1(ω) + f2(ω)]

− ig2

ωa − ω + g2χ (0)(ω) − i[ f1(ω) + f2(ω)]

∑
k �=0

χ (k)(ω − k�)κ̃1(ω − k�)[a(1)
in (ω − k�) − a(1)

in (iλ1)]

ωa − ω + k� + g2χ (0)(ω − k�) − i[ f1(ω − k�) + f2(ω − k�)]

+ g4

ωa − ω + g2χ (0)(ω) − i[ f1(ω) + f2(ω)]

∑
k �=0

χ (k)(ω − k�)
∑

k1 �=0 χ (k1 )(ω − 2k1�)a(ω − 2k1�)

ωa − ω + k� + g2χ (0)(ω − k�) − i[ f1(ω − k�) + f2(ω − k�)]
.

(37)
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With Eq. (12), the non-Markovian transmission for the Floquet periodically driven SMB quantum system can be written
as

tc ∼ iκ̃1(ω)κ2(−ω)

ωa − ω + g2χ (0)(ω) − i[ f1(ω) + f2(ω)]
− ig2κ2(−ω)

ωa − ω + g2χ (0)(ω)−i[ f1(ω) + f2(ω)]

×
∑
k �=0

χ (k)(ω − k�)κ̃1(ω − k�)

ωa − ω + k� + g2χ (0)(ω − k�) − i[ f1(ω − k�) + f2(ω − k�)]
+ O(g4), (38)

where we have used approximation a(1)
in (ω − k�) ∼ a(1)

in (ω).
In Fig. 8(a) we plot the non-Markovian transmission |tc|2
given by Eq. (38) as a function of ω at zero temper-
ature in the Floquet periodically driven SMB quantum
system, where the SMB quantum system Hamiltonian be-
comes Ĥ0(t ) = ωd (t )ĉ†ĉ. In this case, we take the periodic
modulation as

ωd (t ) = ωc + B sin(�t ), (39)

where B and � are the amplitude and frequency (the corre-
sponding period is T = 2π/�) of the periodic modulation,
respectively. We can calculate the corresponding Floquet
states for the periodic modulation given by Eq. (39) as
|um(t )〉 = eimB[cos(�t )−1]/�|m〉 with sm = ωcm, where |m〉 is

FIG. 8. (a) Non-Markovian transmission |tc|2 given by Eq. (38)
as a function of ω at zero temperature in the Floquet periodically
driven SMB quantum system, where the SMB quantum system
Hamiltonian becomes Ĥ0(t ) = ωd (t )ĉ†ĉ. In this case, we take the pe-
riodic modulation as ωd (t ) = ωc + B sin(�t ), where B and � are the
amplitude and frequency (the corresponding period is T = 2π/�),
respectively. Here we set B = ωa and � = ωa. (b) Quasienergy Eα of
the Floquet periodically driven RWA Hamiltonian ĤS (t ) = ωaâ†â +
g(ĉâ† + ĉ†â) + ωd (t )ĉ†ĉ [ωc → ωd (t ) and ĤS → ĤS (t ) in Eq. (1)]
with different modulation amplitudes B. The inset is an enlargement
at the region Eα ∼ ωa in (b). The other parameters are ωc = ωa,
	1 = 	2 = 	/2, g = 0.01ωa, λ = 1.3ωa, and γmn = 0.001ωc.

the eigenstate of Ĥ0(0). Here we set B = ωa and � = ωa.
We show that the non-Markovian transmission |tc|2 exhibits
a series of peaks with period � as the driving frequency
ω changes, where the horizontal ordinates (corresponding to
the driving frequency ω) of the peaks A1–A5 correspond to
the vertical ordinates (corresponding to the quasienergy Eα)
of points a1–a5 in Fig. 8(b). From Eq. (38) we show that
the primary resonance peak corresponds to the first term of
Eq. (38) near ω ∼ ωa, while the secondary resonance peak
occurs in the second term of Eq. (38) for k = ±1 at ω ∼
ωa ± �. Accordingly, the third resonance peak can be found
at ω ∼ ωa ± 2�, which corresponds to the second term of
Eq. (38), but with k = ±2. Interestingly, from Fig. 8(a) we
find that the values of the second (ω ∼ ωa ± �) and third
(ω ∼ ωa ± 2�) resonance peaks are much smaller than those
of the primary resonance peak (ω ∼ ωa), which originate from
the nonresonance term ig2κ2(ω)

