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Multiband and array effects in matter-wave-based waveguide QED
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Recent experiments on spontaneous emission of atomic matter waves [Krinner et al.,
Nature (London) 559, 589 (2018); Stewart et al., Phys. Rev. Research 2, 043307 (2020)] open a window
into the behavior of quantum emitters coupled to a waveguide. Here we develop an approach based on infinite
products to study this system theoretically, without the need to approximate the band dispersion relation of
the waveguide. We solve the system for a one-dimensional array of one, multiple, and an infinite number of
quantum emitters and compare with the experiments. This leads to a detailed characterization of the decay
spectrum, with a family of in-gap bound states, mechanisms for enhanced Markovian emission different from
superradiance, and the emergence of matter-wave polaritons.
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I. INTRODUCTION

Experimenting with the light-matter interface at the
quantum level [1–3] has led to the discovery of exciting
phenomena, including implementations of photonic quantum
matter [4,5], effective long-range interactions between neutral
atoms [6], chiral quantum optics [7], nondestructive photon
counting [8], and quantum logic gates [9,10] among others.
The plethora of these developments contrasts with the con-
ceptual simplicity of coupling one or many quantum emitters
to a photonic waveguide (also known as waveguide QED);
photons are the ideal carriers of quantum information as they
can travel large distances without colliding with one another,
while atoms can access and store this information by absorb-
ing the photons.

Implementations using ultracold atoms in optical lattices,
originally proposed by [11], challenge this paradigm as they
reproduce the same physics while switching the roles of mat-
ter and light which now become the radiation and emitters,
respectively. This comes with advantages, such as accessi-
bility to different parameter regimes, the absence of losses
into stray modes (diverging Purcell factor), and a high tun-
ability of the system [12,13] with the potential to enable
state-of-the-art applications including the simulation of giant
atoms [14], perfect subradiance [15], and topological effects
[16]. The experimental realization of these systems has been
achieved recently [17,18], resulting in the observation of
phenomena such as tunable Lamb shifts, bound-state beats,
non-Markovian decay dynamics, and time-of-flight pictures
of the bound states.

In the analysis of waveguide-QED systems [19–23], a
key idea is that the emission properties can be drastically
altered by manipulating the mode distribution of the radiation
[24–26]. However, due to the difficulty of a multiband analysis
[24], the emission of matter wave radiation has only been an-
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alyzed for the cases of a single emitter coupled to modes with
one parabolic band edge [11,13,17] or one sinusoidal band
[18,27]. In this paper, we go beyond these restrictions and
present how to evaluate the exact lattice functions required
to solve the dynamics. Using techniques of complex analysis,
we find that this can be done in an efficient way by using
infinite products. These allow us to solve the system with
broader generality (i) by considering the action of multiple
emitters in the system, (ii) by accounting for the full band dis-
persion relation for the radiated modes, (iii) going beyond the
Markovian regime, as we solve for arbitrarily high couplings,
and (iv) also accounting for the finite size of the emitters. For
simplicity, and in agreement with the conditions of the exper-
iments [17,18], we restrict ourselves to one-dimensional (1D)
noninteracting systems within the single excitation subspace.

This paper is organized as follows. In Sec. II, we give an
introduction to the ultracold atom platform and its connec-
tion with the Hamiltonian for spontaneous emission of matter
waves. In Sec. III, we derive the formal solution of the equa-
tions of motion for multiple emitters. These equations can be
evaluated using the infinite-product representations presented
in Sec. IV. We focus on the case of a single emitter in Sec. V,
where we describe the system spectrum in detail and discuss
the appearance of enhanced Markovian emission in an ultra-
Markovian regime. In Sec. VI, we compare predictions of our
model with some of the experimentally observed dynamics.
In Sec. VII we study the form of the bound states, consisting
of matter waves dynamically anchored to the emitter. Finally,
in Sec. VIII we review the case of an infinite array of emitters
and the emergence of polaritons that result from the hybridiza-
tion between the emitter array and the potential in which the
matter waves propagate.

II. SYSTEM HAMILTONIAN

We consider a two-level atom (states “red” |a〉 and “blue”
|b〉) of mass m in a 1D state-dependent optical lattice of
recoil momentum k and potential Va(b)(z) = Va(b) sin2(kz), as
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FIG. 1. Representation of the system. (a) The system in position
space. Gaussian wave functions φ j representing the ground states of
altogether N considered wells of a deep lattice Va(z) are coupled to
Bloch waves ψq of a shallower lattice Vb(z), through a coupling of
strength � and detuning � from Vb(0). (b) Energy bands εq (thin
blue lines) and Franck-Condon overlap γq (thick purple lines) in the
extended zone scheme. Solid lines are for the case Vb = 2.5Er and
the dashed lines for the free-particle case Vb = 0.

experimentally realized in [17,18]. When the atom is in |a〉,
the lattice potential is deep [Va � Er = (h̄k)2/2m] and the
atom is locally confined to the harmonic-oscillator ground
state φ j (z) in site j, with negligible tunneling between sites.
An oscillating external field of frequency ωμ couples the
atom to |b〉, which experiences a much shallower potential
|Vb| � Va, with tunneling Jb/h̄.

