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In the presence of arbitrary three-dimensional linear media with material loss and amplification, we present
an electromagnetic field quantization scheme for quasinormal modes (QNMs), extending previous work for
lossy media [S. Franke et al., Phys. Rev. Lett. 122, 213901 (2019)]. Applying a symmetrization transformation,
we show two fundamentally different ways for constructing a QNM photon Fock space, including (i) where
there is a separate operator basis for both gain and loss, and (ii) where the loss and gain degrees of freedom
are combined into a single basis. These QNM operator bases are subsequently used to derive the associated
QNM master equations, including the interaction with a quantum emitter, modeled as a quantized two-level
system (TLS). We then compare the two different quantization approaches, and also show how commonly used
phenomenological methods to quantize light in gain-loss resonators are corrected by several important aspects,
such as a loss-induced and gain-induced intermode coupling, which appears through the rigorous treatment of
loss and amplification on a dissipative mode level. For specific resonator designs, modeled in a fully consistent
way with the classical Maxwell equations with open boundary conditions, we then present numerical results
for the quantum parameters and observables of a TLS weakly interacting with the medium-assisted field in
a gain-loss microdisk resonator system, and discuss the validity of the different quantization approaches for
several gain-loss parameter regimes.
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I. INTRODUCTION

Light-matter interactions in nano-optical structures, such
as photonic crystal cavities [1–3] and semiconductor micropil-
lars [4–6], are a major topic in quantum optics and laser
science. These optical cavities provide an ideal platform for
studying several phenomena in open system quantum optics,
such as nonclassical light generation [7,8], and emerging ap-
plications such as quantum information processing [9,10].
Recently, PT -symmetrical systems and general gain-loss
resonators have also gained much attraction as a basis to
investigate exceptional point (EP) physics and non-Hermitian
quantum physics, which comes with a large variety of appli-
cations, such as improved lasing and sensing [11–16].

While the quantum description of lossy resonator struc-
tures has been addressed from many different viewpoints,
e.g., via coupling to a “bath” [17,18] or via dissipative
modes [19,20], the combination of lossy and amplifying en-
vironments on a quantized photon level is still an open and
recently debated problem. Moreover, although some progress
has been made towards a description of gain through a Scully-
Lamb model and quantum-Langevin type equations with
phenomenological gain and loss noise operators [21–24], not
much effort has been made in terms of a dissipative mode
quantization for gain-loss structures. Such an approach is
especially important for coupled resonators, where we expect
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the response to be dominated by a few resonant cavity modes
[3,25].

From a macroscopic quantization viewpoint, nearly
two decades ago a quantization approach for spatial-
inhomogeneous and absorptive media was introduced
[26–28], where the familiar normal mode expansion of the
electromagnetic fields in nonabsorptive dielectric media was
generalized in terms of a source-field expansion of the field
operators using the photonic Green function together with a
phenomenological noise operator basis. The Green function
quantization method is based on earlier works from Huttner
and Barnett [29,30] on quantization in spatial-homogeneous
media, and was later justified by more rigorous quantization
approaches [31,32], based on a microscopic oscillator model
for the medium degrees of freedom [33] and a Fano diagonal-
ization method [34]. Furthermore, the approach was extended
to the case of amplifying media [35], which is also justified by
a complementary inverted microscopic oscillator model [36].
For the case of amplifying and lossy media, it was recently
shown that the intrinsic nature of gain can lead to drasti-
cally different behavior of quantized light-matter interactions
through the altered quantum vacuum fluctuations [37].

The Green function quantization has already been success-
fully applied to a variety of phenomena [38–41] in quantum
optics and quantum plasmonics. However, the presence of a
continuum of photon noise operators usually prevents the use
of the theory for light-matter interaction beyond the weak cou-
pling limit. For purely lossy media, this problem was recently
tackled via a dissipative mode quantization scheme [20,42,43]

2469-9926/2022/105(2)/023702(37) 023702-1 ©2022 American Physical Society

https://orcid.org/0000-0002-4233-9251
https://orcid.org/0000-0001-9057-3088
https://orcid.org/0000-0002-5486-2015
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.023702&domain=pdf&date_stamp=2022-02-02
https://doi.org/10.1103/PhysRevLett.122.213901
https://doi.org/10.1103/PhysRevA.105.023702


FRANKE, REN, AND HUGHES PHYSICAL REVIEW A 105, 023702 (2022)

based on a quasinormal mode [44–48] (QNM) expansion,
which allowed for a construction of a discrete photon Fock
basis for a lossy resonator problem.

The QNMs are solutions to the Helmholtz equation with
open boundary conditions, leading to complex QNM eigen-
frequencies. One of the main advantages of QNM theory is
the fact that, for many resonator structures, only a few modes
are necessary to accurately calculate different figures of merit
for semiclassical light-matter applications, such as the Purcell
factors and the radiative β factors [49–55]. In addition, it was
recently shown that the QNMs do not only provide a suitable
basis to describe lossy cavity structures from the classical
physics viewpoint, but also a combination of lossy and ampli-
fying structures, as long as the QNM poles are located in the
lower complex half-plane [56]. This motivates system-level
mode quantization for such systems, where both loss and gain
can be included in a self-consistent way.

In this work, we combine QNMs and the Green function
quantization in amplifying and lossy media to formulate a
general theory of mode quantization in gain-loss systems,
which can be regarded as a generalization of the quantization
scheme from Ref. [20] (restricted to lossy structures). We
tackle this problem in two different ways: (i) The degrees of
freedom originating from gain and loss are combined into a
single-photon Hilbert space; since this is closely related to
the more phenomenological quantum gain models, this first
method will allow us to compare the usual normal mode ap-
proaches to the more rigorous QNM approaches on a quantum
level, and also to validate the more phenomenological ap-
proaches in certain gain-loss parameter regimes. (ii) Gain and
loss are separated into two different statistically independent
Hilbert spaces; we stress this is completely different to the
usual approaches and can be used for a variety of gain-loss
regimes, while preserving the definition of the vacuum state
from the photon continuum operators.

Our paper is organized as follows: In Sec. II, we introduce
the theoretical background used for the QNM quantization
scheme with gain and loss. Specifically, we present the macro-
scopic Green function quantization in the presence of lossy
and amplifying media including a coupling to a quantum
emitter as a two-level system (TLS), some aspects of classical
QNM theory as well as a summary of the QNM quantiza-
tion in purely lossy media from Ref. [20]. In Sec. III, we
then present the quantization scheme for QNMs in lossy and
amplifying media for the two different photon Hilbert space
treatments, as explained above. We introduce the respective
QNM Fock space and symmetrized QNM operator basis, the
quantum Langevin equation with the associated Hamiltonian,
as well as the respective QNM master equation. In Sec. IV,
we discuss the subtle differences between the two different
approaches, and compare with the usual phenomenological
models of gain-loss resonators, that are based on Scully-Lamb
model in linear gain regime [23,24] as well as extended mod-
els with a real coupled-mode coefficient [57–59].

In Sec. V, we then show quantitative results for a two-
dimensional gain-loss ring resonator system based on the
different quantization approaches. In a first step, we briefly
present the numerical results of the QNM calculations for
the hybrid resonator structure. In a second step, we introduce
an adapted and improved phenomenological quantum gain

model where the parameters are partly taken from rigorous
QNM calculations, and compare the resulting coupling pa-
rameters with the results from the quantized QNM approach.
In a third step, we then discuss the modal quantum properties
and the validity of the quantum approaches with combined
gain and loss operators for different configurations of the
ring resonators. Fourth, we derive the bad cavity limit of the
quantized QNM approaches as well as the improved phe-
nomenological quantum gain approach and investigate the
steady-state population of the quantum emitter within this
limit. We compare the results to other more classical and
semiclassical models that are typically used in the literature.
We then summarize our findings and results in Sec. VI.

The main text is complemented by several Appendices,
including the derivation of the photon Hamiltonians as well as
the light-matter Hamiltonian in the QNM picture, the deriva-
tion of quantum Langevin equation and the QNM master
equations, and a detailed derivation of the bad cavity limit of
the QNM master equation with gain and loss within a density
matrix picture and a Bloch equation treatment, as well as
an analogous derivation for the improved phenomenological
quantum gain model.

II. THEORETICAL BACKGROUND

A. Macroscopic quantization in amplifying and lossy media

In this section, we briefly summarize the macroscopic
Green function quantization approach in the presence of am-
plifying and lossy media [35], which is an extension of the
quantum theory for purely lossy media [26,28].

In the dipole and rotating-wave approximations, the Hamil-
tonian of a quantum emitter as a TLS interacting with the
medium-assisted photon field is given via H = Hem + Ha +
HI, as [35]

Hem = h̄
∫ ∞

0
dω ω

∫
d3r sgn[εI ] b†(r, ω) · b(r, ω), (1a)

Ha = h̄ωaσ
+σ−, (1b)

HI = −
[
σ+

∫ ∞

0
dω da · Ê(ra, ω) + H.a.

]
, (1c)

where Hem is the energy of the combined system of the
vacuum electric field and the amplifying and lossy medium,
b(†)(r, ω) are the corresponding vector-valued bosonic anni-
hilation (creation) operators, H.a. means Hermitian adjoint,
and the spatial integration is performed with respect to R3.

Importantly, in contrast to the purely lossy case, a sign
function sgn[εI ] appears in Hem, where εI = εI (r, ω) is the
imaginary part of the (in general) spatially inhomogeneous
and ω-dependent complex permittivity function ε(r, ω),
which describes passive (lossy) media through εI (r, ω) �
0 and active (amplifying) media through εI (r, ω) < 0. The
terms Ha and HI represent the TLS and emitter-field inter-
actions, respectively; here, ωa, ra, and da are the transition
frequency, spatial position, and dipole moment of the TLS,
respectively. The raising and lowering (Pauli) operators of the
TLS are given by σ±.
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The operator Ê(r, ω) is the medium-assisted field operator,
which solves the quantized Helmholtz equation

∇ × ∇ × Ê(r, ω) − ω2

c2
ε(r, ω)Ê(r, ω) = iωμ0 ĵN(r, ω),

(2)
where c is the speed of light and μ0 is the vacuum permeabil-
ity. Furthermore, ĵN(r, ω) is a quantum noise density, that is
introduced to account for the interaction of the free electro-
magnetic field with the dielectric medium. In the presence of
loss and amplifying media, it is given as the sum of loss and
gain terms ĵN(r, ω) = ĵL

N(r, ω) + ĵG
N(r, ω), where [27,35]

ĵL
N(r, ω) = ω

√
h̄ε0

π
εI (r, ω)�(εI )b(r, ω), (3a)

ĵG
N(r, ω) = ω

√
h̄ε0

π
|εI (r, ω)|�(−εI )b†(r, ω), (3b)

with the Heaviside function�(εI ), defined through

�(εI ) =
{

1, εI (r, ω) � 0

0, εI (r, ω) < 0
(4)

which implicitly depends on r and ω, and �(−εI ) = 1 −
�(εI ). Note that it can be shown that the specific choice of
the noise operators, with gain (“G”) and loss (“L”) contribu-
tions from Eq. (3), preserves the fundamental commutation
relations of the electromagnetic operators [35].

A formal solution of Eq. (2) is given as

Ê(r, ω) = i

ωε0

∫
d3s G(r, s, ω) · ĵN(s, ω), (5)

where G(r, r′, ω) is the (classical) photon Green function,
defined from

∇ × ∇ × G(r, r′, ω) − ω2

c2
ε(r, ω)G(r, r′, ω) = 1δ(r − r′),

(6)
with suitable radiation conditions. The total electric field op-
erator is then obtained as the integration over all ω, through

Ê(r, t ) =
∫ ∞

0
dω Ê(r, ω, t ) + H.a., (7)

where we emphasize that ω is not a Fourier variable of
time, but rather a mode component of the medium-photon
fields. The time dependence of Ê(r, ω, t ) is governed by
the Heisenberg equation of motion with respect to the
Hamiltonian from Eq. (1).

From Eqs. (3) and (5), one can readily see that, in contrast
to purely lossy media, the electric field operator component
Ê(r, ω, t ) is a linear combination of photon-medium annihi-
lation and creation operators because the role of annihilation
and creation of quanta is exchanged in the amplifying region.
Moreover, it should be noted that this reversed nature of an-
nihilation and creation is accounted for as a (formal) negative
photon energy part in Hem, which preserves the consistency
with the associated macroscopic Maxwell equations [35].
Consequently,

∫∞
0 dω Ê(r, ω) constitutes the positive rotating

part of the electric field as would be the case for purely lossy
media, which is in turn consistent with the rotating-wave
approximation applied to the light-matter interaction Hamil-
tonian HI [Eq. (1c)].

We remark that the quantum theory is strictly only ap-
plicable in the case of linear amplifying media. One of the
consequences of this criterion is that the Green function
G(r, r′, ω) is only allowed to have complex poles in the lower
complex half-plane, meaning that it must be analytic in the
upper complex half-plane.1 Any poles in the upper half-plane
would lead to a breakdown of the fundamental field com-
mutation relations [35], which of course coincides with the
breakdown of causality in the sense of linear response theory.

B. Classical quasinormal mode theory

Here, we summarize the key properties of the classical
QNMs [47,48,52,54] as well as QNM expansion technique,
which can be used to model open cavity systems. The electric
field QNMs, f̃μ(r), are solutions to the source-free Helmholtz
equation

∇ × ∇ × f̃μ(r) −
(

ω̃μ

c

)2

ε(r, ω̃μ) f̃μ(r) = 0, (8)

where ω̃μ = ωμ − iγμ is the complex eigenfrequency, and
ε(r, ω̃μ) is the analytical continuation of the permittivity func-
tion (introduced in Sec. II A) into the complex frequency
space.

The open boundary conditions ensure the Silver-Müller
radiation conditions [60], and the quality factor of each reso-
nance is Qμ = ωμ/(2γμ). Normalization of the QNMs can be
done in different ways [49–51], and additional care is needed
for dispersive and absorptive cavity structures. For the cavity
structures investigated later, the QNMs can be obtained from
an efficient dipole scattering approach in complex frequency
[61], using an inverse Green function approach. The total
Green function can also be obtained numerically from the full
dipole response (namely, without any modal approximation),
which can be used to check the accuracy of the QNM expan-
sions and mode approximations.

For spatial positions near (or within) the scattering geome-
try, the Green function can be expanded in terms of the QNMs
through [48,62,63]

G(r, r0, ω) =
∑

μ

Aμ(ω) f̃μ(r)f̃μ(r0), (9)

with Aμ(ω) = ω/[2(ω̃μ − ω)].2 The Green function enables
us to connect to a wide range of physical quantities such as
the local density of states (LDOS). Thus, we can define a
normalized (projected) LDOS in terms of the QNM Green
function

ρQNM
a = na · ImG(ra, ra, ω) · na

na · ImGB(ra, ra, ω) · na
, (10)

where GB is the Green function for a homogeneous back-
ground medium and we recall that ra is the location of the
dipole emitter, with dipole moment da (= d na).

1This is not a unique restriction for the quantum theory, as it also
applies to classical linear Maxwell theory, which of course is also
subject to causality conditions in the sense of linear response theory.

2Or one can also use A(ω) = ω2/[2ω̃μ(ω̃μ − ω)] since these are
related through a sum relationship [48].
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It is important to note that the usual classical expressions
for spontaneous emission and the Purcell factor do not work
in the presence of a gain medium [37,56]. Nonetheless, the
projected LDOS is still a useful quantity to define and for
checking the accuracy of a QNM expansion.

Finally, we mention that for fields far outside the resonator,
a few QNM expansion is no longer convenient to use as they
diverge due to the radiation condition in conjunction with the
complex eigenfrequency. In this case, one can use the Dyson
equation to construct regularized QNMs, derived as [63]

F̃μ(R, ω) =
∫

d3r �ε(r, ω)GB(R, r, ω) · f̃μ(r), (11)

where �ε(r, ω) = ε(r, ω) − εB and εB is the permittivity
of the background medium. Alternatively, these regularized
fields can be constructed in the far field using near-field to far-
field transformations [64]. For the resonators we use below,
however, the QNMs are already an excellent approximation
at the spatial positions we consider, especially for the high-Q
cavities that we will consider below.