ωa−ω+g2χ (0) (ω)−i[ f1(ω)+ f2(ω)] being much

smaller than iκ̃1(ω)κ2(ω)
ωa−ω+g2χ (0) (ω)−i[ f1(ω)+ f2(ω)] at ω ∼ ωa ± � and

ω ∼ ωa ± 2� in Eq. (38).
The influences of the different modulation amplitudes B on

the non-Markovian transmission can be found in Figs. 9(a)–
9(d), which for clarity are confined near the primary resonance
peak (ω ∼ ωa). As expected, we show that the non-Markovian
transmission decreases in value compared with the Markovian
limit [see the red solid and blue dotted lines in Figs. 9(a)–
9(d)]. It is interesting that we find the width L1 = 0.02ωa

(difference of horizontal ordinates between two points x1 and
x2) between two peaks marked by x1 and x2 equals L̄1 =
0.02ωa (difference of vertical ordinates between two points
x̄1 and x̄2) between x̄1 and x̄2 for the Floquet quasienergy in
Fig. 9(e) at B = 0. For the different modulation amplitudes B
(B = ωa, 2ωa, and 4ωa), we have similar observations [see
L2 = L̄2 = 0.0157ωa, L3 = L̄3 = 0.0043ωa, and L4 = L̄4 =
0.008ωa in Figs. 9(b)–9(e)]. This means that the Floquet
quasienergy can be read out from the non-Markovian trans-
mission.

VII. NON-MARKOVIAN DISPERSIVE READOUT
FOR THE QUANTUM NETWORK

In this section we generalize the results of non-Markovian
dispersive readout to a more general network [128–132]
involving two systems and cavities. A quantum network com-
posed of the sending and receiving nodes, a quantum channel
(optical fibers or waveguides), and an optical circulator are
shown in Fig. 10. The sending and receiving node is made
up of a quantum system in a cavity. The generated photons
from the first quantum system leak out of the first cavity,
propagate as a wave packet along the transmission line, and
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FIG. 9. (a)–(d) Non-Markovian transmission |tc|2 given by
Eq. (38) as a function of ω at zero temperature in the Floquet
periodically driven SMB quantum system with different modula-
tion amplitudes B. The red solid and blue dotted lines correspond
to λ = 1.3ωa and λ = 300ωa, respectively. (e) Quasienergy Eα of
the Floquet periodically driven RWA Hamiltonian ĤS (t ) = ωaâ†â +
g(ĉâ† + ĉ†â) + ωd (t )ĉ†ĉ with different modulation amplitudes B. We
find L1 = L̄1 = 0.02ωa, L2 = L̄2 = 0.0157ωa, L3 = L̄3 = 0.0043ωa,
and L4 = L̄4 = 0.008ωa. The other parameters are � = ωa, ωc = ωa,
	1 = 	2 = 	/2, g = 0.01ωa, and γmn = 0.001ωc.

enter the second cavity. Finally, the optical state of the second
cavity is transferred to the second quantum system. The total
Hamiltonian (see Fig. 10) is given by

Ĥ ′ = Ĥ ′
S + Ĥ ′

I , (40)

FIG. 10. Non-Markovian dispersive readout for a quantum net-
work consisting of two cavities with frequency ωm (m = 1, 2)
coupled with quantum systems with frequency �m and interacting
with two non-Markovian environments (modeled as harmonic os-
cillators with frequencies ωm,k and Wm,k) with coupling coefficients
Vm,k and Gm,k . The two cavities are connected by a quantized trans-
mission line (or optical fiber). The susceptibility of the measured
quantum network system can be obtained by the second cavity trans-
mission tqn,c = a(2)

2,out (ω)/a(1)
1,in (ω) and first cavity reflection rqn,c =

a(1)
1,out (ω)/a(1)

1,in (ω) amplitudes at frequency ω. Here a(2)
m,in (t ) is in the

vacuum state and does not contribute to the average output fields.

with

Ĥ ′
S =

∑
m

ωmâ†
mâm + �mĉ†

mĉm + gm(ĉm + ĉ†
m)(âm + â†

m),

Ĥ ′
I =

∑
m,k

ωm,kb̂†
m,kb̂m,k +

∑
m,k

(Vm,kâmb̂†
m,k + V ∗

m,kâ†
mb̂m,k )