The motional states |1b
q〉 of the |b〉 atoms are the Bloch

waves ψq(z) with lattice momentum q ∈ (−∞,+∞), which
are solutions of the Mathieu equation [28]. We choose to
normalize these to a single Brillouin zone (BZ) but work in the
extended zone scheme for a more direct connection with the
free-particle case. We take their total energy h̄ωb,q as the sum
of the band energy εq [see Fig. 1(b)] of Vb(z) and the internal
energy h̄ωb. We note that, for diverging energy, the dispersion
relation εq approximates that of a free particle subject to the
constant average potential Vb/2; this will become important in
Sec. IV.

If the atom is initially localized in a single well, during
short evolution times t � h̄/Jb the system is a simulator for
spontaneous emission of a photon by an isolated quantum
emitter in a photonic crystal [11,13]. However, for longer
times, the |b〉 atom propagates sufficiently far to be reabsorbed
by neighboring lattice sites of Va, such that dynamical array
effects become noticeable, as was experimentally observed
in [17,18]. These array effects are detrimental to the Marko-
vianity of the system [29] and they are especially acute in
the ultracold platform due to the strong retardation between

emitters. For such a system of N lattice sites the uncoupled
Hamiltonian is given by

Ĥ0 =
N∑

j=1

h̄ωaâ†
j â j +

∑
q

h̄ωb,qb̂†
qb̂q, (1)

where â†
j = |1a

j〉〈0| creates an |a〉 atom in the jth site from

the vacuum |0〉, b̂†
q = |1b

q〉〈0| creates a |b〉 atom with lattice

momentum q, and the explicit sum in modes is
∑

q ≡ ∫ +∞
−∞

dq
2k

for the chosen normalization and zone scheme. The coupling
part of the Hamiltonian (in the interaction picture) takes the
form

Ĥab =
N∑

j=1

∑
q

h̄�

2
ei(εq/h̄−�)t−iqz j γqâ j b̂

†
q + H.c., (2)

where � is the coupling between the two internal states,
z j = jπ/k is the position of the jth site, γq = 〈ψq|φ0〉 [see
Fig. 1(b)] is the Franck-Condon overlap between the tightly
confined wave function and the Bloch wave at q, and � =
ωμ + ωa − ωb is the detuning of the coupling field [30]. The
Hamiltonian thus takes the form of a system of Weisskopf-
Wigner Hamiltonians [31], in which h̄� plays the role of the
excitation energy of a quantum emitter.

III. DECAY OF AN N-EMITTER ARRAY

Generally, the state of an atom in the state-dependent lattice
can be expressed as a linear combination of Wannier states
(harmonic-oscillator ground states) and Bloch waves

|ψ (t )〉 =
N∑

j=1

Aj (t )
∣∣1a

j

〉 + ∑
q

Bq(t )
∣∣1b

q

〉
. (3)

The time evolution in this picture, ih̄∂t |ψ (t )〉 = Ĥab|ψ (t )〉, is
given by

Ȧ j (t ) = −
∑

q

i�

2
eiqz j−i(εq/h̄−�)tγ ∗

q Bq(t ),

Ḃq(t ) = −
∑

j

i�

2
e−iqz j+i(εq/h̄−�)tγqA j (t ). (4)

Following a standard approach in the field [11–13,21,22,32]
and extending it to a system of sites, the system of dif-
ferential equations can be solved via Laplace transform
Ã(s) ≡ L{A(t )}. Considering processes of spontaneous emis-
sion [Bq(t = 0) = 0], Eqs. (4) transform into

sÃ j (s) − Aj (0) = −
∑

q

i�

2
eiqz j γ ∗

q B̃q[s + i(εq/h̄ − �)],

sB̃q(s) = −
∑

j

i�

2
e−iqz j γqÃ j[s − i(εq/h̄ − �)].

(5)

Substituting the second equation into the first yields

sÃ j (s) − Aj (0) = −
∑

J

G̃ j-J (ih̄s + h̄�) ÃJ (s), (6)
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with the bath correlation function

G̃ j-J (E ) := h̄�2

4i

∑
q

|γq|2 eiq(z j−zJ )

εq − E
. (7)

To proceed, it is convenient to express the Bloch waves ψq

entering the calculation of the Franck-Condon factor γq in the
basis of plane waves

ψq(E )(z) = ψq(E )(0)
+∞∑

n=−∞
υn(E )ei[q(E )+2nk]z, (8)

and to replace the sum over lattice momenta q with an inte-
gration over the associated energy E . After integration in the
complex plane (see the Appendix), this yields

G̃ j-J (E ) = h̄�2ahoπ
3/2

8k
ρ(E )ψ2

q(E )(0)

×
+∞∑

m,r=−∞
υm(E )υr (E )e−[q(E )+k(m+r)]2a2

ho

×
[

e−iq(E )(zJ −z j ) erfc

(
− i[q(E ) + 2kr]aho

+ zJ − z j

2aho

)
+ (zJ ↔ z j )

]
, (9)

where lattice momentum q(E ) is the positive branch
of the inverse function of the analytic extension of
εq, aho is the harmonic-oscillator length (i.e., φ0(z) =
exp[−z2/(2a2

ho)]/ 4

√
πa2

ho), ρ(E ) = 2 dq(E )/dE is the density
of Bloch states (DOS), with the prefactor of 2 accounting
for the existence of left and right movers, and erfc(x) =
2/

√
π

∫ ∞
x exp(−y2)dy is the complementary error function.