C. Quantization of lossy quasinormal modes

In this part, we summarize the main results from the lossy
QNM quantization. For the case of purely lossy media (which
includes the limit of a lossless dielectrics [42]), the noise
current density ĵN(r, ω) is equal to the loss-induced noise
ĵL
N(r, ω), extending over all space, so that

Ê(r, ω) = i

√
h̄

πε0

∫
d3s

√
εI (s, ω)G(r, s, ω) · b(s, ω).

(12)
By using the QNM Green function [Eq. (9)], the modal

part of the quantized electric field operator near or inside
the scattering structure can be regarded as a combined cavity
system (with one set of QNMs), and is written as

ÊQNM(r) = i
∑

μ

√
h̄ωμ

2ε0
f̃μ(r)ãμ + H.a., (13)

where ãμ are QNM operators as linear combinations of the
noise source operators b(r, ω):

ãμ = lim
λ→∞

∫ ∞

0
dω

∫
V (λ)

d3r L̃μ(r, ω) · b(r, ω), (14)

with

L̃μ(r, ω) =
√

2

πωμ

Aμ(ω)
√

ε
(α)
I (r, ω)f̃μ(r, ω), (15)

where f̃μ(r, ω) is equal to the QNM f̃μ(r) for positions near
or inside the cavity region and equal to the regularized QNM
F̃μ(r, ω) [Eq. (11)] for positions outside the cavity region.
Note that the integration over all space R3 is formally written
as a limiting process over a sequence of volumes V (λ), such
that V (λ) → R3 for λ → ∞.

In order to rigorously account for radiative loss processes
within the macroscopic Green function quantization, we in-
troduced a sequence of permittivity functions ε (α)(r, ω) =
ε(r, ω) + αχL(ω), where αχL(ω) is a spatially homogeneous

Lorentz oscillator weighted by the parameters α � 0. It is
important to emphasize that the limits α → 0 and λ → ∞ are
not interchangeable; in fact, the ordering of the limits with re-
spect to λ and α is not only a requirement to obtain meaningful
radiation processes, but also to preserve the fundamental field
commutation relations in the dielectric (nonabsorptive) limit
(cf. Ref. [42] for details).

The mode quantization scheme can be performed by
first constructing proper annihilation and creation operators
through a symmetrization transformation:

aμ =
∑

η

[S−1/2]μηãη, (16)

with Sμη = [ãμ, ã†
η], where

Sμη = lim
λ→∞

∫ ∞

0
dω

∫
V (λ)

d3r L̃μ(r, ω) · L̃∗
η(r, ω) (17)

is a dissipation-induced QNM overlap matrix, which yields a
positive-definite form [20,42]. After applying the limit α →
0, Sμη can be written as a sum Sμη = Snrad

μη + Srad
μη , where

[20,42]

Snrad
μη =

∫ ∞

0
dω

2Aμ(ω)A∗
η(ω)

π
√

ωμωη

Inrad
μη (ω), (18)

Srad
μη =

∫ ∞

0
dω

2Aμ(ω)A∗
η(ω)

π
√

ωμωη

[
I rad
μη (ω) + I rad∗

ημ (ω)
]

(19)

represent nonradiative and radiation contributions, with

Inrad
μη (ω) =

∫
VS

d3s εI (s, ω)f̃μ(s) · f̃∗
η (s), (20)

I rad
μη (ω) = 1

2ε0ω

∮
S

dAs[H̃μ(s, ω) × ns] · F̃∗
η(s, ω). (21)

While Snrad
μη describes the absorption inside the scattering

volume VS, Srad
μη reflects the power flow of the regularized

QNM fields through an outer surface S . For practical cal-
culations, it is also useful to apply a pole approximation to
the above frequency integrals to obtain the symmetrization
matrices through [64]

Snrad
μη =

√
ωμωη

i(ω̃μ − ω̃∗
η )

Inrad,p
μη , (22)

Srad
μη =

√
ωμωη

i(ω̃μ − ω̃∗
η )

[
I rad,p
μη + I rad,p∗

ημ

]
, (23)

with

Inrad,p
μη =

∫
VS

d3s
√

εI (s, ωμ)εI (s, ωη )f̃μ(s) · f̃∗
η (s) (24)

and

I rad,p
μη = 1

2ε0
√

ωμωη

∮
S

dAs[H̃μ(s, ωμ) × ns] · F̃∗
η(s, ωη ).

(25)

By construction, the symmetrized operators fulfill the com-
mutation relations [aμ, aη] = [a†

μ, a†
η] = 0 and [aμ, a†

η] =
δμη, for all μ, η, and can thus be regarded as proper an-
nihilation and creation operators to construct QNM Fock
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states from the vacuum state |vac〉em, which is defined via
b̂i(r, ω)|vac〉em = 0.

The construction of the QNM Fock space together with
the Hamiltonian (1) (restricted to purely lossy media) can be
utilized to derive an associated master equation for the density
operator ρ in the combined QNM-TLS space [20,43]:

∂tρ = − i

h̄
[HS, ρ] + Lρ, (26)

where HS = HQNM−a + Ha + HQNM is the system Hamilto-
nian consisting of three parts. First,

HQNM−a = h̄
∑

μ

g̃s
μa†

μσ− + H.a. (27)

is the TLS-QNM interaction Hamiltonian, where g̃s
μ =

−i
∑

η[S1/2]ημ

√
ωη/(2h̄ε0)da · f̃η(ra ) is the TLS-QNM cou-

pling constant. Second,

HQNM = h̄
∑
μη

χ+
μηa†

μaη (28)

is the QNM Hamiltonian, including off-diagonal photon
coupling terms through χ+

μη = [χμη + χ∗
ημ]/2 with χμη =∑

ν[S−1/2]μνω̃ν[S1/2]νη. Third, Ha represents the TLS energy
[Eq. (1b)]. Furthermore, the dissipator term L = Lem + LSE is
the rigorously derived Lindblad superoperator, which contains
the QNM photon decay through

Lem =
∑
μη

χ−
μη[2aηρa†

μ − a†
μaηρ − a†

μaηρ], (29)

with χ−
μη = i[χμη − χ∗

ημ]/2, and the atomic spontaneous
emission through LSE. For more details, see Refs. [20,43].

III. QNM QUANTIZATION IN AMPLIFYING
AND LOSSY MEDIA

Next, we extend the theory of lossy mode quantization
from Refs. [20,42,43] to the more general case of combined
lossy and amplifying dielectric media. To do this, we first
reformulate the lossy mode quantization scheme to separate
the combined QNM operators into different spatial regions of
the medium. Then, we discuss the geometry of interest for
a general gain-loss resonator system. Subsequently, we apply
the quantization procedure to two different formulations to the
general case of amplifying and lossy media.

A. Extending lossy QNM quantization to include gain

Instead of defining a single set of QNM operators (as done
in Sec. II C), one can also construct multiple QNM operator
sets {. . . , akμ, . . . }, each corresponding to a source volume Vk

and the same QNM basis {μ}, so that

ãkμ = lim
λ→∞

∑
i

∫ ∞

0
dω

∫
Vk (λ)

d3r L̃μ,i(r, ω)b̂i(r, ω), (30)

with ⋃
k

Vk (λ) = V (λ). (31)

The QNM electric field operator can then simply be rewrit-
ten as

ÊQNM(r) = i
∑

k

∑
μ

√
h̄ωμ

2ε0
f̃μ(r)ãkμ + H.a., (32)

and the commutation relations of these operators are given by
[ãkμ, ã†

k′η] = δkk′S(k)
μη , with

S(k)
μη = lim

λ→∞

∫ ∞

0
dω

∫
Vk (λ)

d3r L̃μ(r, ω) · L̃∗
η(r, ω). (33)

Thus, the operator sets can be symmetrized separately through

akμ =
∑

η

[(S(k) )−1/2]μηãkη. (34)

One obvious disadvantage of such a separation would be
the increasing dimension of the underlying photon Hilbert
space, which may complicate the numerical calculations, e.g.,
for simulating multiphoton processes. However, as we discuss
further below, in the case of amplifying media, the separation
leads to a fundamentally different quantum description of the
linear amplified system on a mode level, a fact that has not
been considered in previous quantization schemes of gain-loss
resonators (to the best of our knowledge).

B. Coupled gain-loss resonator geometries of interest

We now turn to the general case of gain and loss within
the medium (i.e., before QNM construction and field quan-
tization). It is instructive to apply the formal separation of
the spatial integration over the bosonic noise source opera-
tors b(r, ω) in two different regions, namely, the loss region
R3 − VG and the amplifying region VG. We assume that VG

always remains finite. In addition, we choose the parameter α

small enough, such that the medium in VG is purely amplifying
[ε (α)

I (r, ω) < 0 for all ω and r ∈ VG] and purely absorptive in
R3 − VG [ε (α)

I (r, ω) < 0 for all ω and r ∈ R3 − VG]. In this
way, �[εI ] and �[−εI ] determine the spatial region of loss
and gain media, respectively.

As illustrated in Fig. 1, we concentrate on a finite gain-loss
scattering system (with regions VG and VL), which is contained
in a fixed (λ-independent) and finite spherical volume Vin

with radius Rin and surface S , else filled with background
medium with permittivity ε

(α)
B = 1 + αχL. In addition, Vin is

surrounded by a spherical shell Vout (λ) with radius λ − Rin

and inner (outer) surface S [S∞(λ)], so that the total volume
is V (λ) = Vin + Vout (λ).

C. QNM quantization with separated gain and loss operators

In this section, we apply the QNM quantization scheme
with the separation of the QNM basis sets into two different
spatial domains, namely, VG and R3 − VG. We formally term
this method as separated gain-loss operator approach.

1. QNM operator construction

Similar to the lossy mode quantization, we start by insert-
ing the QNM Green function [Eq. (9)] into the electric field
operator [Eq. (5)] at positions near the scattering geometry, to

023702-5



FRANKE, REN, AND HUGHES PHYSICAL REVIEW A 105, 023702 (2022)

FIG. 1. Schematic of the spatially inhomogeneous media with
the physical permittivity ε(r, ω), describing gain and absorption. The
gain-loss system VG + VL is contained in a fixed volume Vin, which
also includes an exemplary active quantum dipole at position ra.

obtain the modal parts of the total electric field operator:

ÊQNM(r) = i
∑

μ

√
h̄ωμ

2ε0
f̃μ(r)[ãLμ + ã†

Gμ] + H.a., (35)

where

ãLμ = lim
λ→∞

∑
i

∫
V (λ)

d3s
∫ ∞

0
dω L̃(λ)

Lμ,i(s, ω)b̂i(s, ω) (36)

is the lossy QNM operator part, and

ã†
Gμ =

∑
i

∫
d3s

∫ ∞

0
dω L̃Gμ,i(s, ω)b̂†

i (s, ω) (37)

is the amplifying QNM operator part.
In contrast to the lossy mode quantization, the adjoint

QNM gain operator a†
Gμ (rather then aGμ) enters the positive

rotating part of the modal electric field operator, as a conse-
quence of the extension of the Green function quantization
formalism to amplifying media. Since VG is independent of λ,
the gain operator ãGμ is also independent of λ, and L̃Gμ,i(s, ω)
is simply given by

L̃Gμ,i(s, ω) = �[−εI ]

√
2

πωμ

Aμ(ω)
√

|ε (α)
I (s, ω)| f̃μ(s). (38)

In contrast, L̃(λ)
Lμ,i(s, ω) can be written as

L̃(λ)
Lμ,i(s, ω) = �[εI ]

√
2

πωμ

Aμ(ω)
√

ε
(α)
I (s, ω)f̃μ(s, ω). (39)

The lossy QNM operator has a nonradiative contribution
through the integration over the finite region VL contained
in Vin − VG, where εI (r, ω) > 0 and f̃μ(r, ω) = f̃μ(r), and a
radiative contribution through the integration over Vout (λ),
where εI (r, ω) = 0 and f̃μ(r, ω) = F̃μ(r, ω).

2. Commutation relations and symmetrization

From the spatial integration domains in both QNM op-
erator parts, one can immediately deduce that the only
nonvanishing commutation relations are [ãLμ, ã†

Lη] ≡ SL
μη and

[ãGμ, ã†
Gη] ≡ SG

μη. Here, the loss part is formally identical to
the photon commutation relation in the lossy mode quanti-
zation, i.e., Eqs. (18) and (19), where VS in Snrad

μη is simply
replaced by VL. Moreover,

SG
μη =

∫ ∞

0
dω

2A∗
μ(ω)Aη(ω)

π
√

ωμωη

IG
μη(ω) (40)

with

IG
μη(ω) =

∫
VG

d3s|εI (s, ω)| f̃∗
μ(s) · f̃η(s). (41)

Note that compared to SL
μη, the conjugation with respect to

complex QNM functions (μ and η) in SG
μη is reversed. Ap-

plying a pole approximation similar to the nonradiative and
radiative loss parts leads to

SG
μη ≈

√
ωμωη

i(ω̃μ − ω̃∗
η )

IG,p
μη (42)

with

IG,p
μη =

∫
VG

d3s
√|εI (s, ωμ)εI (s, ωη )| f̃∗

μ(s) · f̃η(s). (43)

Next, we apply a symmetrization transformation to the
gain- and loss-assisted QNM operators separately to obtain
proper Fock basis operators:

aL(G)μ =
∑

η

[(SL(G))1/2]μηãL(G)η. (44)

In this way, a(†)
Lμ are annihilation (creation) operators for the

“loss” Fock basis and a(†)
Gμ are annihilation (creation) operators

for the “gain” Fock basis. They share the same vacuum state
|vac〉em, defined through

bi(r, ω)|vac〉em = 0. (45)

The respective modal electric field operator then reads as
Ê(r) = ÊL

QNM(r) + ÊG
QNM(r), with

ÊL
QNM(r) = i

∑
μ

√
h̄ωμ

2ε0
f̃ s,L
μ (r)aLμ + H.a., (46)

ÊG
QNM(r) = i

∑
μ

√
h̄ωμ

2ε0
f̃ s,G
μ (r)a†

Gμ + H.a., (47)

with symmetrized QNM functions

f̃ s,L
μ (r) =

∑
η

[(SL)1/2]ημ f̃η(r)
√

ωη

ωμ

, (48)

f̃ s,G
μ (r) =

∑
η

[(SG)1/2]μη f̃η(r)
√

ωη

ωμ

. (49)

Since two different Fock bases appear for the same number
of QNMs, the total photonic degrees of freedom are 2N (N is
the number of QNMs). We also note the reversed index pair of
the symmetrization factor (μ → η) for the loss and gain parts
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because of the exchange of annihilation and creation in these
regimes.

3. Quantum Langevin equations

We next inspect the Heisenberg equation of motion for the
TLS emitter and QNM operators with respect to the initial
Hamiltonian (1). Using an approximate separation of the pho-
ton continuum [represented by bi(r, ω)] into the QNM part
and a bosonic non-QNM part, and applying a Markov approx-
imation similar to Ref. [43] yields the Heisenberg equations of
motion:

ȧkμ = − i

h̄
[akμ, HS] −

∑
η

χ (k)−
μη akη + F (k)

μ , (50a)

σ̇− = − i

h̄
[σ−, HS] + �B

2
σzσ

− − σzFa, (50b)

σ̇z = − i

h̄
[σz, HS] − �Bσ+σ− − �Bσ−σ+

− 2
√

�Bσ+Fa − 2
√

�Bσ−F †
a (50c)

with k = L, G, and the quantum noise terms that are discussed
below.