+
∑
m,k

Wm,kd̂†
m,k d̂m,k +

∑
m,k

(Gm,kâmd̂†
m,k

+ G∗
m,kâ†

md̂m,k ), (41)

where the first term of Ĥ ′
S in Eq. (41) is the free Hamiltonian

of the mth cavity with frequency ωm (m = 1, 2) and the sec-
ond term of Ĥ ′

S in Eq. (41) denotes the free Hamiltonian of
the mth quantum system with frequency �m. Here gm is the
coupling constant between the mth quantum system and the
mth cavity. The mth cavity couples to the mth non-Markovian
environments with eigenfrequencies ωm,k and Wm,k , which
are modeled as collections of infinite modes via the creation
(annihilation) operators b̂†

m,k (b̂m,k) and d̂†
m,k (d̂m,k). The pa-

rameters Vm,k and Gm,k are coupling coefficients between the
two environments and the mth cavity, respectively. In this
case, the non-Markovian Heisenberg-Langevin equation (7)
is extended to

d

dt
âm(t ) = −iωmâm(t ) − igm[ĉm(t ) + ĉ†

m(t )]

− K̂†
m,1(t ) − K̂†

m,2(t ) −
∫ t

0
dτ âm(τ ) fm,1(t − τ )

−
∫ t

0
dτ âm(τ ) fm,2(t − τ ), (42)

where the mth externally driven environment operators
K̂†

m,1(t ) = i
∑

k V ∗
m,kb̂m,k (0)e−iωm,kt = ∫ ∞

−∞ dτ κ∗
m,1(t − τ )a(1)

m,in

(τ ) and K̂†
m,2(t ) = i

∑
k G∗

m,kd̂m,k (0)e−iWm,kt = ∫ ∞
−∞ dτ κ∗

m,2

(t − τ )a(2)
m,in(τ ). The mth cavity couples to the incoming

and outgoing modes of environments at both ends; thus
we define here the input-field operators as a(1)

m,in(t ) =
1√
2π

∑
k e−iωm,kt b̂m,k (0) and a(2)

m,in(t ) = −1√
2π

∑
k e−iWm,kt d̂m,k (0)

and the impulse response functions are κm,1(t ) =
−i√
2π

∑
k eiωm,ktVm,k and κm,2(t ) = i√

2π

∑
k eiWm,kt Gm,k . The

correlation functions are given by

fm,1(t ) =
∑

k

|Vm,k|2e−iωm,kt =
∫

Jm,1(ω)e−iωt dω,

fm,2(t ) =
∑

k

|Gm,k|2e−iWm,kt =
∫

Jm,2(ω)e−iωt dω,

(43)

where Jm,1(ω) = ∑
k |Vm,k|2δ(ω − ωm,k ) and Jm,2(ω) =∑

k |Gm,k|2δ(ω − Wm,k ) represent the spectral densities of
the two environments, respectively, and fm,1(t ) and fm,2(t )
denote the memory functions of the mth system, which
describe the non-Markovian fluctuation-dissipation
relationship of the environments.

Similar to Sec. III, we can obtain the non-Markovian
input-output relations for the mth cavity mirror
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ν (ν = 1, 2) (setting t1 → t),

a(ν)
m,out (t ) − a(ν)

m,in(t ) =
∫ t

0
dτ κm,ν (τ − t )âm(τ ), (44)

where the output field of the first cavity constitutes the input
field of the second cavity connected by a quantized transmis-
sion line, i.e.,

a(2)
1,out (t ) = a(1)

2,in(t ), (45)

where a(1)
m,out (t ) = 1√

2π

∑
k e−iωm,k (t−t1 )b̂m,k (t1) and a(2)

m,out (t ) =
−1√
2π

∑
k e−iWm,k (t−t1 )d̂m,k (t1).

By solving the set of coupled-cavity differential equations
(42) with the non-Markovian input-output relations (44), we
can obtain the complete information for the quantum network
of the coupled system cavities. Moreover, we can dispersively
read out information of the two measured quantum systems
from the transmission of the cavities [a(2)

1,in(t ) is assumed
in the vacuum state] as follows: the transmission of the
cavity t̃qn,c = a(2)

2,out (ω)/a(1)
1,in(ω) = tqn,c + ϕqn,1 with ϕqn,1 =

−φqn(λ1, ω)tqn,c and φqn(λ1, ω) = a(1)
1,in(iλ1)/a(1)

1,in(ω),

and reflection of cavity r̃qn,c = a(1)
1,out (ω)/a(1)

1,in(ω) =
rqn,c + ϕqn,2 with ϕqn,2 = −φqn(λ1, ω)rqn,c, where

tqn,c = − κ̃1,1(ω)κ1,2(−ω)κ̃2,1(ω)κ2,2(−ω)