We note that, because of the Gaussian envelope
exp{−[q(E ) + k(m + r)]2a2

ho}, the infinite sum in Eq. (9)
converges rapidly and, for a tightly confining emitter
[|ahoq(E )|, ahok � 1], the expression above simplifies
greatly. It follows from (8) that

∑
m υm(E ) = 1, and the

erfc(x) in the formula approximates a step function; hence

G̃ j-J (E ) ≈ h̄�2

4

ahoπ
3/2

k
ρ(E )ψ2

q(E )(0)eiq(E )|zJ −z j |. (10)

The linear system of equations (6) can be solved for fi-
nite N with basic linear algebra (the infinite case N = ∞ is
treated in detail in Sec. VIII), with the solution in matrix
form written as Ã(s) = [sI + G̃(ih̄s + h̄�)]−1A(0). Using the
Wick-rotated variable E = ih̄s + h̄� in the inverse Laplace
transform then yields

A(t ) = −1

2π i

∫ +∞+i0+

−∞+i0+
[(E − h̄�)I + ih̄G̃(E )]−1

× A(0)e−i(E−h̄�)t/h̄dE . (11)

The integral can be further simplified using the residue the-
orem, for which it is important to know the singularities of
the integrand. They include poles, i.e., the solutions of the
equation

det[(E − h̄�)I + ih̄G̃(E )] = 0, (12)

as well as square-root branch points at the band edges EA0,
EA1, EB1, EB2, etc. introduced in the next section.

IV. LATTICE FUNCTIONS ON THE COMPLEX
ENERGY PLANE

Using the Laplace transform to solve the system dynam-
ics [see Eq. (11)] makes it necessary to evaluate different
lattice-related functions in the complex energy plane. This is
challenging since some of these functions, such as the lattice
momentum q(E ), are multivalued and some others, such as
the Bloch waves ψq(E )(0), are physically defined only up to a
phase factor. In this section we develop an efficient way for
doing so via an infinite-product representation.

We start by analyzing the band structure of the matter-wave
vacuum using a standard textbook formula [33],

cos
πq(E )

k
=

cos
(
π

√
E−Vb/2

Er
+ arg t (E )

)
|t (E )| ≡ T (E ), (13)

relating the lattice momentum q(E ) to the transmission co-
efficient t (E ) for a plane wave of energy E going through
the isolated potential barrier described by V (z) = Vb(z) for
z ∈ [0, π/k] and 0 otherwise. Importantly, we will see that
t (E ) does not need to be evaluated explicitly, but instead just
some special points of T (E ) will be necessary for the analysis,
as they fully determine the physical properties of the system.

These special points, shown in Fig. 2(a), are the energies
where T (E ) takes zero, unity, or extreme values. In particular,
the energies with |T | = 1 correspond to the band edges of
the dispersion relation, which host Bloch waves carrying an
integer multiple of the recoil momentum and definite parity.
Correspondingly, we label the band edges with even Bloch
waves (Mathieu cosines) as {EAn}∞n=0 and those with odd
waves (Mathieu sines) as {EBn}∞n=1 [34]. Finally, we label the
zeros {ECn}∞n=1 and the extrema {EDn}∞n=1.

The ordering of these energies for different potential
depths, shown in Fig. 2(b), is easily understood for free-space
motion Vb = 0 and the limit Vb → ±∞, as the lattice spec-
trum becomes that of a quantum harmonic oscillator. We note
that flipping Vb �→ −Vb [as experimentally done in [18]; see
Fig. 4(c)] leaves the band structure unchanged, but swaps
the parity of the edges belonging to every other energy gap.
Physically, this transformation is equivalent to displacing the
emitter by half a lattice period.

With these definitions, we can efficiently perform an ana-
lytical extension of several functions into the complex energy
plane by using infinite products. For instance, consider T (E ).
Since t (E ) → 1 as |E | → ∞, the asymptotic expression for
this function readily follows from Eq. (13), and already re-
sembles T (E ) quite well [see Fig. 2(a)]. A perfect match can
be achieved if one “corrects” the zeros of the approximation
by first dividing through them and then multiplying with the
actual zeros of T (E ), which gives

T (E ) = cos

(
π

√
E − Vb/2

Er

) ∞∏
n=1

E − ECn

E − Vb
2 − (

n − 1
2

)2
Er

.

(14)
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FIG. 2. Characteristic energies of the matter-wave vacuum.
(a) The solid black line shows T as a function of energy (in units
of Er) for the case Vb = 2.5Er . T (E ) determines the band edges
(EAn, EBn), the zeros ECn, and the extrema EDn. The corresponding
asymptotic expression, cos[π

√
(E − Vb/2)/Er], is shown as a black

dashed line. (b) Diagram of these characteristic energies [with the
same color code as in (a)] above the ground energy EA0(Vb) in units
of an energy scale 4

√
E 4

r + (4VbEr )2 chosen to match the recoil energy
when there is no lattice and the harmonic approximation energy
split when the lattice is very deep. The abscissa Vb is presented in
arctangent scale.

This identity is in fact guaranteed by Liouville’s theorem of
complex analysis [35] [assuming that T (E ) has no complex
singularities], since the quotient between the two sides of
the equation is, by construction, an entire function that tends
to 1.

Equation (14) in return allows for the analytic extension
both of the lattice momentum, via q(E ) = k

π
arccos T (E ), and

of the energy bands εn(q) = T −1
n (cos πq

k ). In particular, we
note that q(EDn) are the branch points where the n and n + 1
bands cross.