Here, HS = HQNM + HQNM−a + Ha is the combined
photon-emitter system Hamiltonian, with an electromagnetic
QNM part

HQNM = h̄
∑
μη

χL+
μη a†

LμaLη − h̄
∑
μη

χG+
μη a†

GμaGη; (51)

an emitter-QNM interaction part

HQNM−a = h̄
∑

μ

[
g̃s,L

μ aLμσ+ + g̃s,G
μ a†

Gμσ+]+ H.a.; (52)

and the TLS energy Ha, Eq. (1b).
Similar to the lossy mode case, an inherent intermode cou-

pling appears between the QNMs, determined by the coupling
matrices χL(G)+

μη , which is the Hermitian part of the QNM
frequency matrix,

χL
μη =

∑
ν

[SL−1/2]μνω̃ν[SL1/2]νη, (53)

χG
μη =

∑
ν

[SG−1/2]μνω̃
∗
ν [SG1/2]νη, (54)

for the loss and gain parts, respectively. Note, that this ex-
pression of the coupling constant is an approximated form
consistent with the pole approximations applied to the sym-
metrization matrices SL(G)

μη (cf. Appendix A).
In addition to the positive lossy mode energy, a negative

energy contribution appears connected to aGμ as a conse-
quence of the appearance of the sign function in Eq. (1a).
Furthermore, two different emitter-photon interaction pro-
cesses appear, one through the gain region and one through
the loss region with coupling constant

g̃s,L(G)
μ = −i

√
ωμ

2h̄ε0
da · f̃ s,L(G)

μ (ra ). (55)

We highlight that there appear nonpreserving terms with re-
spect to the excitation number, namely, the terms σ+a†

Gμ,
induced by the reversed nature of annihilation and creation

in the gain region. However, because a†
Gμ is rotating with

(approximately) e−iωμt , these terms are fully consistent with
the rotating-wave approximation.

Apart from the Hamiltonian part, different decay and noise
terms appear in the Heisenberg equations of motion: The
damping of the QNM gain and loss modes enters the model
via the decay matrices χL−

μη and χG−
μη , respectively. These

matrices are closely related to the anti-Hermitian part of χL(G)
μη

through χL(G)
μη = χL(G)+

μη ∓ iχL(G)−
μη .

On the other hand, the TLS is damped via the background
spontaneous emission into the non-QNM space [originating
from HI, Eq. (1c)], with the rate

�B = 2

h̄ε0
da · Im[GB(ra, ra, ωa )] · da, (56)

where GB is the background Green function, which is ob-
tained from Eq. (6) with ε(r, ω) = εB.

In addition to the decay terms, noise operators appear in
Eqs. (50), that counteract the respective damping processes to
preserve the commutation relations of the system operators.
Specifically, F L

η , F G
η represent statistically independent noise

operators for the loss and gain contributions, while Fa counter-
acts the spontaneous emission decay. The precise definition of
the noise forces and their derivation is shown in Appendix A.

We remark that apart from the system Hamiltonian, the
quantum Langevin equations in the separated gain-loss op-
erator approach [Eqs. (50)] are formally identical to results
obtained for the purely lossy case from Sec. III A (with the
separation into two spatial regions).

4. QNM master equation

Applying the Markov approximation for the quantum
Langevin equation for arbitary system operators, and follow-
ing the steps in Refs. [20,43], the relevant master equation can
be formulated as

∂tρ = − i

h̄
[HS, ρ] + LL[aL]ρ + LG[aG]ρ + LSE[σ−]ρ,

(57)
with the Lindblad dissipators

L(k)[ak]ρ =
∑
μ,η

χ (k)−
μη [2akηρa†

kμ
− a†

kμ
akηρ − ρa†

kμ
akη],

(58)

with k = L, G, as well as

LSE[σ−]ρ = �B

2
[2σ−ρσ+ − σ+σ−ρ − ρσ+σ−]. (59)

We have considered the same inverted Lorentzian model
(for material gain) as in the general case without mode quanti-
zation from Ref. [37], based on the idea in Ref. [65], to justify
the vacuum state as the input state for cin

Gμ, connected to the
amplifying part; thus,〈

cin
kμ(t )cin†

k′η(t ′)
〉 ≈ δkk′δμηδ(t − t ′), (60)〈

cin
a (t )cin†

a (t ′)
〉 ≈ δ(t − t ′) (61)

for k, k′ = L, G within the applied Markov approximation (cf.
Appendix B). Here, the input operators cin

kμ are related to F (k)
μ
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via

F (k)
μ = −

√
2
∑

η

[(χ(k)−)1/2]μηcin
kη (62)

and Fa = −
√

�Bcin
a .

Subsequently, using the noise forces F (k)
μ and Fa as a basis,

one can also write the vacuum input assumption as〈
F (k)

μ (t )F (k′ )†
η (t ′)

〉 ≈ 2δkk′χ (k)−
μη δ(t − t ′) (63)

and 〈Fa(t )F †
a (t ′)〉 ≈ �Bδ(t − t ′). In contrast to Ref. [37], the

main coupling part of emitter to the photonic environment,
i.e., the QNM part, is still treated on the system level without
any bath approximations. It can thus be used for multipho-
ton quantum simulations in the strong light-matter coupling
regime, and to model entangled photons and matter.

D. QNM quantization with unified gain-loss operators

Next, we present a formulation to combine the gain and
loss contributions into a single QNM operator basis, which is
more closely related to the original lossy QNM quantization
scheme [20,42,43]. This method is termed in the following as
unified gain-loss operator approach.

1. QNM operator construction

First, we simply write the QNM expanded electric field,
Eq. (35), as

ÊQNM(r) = i
∑

μ

√
h̄ωμ

2ε0
f̃μ(r)ã′

μ + H.a., (64)

where

ã′
μ = ãLμ + ã†

Gμ (65)

is identified as a combined QNM operator, containing both
loss and gain degrees of freedom. Note that we have added a
prime superscript to this operator basis to distinguish it with
the purely lossy mode case.

The operators ã′
μ, ã′†

η fulfill the commutation rules

[ã′
μ, ã′

η] =[ã′†
μ, ã′†

η ] = 0, (66)

[ã′
μ, ã′†

η ] =SL
μη − SG∗

μη . (67)

2. Symmetrization and Fock space construction

While the combined operator approach can lead to a reduc-
tion of the degrees of freedom compared to the description
with ãLμ and ãGμ, one has to be more careful here since
the commutation matrix S′ ≡ SL − SG∗ now appears as the
difference between two positive-definite matrices, which is in
general no longer of positive-definite form. Yet, this (positive-
definiteness) property of S′ is a requirement to apply the
symmetrization transformation for the construction of photon
Fock states.

To investigate the positive definiteness in a more detailed
way, we rewrite the symmetrization factor as S′ = Srad + �S′,

where

[�S′]μη

=
∫ ∞

0
dω

2Aμ(ω)A∗
η(ω)

π
√

ωμωη

∫
VG+VL

d3s εI (s, ω)f̃μ(s) · f̃∗
η (s),

(68)

and thus it would be sufficient to prove that �S′ is posi-
tive definite since the sum of positive-definite forms is again
positive definite (and Srad is always positive definite). Al-
though one cannot in general prove that �S′ is indeed positive
definite, for cases in which Snrad

μμ  SG
μμ (dominant loss con-

tribution) and the off-diagonal elements are small, �S′ can be
assumed to be positive definite. We note that these are stricter
conditions than the concept of linear amplification in the sense
that γμ > 0, where the fundamental field commutation rela-
tions are preserved and the method in Sec. III C is applicable.

In cases where the positive definiteness is fulfilled, we can
then meaningfully apply the symmetrization transformation to
define new photon operators

a′
μ =

∑
η

[S′−1/2]μηã′
η, (69)

where the symmetrized operators a′(†)
μ can be written as

a′
μ =

∑
i

∫
d3r

∫ ∞

0
dω L′

Lμ,i(r, ω)bi(r, ω)

+
∑

i

∫
d3r

∫ ∞

0
dω L′

Gμ,i(r, ω)b†
i (r, ω), (70)

with

L′
L(G)μ,i(r, ω) =

∑
η

[S′−1/2]μηL̃L(G)η,i(r, ω). (71)

These new symmetrized operators fulfill bosonic com-
mutation relations, i.e., [a′

μ, a′†
η ] = δμη, and thus fulfill the

algebraic requirements to be regarded as photon annihilation
and creation operators in the QNM subspace. However, in
contrast to the two separated operator bases (aLμ, aGμ), they
do not share the same vacuum state as the continuum operators
bi(r, ω). Indeed, applying the corresponding number operator
a′†

μa′
μ on the vacuum state |vac〉em of the bi(r, ω) basis would

yield

a′†
μa′

μ|vac〉em = nvac
μ |vac〉em, (72)

where

nvac
μ =

∑
i

∫
d3r

∫ ∞

0
dω|L′

Gμ,i(r, ω)|2 �= 0. (73)

The question is then as follows: How much does nvac
μ devi-

ate from zero? To investigate this, we rewrite nvac
μ as

nvac
μ =

∑
η,η′

[S′−1/2]μηSG
ηη′ [S′−1/2]η′μ. (74)

Summing over all μ would yield nvac = ∑
μ nvac

μ , so that

nvac =
∑
η,η′

SG
ηη′ [S′−1]η′η = tr[SG · S′−1]. (75)
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Within the condition that SL
μμ  SG

μμ (and small off-diagonal
elements), nvac is a very small number, i.e., nvac � 1, so that
one can approximately identify |vac〉em with the vacuum state
of the QNM photon space within the unified gain-loss operator
description. We note that this does not necessarily coincide
with the conditions for positive definiteness, as we discuss in
more details in Sec. V.

We also note that it may be possible to define a supplemen-
tary basis of states with reversed symmetry of annihilating and
creating a photon within the gain geometry, defined through

b†
i (r, ω)|vac〉ẽm = �[εI ]|1i,r,ω〉, (76)

bi(r, ω)|vac〉ẽm = �[−εI ]|1̃i,r,ω〉, (77)

where |1̃i,r,ω〉 can be regarded as a “negative” photon number
(one photon is missing). In this way, we obtain

a′†
μa′

μ|vac〉ẽm = 0 (78)

as the well-defined QNM photon vacuum state without any
quanta. For the remaining parts of this section, we assume
that there indeed exists a well-defined vacuum state, and will
investigate the respective criteria (positive definiteness and
dominant loss contribution) for a particular gain-loss structure
in more detail in Sec. V.

In the new symmetrized basis (for combined operators), the
electric field operator takes the form

ÊQNM(r) = i
∑

μ

√
h̄ωμ

2ε0
f̃ ′s
μ (r)a′

μ + H.a., (79)

with symmerized QNM functions

f̃ ′s
μ (r) =

∑
η

[S′1/2]ημ f̃η(r)
√

ωη

ωμ

. (80)

3. Quantum Langevin equations

For the unified gain-loss operator approach, we obtain the
Heisenberg equation of motion for the emitter and QNM op-
erators as (cf. Appendix A)

ȧ′
μ = − i

h̄
[a′

μ, H ′
S] −

∑
η

[
χ ′L−

μη − χ ′G−
μη

]
a′

η + F ′
Lμ + F ′†

Gμ,

(81a)

σ̇− = − i

h̄
[σ−, H ′

S] + �B

2
σzσ

− − σzFa, (81b)

σ̇z = − i

h̄
[σz, H ′

S] − �Bσ+σ− − �Bσ−σ+

− 2
√

�Bσ+Fa − 2
√

�Bσ−F †
a , (81c)

where the system Hamiltonian takes the form H ′
S = H ′

QNM +
H ′

QNM−a + Ha. The first term is the QNM Hamiltonian given
by

H ′
QNM = h̄

∑
μ,η

χ ′L+
μη a′†

μa′
η − h̄

∑
μ,η

χ ′G+
μη a′

μa′†
η , (82)

which consists of a normal-ordered and an anti-normal-
ordered operator part, where the the latter reflects the gain
contribution and the former the loss contribution.

Using the bosonic commutation relations of a′
μ, a′†

μ , these
terms can be recast into the form

H ′
QNM = h̄

∑
μ,η

[
χ ′L+

μη − χ ′G+
ημ

]
a′†

μa′
η − Cgain1, (83)

with a constant energy Cgain = ∑
μ χ ′G+

μμ . In addition, one can
combine the sum of the coupling matrices as χ ′+

μη = χ ′L+
μη −

χ ′G+
ημ , which is the Hermitian part of

χ ′
μη =

∑
ν,ν ′

[S′−1/2]μνω̃ν[S′1/2]νη, (84)

yielding a positive-definite form χ ′+
μη as long as S′

νν ′ is positive
definite. This is a very interesting reformulation of HQNM, as
the negative energy part is now fully encoded in the constant
term −Cgain1.

The QNM-emitter interaction is now given by

H ′
QNM−a = h̄

∑
μ

g̃′s
μa′

μσ+ + H.a., (85)

which is formally identical to the purely lossy case using
a combined QNM operator basis; the TLS-QNM coupling
constants are given by

g̃′s
μ = −i

√
ωμ

2h̄ε0
da · f̃ ′s

μ (ra ), (86)

where the gain part is reflected through the bosonic operators
a′

μ and the reduction of the coupling constant g̃μ due to sym-
metrization from the gain contribution of the QNM overlap
integrals.

In this formalism, the QNM operators are driven by two
(quantum noise) forces, the loss-induced forces F ′

Lη and the

adjoint gain-induced forces F ′†
Gη. In addition, there is a damp-

ing and a pumping term, connected to χ ′L−
μη and −χ ′G−

μη ,
respectively. Thus, apart from the differences in system
Hamiltonian, the coupling to the reservoir drastically changes
from the purely lossy case.

4. QNM master equation with a unified gain-loss
operator approach

To obtain a QNM master equation in the unified gain-loss
operator approach, the steps in Refs. [20,43] can be extended
to allow for two different noise sources for a single QNM op-
erator basis. This can be done in a straightforward way, once
the corresponding Markovian quantum Langevin equation is
known. The associated master equation can be formulated as

∂tρ = − i

h̄
[H ′

S, ρ] + L′
L[a′]ρ + L′

G[a′†]ρ + LSE[σ−]ρ,

(87)
with the Lindblad dissipators

L′
L[a′]ρ =

∑
μ,η

χ ′L−
μη [2a′

ηρa′†
μ − a′†

μa′
ηρ − ρa′†

μa′
η], (88)

L′
G[a′†]ρ =

∑
μ,η

χ ′G−
μη [2a′†

μρa′
η − a′

ηa′†
μρ − ρa′

ηa′†
μ ]. (89)

Here again we have considered the same inverted
Lorentzian model as in the general case without mode quan-
tization from Refs. [37,65], to justify the vacuum state as the
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input state for c′in
Gμ, connected to the amplifying part, so that〈

c′in
kμ(t )c′in†

k′η (t ′)
〉 ≈ δkk′δμηδ(t − t ′), (90)

for k, k′ = L, G within the applied Markov approximation (cf.
Appendix B). Note that similar to the separated gain-loss oper-
ator approach, these input operators are linear combinations of
their respective noise forces F ′

kμ. The assumptions regarding
the TLS decay are identical to the separated gain-loss operator
approach. In contrast to the purely lossy case, an incoherent
and intrinsic mode-pumping term L′

G[a′†] appears, charac-
terized by the reversed ordering of photon annihilation and
creation operators.

IV. DISCUSSION ON THE DIFFERENT QUANTUM
MODELS WITH GAIN

A. Comparison of the two QNM representations

We now summarize the main differences between the two
QNM quantization approaches for the combined loss and am-
plifying media.

First, the vacuum state is generally different in both cases;
while in the separated gain-loss operator description, the vac-
uum state is (exactly) identical to the vacuum state |vac〉em

of bi(r, ω), this is no longer (exactly) the case for the uni-
fied gain-loss operator approach. In the latter case, the action
of the number operator on |vac〉em yields a finite number
nvac �= 0, which depends on the gain contribution to the total
symmetrization.

Second, the positive definiteness of the symmetrization
matrices for the unified gain-loss operator approach does not
obviously coincide with the causality condition of the Green
function or equivalently with the condition γμ > 0 for all
QNMs μ, as would be the case for the separated gain-loss
operator description. However, if the symmetrization matrix
S′ is in a positive-definite form, then the photon Hamiltonian
in the unified gain-loss operator approach can be recast into a
sum of a positive form and a negative constant, while in the
separated gain-loss operator approach, there is a strict negative
(nonconstant) part with respect to the photon subspace related
to aGμ.