{ω1 − ω − i[ f1,1(ω) + f1,2(ω)] + g2
1χ1(ω)}{ω2 − ω − i[ f2,1(ω) + f2,2(ω)] + g2

2χ2(ω)} ,

rqn,c = iκ̃1,1(ω)κ1,1(−ω)

ω1 − ω − i[ f1,1(ω) + f1,2(ω)] + g2
1χ1(ω)

+ 1,

(46)

where κ̃m,ν (ω)= ∫ 0
−∞ κ∗

m,ν (t ′)eiωt ′
dt ′, a(ν)

m,in(ω) =∫ ∞
0 a(ν)

m,in(t ′)eiωt ′
dt ′, fm,ν (ω)= ∫ +∞

0 fm,ν (t ′)
eiωt ′

dt ′, κm,ν (ω) = ∫ 0
−∞ κm,ν (t ′)eiωt ′

dt ′, and χα (ω) = ∑
m,n

(pα,m−pα,n )|Oα,mn|2
ω+Eα,m−Eα,n+iγα,mn/2 , with the αth SMB quantum
system initially prepared in a thermal equi-
librium state ρα,0 = ∑

n pα,n|n〉〈n|, Ĥα,0|n〉 =
Eα,n|n〉, and the matrix element of the coupling operator
satisfying Oα,mn = 〈m|Ôα|n〉 = 〈m|ĉα + ĉ

†

α|n〉, where
α = 1, 2. Here γα,mn denotes the decay rate introduced
phenomenologically. We show that the exact non-Markovian
Heisenberg-Langevin equation (42) is the general one
for the total system containing an arbitrary number of
entangled modes coupled to an arbitrary number of photonic
environments with arbitrary spectral densities at arbitrary
initial temperatures beyond the RWA, which is not limited to
the cases of the anisotropic non-rotating-wave approximation,
i.e., all coupling including the cavity and environment in
Eq. (41) might be of the form

∑
n

νn(ÂnB̂†
n + Â†

nB̂n) + μn(ÂnB̂n + Â†
nB̂†

n), (47)

where Â†
n (Ân) and B̂†

n (B̂n) are the creation (annihilation)
operators of the bosonic systems. Here νn and μn denote
the coupling strengths of the rotating-wave and non-rotating-
wave interactions, respectively. They allow one to investigate
various exact non-Markovian dynamics in photonic systems.
Applications of the readout for the non-Markovian quantum
network cover various topics such as quantum information
[133], quantum computation [134,135], quantum-to-classical
transition [136,137], and quantum measurement [133,138].

VIII. EXPERIMENTAL IMPLEMENTATION

In this section we discuss the feasibility of the experimental
implementation in the optical cavity. For the model under
study, we mainly focus on the following three points: (i) the
interaction between the cavity and the SMB quantum system,

(ii) probing the effect of non-Markovian dynamics on the
system’s behavior, and (iii) the Lorentzian spectral density.

(i) From Eq. (2) we can see that the coupling between the
cavity and the SMB quantum system is written in its full form
without performing the RWA, which can be implemented
by means of superconducting quantum interference devices
(SQUIDs) [139–141]. The SQUID driven by external fluxes
allows a modulation of the electrical boundary condition of
the cavity and the interaction between the cavity and the
SMB quantum system, provided the modulation frequency
is smaller than the SQUID plasma frequency [139–141]. In
addition, the coupling beyond the RWA can be realized by
driving transversely the momentum states of atoms inside
a cavity in the dispersive regime, which realizes the Dicke
model [142].

(ii) The non-Markovian system under study describes the
optical cavity coupled to the non-Markovian environments
containing all feedback of the non-Markovian environments
on the SMB quantum system, which can be implemented
by the photonic structured reservoirs [143–155]. The spectral
density of a condensed-matter heat bath can be obtained by
observing the non-Markovian behavior of an optomechanical
resonator coupled to it, which has been measured through the
emitted light of a micro-optomechanical system by the system
identification approach in experiment [81]. The demonstra-
tion equipment consists of a thick layer of Si3N4 with a
high-reflectivity mirror pad at its center, as a mechanically
moving end mirror in a Fabry-Pérot cavity [81]. Other ref-
erences about the non-Markovian experiments can be found
in Refs. [156–161]. Thus we can detect what kind of spectral
density the environments belong to by the above experimental
methods.