An analogous reasoning can be applied for analytical ex-
tensions of other lattice functions such as ρ(E ), ψq(E )(0),
and ψ ′

q(E )(0). Since at extreme energies (|E | → ∞) an atom
traveling through the lattice potential Vb(z) behaves like
a free particle subject to the average constant potential
Vb/2, it is straightforward to find their asymptotic expres-
sions, which can again be corrected further via infinite
products. In the case of the density of states (DOS), this

results in

ρ(E ) = k

√√√√ 1

Er (E − EA0)

∞∏
n=1

(E − EDn)2

(E − EAn)(E − EBn)
. (15)

For the Bloch waves ψq(E )(0) taken at the emitter position,
the asymptotic value for high energy is

√
k/π , and the value

has to vanish at the odd band edges EBn due to parity. Further-
more, Eqs. (7) and (10) [or equivalently Eq. (A3)] imply that
ρ(E )ψ2

q(E )(0) = 2k
iπ

∑
q |ψq(0)|2/(εq − E ) and, given that the

right-hand side (RHS) of this expression is analytic for all E
outside the bands, the singularities of ψ2

q(E )(0) in this region
have to be simple poles matching the zeros EDn of the DOS.
This leads to the expression

ψq(E )(0) =
√√√√ k

π

∞∏
n=1

(E − EBn)

(E − EDn)
(16)

and similarly

ψ ′
q(E )(0) = ik3/2

√√√√E − EA0

πEr

∞∏
n=1

(E − EAn)

(E − EDn)
. (17)

Finally, we note that Eqs. (16) and (17) can be used as
initial conditions in the Mathieu equation to obtain the value
of the Bloch wave at any other point through ψq(E )(z) =
ψq(E )(0)C(E , z) + iψ ′

q(E )(0)S(E , z), where C (S) is an en-
tire function in both of their arguments, (anti)symmetric in
z corresponding to the unnormalized Mathieu cosine (sine)
function.

V. SINGLE-EMITTER DECAY (N = 1)

The decay of an isolated emitter for the case of coupling
to a single, sinusoidal band or a parabolic band edge has
been analyzed in earlier theoretical works [13,27,36]. Using
our formalism, we now generalize this treatment to include
infinitely many (non)sinusoidal bands, arising for arbitrary
lattice depth Vb. For simplicity, we consider the case Vb > 0
and disregard band gaps beyond an arbitrary cutoff index 

(in practice  can always be chosen to be small, given that
the band gaps quickly get narrower).

As seen in the previous section, the dynamics A(t ) of a
tightly confining emitter is governed by the bath correlation
function G̃ j-J (E ) ≡ G̃0(E ) obtained from Eqs. (10), (15), and
(16). To evaluate G̃0(E ), we first introduce the (truncated)
products �A(E ) = ∏

n=0(E − EAn) and �B(E ) = ∏
n=1(E −

EBn), as well as their ratio �B/A(E ) = �B(E )/�A(E ).
Using these products, the bath correlation function can
then be approximated as h̄G̃0(E ) ≈ κ

√
�B/A(E ), with

the coupling constant κ = (�/2)2h̄aho

√
2πm. To avoid

ambiguity, we consider that all square roots
√· · · in

this section give back complex numbers with argument
in (−π/2,+π/2].

To find the poles of the inverse Laplace transform (11), we
multiply Eq. (12) with its algebraic conjugate; the poles then
correspond to zeros of the polynomial (E − h̄�)2�A(E ) +
κ2�B(E ). By considering the degree of this polynomial
and its changes in sign between band edges, it is easy to
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see that there are no bound states in the continuum (BIC)
[37], whereas each band gap (including E < EA0) contains
at least one pole. This differs from the multiemitter case
1 < N < ∞, where subradiance and retardation effects can
lead to a BIC [38,39]. For sufficiently weak couplings (κ �
E3/2

r ), these in-gap poles can be approximated as En ≈
EAn − κ2�B(EAn) / [(EAn − h̄�)2 ∏

m �=n(EAn − EAm)]. There

are two additional poles, approximately h̄� ∓ iκ
√

�B/A(h̄�),
which lie in the same gap if they are real; otherwise, one
of them (EM) has negative imaginary part and can lead to
Markovian (exponential) decay of the emitter and the other
(E∗

M) is its complex conjugate.
In determining the spectral decay properties (see Fig. 3),

we see that not all of these poles contribute towards the residue
theorem: due to the square root singularities at the band edges,
we can visualize the integrand domain as a Riemann surface
consisting of an “upper sheet” where the integration paths in
the complex plane are located and a “lower sheet” on the other
side of the branch cuts. Only the poles on the upper sheet will
contribute towards the residue theorem and have a physical
interpretation.

For positive lattice depths Vb > 0 and Markovian couplings
� � minq∈R |� − εq/h̄|, the pole En is in the upper sheet
only when sgn{h̄� − EAn} = (−1)n. Of the two extra poles,
only one is in the upper sheet; in particular, E∗

M cannot be there
because its positive imaginary part would lead to exponential
growth of the population [see Eq. (18)].

For larger couplings, there is still a change of sheets for
one of the poles living in the nth > 0 gap as h̄� crosses
the value EBn. On the other hand, by increasing the coupling
it is possible to make two lower poles colocated in a gap
combine into a double pole and then split into a Markovian
pole EM and its conjugate E∗

M . Whereas E∗
M remains always

unphysical, EM can make it to the upper sheet, as depicted in
Fig. 3(c).