Third, in the separated gain-loss operator approach, the
master equation only contains strict decay processes in
the Lindblad dissipators of the form D[aG(L)], similar to the
purely lossy case, while in the unified gain-loss operator ap-
proach, decay as well as pumping terms of the form D[a′†]
appear, which depend on the amplifying media and cross
coupling between the QNMs. This is induced by the combi-
nation of loss and gain on the system level into one operator
basis. Thus, the strict negativity of the photon Hamiltonian
from aGμ degrees of freedom is resolved in a vacuum state
reformulation, a pumping term from the gain region as well as
a constant negative energy part in the a′

μ picture.
Fourth, we can also compare the form of the TLS-QNM

interaction; while in the separated gain-loss operator descrip-
tion there are two-particle creation processes through terms
like σ+a†

Gμ (atomic raising operator and negative photon
creation), in the unified gain-loss operator approach, only
quanta-preserving operator terms such as a′

μσ+ appear on
the formal level because of the redefinition of annihilation

and creation. However, one should be very careful here with
respect to a well-defined ground state since the unified gain-
loss operator approach still must meet the criteria of linear
amplification, so that there could be no unrealistic excitation
of the added emitter system without violating the positive
definiteness of S′.

B. Comparison to phenomenological results in the current
literature on gain-loss quantum systems

Interestingly, the results from the unified gain-loss operator
description are similar to those found in the current litera-
ture on quantum theories for gain-loss systems [21,22,24]. A
suitable example is the theory developed in Ref. [24], where
a similar quantum Langevin equation as Eq. (50a) (for two
modes) was proposed (and where one mode is pumped) for
linear amplification, having the form [24]

ḃ1 = − i

h̄
[b1, Hph] + A − �1

2
b1 +

√
A f †

1 +
√

�1l1, (91a)

ḃ2 = − i

h̄
[b1, Hph] − �2

2
b2 +

√
�2l2. (91b)

Here, �1(2) is the phenomenological decay rate of the nor-
mal mode 1 (2) with operators b1 (b2), A is the pumping rate
of mode 1, and li ( fi) (i = 1, 2) are the noise operators for
dissipation (gain), assumed to behave as white noise. Further-
more,

Hph = h̄
∑
i=1,2

ωib
†
i bi + ih̄κ[b†

1b2 − b†
2b1] (92)

is the corresponding photon Hamiltonian, where κ is the
mode-coupling constant.

Despite having a form similar to the unified gain-loss oper-
ator approach, there are some fundamental caveats with these
approaches since the respective starting point is not a rigorous
QNM model with inherent dissipation. These differences will
be discussed in detail below.

First, the mode-coupling rate κ is included phenomenolog-
ically as a real-valued coupling constant, which is in contrast
to the method presented here, where (despite the complex
classical coupling between the loss and gain bare resonator
modes) the photon coupling matrix is complex and naturally
appears through the symmetrization transformation, which is
necessary to construct photon Fock states for QNMs. This is
of course connected to the assumption that the photon opera-
tors b1, b2 fulfill bosonic commutation relations, which is for
general open systems not valid without introducing a sym-
metrization transformation (but can be a good approximation
for high-Q factors).

Second, the noise operators appearing in Eq. (91) are
phenomenologically introduced to counteract the dissipation,
which is not the case in the presented theory, where the
gain and loss noise come from the same macroscopic Green
function quantization approach. As a consequence of the inter-
QNM coupling and the nonbosonic nature of the initial photon
operators, all modes are indirectly pumped in the quantized
QNM picture, and assuming the pumping of just one mode
from the bare resonator picture as done in the above approach
is clearly a vague approximation in the case of general Q fac-
tors. The solution must respect the dissipation-induced cross

023702-10



QUANTIZED QUASINORMAL-MODE THEORY OF … PHYSICAL REVIEW A 105, 023702 (2022)

coupling as well as the known classical modes for coupled
loss and gain resonators, and we know that the coupled system
forms hybrid QNMs, that belong to both the gain and loss
resonators [56].

Third, and most importantly, the range of validity of the
phenomenological approaches is not obvious at all, while
we show for our unified gain-loss operator approach (which
can be regarded as a rigorous version of the former) that
there are indeed criteria that must be met for using such a
quantum Langevin equation. These are connected to the sym-
metrization transformation and thus the dissipation-induced
mode coupling itself, which is of course missing in the
phenomenological approaches. Indeed, there are possibly sit-
uations where S′ is not positive definite, in which case
one has to use the separated gain-loss operator approach,
which doubles the dimension of the underlying photon
Hilbert space.

V. APPLICATIONS FOR A COUPLED GAIN-LOSS
MICRODISK RESONATOR

We next present some concrete numerical calculations,
where we will consider a coupled gain-loss resonator system,
which consists of a pair of two-dimensional microdisks sep-
arated by a distance dgap. The lossy (amplifying) microdisk
with area AL (AG) is described by the complex refractive in-
dex nL = Re[nL] + i Im[nL] (nG = Re[nG] + i Im[nG]) with
Im[nL] > 0 (Im[nG] < 0). The resonators are surrounded
by homogeneous free space with refractive index nB [cf.
Fig. 2(a)]. For the following investigations, the refractive in-
dex of the lossy resonator is set to nL = 2 + 10−5i, while
the refractive index of the amplifying resonator is varied
from nG = 2–2 × 10−6i to nG = 2–10−6i and nG = 2–10−7i
to cover a wide range of amplification regimes, ranging
from large to small gain contributions. Note that in the
following, we define and use αG = |Im[nG]| as the gain
coefficient.

We first briefly discuss the numerical calculation and ac-
curacy of the classical two-QNM expansion for the hybrid
structure by comparing to a direct and fully numerical simula-
tion of the Maxwell’s equations. Subsequently, we introduce
an adapted and improved form of the phenomenological quan-
tum gain approaches for the specific geometry and derive
crucial quantum parameters for the former as well as the
unified gain-loss operator approach to discuss the appearing
differences and the validity of these methods. Finally, we
show and discuss results for quantum metrics of a quantum
emitter, that is placed between the ring resonators, modeled
through the different quantum treatments of gain in the bad
cavity limit.

A. Numerical calculations of the QNM parameters
and classical Green functions

The QNMs of the single resonators and coupled resonators
can be obtained numerically using a dipole normalization
technique implemented in COMSOL [61]. This is basically an
inverse Green function approach and allows one to obtain the
normalized QNMs using a dipole source. For nondispersive

FIG. 2. (a) Quantum picture from the unified gain-loss operator
approach. The dipole emitter with excited state |e〉 and ground state
|g〉 is coupled to a single set of QNM photon states |nμ〉, and decays
via spontaneous emission with rate �B. The corresponding QNM
photon states are pumped incoherently via the gain matrix χ ′G−

μη

and decay via the loss matrix χ ′L−
μη . (b) Schematic of a z-polarized

dipole emitter at position ra placed in an effective two-dimensional
gain-loss ring resonator system with respective areas AG and AL

with minimal distance dgap. The complex refractive index of the
lossy (amplifying) ring is given through nL(G), while nB describes the
refractive index of the surrounding free space. (c) Quantum picture
of the separated gain-loss operator approach. The TLS dipole emitter
is coupled to two sets of QNM photon states, which decay separately
via the dissipation matrices χL−

μη and χG−
μη . The pumping mechanism

is encoded in the TLS-QNM interaction.

media, the normalized QNMs satisfy

〈〈f̃1|ε̂1|f̃1〉〉 →
∫

dr ε1(r)f̃1(r) · f̃1(r) = 1, (93)

where some coordinate transform has been applied to regular-
ize the outgoing surface fields [49–51]. The generalization to
dispersive materials is straightforward, but is not needed for
our numerical examples presented later.

To understand the mode coupling between the cavities
from an underlying physics perspective, we have also utilized
a generalized QNM coupled-mode theory (CMT) for intrin-
sically dissipative modes [56], where the two fundamental
complex hybrid frequencies ω̃± can be obtained from a eigen-
value problem through

ω̃± = ω̃L + ω̃G

2
±
√

4κ̃LGκ̃GL + (ω̃L − ω̃G)2

2
. (94)

Here, ω̃L (ω̃G) is the dominant complex QNM eigenfre-
quency of the isolated lossy (amplifying) disk, which are
obtained from the respective single resonator solutions. Fur-
thermore, κ̃LG and κ̃GL are the (complex) CMT coupling
parameters, given by the overlap integrals

κ̃LG = ω̃G

2
〈〈f̃L|�ε̂L|f̃G〉〉 , κ̃GL = ω̃L

2
〈〈f̃G|�ε̂G|f̃L〉〉, (95)

where �ε̂L(G) = ε̂L(G) − ε̂B is the permittivity difference
bound to the lossy (amplifying) cavity region, and f̃L(G) are

023702-11



FRANKE, REN, AND HUGHES PHYSICAL REVIEW A 105, 023702 (2022)

FIG. 3. Top: Real part (a) and imaginary part (b) of the eigenfrequencies ω̃± of the microdisk hybrid structure depicted in Fig. 2(b) obtained
from CMT approach as function of gap size dgap for the different absorption coefficients αG = |Im[nG]| and nL = 2 + 10−5i. Note that ω̃0 ≡
ω0 − iγ0 = 0.833 717–4.120 496 × 10−6i (eV) is the reference frequency of the isolated lossy ring resonator with nL = 2 + 10−5i. Bottom:
Absolute square of z components of the QNM eigenfunctions f̃ ±

z obtained from CMT with αG = 2 × 10−6 for the gap size dgap = 1200 nm
(c), close to the lossy EP region, and dgap = 1240 nm (d), further away from the lossy EP region. In (e) and (f) a zoom-in of the gap region for
the absolute square values of the QNM eigenfunctions as well as the corresponding cos and sin of QNM phases 2φ± are shown.

the eigenfunctions of the single loss (gain) resonator problem.
It is important to stress that the coupling parameters κ̃LG

are in general complex and that κ̃LG �= κ̃GL and κ̃LG �= κ̃∗
GL.

This is in contrast to the more usual assumptions of real
coupling parameters from classical normal mode theories and
more phenomenological quantum gain models associated to
Eq. (91); this assumption can lead to dramatic changes for
general Q factors, even on the classical level [56]. An alterna-
tive QNM coupled-mode theory for lossy coupled resonators
is also discussed in Ref. [66].

The eigenfrequencies ω̃± are shown in Figs. 3(a) and 3(b)
as a function of gap distance dgap, for different gain contribu-
tions. In the following, we concentrate on three particularly
interesting gap separations: (i) dgap = 1240 nm, 1220 nm,
where ω+ ∼ ω−, (ii) dgap = 1160 nm, 1180 nm, where γ+ ∼
γ−, and (iii) dgap = 1200 nm, where ω̃+ ∼ ω̃−, very close to a
lossy exceptional point, at which the eigenfrequencies become
nearly degenerate. Note that these regions slightly change
for the different gain coefficients. It should be further noted
here that the imaginary part of the QNM eigenfrequencies of
this specific hybrid structure is dominantly originating from
nonradiative loss or gain mechanism, i.e., the radiation to the
far field is negligible.

Similar to the analytic CMT eigenfrequencies, the hybrid
QNM eigenfunctions can also be obtained analytically from
the CMT coupling constant and single resonator QNM func-
tions:

|f̃±〉= ω̃± − ω̃G√
(ω̃± − ω̃G)2 + κ̃2

GL

|f̃L〉+ −κ̃GL√
(ω̃± − ω̃G)2 + κ̃2

GL

|f̃G〉.

(96)

For the convenience of the analysis, we could define these
eigenfunctions with QNM phases as f̃±(r) = |f̃±(r)|eiφ±(r).
In the projected LDOS, Eq. (10), it is that the square of the
eigenfunction matters, so the amplitude |f̃±(r)|2 as well as
the cos and sin of the complex phase 2φ±(r) of the hybrid
functions for dgap = 1200 nm and dgap = 1240 nm, with gain
coefficient αG = 2 × 10−6, are shown in Figs. 3(c)–3(f). We
see that although the bare resonator functions are close to real,
the hybrid eigenfunctions have a significant complex phase
due to the intercavity coupling. For more details on the QNM
CMT and the numerical calculation of the single resonator
problem, see Ref. [56].

The underlying Green function of the total hybrid system
can then be reconstructed, analytically, as a sum of the hybrid
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QNM functions through the diagonal form

G(r, r0, ω) = ω
f̃+(r)f̃+(r0)

2(ω̃+ − ω)
+ ω

f̃−(r)f̃−(r0)

2(ω̃− − ω)
. (97)

Alternatively, it can be expressed entirely in terms of the bare
QNMs, which can have certain advantages if studying the
response at the divergent exceptional point, or if applying a
normal mode approximation. The corresponding Green func-
tion has a nondiagonal form and reads as [56]

G(r, r0, ω)

=ω(ω̃G − ω)f̃L(r)f̃L(r0)

2(ω̃+ − ω)(ω̃− − ω)
+ ωκ̃LG f̃L(r)f̃G(r0)

2(ω̃+ − ω)(ω̃− − ω)

+ ωκ̃GL f̃G(r)f̃L(r0)

2(ω̃+ − ω)(ω̃− − ω)
+ ω(ω̃L − ω)f̃G(r)f̃G(r0)

2(ω̃+ − ω)(ω̃− − ω)
. (98)

To verify the accuracy of above QNM expansion of the
Green function from CMT, it is instructive to compare the
LDOS [as introduced in Eq. (10)] to the classical power flow
from a fully numerical simulation of the classical Maxwell-
dipole equations. Both quantities can be related to each other
via the time-averaged Poynting theorem∮

S
n · SPoynting(s)dAs = −1

2
Re

[∫
V

j∗(r) · ES(r)dr
]
, (99)

where V is a small volume around the classical dipole emitter
(not intersecting with the scattering structure) with surface
S and normal vector n. In the fully numerical approach, the
scattered fields ES, HS are calculated via COMSOL [67] and
are used as input for deriving the Poynting vector SPoynting =
Re[ES × H∗

S]/2. Using ES(s) = i
∫

V dr G(s, r) · j(r)/ε0ω and
j(r) = −iωdδ(r − ra ), the right-hand side of Eq. (99) is in-
deed proportional to the (projected) LDOS. In particular,
dividing Eq. (99) by a reference power flow in the absence
of scattering structures yields

ρnum
a =

∮
S n · SPoynting(s)dAs∮
S n · S(0)

Poynting(s)dAs
, (100)

which is an alternative expression for the normalized LDOS,
compared to Eq. (10). As demonstrated in Fig. 4, the QNM
CMT expansion of the LDOS is in excellent agreement with
the fully numerically simulation of Maxwell’s equations.

We emphasize that for the case of also including an am-
plifying medium, the LDOS is not directly connected to the
(usual classical) Purcell factor, as would be the case for purely
lossy media. In fact, as demonstrated in Ref. [37], Fermi’s
golden rule for amplifying media leads to additional terms for
the spontaneous emission rates, that do not only depend on
the photonic LDOS. Thus, a negative LDOS is not unphysical
in the case of gain-loss resonators. This is fully taken into
account for the presented quantization methods here, which
are based on the same Green function quantization approach
used in Ref. [37].

B. Improved phenomenological quantum gain model
and relation to the unified operator approach

As a first application, we investigate the phenomenological
quantum gain models for the specific resonator structure and

FIG. 4. Dipole-projected LDOS over frequency ω for ra = r1,
αG = 2 × 10−6 and (a) dgap = 1200 nm, (b) dgap = 1240 nm. The
gray dashed curve reflects the solution of the single QNM expansion
of the isolated lossy disk resonator. Furthermore, the green (light
gray) dashed curve reflects the result obtained from the bad cavity
limit of the separated gain-loss operator approach [Eq. (111)], while
the black curve and the red circles reflect the classical QNM result
[Eq. (10)], and the full numerical solution [Eq. (100)], respectively.

compare the quantum mode parameters and formal appear-
ance with the more rigorous quantized QNM approaches in
more detail. Here we concentrate on the comparison to the
unified gain-loss operator approach since it is more closely
related to the usual quantum gain models.