(iii) For the Lorentzian spectral density, we make use of the
so-called pseudomode theory developed in Refs. [162–169]
to clarify how the decayed information can flow back to
the system. According to the pseudomode theory [162–169],
pseudomodes of an environment are auxiliary variables,
which are introduced in terms of the position of the poles
of the environment’s spectral function. The interaction be-
tween the cavity and environments can be considered to be
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a coherent interaction between the cavity mode and pseu-
domodes, which are surrounded by the external Markovian
environments known as the pseudomodes’ environments. By
adding pseudomodes to the cavity as a hybrid quantum
system, an exact non-Markovian input-output relation with
Lorentzian spectral density can be obtained. Also, for the
quantum noise of the system in the case of the vacuum
state of the environment, the cavity mode undergoes a Gaus-
sian Ornstein-Uhlenbeck process, which corresponds to the
Lorentzian spectral density [107–109].

Finally, we suggest that the non-Markovian dispersive
readout may be realized by considering an optical cavity im-
plemented by a SQUID and coupling with the Lorentz-type
spectral density environments (which are realized by the pseu-
domode method or Gaussian Ornstein-Uhlenbeck process),
where the optical cavity is driven by the external electric field.
In this sense, it is possible to achieve the theoretical scheme
within the current experimental technology.

IX. CONCLUSION

In this paper we have developed the theory for disper-
sive readout in the non-Markovian regime by taking the
non-Markovianity into account. Based on the nonequilibrium
linear response theory, the susceptibility of the SMB quantum
system to be measured is obtained by setting thermal equi-
librium state as the initial state of the SMB quantum system.
Furthermore, the cavity transmission given by the SMB quan-
tum system susceptibility shifts the frequency corresponding
to the peak in the dispersive regime and the input-output rela-
tions in both Markovian and non-Markovian cases have been
derived. The treatment approach enables straightforward cal-
culations, in particular the treatment beyond a rotating-wave
approximation. Moreover, we made possible generalization
of the non-Markovian dispersive readout theory to the peri-
odically driven SMB quantum system based on the Floquet
treatment approach [20,21,122–127] and quantum network
[128–132]. The corresponding experimental implementation
of the model system is possible and feasible.

The formalism presented in this paper opens an alternative
field of possible applications for the quantum information
[29,170–172] and quantum communication [173], which
makes it possible to better understand the relation between
the dispersive measurement [174–176] and non-Markovianity
[177–180]. Our results might also be extended to a wide class
of open quantum systems with (i) a second-order nonlinear
medium �(â2ĉ† + ĉâ†2), (ii) third-order nonlinear materials
Jb̂†2b̂2, (iii) Jaynes-Cummings models

∑
k Vk (σ−a†

k + akσ+)
[181–186] or Rabi models

∑
k Gkσx(a†

k + ak ) [187,188], and
(iv) optomechanical couplings with a linear term Uâ†â(b̂+b̂†)
[189–191] or quadratic term Uâ†â(b̂+b̂†)2 [53,54,192–195]
interacting with non-Markovian reservoirs, which deserve fu-
ture studies. Possible applications include using the cavity as a
quantum bus to couple widely separated qubits in a quantum
computer or as a quantum memory [196] to store quantum
information or even as a generator and detector of single
microwave photons for quantum communication, which also
open up many different possibilities for quantum optical ex-
periments with circuits [14,44,57,197].
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APPENDIX A: DERIVATION OF EQ. (16)

In the classical limit a(t ) ≡ 〈â(t )〉, we are not interested in
quantum fluctuations of the cavity field and rewrite Eq. (1) as

ĤS = Ĥ0 + Ĥex(t ), (A1)

where Ĥ0 = ωcĉ†ĉ describes system Hamiltonian in the ab-
sence of the cavity. Here Ĥex(t ) = ÔF (t ), with F (t ) =
g[a(t ) + a∗(t )], defines the SMB quantum system experienc-
ing an additional driving from the cavity compared to the case
without the cavity. We assume that ρ(t ) is the total density
matrix and its dynamics is determined by

ρ̇(t ) = −i[ĤS, ρ(t )] ≡ −iL̂(t )ρ(t ), (A2)

where the Hamiltonian ĤS is given by Eq. (A1) and L̂(t ) de-
scribes the total Liouville operator. When the cavity is absent,
there is only the bosonic system Ĥ0 left and the total density
matrix becomes ρ0(t ), which is determined by

ρ̇0(t ) = −i[Ĥ0, ρ0(t )] ≡ −iL̂0(t )ρ0(t ). (A3)

Considering an observable Ô(t ) of the SMB quantum system,
we are interested in the change rate of Ô(t ) due to the presence
of the cavity. To calculate the change rate, we divide the total
density matrix into two parts with the existence of the cavity
[113,198,199]