This figure reveals behavioral differences between the de-
cay next to a band edge hosting even Bloch waves and one
hosting odd ones. Whereas the former behaves as expected
from previous studies [13], the latter displays an increase in
the Markovian component of the decay at non-Markovian
couplings. One would naively expect that reabsorption and
emission scale equally with the vacuum coupling; however,
this is not the case here as BS formation is suppressed for
these parameters [see Fig. 3(b)]. Despite the phenomenolog-
ical similarities, this ultra-Markovian emission is not to be
confused with superradiance, as a single emitter is enough to
create this effect. For illustration purposes, let us consider the
following example. Under the same conditions as Figs. 3(b)
and 3(c), a quantum emitter with detuning h̄� = EB1 + 1

5 Er

and coupling h̄� = 5
2 Er emits half of its population at only

t = 0.52h̄/Er and it emits more than 90% ultimately. In con-
trast, while the initial decay is very similar at h̄� = EA0 +
1
5 Er and h̄� = 5

2 Er , most of the radiation is reabsorbed at
t = 2.5h̄/Er and the red population subsequently oscillates
with large amplitude as the system cycles between emission
and reabsorption.

The integration path of Eq. (11) can be adapted to the
singularities described in Fig. 3(a) by circling around the
physical poles and branch cuts of the integrand [40], leading
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FIG. 3. Spectral emission properties of a tight emitter. (a) Exam-
ple of poles and branch cuts (dashed lines) of the inverse Laplace
transform (11) for Va = 20Er , Vb = 2.5Er , coupling h̄� = Er , and
a detuning � resonant with the first energy band. Black dots corre-
spond to physical poles, whereas the white dots are unphysical and
do not contribute to the dynamics. The branch points EAn (red) and
EBn (blue) are the band edges hosting even and odd Bloch waves,
respectively. The thick black line represents the integration contour
of the transform. (b) The sum of the squared residues of the bound
states—an indicator of the red population that remains bounded after
emission—is presented as a color map on the �-� plane. Regions
separated by the white dashed vertical lines {h̄� = EBn}∞

n=1 have a
different number of bound states. (c) Squared norm of the residue
corresponding with the Markovian pole EM on the �-� plane. In the
solid cyan regions there is no Markovian pole, whereas in the cyan
dashed regions the pole is in the lower sheet.

to the time evolution

A(t ) =
∑

E∈upper
poles

α(E )ei(�−E/h̄)t

− iκ

π

∑
n=0

(−1)nei(�−EAn/h̄)t I (EAn, t )

+ iκ

π

∑
n=1

(−1)nei(�−EBn/h̄)t I (EBn, t ), (18)
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FIG. 4. Comparison between theory and the experiments [17,18]. (a) Detuning dependence of the population decay |A(t )|2, from one tightly
confining emitter to a sinusoidal lattice of potential depth Vb = 2.5Er and through a coupling κ = 0.082E 3/2

r . Cyan marks indicate the position
of the energy gaps. The time slice t = ∞ represents the range of asymptotic population that remains bound after decay. (b) Decay curves as
in (a) but for a set detuning in the center of the first energy band, h̄� = 1.32Er , and for an array of N = 1, 3 and ∞ emitters, with only the
central emitter originally excited. The red dots indicate the experimental values measured for the same parameters [18]. (c) Quasimomentum
distribution |Bq(τ )|2 predicted for the emission by a single tightly confining emitter with κE−3/2

r = 0.015, 0.032, and 0.015 into potentials with
depth Vb/Er = 2.5, 0, and −2.6 (respectively) at a fixed time Erτ/h̄ = 9.24. The insets reproduce the experimentally observed distributions
for Vb = 0 [17] and Vb �= 0 [18] measured for the same parameters.

where

α(E ) = 2(E − h̄�)

2(E − h̄�) + κ2 d
dE �B/A(E )

(19)

denotes the residue of the poles and the branch contribution

I (E , t ) =
∫ ∞

0

exp (−ζ t/h̄)
√

�B/A(E − iζ )

(E − iζ − h̄�)2 + κ2�B/A(E − iζ )
dζ (20)

is well defined unless EM stands on the branch cut. The branch
contribution I (E , t ) tends to zero as the time t increases but in
a nonexponential fashion, making the decay non-Markovian.
The only contributions persistent in time, i.e., the bound states
(BS), are the real upper poles residing in the band gaps.

VI. PHENOMENOLOGY

The general features of the resulting time evolution are
shown in Fig. 4(a). It is mostly Markovian for detunings deep
inside the bands and non-Markovian around the band edges;
there is no decay deep inside the gaps. We note that emission
is suppressed at the band edges EBn of odd parity with respect
to the edges EAn, whose Bloch waves have the same parity as
the emitter.

After the emission, the emitter population can oscillate by
the beating of various bound states. This effect, which has also
been measured experimentally [18], is most noticeable in the
center of the first energy band. We compare our calculation
with the experimental data in Fig. 4(b).

Although the one-emitter model (N = 1) matches the ob-
served decay dynamics at short times, it underestimates the
amount of subsequent reabsorption seen in the experiment,
in which the optical lattice provided an array of emitters. As
already discussed in [18], the subsequent oscillations are dom-
inated by reabsorption as the emitted radiation spreads across
the emitter array. Using the formalism developed in this paper,
the presence of neighboring ground-state emitters (i.e., empty
lattice sites) surrounding an excited emitter can readily be
taken into account in Eq. (11) via an analogous approach, and
already working with a lattice of three sites (N = 3) shows

a marked improvement for the second oscillation. While it
generally gets harder to analyze and numerically solve larger
arrays, this is not the case for N = ∞ (which is studied in
Sec. VIII). As seen in Fig. 4(b), the overall agreement with
the experiment qualitatively improves further to longer time
scales, but residual deviations persist. They are likely due to
differences in the initial state (the experiment worked with a
sparsely populated array with more than one excitation) and
collisions between atoms.