To do so, we first adapt and improve Eqs. (91) and (92)
to the investigated example of the gain-loss resonator sys-
tem, interacting with a TLS by also taking into account our
knowledge of the rigorous QNM CMT results. In the in-
spected case, 1 = L, 2 = G, and �G = 0 (since the intrinsic
loss vanishes for the purely amplifying media without ra-
diative loss). Furthermore, we identify the decay rate of the
lossy disk as �L ≡ 2γL and the gain rate of the amplify-
ing ring as A = 2γG. Next, we replace the photon coupling
Hamiltonian, i.e., ih̄κ[b†

LbG − b†
GbL] → −h̄κ[b†

LbG + b†
GbL]

and assume that the photon-photon coupling κ is the mean
value of the real parts of the QNM CMT coupling constants
κ = Re(κGL + κLG)/2. Lastly, the TLS mode-coupling con-
stant is assumed as gL(G) = √

ω0/(2h̄ε0)d|ẑ · fL(G)(ra )|, where
fL(G)(ra ) is the real part of the complex QNM function, repre-
senting a usually assumed lossless mode.

The resulting improved phenomenological quantum gain
model is deeply connected to a normal mode approximation
of the nondiagonal QNM Green function (98), as explained
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in detail in Ref. [68] for the purely lossy case. For the more
general gain-loss case, the normal mode approximation would
lead to

Gphen(r, r0, ω)

=ω(ω̃G − ω)fL(r)fL(r0)

2(ω̃′+ − ω)(ω̃′− − ω)
+ ωκfL(r)fG(r0)

2(ω̃′+ − ω)(ω̃′− − ω)

+ ωκfG(r)fL(r0)

2(ω̃′+ − ω)(ω̃′− − ω)
+ ω(ω̃L − ω)fG(r)fG(r0)

2(ω̃′+ − ω)(ω̃′− − ω)
,

(101)

where

ω̃′
± = ω̃L + ω̃G

2
+
√

κ2 + (ω̃L − ω̃G)2

4
. (102)

We emphasize that the choice of the sign or phase for the
photon coupling constant in the Hamiltonian is very impor-
tant to recapture the correct behavior of the emitter-photon
interaction, and is not an obvious improvement at all. Indeed,
choosing a form as in Eq. (92) can lead to wrong predictions
of the TLS properties [68].

The relevant master equation within the above adaption and
improvement of the usual models then reads as

Lphenρ = − i

h̄

[
Hphen

S , ρ
]+ γL[2bLρb†

L − b†
LbLρ − ρb†

LbL]

+ γG[2b†
GρbG − bGb†

Gρ − ρbGb†
G], (103)

with the system Hamiltonian

Hphen
S = h̄

∑
i=G,L

ωib
†
i bi − h̄κ[b†

LbG + H.a.]

+ ih̄
∑

i=L,G

gi(biσ
+ + H.a.) − h̄ωaσ

+σ−. (104)

To compare to a unified gain-loss operator approach, we
diagonalize the photon Hamiltonian which leads to a trans-
formed photon Liouvillian

Lphen
em ρ = − i

∑
i

�
eig
i [B†

i Bi, ρ]

+
∑
i, j

γ
i j
L [2BjρB†

i − B†
i B jρ − ρB†

i B j]

+
∑
i, j

γ
i j
G [2B†

i ρBj − BjB
†
i ρ − ρBjB

†
i ], (105)

where i, j = 1, 2; γ
i j
L(G) are the mode loss (pump) matrices in

the transformed picture; and �
eig
i are the eigenvalues of the

Hermitian part of the complex photon matrix,

�̃ =
(

ω̃L −κ

−κ ω̃G

)
. (106)

Analogously, one can unitarily diagonalize the photon
Hamiltonian in the unified gain-loss operator approach, so
that the effect of mode coupling is fully captured in the
transformed dissipation matrices. In doing so, the photon
Hamiltonian (83) takes a diagonal form, and the electromag-

netic Liouvillian acting on the density operator is

Lemρ = − i
∑

μ

νμ[A′†
μA′

μ, ρ]

+
∑
μ,η

�′L
μη[2A′

ηρA′†
μ − A′†

μA′
ηρ − ρA′†

μA′
η]

+
∑
μ,η

�′G
μη[2A′†

μρA′
η − A′

ηA′†
μρ − ρA′

ηA′†
μ ], (107)

where νμ are the eigenvalues of the photon-photon coupling
matrix χ′+, and �′(L)G

μη are the QNM loss and pump matrices
in the transformed picture.

We have shown how the master equation of the improved
phenomenological quantum gain model and the unified gain-
loss operator approach are brought into an identical form.
Comparing the different quantum parameters for the specific
resonator structure leads to the result that they are nearly
identical in both approaches. Thus, we see that the partial
inclusion of rigorous QNM theory can in fact improve the
usual adopted quantum approaches for coupled gain and loss
resonators that are based on a normal mode coupling. How-
ever, a crucial difference is the fact that in the QNM models,
the TLS mode-coupling constant as well as the off-diagonal
pump and loss matrix elements are complex valued, while in
the improved phenomenological quantum gain model, these
are still assumed as real values independent on the amount
of dissipation. Since the quality factors Qμ of the QNMs are
very large for the inspected example, the imaginary parts of
the pump and loss matrices are very small and one could
expect a similar behavior in such cases. We emphasize that
for smaller Q factors this can drastically change, similar to
the purely lossy case, where, e.g., certain Fano interference
effects in plasmonic-dielectric resonators can only be properly
described by taking into account the intrinsic lossy nature of
the QNMs [3,20].

C. Vacuum state occupation and positive definiteness
within the unified gain-loss operator framework

Next, we inspect the positive definiteness of the sym-
metrization matrix S′ and the vacuum state occupation nvac

within the framework of the unified gain-loss operator ba-
sis. The former will reflect its validity in different gain-loss
regimes while the latter will pinpoint the difference of the
vacuum state to the separated gain-loss operator approach. As
shown in the last subsection, the improved phenomenologi-
cal quantum gain approach is closely related to the unified
gain-loss operator approach. Thus, the latter property will also
characterize the Fock space, that is simply constructed ad hoc
in the improved phenomenological quantum gain approach.
First, to check the positive definiteness, we calculated the
eigenvalues λ[S′]± of the 2 × 2 matrix S′ as function of gap
distance and gain contribution. As demonstrated in Fig. 5
(bottom), for all inspected gap distances and gain contribu-
tions, λ[S′]± > 0, and thus S′ is positive definite. Therefore,
the criteria for the validity of the unified gain-loss operator
approach is fulfilled. Furthermore, it is interesting to note that
there appears a minimum of the smaller eigenvalues for αG =
2 × 10−6 (around dgap = 1200 nm) and αG = 10−6 (around
dgap = 1220 nm), which is located close to the respective EP
region.
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FIG. 5. Vacuum state occupation nvac (a) and smallest eigenvalue
min[λ(S′)±] of the symmetrization matrix S′ (b) from the unified
gain-loss operator approach as function of gap distances for three dif-
ferent gain cases with gain coefficients αG. Note that the eigenvalues
are divided by max[λ(S′)±], and that the y axis is scaled logarithmic.

Second, we inspect the vacuum state occupation. As
demonstrated in Fig. 5, for small values αL/αG, the vacuum
state occupation differs significantly from 0, and for dgap =
1220 nm even goes up to the value of nvac ∼ 50. Even at small
gain regions, such as αG/αL = 100, nvac is still noticeably dif-
ferent from 0. Therefore, the Fock state’s construction of the
unified gain-loss operator approach and thus of the improved
phenomenological quantum gain approach significantly dif-
fers from the separated gain-loss operator approach.

We note that similar to the eigenvalues of the symmetriza-
tion matrix, there appears a maximum of nvac around the
EP region for αG = 2 × 10−6 and αG = 10−6. Thus, we can
conclude that these quantum parameters are very sensitive
around the classical EP region.

D. Bad cavity limit of the quantum gain models

After discussing the differences and similarities of the
unified gain-loss operator approach and an improved phe-
nomenological quantum gain approach as well as the funda-
mental quantum properties, we now focus on dynamics and
behavior of the TLS interacting with the lossy and amplifying
medium. In this work, we investigate the weak light-matter
coupling limit, where a comparison to other classical or
semiclassical models is possible, which helps to validate the
quantized QNM models and in the presence of gain and loss.

To obtain this limit, we assume a relatively small dipole
moment d = d0 to apply a procedure similar to the purely

lossy case [20] (following the approach from Cirac [69]).
However, we note here that there are several differences com-
pared to the bad cavity limit of the purely lossy case. In
the separated gain-loss operator approach, the presence of
interaction terms σ+a†

Gμ induces a different ordering of the
atomic operators with respect to the gain contributions (cf.
Appendix C), while in the unified gain-loss operator approach,
the incoherent Lindblad dissipator L′

G[a′†] is responsible for
such a change. We emphasize that the origin of the correct
gain and loss TLS rates are completely different in the latter
approach, where the TLS-QNM Hamiltonian is in a mixed
photon operator ordering (with respect to gain and loss con-
tributions) by construction of the underlying Fock operator
basis. However, both approaches lead to the same results in the
weak coupling limit as proved for the demonstrative case of a
single QNM in Appendix D, by employing Bloch equations
instead of a density matrix approach.

Taking the changes over the purely lossy case into account
and carefully applying the weak coupling limit, we obtain the
TLS master equation for the atomic density operator ρa =
tremρ within the quantized QNM models:

∂tρa = − i

h̄
[Ha, ρa] + �B

2
D[σ−]ρa

+ �loss

2
D[σ−]ρa + �gain

2
D[σ+]ρa, (108)

where

�loss =
∑
η,η′

g̃ηSL
ηη′ g̃∗

η′
i(ωη − ωη′ ) + (γη + γη′ )

(�ηa − iγη )(�η′a + iγη′ )
(109)

is the modified spontaneous emission rate and

�gain =
∑
η,η′

g̃ηSG
η′ηg̃∗

η′
i(ωη − ωη′ ) + (γη + γη′ )

(�ηa − iγη )(�η′a + iγη′ )
(110)

is the gain-induced pump rate.
Here we have neglected the photonic Lamb shifts. Appar-

ently, the main difference over the purely lossy case is the
presence of an incoherent pumping term with a rate �gain,
which is in line with rigorous treatment of Fermi’s golden
rule in amplifying media [37]. In fact, when calculating the
difference �loss − �gain, we observe that it precisely matches
the projected LDOS through

ρ
QNM
a,quant = 1 + �loss − �gain

�B
, (111)

as demonstrated in Fig. 4 by the blue dashed lines, fully
consistent with the results obtained in Ref. [37].

To explain the origin of the pronounced Fano dip in the
LDOS in the quantum theory and to demonstrate the im-
pact of the EP region, we show the concrete elements of
the symmetrization matrix for the example of α = 2 × 10−6

in Table I. First of all, we recognize that the off-diagonal
elements of the loss and gain symmetrization matrices are in
the range of the diagonal elements, which indicates a large
overlap of the hybridized QNMs. Second, we see a drastic
change of the parameters by a factor of ∼5, if we get close
to the (classical) EP region. Depending on the position of
the quantum emitter, this can lead to a significant change of
the symmetrized TLS-QNM coupling constant (proportional
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TABLE I. A selection of symmetrization matrices SL
μη [equal to Snrad

μη from Eq. (22)] and SG
μη [Eq. (42)] for the coupled gain-loss microdisk

resonators with α = 2 × 10−6 close to the EP region (∼1200 nm).

dgap = 1160 nm dgap = 1180 nm dgap = 1200 nm dgap = 1220 nm

SL
++ = 2.1221 SL

++ = 2.7945 SL
++ = 8.5390 SL

++ = 4.6738
SL

+− = −0.2847 − 1.4036i SL
+− = 0.4000 − 2.1998i SL

+− = −0.5947 − 8.3613i SL
+− = −0.0007 + 2.7960i

SL
−+ = −0.2847 + 1.4036i SL

−+ = 0.4000 + 2.1998i SL
−+ = −0.5947 − 8.3613i SL

−+ = −0.0007 − 2.7960i

SL
−− = 2.1221 SL

−− = 2.7953 SL
−− = 8.6300 SL

−− = 2.6751

SG
++ = 0.4246 SG

++ = 0.5588 SG
++ = 1.6732 SG

++ = 2.2237

SG
−+ = −0.2847 − 0.0317i SG

−+ = −0.4000 − 0.2000i SG
−+ = −0.5946 − 1.5675i SG

−+ = −0.0006 + 0.5592i

SG
+− = −0.2847 + 0.0317i SG

+− = −0.4000 − 0.2000i SG
+− = −0.5946 + 1.5675i SG

+− = −0.0006 − 0.5592i

SG
−− = 0.4243 SG

−− = 0.5592 SG
−− = 1.7616 SG

−− = 0.2249

to SL(G)1/2) compared to the initial coupling, which would be
not at all captured by a model, that neglects the off-diagonal
elements of the S matrices, i.e., that neglects the effects of
dissipation and amplification on the hybridized mode level.
It is further noteworthy that for larger gap distances dgap,
the deviation between the diagonal elements S++ and S−−
increases.

On the other hand, applying the bad cavity limit to the
improved phenomenological quantum gain model [based on
Eq. (103)] would lead to a formally identical master equa-
tion as Eq. (108) (again neglecting the Lamb shift terms),
with the quantum loss rate (cf. Appendix E) �loss

phen = �LDOS
phen +

�
gain
phen, where

�LDOS
phen = 2

∑
i, j,k

gigkRe

(
Tik j

i

ωa − �̃
eig
j

)
(112)

and

�
gain
phen = 2

∑
i,k, j

gigkRe

(
T ′

ik j

i

ωa − �̃
eig
j

)
(113)

is the gain rate. Here,

Tik j = [V]i j[V−1] jk,

T ′
ik j =

∑
n

[V]i j[V]∗kn

2γG

i(�̃eig
j − �̃

eig∗
n )

[V−1] jG[V−1]∗nG, (114)

and V (�̃eig
j ) is the eigenmatrix ( jth eigenvalue) of �̃

[Eq. (106)]. We note that �LDOS
phen can be reformulated in a

form proportional to the imaginary part of Gphen(ra, ra, ωa )
[Eq. (101)], i.e.,

�LDOS
phen = 2

h̄ε0
d · Im[Gphen(ra, ra, ωa )] · d, (115)

only because of the specific choice of the sign in the pho-
ton coupling Hamiltonian, i.e., −h̄κ . Otherwise, the elements
in �phen proportional to gLgG would deviate from the cor-
responding terms in Gphen(ra, ra ) by a minus sign [68].
However, in contrast to the purely lossy case (where �LDOS

phen

would be the only appearing decay rate), the gain rate �gain

and its dependence on κ could have an even bigger impact on
the TLS behavior with respect the sign choice.

We recognize that, within the bad cavity limit of Eq. (103),
the corresponding quantum LDOS becomes

ρ
phen
a,quant = 1 + �LDOS

phen

�B
, (116)

which also fully captures the pronounced interference effect,
because the normal mode approximation was applied on the
bare resonator picture (not shown).

After discussing the validity of the different models in the
bad cavity limit, we next concentrate on two figures of merit
for the TLS.

We initially study the gain- and loss-related rates of the
TLS, �gain and �loss, respectively, and the corresponding
quantities in the improved phenomenological quantum gain
approach. These rates are shown as function of TLS fre-
quency in Fig. 6 for the specific gain coefficient αG = 2 ×
10−6. We first recognize a nearly perfect agreement of �gain

and �loss between the quantized QNM approach (solid lines)
and the improved phenomenological quantum gain model
(black dashed) for all inspected gap distances and TLS posi-
tions. This is again a consequence of the very high-Q factor
of the bare resonators, and underlines the validity of the
improved phenomenological quantum gain model in such
regimes.

Second, we see a crucial dependence of interference effect
on the gap distance as well as TLS position: For ra = r1

(near the lossy resonator), the dip of the loss-related rate
becomes less pronounced when increasing the gap distance
because the overlap of the modes decreases. Although less
pronounced, this trend holds also true for the gain-related rate,
and also for the TLS position ra = r5 (close to the amplifying
resonator).

Third, we mention, that for ra = r1 as well as ra = r5, the
peak of the rates can drastically change when increasing the
gap distance. Indeed, �gain at dgap = 1220 nm is nearly one
order of magnitude larger compared to its value at dgap =
1160 nm. Lastly, we recognize that the interference behavior
is not necessarily identical for the gain- and loss-related rates.
While one can have a Lorentzian-type form, the other can take
a non-Lorentzian form, as can be seen in the exemplary case
of ra = r1 and dgap = 1180 nm.