ρ(t ) = ρ0(t ) + ρex(t ), (A4)

where ρ0(t ), determined by Eq. (A3), denotes the density
matrix corresponding to the absence of the cavity with the
initial condition ρ(0) = ρ0(0) and ρex(t ) corresponds to the
change of ρ(t ) due to the cavity, where ρex(0) = 0. Similar to
Eq. (A4), the Liouville operator can be divided into

L̂(t ) = L̂0(t ) + L̂ex(t ), (A5)

where L̂0(t ) denotes the Liouville operator corresponding to
the absence of the cavity and L̂ex(t ) means the change of L̂(t )
due to the existence of the cavity determined by L̂ex(t )ρ0(t ) =
[Ĥex(t ), ρ0(t )]. Substituting Eqs. (A4) and (A5) into Eq. (A2),
we can obtain

ρ̇(t ) = −iL̂(t )ρ(t )

= −iL̂0(t )ρ0(t ) − iL̂0(t )ρex(t )

− iL̂ex(t )ρ0(t ) − iL̂ex(t )ρex(t )

≡ ρ̇0(t ) + ρ̇ex(t ). (A6)
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With Eq. (A3) and neglecting the second-order term
−iL̂ex(t )ρex(t ) of Eq. (A6), we can obtain Eq. (16).

APPENDIX B : RWA OF THE NON-MARKOVIAN
CAVITY MODE

When considering the treatment of the non-Markovian cav-
ity transmission given by (23) beyond the RWA, neglecting
in Eq. (21) the contribution with a∗(−ω) represents a RWA
for the cavity mode. With Eq. (21) for the cavity amplitude
a(ω) together with the corresponding equation for a∗(−ω),
we obtain

N

(
a(ω)

a∗(−ω)

)
=

(
iκ̃1(ω)a(1)

in (ω)

iκ̃∗
1 (−ω)a(1)∗

in (−ω)

)
(B1)

or (
a(ω)

a∗(−ω)

)
= N−1

(
iκ̃1(ω)a(1)

in (ω)

iκ̃∗
1 (−ω)a(1)∗

in (−ω)

)
, (B2)

with the matrix

N =
(

C(ω) g2χ (ω)

−g2χ∗(−ω) −C∗(−ω)

)
, (B3)

where C(ω) = ωa − ω + g2χ (ω) − i[ f1(ω) + f2(ω)], and the
inverse matrix of N can be written as

N−1 =
(

a11 a12

a21 a22

)
, (B4)

where a11 = −C∗(−ω)/[g4χ (ω)χ∗(−ω) − C(ω)C∗(−ω)],
a12 = −g2χ (ω)/[g4χ (ω)χ∗(−ω) − C(ω)C∗(−ω)], a21 =
g2χ∗(−ω)/[g4χ (ω)χ∗(−ω) − C(ω)C∗(−ω)], and a22 =
C(ω)/[g4χ (ω)χ∗(−ω) − C(ω)C∗(−ω)]. We impose that
a12, a21, and a22 tend to zero when |C(ω)| and |g2χ (ω)|
are much smaller than |C∗(−ω)|, which requires that (i) the
cavity is driven close to resonance (|ω − ωa| 
 ωa), (ii) the
high-finesse cavity (|ωa/[ f1(ω) + f2(ω)]|  1) is satisfied,
and (iii) |g2χ (ω)| is much smaller than the bare cavity
frequency ωa, which lead to Eq. (22). In this case, we have
a11 ≈ C(ω)−1 due to g4χ (ω)χ∗(−ω) ≈ 0. Then the inverse
matrix (B4) of N is approximately given by

N−1 ≈
(

C(ω)−1 0

0 0

)
, (B5)

where the corrections are of higher order in the small frequen-
cies on the left-hand side of Eq. (22). Computing a(ω) with
this expression for N−1 is equivalent to ignoring a∗(−ω) in
Eq. (21).

APPENDIX C: SUSCEPTIBILITY UNDER THE RWA

For the RWA case, the Hamiltonian ĤS in Eq. (1) can be
rewritten as

ĤS = ωaâ†â + g(ĉâ† + ĉ†â) + ωcĉ†ĉ, (C1)

which leads to Eq. (7) becoming

d

dt
â(t ) = − iωaâ(t ) − igĉ(t ) − K̂†

1 (t ) − K̂†
2 (t )

−
∫ t

0
dτ â(τ ) f1(t − τ ) −

∫ t

0
dτ â(τ ) f2(t − τ ).