An analogous formula to (18) can be written for the time
evolution Bq(t ) of the emitted modes,

Bq(t ) = − h̄�γq

4π i

∫ +∞+i0+

−∞+i0+

e−i(E−εq )t/h̄ dE/(E − εq)

E − h̄� + iκ
√

�B/A(E )
. (21)

The main difference is that the integration displays an addi-
tional pole at energy εq. Importantly, this real pole does not
correspond to a bound state (discussed further in the next sec-
tion), but to a mode that has completely abandoned the emitter
and keeps traveling free indefinitely. This causes similarity
between the emission spectrum and the dispersion relation of
the medium [see Fig. 4(c)]. We note that, at smaller couplings,
the applicability of the N = 1 theory extends to longer times,
which was the case for the parameters of Fig. 4(c). More
generally, a multiemitter analysis of the emitted modes is
accessible through Eq. (4).

VII. BOUND STATES

As seen in the previous section, the long-time dynamics
of the quantum emitter is dictated by the presence of bound
states. BS have been broadly studied in the literature [41]
and in 1D are limited to be short ranged [42], which is the
reason why they are often depicted as decaying exponen-
tially in space [11,13,27,41,43] while the detailed features
are often overlooked. However, the reader might expect that
the presence of a lattice potential for the radiated modes in-
duces a corrugation of this evanescent wave [24]. Even more
strikingly, recent experimental work [18] found that time-of-
flight distributions of these BS can possess two sharp peaks at
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opposite momenta, suggesting common features with station-
ary waves despite the absence of boundaries. In this section we
clarify these apparent inconsistencies by computing the ex-
actly spatial distribution of the BS and presenting a simple
physical picture that encompasses all these effects.

The BS wave function |ψ (t )〉 is defined in the interaction
picture [see Eq. (3)] by

A(t ) = A(0)ei(�−EBS/h̄)t ,

Bq(t ) = h̄�

2(EBS − εq)
γqA(0)ei(εq−EBS )t/h̄, (22)

where A(0) = [1 + ∑
q |γq|2( h̄�/2

EBS−εq
)2]−1/2 is the normaliza-

tion constant. The red part of this expression follows from
isolating the contribution of a single pole in Eq. (18), whereas
the blue part and the equation (12) for the BS energy EBS

follow from integrating (4).
The spatial distribution of this bound state is bet-

ter understood in the Schrödinger picture |ψ (t )〉S =
e−iĤ0t/h̄|ψ (t )〉, where position is a time-independent oper-
ator. The blue part of |ψ (t )〉S has a position-space wave
function BS (z, t ) = ∑

q BS,q(t )ψq(z) which can be integrated
in a very similar way to the derivation of (9), leading
to

BS (z, t ) = − iρ(EBS )ψ2
q(EBS )(0)

√
2ahoh̄�A(0)π5/4

8k
e−i(ωb+EBS/h̄)t

+∞∑
m,r=−∞

υm(EBS )υr (EBS )

× e− [q(EBS )+2kr]2a2
ho

2

[
e−i[q(EBS )+2km]z erfc

(
−i

[q(EBS ) + 2kr]aho√
2

+ z√
2aho

)
+ (z ↔ −z)

]
. (23)

This expression might seem cumbersome, but we note that
it is real at t = 0 and symmetric, that the prefactor is regular
also when EBS = EDn, due to the cancellation of the zero of
ρ(EBS ) with the pole of ψ2

q(EBS )(0), that the time evolution is
that of an eigenstate of the system (even though the Hamil-
tonian is not time independent due to the external coupling,
which causes the red part of the BS to have a frequency lower
than the blue by ωμ), and that the dominant modes of the sums
are υ0(EBS ) and υ−n(EBS ) = υ∗

0 (EBS ) (with n numbering the
gap of EBS) when the blue lattice is shallow as they correspond
with the momenta that are closest to the free-particle disper-
sion relation (see Fig. 5). The BS is localized at the center of
the site and decays to both sides with an inverse exponential
decay length Im q(EBS ) and a wave number Re q(EBS ) = nk,
and it is consistent with those presented in Refs. [13,24].
In summary, expression (23) shows that the BS is a linear
combination of evanescent waves whose momenta match the
analytic extension to the band gaps of the blue lattice disper-
sion relation, as presented in Fig. 5.

Looking back at the spectrum of the system described
in the previous section, these bound states may be created
adiabatically by choosing a detuning � resonant with the nth
band gap and increasing the vacuum coupling strength � adia-
batically, as empirically shown in Refs. [17,18]. The adiabatic
condition consists of the change in these parameters being
slower than the time scale defined by the energy difference
between the instantaneous BS energy and the nearest energy
edge. This imposes two restrictions for adiabatic excursions
in the �-� plane [see Fig. 3(b)]: � must not be brought back
to zero, while � is in some region other than the nth band gap
since the BS energy would cross EAn, and � must not cross
the corresponding odd band edge EBn/h̄ since the BS energy
would also cross EBn.

The procedure of adiabatic creation allows for testing
experimentally the BS probability distributions derived in
this section. The lattice-momentum distribution |Bq(t )|2 =
|BS,q(t )|2 of Eq. (22) matches with the band-map measure-

ments of Ref. [17] (for the case Vb = 0; see also [13])
and Ref. [18] (case Vb = 2.5Er > 0). Furthermore, signatures
of the real-space distribution |BS (z, t )|2 of Eq. (23) might
be accessed by highly resolving in situ imaging techniques
[44].