Next, we study the steady-state occupation of the TLS
excited state, defined through

ne,ss ≡ 〈σ+σ−〉(t → ∞). (117)
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FIG. 6. Gain (green, light gray) and loss (red, dark gray) re-
lated rates (normalized by the free-space rate �B) of the TLS at
the position r1 near the lossy cavity (a) and position r5 near the
amplifying cavity (b) as function of TLS frequency obtained from the
bad cavity limit of the quantized QNM operator approaches (solid)
and the improved phenomenological quantum gain model (black) for
different gap distances dgap, ranging from 1160 nm (top) to 1220 nm
(bottom). The gain coefficient is chosen as αG = 2 × 10−6.

It is easy to show that the excited-state population evolves
as [37]

ṅe = −(�loss + �B)ne + �gainng, (118)

and, analogously, with the corresponding TLS rates in the im-
proved phenomenological quantum gain model. Using ng(t ) +
ne(t ) = 1, Eq. (118) can be solved analytically to obtain

ne(t ) = e−(�loss+�gain+�B )t ne(0)

+ �gain

�loss + �gain + �B
[1 − e−(�loss+�gain+�B )t ]. (119)

Inspecting the limit t → ∞ then leads to

ne,ss = �gain

�gain + �loss + �B
. (120)

In Fig. 7, we show results for ne,ss for different gain contri-
butions, utilizing the quantized QNM approaches (solid lines)
and the improved phenomenological quantum gain approach
(dashed lines).

To begin, we inspect the emitter position close to the lossy
ring rd = r1. As a first important observation, even for very
small gain cases, steady-state occupations up to ne,ss ∼ 0.8
can be achieved. The reason for this is that ne,ss does not only
depend on the amount of �gain, but rather on the ratio between

FIG. 7. Steady-state occupation of the excited state of the TLS
at the position r1 near the lossy cavity (a) and position r5 near
the amplifying cavity (b) as function of TLS frequency for gain
coefficients αG = 2 × 10−6 (green, light gray), αG = 10−6 (violet,
gray), and αG = 10−7 (blue, dark gray), and dgap = 1200 nm. The
solid (dashed) lines reflect the solutions from the quantized QNM
(improved phenomenological quantum gain) model.

gain and loss. To see this more clearly, we can rewrite the
above expression as

ne,ss = δ

1 + δ
, (121)

where

δ = �gain

�loss + �B
. (122)

Thus, for very large ratios δ, ne,ss tends to 1. However, we
note that for smaller gain contributions, �gain becomes even
smaller than the free-space loss rate �B, at which point ne,ss

also decreases, independent on the amount of �loss. In addi-
tion, we observe a broadening of the ne,ss values as function
of ωa for larger αG, and thus the smaller gain cases are much
more sensitive with respect to the TLS frequency. This can
be attributed to the very small TLS rates, which narrow the
response of the emitter to the photonic environment. In con-
trast, when choosing a TLS position close to the amplifying
resonator, the behavior is completely opposite: near the maxi-
mum of the absolute value of the LDOS, ne,ss has a minimum,
and these values scale proportionally to αG. This is a very
interesting observation, and once again shows the pronounced
role of the spatially dependent interference, an effect that is
captured by the complex QNM interaction in the quantum
picture. This striking difference is completely missing in the
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more phenomenological normal mode approaches, if the loss-
less mode approximation is applied at the hybridized mode
level. For high-Q bare resonators (where f̃L(G) ≈ Re[f̃L(G)]),
these phase effects are predominantly induced by the complex
bare resonator eigenfrequencies, which can be seen from the
definition of the hybridized eigenfunctions in terms of the bare
eigenfunctions (96). This is captured by the earlier introduced
improved phenomenological quantum gain approach. How-
ever, we emphasize again that this will likely significantly
change for larger dissipation and lower-Q factors, where the
imaginary part of the CMT coupling constants and the bare
eigenfunctions become more important and where even the
improved phenomenological quantum gain model will break
down.

VI. CONCLUSIONS

We have presented a quantization scheme for QNMs,
in the presence of arbitrary three-dimensional media with
linear material loss and amplification, and exemplified the
theory with detailed calculations for coupled ring resonators
containing loss or gain. Two different quantized QNM ap-
proaches were developed, a separated and a unified gain-loss
operator approach. In the former approach, amplification is
captured through a negative Hamiltonian part and non-quanta-
preserving terms in the TLS-QNM interaction, while in the
latter approach, the gain is captured by an incoherent mode-
pumping term.

On a formal level, the separated gain-loss operator ap-
proach differs significantly from more phenomenological
quantum gain models, that are usually based on a normal
mode coupling in conjunction with a Scully-Lamb model in
a linear gain regime. On the other hand, while the unified
gain-loss operator approach is formally similar to the phe-
nomenological models, the latter ones clearly neglect certain
effects of dissipation on the quantum level since the mode
decay is included ad hoc, so that one can expect drastic
differences in the general case. Thus, the former approach
can be regarded as a generalization of the usually used
phenomenological quantum gain models. Moreover, a fun-
damental difference between the separated and the unified
gain-loss operator approach (and thus also the phenomeno-
logical quantum gain approaches) was found for larger gain
contributions due to the different photon vacuum state defini-
tion. This was demonstrated quantitatively for the inspected
resonator structure, where occupation nvac > 1 of the to-
tal photon number in the unified approach with respect
to the initial vacuum state from the macroscopic Green
function quantization approach was calculated from first
principles.

It was also shown how the results for the quantum rates
of the TLS from the quantized QNM approaches in the bad
cavity limit are in nearly perfect agreement (within numeri-
cal error) with the Green function quantization in the weak
light-matter coupling regime, which rigorously justifies the
symmetrization procedure and the obtained quantum parame-
ters in this limit. Moreover, although the unified and separated
gain-loss operator approaches were shown to yield identical
results, the origin of the TLS decay and pump rate is funda-
mentally different due to the fact that the photon operators

couple to the loss reservoir operator and the adjoint gain
reservoir operator in the former approach. As a consequence,
the TLS-QNM interaction Hamiltonian cannot be written in
normal photon operator ordering. This is similar for the im-
proved phenomenological quantum gain model. In contrast,
in the latter approach, the QNM-TLS interaction Hamiltonian
can indeed be written in normal photon operator ordering, as
the gain and loss contributions are separated on the system
level.

Finally, we observed interesting behavior of the steady-
state populations of the TLS in the bad cavity limit, where
these values can be above 0.5, even for very small gain
contributions, although we stress that the inspected gain-loss
systems are located in a regime below the lasing threshold,
due to the intrinsic condition of positive mode decay rates.
While an improved phenomenological quantum gain model
recovers these results of the quantized QNM approaches for
the high-Q situation, we caution that it will ultimately fail for
smaller-Q values, where the effect of the dissipation on the
photon quantization becomes more significant. Regardless,
the partial inclusion of rigorous QNM theory in the phe-
nomenological quantum gain models can lead to significant
improvements of these theories.

Overall, we conclude that the quantized QNM approaches
are rigorous methods for general gain-loss regimes, while the
improved phenomenological quantum gain approach can still
yield a valid representation for larger-Q values. Both QNM
approaches reproduce the reference calculations in the weak
coupling regime and are based on a rigorous macroscropic
Green function quantization, and can thus can be regarded as
a solid and rigorous basis for describing multiphoton effects
in cavity QED setups with gain and loss.

The presented theory has a wide range of potential fu-
ture applications in quantum optics, including the study of
higher-order photon correlation functions in the stronger light-
matter coupling regimes (i.e., beyond the bad cavity limit),
such as the Fano factor, which gives a measure of the dis-
persion of a probability distribution [34]. Also, it would
be interesting to revisit the Petermann factor (which gives
a measure of noise) from a quantum perspective, which
was previously investigated with theories based on a normal
mode quantization with phenomenological mode-coupling
terms in the corresponding master equations [70,71]. In par-
ticular, these quantities could be investigated for arbitrary
resonator structures, beyond the simpler examples shown
here, such as three-dimensional cavities with smaller-Q fac-
tors (including gain-compensated metals), where the effects of
dissipation on the mode quantization are expected to be much
more drastic.

ACKNOWLEDGMENTS

We acknowledge funding from Queen’s University, the
Canadian Foundation for Innovation, the Natural Sciences
and Engineering Research Council of Canada, and CMC Mi-
crosystems for the provision of COMSOL Multiphysics. We
also acknowledge financial support from the Alexander von
Humboldt Foundation through a Humboldt Research Award.
We thank M. Richter and A. Knorr for useful comments and
support.

023702-18



QUANTIZED QUASINORMAL-MODE THEORY OF … PHYSICAL REVIEW A 105, 023702 (2022)

APPENDIX A: DERIVATION OF THE QUANTUM
LANGEVIN EQUATIONS

In this first Appendix, we give details on the derivation of
the quantum Langevin equations within the unified gain-loss
operator approach [Eq. (81)] and discuss the complemen-
tary derivation for the separated gain-loss operator approach
[Eq. (50)].

1. Photon Hamiltonian in the unified gain-loss
operator approach

First, we separate the full medium photon-space operators
{b(†)

i (r, ω)} into a QNM part {a′(†)
μ } and a non-QNM part, in

the following denoted as {c(†)
i (r, ω)}, similar to Ref. [43], so

that

bi(r, ω) =
∑

μ

[L′∗
Lμ,i(r, ω)a′

μ − L′
Gμ,i(r, ω)a′†

μ ] + ci(r, ω). (A1)

One can easily check that this separation is consistent with the definition of a′
μ from Eq. (70), with the sum rule∑

i

∫
d3r

∫ ∞

0
dω L′

Lμ,i(r, ω)ci(r, ω) +
∑

i

∫
d3r

∫ ∞

0
dω L′

Gμ,i(r, ω)c†
i (r, ω) = 0, (A2)

which also implies

[ci(r, ω), a′†
μ ] = [ci(r, ω), a′

μ] = 0 (A3)

and

[ci(r, ω), c†
j (r

′, ω′)] = δi jδ(r − r′)δ(ω − ω′) −
∑

μ

L′∗
Lμ,i(r, ω)L′

Lμ, j (r
′, ω′) −

∑
μ

L′
Gμ,i(r, ω)L′∗

Gμ, j (r
′, ω′). (A4)

Next, by using the separation (A1) and the corresponding adjoint equation, we rewrite the photon Hamiltonian (1a) as Hem =
H ′

QNM + H ′
QNM−R + H ′

R, where

H ′
QNM = h̄

∑
μ,η

χ ′L+
μη a′†

μa′
η − h̄

∑
μ,η

χ ′G+
μη a′

μa′†
η (A5)

is the QNM Hamiltonian,

H ′
QNM−R = h̄

∑
i

∑
μ

∫
d3r

∫ ∞

0
dω ωL′∗

Lμ,i(r, ω)c†
i (r, ω)a′

μ + H.a.

− h̄
∑

i

∑
μ

∫
d3r

∫ ∞

0
dω ωL′

Gμ,i(r, ω)c†
i (r, ω)a′†

μ + H.a. (A6)

reflects the interaction between the QNMs and the non-QNM continuum, and

H ′
R = h̄

∑
i

∫
d3r

∫ ∞

0
dω ω sgn[εI ]c

†
i (r, ω)ci(r, ω) (A7)

is the non-QNM continuum energy. Here, the QNM photon coupling matrices are given by

χ ′L+
μη =

∑
i

∫
d3r

∫ ∞

0
dω ωL′

Lμ,i(r, ω)L′∗
Lη,i(r, ω), (A8)

χ ′G+
μη =

∑
i

∫
d3r

∫ ∞

0
dω ωL′∗

Gμ,i(r, ω)L′
Gη,i(r, ω), (A9)

where we have exploited the fact that L′
Lμ,i(r, ω) and L′

Gμ,i(r, ω) are defined on distinct spatial regions through Heaviside
functions �[εI ] and �[−εI ], respectively.

We then rewrite the interaction part H ′
QNM−R; it consists of two terms, one related to the gain contribution and one related to

the loss contribution. Similar to Ref. [43], we rewrite the appearing integral kernels, e.g., ωL′
Lμ,i(r, ω), as

ωL′
Lμ,i(r, ω) = [S′−1/2]μη[ω − ω̃η]L̃Lη,i(r, ω) + [S′−1/2]μηω̃ηL̃Lη,i(r, ω). (A10)

While the second term vanishes within the full interaction Hamiltonian due to the sum rule (A2), the first term remains as a
nonresonant term (the simple QNM pole is canceled out), yielding H ′

QNM−R = H ′L
QNM−R − H ′G

QNM−R, with

H ′L
QNM−R = h̄

∑
i,μ

∫
d3r

∫ ∞

0
dω g′∗

Lμ,i(r, ω)c†
i (r, ω)a′

μ + H.a. (A11)
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and

H ′G
QNM−R = h̄

∑
i,μ

∫
d3r

∫ ∞

0
dω g′∗

Gμ,i(r, ω)ci(r, ω)a′
μ + H.a., (A12)

with coupling constants

g′
L(G)μ,i(r, ω) = [S′−1/2]μη[ω − ω̃η]L̃L(G)η,i(r, ω). (A13)

2. Atom-field Hamiltonian in the unified gain-loss operator approach

Next, we formulate the atom-field Hamiltonian in terms of a scattering part and a background part. For this, we use the terms
in Eq. (A1) to rewrite the electric field operator contribution Ê(ra, ω), at the emitter position, as

Ê(ra, ω) = Êa(ra, ω) + Êc(ra, ω), (A14)

where

Êa(ra, ω) = i
∑

μ

√
h̄

πε0
Kμ(ra, ω)a′

μ (A15)

is the QNM related part, with

Kμ(ra, ω) =
∫

d3r �[εI ]
√

εI (r, ω)G(ra, r, ω) · L′∗
Lμ(r, ω) −

∫
d3r �[−εI ]

√
|εI (r, ω)|G(ra, r, ω) · L′∗

Gμ(r, ω) (A16)

and

Êc(ra, ω) = i

√
h̄

πε0

∫
d3r[�[εI ]

√
εI (r, ω)G(ra, r, ω) · c(r, ω) + �[−εI ]

√
|εI (r, ω)|G(ra, r, ω) · c†(r, ω)]. (A17)

In the following, we assume that the emitter is located in the background region, where ε = εB. Then, we use the fact that the
Green function with both spatial positions in a common spatial region (with the same permittivity) can be written as a sum of a
scattering part and a background part [72], namely,

G(ra, r, ω) = GS(ra, r, ω) + GB(ra, r, ω). (A18)

In the cases where ra and r are not in a common spatial region, then the full Green function is given by the scattering part
GS(ra, r, ω). We also assume that GS(ra, r, ω) is fully determined by the QNM Green function together with a regularization,
which is of course consistent with the mode-operator construction. However, one should note that one can also allow for
additional scattering contributions, not allocated to the QNM expansion, which will result in other nonmodal scattering parts
[63].

Within this Green function formulation, we first investigate Êc(ra, ω). To do so, the contribution associated to �[εI ] must
again be split into two parts, where we have to explicitly reintroduce the permittivity sequences:

�[εI ] = �[αχL,I − εI ] + �[εI − αχL,I ]. (A19)

Here, the first part accounts for the artificial background contribution, while the second part accounts for the lossy scattering
structures. In the part, where �[αχL,I − εI ] [or analogously Vout (λ)] appears, the sum of GS and GB must be taken into account,
while in all other parts, G = GS (under the limit α → 0 on the finite regime Vin − VG, cf. Fig. 1). Thus, we can rewrite Êc(ra, ω)
as Êc(ra, ω) = Êc,S(ra, ω) + Êc,B(ra, ω), with

Êc,S(ra, ω) = i

√
h̄

πε0

∫
d3r[�[εI ]

√
εI (r, ω)GS(ra, r, ω) · c(r, ω) + �[−εI ]

√
|εI (r, ω)|GS(ra, r, ω) · c†(r, ω)] (A20)

and

Êc,B(ra, ω) = i

√
h̄

πε0

∫
d3r �[αχL,I − εI ]

√
εI (r, ω)GB(ra, r, ω) · c(r, ω). (A21)

Inserting the QNM expansion for GS(ra, r, ω), and integrating Êc,S(ra, ω) over all ω yields
∫∞

0 dω Êc,S(ra, ω) =
i
∑

μ

√
h̄ωμ f̃ s

μ(ra )cμ/
√

2ε0, with

cμ =
∑

i

∑
μ

∫
d3r

∫ ∞

0
dω L′

Lμ,i(r, ω)ci(r, ω) +
∑

i

∫
d3r

∫ ∞

0
dω L′

Gμ,i(r, ω)c†
i (r, ω). (A22)
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However, this is precisely the left-hand side of the sum rule (A2), which implies
∫∞

0 dω Êc,S(ra, ω) = 0. The remaining total
electric field operator of the non-QNM part is thus identical to

∫∞
0 dω Êc,B(ra, ω) and connected to the background contribution

only.
Second, we inspect the part Êa: applying the same spatial separation as above leads to Kμ(ra, ω) = KB

μ(ra, ω) + KS
μ(ra, ω).