(C2)

In the classical limit, Eq. (C1) can be written as ĤS = Ĥ0 +
Ĥex(t ), with Ĥ0 = ωcĉ†ĉ, and the corresponding perturbation
Hamiltonian with the RWA is

Ĥex(t ) = g[ĉa∗(t ) + ĉ†a(t )] ≡ g
∑
j=1,2

ĉ jFj (t ), (C3)

where ĉ1 = ĉ, F1(t ) = a∗(t ), ĉ2 = ĉ†, and F2(t ) = a(t ). With
ρex(t ) given by Eq. (17), the change rate of the expectation
value for the operator ĉ in Eq. (C2) due to the cavity is given
by

c(t ) ≡ Tr{ĉρex(t )} =
∑
j=1,2

∫ t

0
dt ′gFj (t

′)χc j (t, t ′), (C4)

with the susceptibility

χc j (t, t ′) = −i Tr{[ĉ(t ), ĉ j (t
′)]ρ0}θ (t − t ′), (C5)

where ĉ(t ) = eiĤ0t ĉe−iĤ0t , with Ĥ0 = ωcĉ†ĉ. We assume that
the initial SMB quantum system density operator is prepared
in a thermal equilibrium state (25). After some simple algebra,
we can obtain

χc1(t, t ′) = − i
∑
m,n

(pm − pn)ei(Em−En )(t−t ′ )cmncnmθ (t − t ′),

χc2(t, t ′) = − i
∑
m,n

(pm − pn)ei(Em−En )(t−t ′ )|cmn|2θ (t − t ′).

(C6)

With cmncnm = 0 and |cmn|2 = |√nδm,n−1|2 due to cmn =
〈m|ĉ|n〉 = √

nδm,n−1 and cnm = 〈n|ĉ|m〉 = √
mδn,m−1, we ob-

tain χc1(t ) = 0. In this case, Eq. (C4) becomes

c(t ) =
∫ t

0
dt ′ga(t ′)χ (t − t ′), (C7)

where we have defined

χ (t − t ′) ≡ χc2(t − t ′)

= −i
∑
m,n

(pm − pn)ei(Em−En )(t−t ′ )|cmn|2θ (t − t ′).

(C8)

With modified Laplace transformation, the susceptibility can
be written as

χ (ω) =
∑
m,n

(pm − pn)|cmn|2
ω + Em − En + iγmn/2

, (C9)

where γmn denotes the decay rate introduced phenomenolog-
ically. Equation (C7) is a convolution and in frequency space
reads c(ω) = gχ (ω)a(ω). With |cmn|2 = n|δm,n−1|2, Eq. (C9)
is simplified to

χ (ω) =
∑

n

(pn−1 − pn)n

ω + En−1 − En + iγn−1,n/2
, (C10)
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which can return to the RWA result, i.e., the first term of
Eq. (27).

APPENDIX D: RELEVANT PROOFS FOR
THE MARKOVIAN REGIME

1. The imaginary part of the susceptibility is less than zero
for the whole parameter regime

The susceptibility given by Eq. (26) can be rewritten as

χ (ω) =
∑
m,n

cmnamn

a2
mn + b2

− i
cmnb

a2
mn + b2

, (D1)

where amn = ω + Em − En, b = γmn/2 ≡ γ /2 (γ is a
constant decay), cmn = (pm − pn)|Omn|2 ≡ −cnm due
to |Omn|2 = |〈m|ĉ + ĉ†|n〉|2 ≡ |Onm|2, pn= 〈ĉ† ĉ〉n

(1+〈ĉ† ĉ〉n )n+1 ,

and 〈ĉ†ĉ〉 = (eh̄ωc/κBT − 1)−1. The imaginary part of the
susceptibility in Eq. (D1) is

Im[χ (ω)] =
∑

m,n>m

Xmn ≡ −
∑

m,n>m

cmnb

a2
mn + b2

+ cnmb

a2
nm + b2

,

(D2)

where

Xmn = − cmnb

a2
mn + b2

+ cmnb

a2
nm + b2

= 4bcmn(Em − En)ω

[b2 + (ω + Em − En)2][b2 + (ω − Em + En)2]
.

(D3)

Now we discuss two situations: (1) If Em < En or, equiva-
lently, pm > pn, we have cmn > 0, which leads to Xmn < 0 or

Im[χ (ω)] < 0, (D4)

and (2) if Em > En or, equivalently, pm < pn, we have cmn <

0, which also leads to Xmn < 0 or Eq. (D4).