�2 �1 0 1 2

�2 �1 1 2�2 �1 1 2

�2 �1 0 1 2

�2 �1 0 1 2

z/al

z/al

z/al

q(E)/k

E

FIG. 5. Spatial shape of the bound states for the same parameter
values as Fig. 4(a). On the left, the real (dark blue) and imaginary
(light orange) parts of the analytic extension of q(E ) are presented for
various energies in the bands (white) and gaps (shaded cyan regions).
The solid lines denote the momenta that contribute the most in the
composition of the bound state. The horizontal black dashed lines
denote three different possible BS energies at different gaps. They
intersect with the lattice momenta that conform the evanescent waves
around the emitter, i.e., the bound states, which are shown on the
right in spatial units given by the lattice constant al = π/k.
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VIII. MATTER-WAVE POLARITONS

In general, as the number of emitters in the array in-
creases, the spectrum of the system becomes more elaborate,
but the case of infinitely many emitters is an exception
to this. As N → ∞, the Hamiltonian regains the lattice
periodicity and states with different lattice momentum q
decouple via Bloch’s theorem. In our formalism this is
reflected in the fact that vectors of the form A(0) =
(. . . , eiqπ ( j−1)/k, eiqπ j/k, eiqπ ( j+1)/k, . . .)T are eigenstates of
G̃(E ) while being independent of E . We will refer to these
states as matter-wave polaritons, in analogy to their quantum
optical counterparts [5,43,45]. While photons are also in-
volved in this unconventional quasiparticle by constituting the
optical lattice, the usual role of a photon in a polariton is taken
over by matter waves. In the regime |Vb| � Er � |Va|, the
dispersion relation of the radiated modes is nearly quadratic
and matter-wave polaritons are similar to exciton polaritons
[5,46], whereas for Er � |Vb| � |Va| the now strongly confin-
ing optical lattice for blue atoms forms the analog of a coupled
cavity array in circuit QED [47–52]. Some of these properties
have recently been observed experimentally [53].

Taking the Fourier transform FAq = ∑
j A je−iπ jq/k as a

change to the decoupled basis, Eq. (11) simplifies to

FAq(t ) = −1

2π i

∫ +∞+i0+

−∞+i0+

FAq(0)e−i(E−h̄�)t/h̄

E − h̄� + ih̄g̃q(E )
dE , (24)

where the eigenvalue

ih̄g̃q(E ) =
(

h̄�

2

)2 +∞∑
n=−∞

|γq+2kn|2
εq+2kn − E

(25)

follows immediately by applying the definition of eigen-
value to (7) and using the identity

∑+∞
j=−∞ ei(q′−q)π j/k =

2k
∑+∞

n=−∞ δ(q′ − (q + 2kn)). The integrand has thus become
a meromorphic real function, free of the branch cuts at the
band edges and free of complex poles. This indicates that radi-
ation cannot escape the emitter array, which is to be expected
since the array is infinite.

Since all of the poles are real, we follow a suggestion in
[24] and visualize Eq. (25) as shown in Fig. 6(a), in order to
locate all of the solutions En(q) that physically correspond to
the polariton energy bands. Some simple properties that fol-
low from this graph are that polariton bands neither cross each
other nor the original energy bands [E1(q) < h̄�, εn−1(q) <

En(q) < εn(q) for n � 2], although they might cross the de-
tuning at the points g̃−1

q (0) where the couplings to different
bands cancel mutually. Excited polariton bands tend to these
points in the limit of very large coupling; otherwise, they soon
approximate the energy bands [En�1(q) ≈ εn−1(q)].

The resulting band structure [purple lines in Fig. 6(b)] is
exotic and cannot be obtained by a simple periodic potential.
An indicator of this is the positive effective mass of both the
ground and the first excited polariton band near q = 0.

The motional properties associated with these bands follow
from applying the residue theorem to (24), which leads to

FAq(t ) =
∞∑

n=1

rn(q)ei[�−En (q)/h̄]tFAq(0), (26)

FIG. 6. Band structure of the polaritons. (a) Graphical solution
of Eq. (25) for the polariton bands at a particular quasimomentum,
q0 = −2.3k, and with the same parameter values as Fig. 4(b) and
with energies in units of Er . Polariton energies are located at the
intersection between the orange and blue lines. (b) Resulting po-
lariton band structure En(q) (in purple), for the band structure εn(q)
(in blue) and detuning h̄� (in red) specified in (a). (c) Schematic
depiction of a particle in a state-dependent lattice with Va = 12Er

and Vb = −0.4949Er hopping two lattice sites due to the coupling
h̄� = 0.626 Er between states. (d) Energy bands corresponding to
the situation depicted in (c), with a detuning of 0.0742Er between
the centers of the ground band ε

(b)
1 (q) and the excited band ε

(a)
2 (q).

The (approximate) doubling in periodicity of the resulting polariton
bands (in purple) is an indicator of the double hopping.

where the residues are given by

rn(q) = [1 + ih̄g̃′
q(En(q))]−1. (27)

The residues for bands far away from the detuning are negligi-
ble, rendering the structure of higher bands or gaps irrelevant
for the dynamics. Alternatively, these results may also be
obtained by decoupling the Hamiltonian [43] or as an ansatz
in the Schrödinger equation, while taking into considera-
tion that these residues satisfy the normalization condition
(rn ∈ [0, 1] and

∑∞
n=1 rn(q) = 1) and energy conservation

[
∑∞

n=1 rn(q)En(q) = h̄�] and
∑∞

n=1 rn(q)/[εm(q) − En(q)] =
0. With this solution of the system, we can explain the dy-
namical behavior of the experimental data [17,18] at longer
evolution times t � h̄/Jb [see Fig. 4(b), case N = ∞].