Inserting the QNM expansion for GS, we then arrive at

KS
μ(ra, ω) =

∑
νν ′ηη′

√
πων

2
f̃ν (ra, )[S1/2]νν ′[S−1/2]ν ′ηSηη′ (ω)[S−1/2]η′μ, (A23)

which implies that the total scattered electric field operator is∫ ∞

0
dω Êa,S(ra, ω) = i

∑
μ

√
h̄ωμ

2ε0
f̃ ′s
μ (ra )a′

μ, (A24)

with the exact symmetrized QNM function as in Eq. (80).
Assuming that the background contribution of the QNM part is small, i.e., |d · Ea,S(ra, ω)|  |d · Ea,B(ra, ω)|, the term

associated to KB
μ(ra, ω) can be neglected, and the atom-field interaction Hamiltonian can be written as HI = H ′

QNM−a + Ha−R

with

H ′
QNM−a = h̄

∑
μ

[g̃′s
μσ+a′

μ + H.a.], Ha-R = h̄
∑

i

∫
d3r

∫ ∞

0
dω ga,i(r, ω)σ+ci(r, ω), (A25)

where

ga(r, ω) = −i

√
εI (r, ω)

π h̄ε0
�[αχL,I − εI ]da · GB(ra, r, ω) (A26)

is the atom-reservoir coupling constant.

3. Heisenberg equation of motion and Markov approximation in the unified gain-loss operator approach

Having derived the full Hamiltonian after separating into QNM and non-QNM contributions, we now derive the Heisenberg
equation of motion of an arbitrary system operator A (in the QNM-atom space):

Ȧ = − i

h̄
[A, H ′

S] − i
∑
i,μ

∫
d3r

∫ ∞

0
dω g′∗

Lμ,i(r, ω)c†
i (r, ω)[A, a′

μ] − i
∑
i,μ

∫
d3r

∫ ∞

0
dω g′

Lμ,i(r, ω)[A, a′†
μ ]ci(r, ω)

+ i
∑
i,μ

∫
d3r

∫ ∞

0
dω g′∗

Gμ,i(r, ω)[A, a′
μ]ci(r, ω) + i

∑
i,μ

∫
d3r

∫ ∞

0
dω g′

Gμ,i(r, ω)c†
i (r, ω)[A, a′†

μ ]

− i
∑

i

∫
d3r

∫ ∞

0
dω g∗

a,i(r, ω)c†
i (r, ω)[A, σ−] − i

∑
i

∫
d3r

∫ ∞

0
dω ga,i(r, ω)[A, σ+]ci(r, ω), (A27)

where H ′
S = Ha + H ′

QNM−a + H ′
QNM. In order to obtain the Markovian quantum Langevin equation (81), we apply three

approximations to the temporal evolution and coupling constants.
We initially approximate c(†)

i (r, ω) by bosonic operators, similar to Ref. [43], i.e.,

[ci(r, ω), c†
j (r

′, ω′)] ≈ δi jδ(r − r′)δ(ω − ω′). (A28)

In this way, we obtain the Heisenberg equation of motion of ci(r, ω) as

ċi(r, ω) = − iω sgn[εI ]ci(r, ω) − i
∑

μ

g′∗
Lμ,i(r, ω)a′

μ + i
∑

μ

g′
Gμ,i(r, ω)a′†

μ − ig∗
a,i(r, ω)σ−. (A29)

Formally solving Eq. (A29) leads to

ci(r, ω, t ) = e−iω sgn[εI ](t−t0 )ci(r, ω, t0) − i
∑

μ

g′∗
Lμ,i(r, ω)

∫ t

t0

dτ e−iω sgn[εI ](t−τ )a′
μ(τ )

+ i
∑

μ

g′
Gμ,i(r, ω)

∫ t

t0

dτ e−iω sgn[εI ](t−τ )a′†
μ (τ ) − ig∗

a,i(r, ω)
∫ t

t0

dτ e−iω sgn[εI ](t−τ )σ−(τ ), (A30)
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with initial time t0 < t (time-retarded solution), and inserting the solution back into Eq. (A27) yields

Ȧ = − i

h̄
[A, HS] −

∑
μ

F ′†
Lμ[A, a′

μ] +
∑

μ

[A, a′†
μ ]F ′

Lμ −
∑

μ

[A, a′
μ]F ′

Gμ +
∑

μ

F ′†
Lμ[A, a′†

μ ] − F †
a [A, σ−] + [A, σ+]Fa

− 1

π

∑
μ,η

[A, a′
μ]
∫ ∞

0
dω g′G∗

μη (ω)
∫ t

t0

eiω(t−τ )a′†
η (τ ) + 1

π

∑
μ,η

∫ ∞

0
dω g′G

μη(ω)
∫ t

t0

e−iω(t−τ )a′
η(τ )[A, a′†

μ ]

+ 1

π

∑
μ,η

∫ ∞

0
dω g′L∗

μη (ω)
∫ t

t0

eiω(t−τ )a′†
η (τ )[A, a′

μ] − 1

π

∑
μ,η

[A, a′†
μ ]
∫ ∞

0
dω g′L

μη(ω)
∫ t

t0

e−iω(t−τ )a′
η(τ )

+ 1

π
[A, σ−]

∫ ∞

0
dω g∗

a(ω)
∫ t

t0

eiω(t−τ )σ+(τ ) − 1

π

∫ ∞

0
dω ga(ω)

∫ t

t0

e−iω(t−τ )σ−(τ )[A, σ+], (A31)

with noise forces

F ′
Lμ(t ) = −i

∑
i

∫
d3r

∫ ∞

0
dω g′

Lμ,i(r, ω)ci(r, ω, t0)e−iω(t−t0 ),

(A32)

F ′
Gμ(t ) = −i

∑
i

∫
d3r

∫ ∞

0
dω g′∗

Gμ,i(r, ω)ci(r, ω, t0)eiω(t−t0 ),

and

Fa(t ) = −i
∑

i

∫
d3r

∫ ∞

0
dω ga,i(r, ω)ci(r, ω, t0)e−iω(t−t0 ), (A33)

and with the ω-dependent coupling constants

g′L
μη(ω) = π

∑
i

∫
d3r g′

Lμ,i(r, ω)g′∗
Lη,i(r, ω), (A34)

g′G
μη(ω) = π

∑
i

∫
d3r g′

Gμ,i(r, ω)g′∗
Gη,i(r, ω), (A35)

ga(ω) = π
∑

i

∫
d3r ga,i(r, ω)g∗

a,i(r, ω). (A36)

Note, we have used the fact that any spatial integral involving the products with mixed gain and loss coupling constants, e.g.,∑
i

∫
d3r g′

Lμ,i(r, ω)g′∗
Gη,i(r, ω), vanish. Also note we have neglected cross terms associated with both the atom-reservoir and

photon-reservoir coupling, and they are assumed in the following as independent bath contributions, i.e., [F ′
L(G)μ(t ), F †

a (t ′)] = 0.
To obtain a time-local quantum Langevin equation, we apply a resonance approximation to the coupling constants and extend

the lower ω integral bound to −∞:

Ȧ = − i

h̄
[A, HS] −

∑
μ

F ′†
Lμ[A, a′

μ] +
∑

μ

[A, a′†
μ ]F ′

Lμ −
∑

μ

[A, a′
μ]F ′

Gμ + F ′†
Gμ

∑
μ

[A, a′†
μ ] − F †

a [A, σ−] + [A, σ+]Fa

−
∑
μ,η

χ ′G−
μη ([A, a′

η]a′†
μ + a′

η[A, a′†
μ ]) +

∑
μ,η

χ ′L−
μη (a′†

μ [A, a′
η] − [A, a′†

μ ]a′
η ) + �B

2
(σ+[A, σ−] − [A, σ+]σ−). (A37)

In Eq. (A37), the averaged photon decay matrices are explic-
itly given by

χ ′L−
μη ≈ i

2

∑
νν ′

[S′−1/2]μν (ω̃ν − ω̃∗
ν ′ )S′L

νν ′[S′−1/2]ν ′η, (A38)

χ ′G−
μη ≈ i

2

∑
νν ′

[S′−1/2]μν (ω̃ν − ω̃∗
ν ′ )S′G

ν ′ν[S′−1/2]ν ′η, (A39)

where similar approximations as in Ref. [43] were used. Sim-
ilarly, the photon coupling matrix χ ′+

μη is approximated as

χ ′+
μη ≈ 1

2

∑
νν ′

[S′−1/2]μν (ω̃ν + ω̃∗
ν ′ )S′

νν ′ [S′−1/2]ν ′η, (A40)

which is in line with the resonance approximation from above.

Furthermore, the averaged TLS decay rate is defined as

�B ≈ πga(ωa ) = 2

h̄ε0
da · KB(ra, ra, ωa ) · da, (A41)

with

KB(ra, ra, ωa ) =
∫

d3r εI (r, ωa )�[αχL,I − εI ]GB(ra, r, ωa )

· G∗
B(r, ra, ωa )

= lim
λ→∞

∫
Vout (λ)

d3r ε
(α)
B,I (r, ωa )GB(ra, r, ωa )

· G∗
B(r, ra, ωa ), (A42)

023702-22



QUANTIZED QUASINORMAL-MODE THEORY OF … PHYSICAL REVIEW A 105, 023702 (2022)

where we used the fact that the Heaviside function is defined
on Vout (λ) and ε

(α)
B = 1 + αχL. In the limit of α → 0, one

can add the trivial term
∫

B d3r ε
(α)
B,I GB(ra, r) · GB(r, ra ) on a

bound volume B. Choosing B = Vin simply leads to

lim
α→0

KB(ra, ra, ωa ) = Im[GB(ra, ra, ωa )], (A43)

so that

�B = 2

h̄ε0
da · Im[GB(ra, ra, ωa )] · da, (A44)

which readily coincides with the usual formula for free space
(or a homogeneous medium) decay of a quantum dipole.

To complete the Markovian description of the quantum
Langevin equation, we assume the following approximate
relations for the non-equal-time commutation relations of the
noise forces:

[F ′
Lμ(t ), F ′†

Lμ′ (t ′)] ≈ 2χ ′L−
μμ′ δ(t − t ′), (A45)

[F ′
Gμ(t ), F ′†

Gμ′ (t ′)] ≈ 2χ ′G−
μ′μ δ(t − t ′), (A46)

[Fa(t ), F †
a (t ′)] ≈ �Bδ(t − t ′), (A47)

which is consistent with the resonance approximations ap-
plied to the decay rates.

Inserting A = a′
μ into Eq. (A37) coincides with Eq. (50a),

which completes this derivation.

4. Comments on the derivation for the separated
gain-loss operator approach

As mentioned at the beginning of this Appendix, the be-
havior of the noise operators acting on the QNM system in
the separated gain-loss operator approach is formally identi-
cal to the purely lossy case described in Sec. III A, except
that the number of photon operators per QNMs is doubled.
Thus, the derivation of the photon Hamiltonian as well as
the Markovian limit would carry over from the derivation in
Ref. [43], leading to the quantum Langevin equations (50).
The crucial difference over the purely lossy case is rather
captured by the system Hamiltonian which has a significantly
different structure due to the altered medium-assisted electric
field operator and the sign function in Hem. This is in contrast
to the unified gain-loss operator approach, where the structure
of the noise operators in the Heisenberg equation of motion is
completely different, but where the formal appearance of the
system Hamiltonian is nearly identical to the purely lossy case
(except a negative constant in the photon Hamiltonian).

Furthermore, we note that the separation of QNM and
non-QNM contributions in the atom-field Hamiltonian, as
demonstrated in Appendix A 2, can be easily adapted to the
separated gain-loss operator approach, yielding the same free
spontaneous emission rate for the background part, induced by
the same artificial noise operator in the background medium.

APPENDIX B: BATH STATE ASSUMPTIONS
AND DIELECTRIC PERMITTIVITY MODEL

FOR THE DERIVATION OF THE MASTER EQUATIONS

In this Appendix, we give further details on the assumed
vacuum correlation functions of the QNM noise forces, from

which the quantum Langevin equation can be connected to
the associated master equations [Eq. (87) within the uni-
fied gain-loss operator approach, and Eq. (57) within the
separated gain-loss operator approach] through quantum Ito-
Stratonovich calculus (cf. Ref. [20] for details with respect to
the purely lossy case, which is based on work from Gardiner
and Collett [73]).

To determine a well-defined bath state for the case with am-
plifying media, we assume a simple Lorentz oscillator model
for dielectric permittivity in the nonvacuum media similar to
Ref. [37] (following the idea in Ref. [65]):

ε(r, ω) = 1 − Nl (r) − Nu(r)

Nl (r) + Nu(r)

ω2
p

ω2
0 − ω2 − iγ0ω

, (B1)

where Nl (r) is the occupation of the lower state and Nu(r) is
the occupation of the upper state of the oscillator. This model
is also consistent with how one would typically describe gain
in Maxwell’s equations through the gain medium material
properties.

For the purely lossy region, where Nl > Nu for all ω, one
can determine the bath correlation function (assuming a ther-
mal state) as

trR,loss
[
c†

i (r, ω)c j (r′, ω′)ρ loss
R

]
= n(ω, T )δ(r − r′)δi jδ(ω − ω′), (B2)

where r, r′ ∈ VL, trR,loss is the trace over the lossy medium de-
grees of freedom, and one can formulate n(ω, T ) in equivalent
forms [65,74]

n(ω, T ) = 1

exp(h̄ω/kBT ) − 1
= Nu

Nl − Nu
. (B3)

For the purely amplifying region, where Nl < Nu for all ω,
we assume an associated thermal state with effective negative
temperatures [65,74], and replace n(ω, T ) → n(ω, |T |) (as in
more detail justified in Ref. [37]), to obtain

trR,amp
[
c†

i (r, ω)c j (r′, ω′)ρamp
R

]
= n(ω, |T |)δ(r − r′)δi jδ(ω − ω′), (B4)

for r, r′ ∈ VG. Using n(ω, |T |) = −n(ω, T ) − 1 and Eq. (B3)
yields

n(ω, |T |) = Nl

Nu − Nl
. (B5)

Physically, this corresponds to an inverted oscillator, where
the lower and upper states are exchanged. The construction of
thermal states for negative temperatures was also discussed
in Refs. [75,76] using complementary Gibbs states. Note that
ρR = ρ

amp
R ρ loss

R since both subspaces are independent from
each other without any interactions. Needless to say, that one
also obtains the trivial expectation values

〈ci(r, ω)〉 = 〈c†
i (r, ω)〉 = 0, (B6)

in lossy as well as amplifying regions. Therefore, one can
summarize Eqs. (B2) and (B4) as follows:

trR[c†
i (r, ω)c j (r′, ω′)ρR]

= {�[εI ]n(ω, T )+�[−εI ]n(ω, |T |)}δ(r−r′)δi jδ(ω − ω′),
(B7)
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because of the linearity of the trace and property of the par-
tial trace. If we now assume Nl (r) = 0 (corresponding to a
perfectly inverted oscillator) for r ∈ VG and Nu(r) = 0 (corre-
sponding to a ground-state oscillator) for r ∈ VL then yields
n(ω, T ) = 0, and n(ω, |T |) = 0, which leads to effective vac-
uum correlation functions

trR[c†
i (r, ω)c j (r′, ω′)ρR] = 0, (B8a)

trR[ci(r, ω)c†
j (r

′, ω′)ρR] = δ(r − r′)δi jδ(ω − ω′). (B8b)

Since the QNM noise operators are linear combinations of
c(†)

i (r, ω), the above result carries over to the specific QNM
input sources, and equally justifies the correlation functions
in Eqs. (90) and (60), which are the starting point to apply
the procedure from Ref. [73] for deriving the master equa-
tions (87) and (57), respectively.