2. The sum of transmission and reflection is less than
one for the whole parameter regime

We show that the susceptibility (26) is defined as χ (ω) ≡
x + iy, based on which the sum of transmission and reflection
given by Eq. (24) can be written as

|rcm|2 + |tcm|2 = 1 + 8	1yg2

4(ωa − ω + xg2)2 + (	 − 2yg2)2 ,

(D5)

which leads to the inequality given by Eq. (28) due to y =
Im[χ (ω)] < 0 proved by Eq. (D4) for the whole parameter
regime in the Markovian approximation.

APPENDIX E: CONDITIONS FOR THE RWA

In this Appendix we give the justification of the condi-
tions of the rotating-wave approximation as follows. We now
rewrite the Hamiltonian (2) as

Ĥ ′′
S = Ĥ ′′

0 + εĤ ′′
I , (E1)

with

Ĥ ′′
0 = ωaâ†â + ωcĉ†ĉ, (E2)

Ĥ ′′
I = g(ĉ + ĉ†)(â + â†), (E3)

where ε stands for the interaction strength. In the interaction
picture, we have

Ĥ ′′
I (t ) = gâĉ†e−i(ωa−ωc )t + gâĉe−i(ωa+ωc )t + H.c., (E4)

where H.c. denotes the Hermitian conjugate. The first few
terms in the interacting strength ε of the time-evolution op-
erator for Dyson expansion [200] is given by

U ′′(t ) = T exp

[
−iε

∫ t

0
Ĥ ′′

I (t1)dt1

]

= 1 − iε
∫ t

0
Ĥ ′′

I (t1)dt1 − ε2
∫ t

0
dt1

×
∫ t1

0
Ĥ ′′

I (t1)Ĥ ′′
I (t2)dt2 + · · · . (E5)

Substituting Eq. (E4) into Eq. (E5), we can obtain

−i
∫ t

0
Ĥ ′′

I (t1)dt1 = g

ωa − ωc
[e−i(ωa−ωc )t − 1]âĉ†

− g

ωa − ωc
[ei(ωa−ωc )t − 1]â†ĉ

+ g

ωa + ωc
[e−i(ωa+ωc )t − 1]âĉ

− g

ωa + ωc
[ei(ωa+ωc )t − 1]â†ĉ†. (E6)

We show that the rotating-wave approximation requires

g

ωa + ωc

 1,

g

|ωa − ωc|  g

ωa + ωc
,

(E7)

which lead to the condition (30) for the RWA. In this case,
the counterrotating terms can be neglected. When the system
parameters do not satisfy Eq. (E7), we cannot neglect the non-
rotating-wave terms in the Hamiltonian (E4) and therefore this
RWA breaks down.

APPENDIX F: RELEVANT PROOFS FOR
THE NON-MARKOVIAN REGIME

In this case, we show that the non-Markovian transmission
and reflection given by Eq. (23) can be revised to

tc = A + iB

ωa − ω + X + iY
,

rc = 1 + C + iD

ωa − ω + X + iY
,

(F1)
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with the coefficients X = f1y(ω) + f2y(ω) +
g2Re[χ (ω)], Y = − f1x(ω) − f2x(ω) + g2Im[χ (ω)],
A = −ω

√
	1	2λ1λ2(λ1+λ2 )

(λ2
1+ω2 )(λ2

2+ω2 )
, B = −

√
	1	2λ1λ2(λ1λ2−ω2 )
(λ2

1+ω2 )(λ2
2+ω2 )

, C =
2	1ωλ3

1

(λ2
1−ω2 )2+(2ωλ1 )2 , and D = 	1λ

2
1(λ2

1−ω2 )

(λ2
1−ω2 )2+(2ωλ1 )2 , where f1x(ω) and

f1y(ω) are the real and imaginary parts of f1(ω), respectively,
while f2x(ω) and f2y(ω) denote the real and imaginary parts of
f2(ω), respectively. Simple algebra to the sum of transmission
and reflection obeys

|rc|2 + |tc|2 = 1 + A2 + B2 + C(C + 2Z ) + D(D + 2Y )

Z2 + Y 2
,

(F2)

where Z = X − ω + ωa.

If the coefficients satisfy

A2 + B2 + C(C + 2Z ) + D(D + 2Y ) > 0 (F3)

or

ωa > −A2 + B2 + C(C − 2ω + 2X ) + D(D + 2Y )

2C
, (F4)

we can obtain the inequality given by Eq. (33); otherwise
|rc|2 + |tc|2 � 1, where C > 0 in Eq. (F1) has been used. Here
we show that the regime being greater than one for the sum of
transmission and reflection in Fig. 7(b) falls into that given by
Eq. (F3) or (F4).
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