Moreover, as different quasimomenta are decoupled unless
they differ by an even multiple of the recoil momentum k, one
can define a periodic momentum-dependent detuning � ≡
�(q) to account more accurately for the dispersion relation
ε(a)

n (q) for the |a〉 states in the nth band, while also modifying
the Franck-Condon overlap into γq = 〈ψ (b)

q |ψ (a)
n,q〉. This allows

more customization of the resulting polariton bands En′ (q),
whose hopping rates

J̄ (n′ )
j = −

∫ k

−k

dq

2k
En′ (q)eiπ jq/k (28)

can be freely tuned. An extreme example of this is shown in
Figs. 6(c) and 6(d), where the first band of the |b〉 states is
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coupled with the second band of the |a〉 in a way that the po-
laritons hop two lattice sites at a time, without going through
the intermediate site at all (J̄1 = 0, J̄2 �= 0). This opens the
possibility for the analog simulation of J1-J2 quantum spin
models [54,55] with ultracold bosons in 1D, by inducing
effective spin interactions [56–58]. We note that frustration
[59], a core feature of the J1-J2 model, in our system has
kinetic origin and is generated by coupling bands of opposite
effective mass [60].

IX. CONCLUSIONS

We have shown the importance of having multiple emitters
coupled to multiple band modes in ultracold-atom realizations
of waveguide QED. Already on the single emitter level, the
intricate band structure enriches the spectrum, partially due
to the presence of energy edges hosting odd Bloch waves
(which present an unexpected enhancement of the Markovian
part of the decay in the non-Markovian regime), and partially
due to the presence of multiple bound states in different band
gaps. Our analysis was made possible by simple analytical
expressions we have found for multiple well-known func-
tions describing the dynamical properties of a particle in a
lattice potential. The fast convergence of these expressions
and their applicability on the whole complex energy plane
make them relevant in contexts beyond the scope of this
work, although there is no trivial generalization to higher
dimensional lattices. Interpreted as a two-point function for
a Feynman diagram analysis, they can also serve as a starting
point for the description of multiple interacting excitations.
And finally we have studied polariton formation in the matter-
wave context, showing that this system not only can act
as an analog simulator of photonic phenomena, but also
as a wider platform for studying low-dimensional frustrated
systems.

ACKNOWLEDGMENTS

We thank M. Stewart for detailed early discussions and
M. G. Cohen for a critical reading of the manuscript. This
work was supported by the National Science Foundation un-
der Grant No. PHY-1912546, with additional funds from the
SUNY Center for Quantum Information Science on Long
Island.

APPENDIX: INTEGRATING OVER LATTICE MOMENTA

The study of spontaneous emission into a lattice calls for
integration over the lattice momenta both in the dynamics
[see Eq. (7)] and in the spatial distribution of the bound
state,

BS (z, t ) =
∑

q

BS,qψq(z) ∝
∫ +∞

−∞

γqψq(z)

EBS − εq
dq. (A1)

FIG. 7. Domain coloring plot of the integrand of the RHS of (A2)
for J = j = 0, kz′ = 0.5 < kz′′ = 0.7, Vs = 4Er , and E0/Er = 1 +
2i.

In order to simplify them, we propose expressing the Franck-
Condon overlaps in their integral form and solving first the
integral∫ +∞

−∞

ψ∗
q (z′)ψq(z′′)eiq(z j−zJ )

E0 − εq
dq

=
∮

C1

ψq(E )(−z′)ψq(E )(z′′)ρ(E )eiq(E )(z j−zJ )

2(E0 − E )
dE , (A2)

where C1 are contours circling the bands (see Fig. 7). By
using Sec. IV, it follows that the integral has a symmetry
(z′, zJ ) ↔ (z′′, z j ) and the integrand has only a simple pole
in E0 and bivalued branch cuts at the band edges. Changing
the integration contour to C2 and noticing that the integrand is
asymptotically dominated by ψ∗

q(E )(z
′)ψq(E )(z′′)eiq(E )(z j−zJ ) ∼

exp[ik(z′′ + z j − z′ − zJ )
√

(E − Vb/2)/Er], we find that the
outermost circumference of C2 vanishes in the upper sheet
[Im q(E ) > 0] when z′′ + z j − z′ − zJ > 0 (the opposite case
follows by the aforementioned symmetry), leaving only the
pole contribution of E0:∫ +∞

−∞

ψ∗
q (z′)ψq(z′′)eiq(z j−zJ )

E0 − εq
dq

= −π iψq(E0 )(−z′)ψq(E0 )(z
′′)ρ(E0)eiq(E0 )(z j−zJ )

× H (z′′ + z j − z′ − zJ ) +
(

z′ ↔ z′′
zJ ↔ z j

)
, (A3)

with H (z) = 0, 1/2, 1 if z <,=,> 0 (respectively) denoting
the Heaviside step function.

The overlapping integral with the Gaussian emitter φ0(z)
can then be solved exactly after Fourier decomposing the
Bloch waves into plane waves [see Eq. (8)], leading to ex-
pressions (9) and (23).
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