Strictly speaking, we only have to use the oscillator model
(B1) for the amplifying part. In this way, one is not limited
to the same Lorentzian in the lossy as well as the amplifying
part, namely,

ε(r, ω) = 1 − �[εI ]
N loss

l − N loss
u

N loss
l + N loss

u

ω2
p,L

ω2
0,L − ω2 − iγ0,Lω

− �[−εI ]
Ngain

l − Ngain
u

Ngain
l + Ngain

u

ω2
p,G

ω2
0,G − ω2 − iγ0,Gω

,

(B9)

with two different Lorentz oscillators and N loss
l > N loss

u

(Ngain
l < Ngain

u ) for the lossy and amplifying regions (�[±εI ]
was defined earlier). In this case,

n(ω, T ) = 1

exp(h̄ω/kBT ) − 1
= N loss

u

N loss
l − N loss

u

(B10)

for the lossy region and

n(ω, |T |) = Ngain
l

Ngain
u − Ngain

l

(B11)

for the amplifying region.

APPENDIX C: BAD CAVITY LIMIT DERIVATION USING
THE SEPARATED GAIN-LOSS OPERATOR APPROACH

In this Appendix, we present a detailed derivation of the
bad cavity limit master equation (108) within the separated
gain-loss operator approach (the application to the unified
gain-loss operator approach is also possible, as discussed at
the end of this Appendix). The starting point for deriving the
bad cavity limit is the full quantum master equation from the
separated operator approach [Eq. (57)], slightly rewritten as

∂tρ = [La + Lem + LI ]ρ, (C1)

with superoperators

Laρ = − i

h̄
[Ha, ρ] + LSEρ, (C2)

Lemρ = − i

h̄
[Hem, ρ] + L[aL]ρ + L[aG]ρ, (C3)

LIρ = − i

h̄
[HI, ρ], (C4)

and where Hem ≡ HQNM and HI ≡ HQNM−a. Following
Ref. [69], we transform to the electromagnetic picture via

ρ̃ ≡ e−Lemtρ, (C5)

such that

∂t ρ̃ = Laρ̃ + e−LemtLIρ. (C6)

Next, we split the electromagnetic operators into a gain and
a loss part,

LI = Lgain
I + Lloss

I , (C7)

Lgain
I ρ = −i

∑
μ

{
g̃s,G∗

μ (aGμ[σ−, ρ] + [aGμ, ρ]σ−)

+ g̃s,G
μ ([σ+, ρ]a†

Gμ + σ+[a†
Gμ, ρ])

}
, (C8)

Lloss
I ρ = −i

∑
μ

{
g̃s,L∗

μ ([σ−, ρ]a†
Lμ + σ−[a†

Lμ, ρ])

+ g̃s,L
μ (aLμ[σ+, ρ] + [aLμ, ρ]σ+)

}
, (C9)

and

Lem = Lgain
em + Lloss

em , (C10)

Lgain
em ρ = − i

h̄

[
Hgain

em , ρ
]+ L[aG]ρ, (C11)

Lloss
em ρ = − i

h̄

[
H loss

em , ρ
]+ L[aL]ρ. (C12)

In this way, we obtain

∂t ρ̃ = Laρ̃ + e−Lgain
em tLgain

I ρ loss + e−Lloss
em tLloss

I ρgain, (C13)

where we used Lloss
em Lgain

em ρ = Lgain
em Lloss

em ρ and where

ρgain/loss = e−iLgain/loss
em tρ. (C14)

To obtain a closed-form master equation for ρ̃ we use
properties of the operator exponential together with the com-
mutation relations of a(†)

Gμ, a(†)
Lμ, yielding

∂t ρ̃ = Laρ̃ + L̃gain
I ρ̃ + L̃loss

I ρ̃, (C15)

where

L̃loss
I ρ̃ = −i

∑
η

e−γηt

[∑
μ,ν

[
g̃s,L∗

μ [σ−, ρ̃]a†
Lν (SL 1

2 )νηeiωηt (SL− 1
2 )ημ + g̃s,L

μ (SL− 1
2 )μηe−iωηt (SL 1

2 )ηνaLν[σ+, ρ̃]
]]

− i
∑

η

eγηt

[∑
μ,ν

[
g̃s,L

μ (SL 1
2 )μηe−iωηt (SL− 1

2 )ην[aLν, ρ̃]σ+ + g̃s,L∗
μ σ−[a†

Lν, ρ̃](SL− 1
2 )νηeiωηt (SL 1

2 )ημ

]]
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≡
∑

η

e−γηt
(
Lloss,η

1 (t )ρ̃(t )
)+

∑
η

eγηt
(
Lloss,η

2 (t )ρ̃(t )
)
. (C16)

For the gain part, we instead get

L̃gain
I ρ̃ = − i

∑
η

e−γηt

[∑
μ,ν

[
g̃s,G

μ [σ+, ρ̃]a†
Gν (SG 1

2 )νηe−iωηt (SG− 1
2 )ημ + g̃s,G∗

μ (SG− 1
2 )μηeiωηt (SG 1

2 )ηνaGν[σ−, ρ̃]
]]

− i
∑

η

eγηt

[∑
μ,ν

[
g̃s,G∗

μ (SG 1
2 )μηeiωηt (SG− 1

2 )ην[aGν, ρ̃]σ− + g̃s,G
μ σ+[a†

Gν, ρ̃](SG− 1
2 )νηe−iωηt (SG 1

2 )ημ

]]

≡
∑

η

e−γηt
(
Lgain,η

1 (t )ρ̃(t )
)+

∑
η

eγηt
(
Lgain,η

2 (t )ρ̃(t )
)
. (C17)

Next, the density matrix ρa ≡ trem(ρ̃) of the TLS degrees of freedom only is defined, where trem = trloss
em trgain

em is the trace over
the loss and gain QNM degrees of freedom. Applying the trace trem on Eq. (C15) then yields

∂tρa(t ) = − i

h̄
[Ha, ρa(t )] + LSEρa +

∑
η

trem
(
Lloss,η

1 (t )e−γηt ρ̃(t )
)+

∑
η

trem
(
Lgain,η

1 (t )e−γηt ρ̃(t )
)
, (C18)

where the relation trem(Lloss/gain,ν

2 (t )ρ̃(t )) = 0 was used, which follows from

trem([a†
Lη, ρ̃]) = trem(a†

Lηρ − ρa†
Lη ) = trem(a†

Lηρ − a†
Lηρ) = 0, (C19)

with the help of properties of the trace. Obviously, this holds also true for trem[a†
Lη, ρ̃], trem[a†

Gη, ρ̃], and trem[aGη, ρ̃]. To obtain
a closed-form master equation for the TLS density matrix ρa, Eq. (C15) is formally solved for ρ̃(t ):

e−γηt ρ̃(t ) = e−γηt e− i
h̄ Ha (t−t0 )ρ̃(t0)e

i
h̄ Ha (t−t0 ) + e−γηtLSEρ̃(t ) + e−γηt

∫ t

t0

dτ
∑
η′

e−γη′ τ e− i
h̄ Ha (t−τ )(Lloss,η′

1 (τ )ρ̃(τ )
)
e

i
h̄ Ha (t−τ )

+ e−γηt
∫ t

t0

dτ
∑
η′

eγη′ τ e− i
h̄ Ha (t−τ )

(
Lloss,η′

2 (τ )ρ̃(τ )
)
e

i
h̄ Ha (t−τ )+ e−γηt

∫ t

t0

dτ
∑
η′

e−γη′ τ e− i
h̄ Ha (t−τ )

(
Lgain,η′

1 (τ )ρ̃(τ )
)
e

i
h̄ Ha (t−τ )

+ e−γηt
∫ t

t0

dτ
∑
η′

eγη′ τ e− i
h̄ Ha (t−τ )

(
Lgain,η′

2 (τ )ρ̃(τ )
)
e

i
h̄ Ha (t−τ ). (C20)

Following the argumentation presented in Ref. [69], the terms on the first, second, as well as fourth lines on the right-hand side
of Eq. (C20) are neglected as a consequence of the bad cavity limit parameter regime, γη  |g̃L/G,s

η | and γη  �B, which implies
that the terms in the third and fifth lines on the right-hand side of Eq. (C20) are the dominant contributions for times t � γ −1

η .
Without loss of generality, in the following, the initial time t0 is set to t0 = 0. Inserting then the dominant term of Eq. (C20)

back into Eq. (C18) yields

∂tρa(t ) = − i

h̄
[Ha, ρa(t )] + LSEρa(t ) +

∑
ν

trem

(
e−γηt Lloss,η

1 (t )
∫ t

0
dτ
∑
η′

eγη′ τ (L̄loss,η′
2 (τ )ρ̃ ′(τ )

))

+
∑

ν

trem

(
e−γηt Lloss,η

1 (t )
∫ t

0
dτ
∑
η′

eγη′ τ (L̄gain,η′
2 (τ )ρ̃ ′(τ )

))

+
∑

ν

trem

(
e−γηt Lgain,η

1 (t )
∫ t

0
dτ
∑
η′

eγη′ τ (L̄gain,η′
2 (τ )ρ̃ ′(τ )

))

+
∑

ν

trem

(
e−γηt Lgain,η

1 (t )
∫ t

0
dτ
∑
η′

eγη′ τ (L̄loss,η′
2 (τ )ρ̃ ′(τ )

))
, (C21)

where

ρ̃ ′(τ ) = e− i
h̄ Ha (t−τ )ρ̃(τ )e

i
h̄ Ha (t−τ ), L̄loss/gain,η′

2 (τ ) = e− i
h̄ Ha (t−τ )Lloss/gain,η′

2 (τ )e
i
h̄ Ha (t−τ ). (C22)
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Using Eqs. (C16) and (C17) together with the Baker-Campell-Hausdorff formula [77], L̄loss/gain,η′
2 (τ )ρ̃ ′(τ ) is rewritten as

L̄loss,η′
2 (τ )ρ̃ ′(τ ) = −i

∑
μ,ν

[
g̃L,s

μ (SL 1
2 )μη′e−iωη′ τ (SL− 1

2 )η′ν[aLν, ρ̃
′]σ+e−iωa (t−τ ) + g̃L,s∗

μ σ−eiωa (t−τ )[a†
Lν, ρ̃

′](SL− 1
2 )νη′eiωη′ τ (SL 1

2 )η′μ
]

(C23)

and

L̄gain,η′
2 (τ )ρ̃ ′(τ ) = −i

∑
μ,ν

[
g̃G,s∗

μ (SG 1
2 )μη′eiωη′ τ (SG− 1

2 )η′ν[aGν, ρ̃
′]σ−eiωa (t−τ )

+ g̃G,s
μ σ+e−iωa (t−τ )[a†

Gν, ρ̃
′](SG− 1

2 )νη′e−iωη′ τ (SG 1
2 )η′μ

]
. (C24)

Next, a new time variable τ → t − τ of the time integral in Eq. (C21) is introduced, which leads to

∂tρa(t ) = − i

h̄
[Ha, ρa (t )] + LSEρa +

∑
η

trem

(
e−γηt Lloss,η

1 (t )
∫ t

0
dτ
∑
η′

eγη′ (t−τ )
(
L̄loss,η′

2 (t − τ )ρ̃ ′(t − τ )
))

+
∑

η

trem

(
e−γηt Lloss,η

1 (t )
∫ t

0
dτ
∑
η′

eγη′ (t−τ )
(
L̄gain,η′

2 (t − τ )ρ̃ ′(t − τ )
))

+
∑

η

trem

(
e−γηt Lgain,η

1 (t )
∫ t

0
dτ
∑
η′

eγη′ (t−τ )
(
L̄loss,η′

2 (t − τ )ρ̃ ′(t − τ )
))

+
∑

η

trem

(
e−γηt Lgain,η

1 (t )
∫ t

0
dτ
∑
η′

eγη′ (t−τ )
(
L̄gain,η′

2 (t − τ )ρ̃ ′(t − τ )
))

. (C25)

During the characteristic time t � γ −1
η of the QNM decay, only the fast evolution from the bare TLS Hamiltonian Ha is

significant, and therefore the approximation ρ̃(t − τ ) ≈ e
i
h̄ Ha (τ )ρ̃(t )e− i

h̄ Ha (τ ) can be applied [69]. Therefore, it follows that

ρ̃ ′(t − τ ) = e− i
h̄ Haτ ρ̃(t − τ )e

i
h̄ Haτ ≈ ρ̃(t ). (C26)

The remaining τ -dependent terms are classical numbers and the master equation can be rewritten as

∂tρa(t ) = − i

h̄
[Ha, ρa (t )] + LSEρa +

∑
η

∑
η′

e−γηt eγη′ t
∫ t

0
dτ e−γη′ τ trem

[
Lloss,η

1 (t )
(
L̄loss,η′

2 (t − τ )ρ̃(t )
)]

+
∑

η

∑
η′

e−γηt eγη′ t
∫ t

0
dτ e−γη′ τ trem

[
Lloss,η

1 (t )
(
L̄gain,η′

2 (t − τ )ρ̃(t )
)]

+
∑

η

∑
η′

e−γηt eγη′ t
∫ t

0
dτ e−γη′ τ trem

[
Lgain,η

1 (t )
(
L̄loss,η′

2 (t − τ )ρ̃(t )
)]

+
∑

η

∑
η′

e−γηt eγη′ t
∫ t

0
dτ e−γη′ τ trem

[
Lgain,η

1 (t )
(
L̄gain,η′

2 (t − τ )ρ̃(t )
)]

≡ − i

h̄
[Ha, ρa (t )] + LSEρa +

∑
η,η′

trem
{[
Lηη′

ll (t ) + Lηη′
lg (t ) + Lηη′

gl (t ) + Lηη′
gg (t )

]
ρ̃(t )

}
, (C27)

with

L̄loss,η′
2 (t − τ )ρ̃(t ) = −i

∑
μ,ν

(
g̃L,s

μ (SL 1
2 )μη′e−iωη′ (t−τ )(SL− 1

2 )η′ν[aLν, ρ̃(t )]σ+e−iωaτ

+ g̃L,s∗
μ σ−eiωaτ [a†

Lν, ρ̃(t )](SL− 1
2 )νη′eiωη′ (t−τ )(SL 1

2 )η′μ
)

(C28)

and

L̄gain,η′
2 (t − τ )ρ̃(t ) = −i

∑
μ,ν

(
g̃G,s∗

μ (SG 1
2 )μη′eiωη′ (t−τ )(SG− 1

2 )η′ν[aGν, ρ̃(t )]σ−eiωaτ

+ g̃G,s
μ σ+e−iωaτ [a†

Gν, ρ̃(t )](SG− 1
2 )νη′e−iωη′ (t−τ )(SG 1

2 )η′μ
)
. (C29)
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Furthermore, Lηη′
(t )ρ̃(t ) is defined as

Lηη′
ll (t )ρ̃(t ) =

4∑
i=1

Cηη′
ll,i (t )Mηη′

ll,i ρ̃, (C30)

Lηη′
gg (t )ρ̃(t ) =

4∑
i=1

Cηη′
gg,i(t )Mηη′

gg,iρ̃, (C31)

Lηη′
lg (t )ρ̃(t ) =

4∑
i=1

Cηη′
lg,i (t )Mηη′

lg,iρ̃, (C32)

Lηη′
gl (t )ρ̃(t ) =

4∑
i=1

Cηη′
gl,i (t )Mηη′

gl,iρ̃. (C33)

The explicit form of the time-independent superoperators,
e.g., Mη,η′

ll,1 acting on ρ̃(t ) is given via

Mηη′
ll,1ρ̃ = −

∑
μ,ν

∑
μ′,ν ′

(
g̃L,s∗

μ g̃L,s∗
μ′ (SL 1

2 )νη(SL− 1
2 )ημ(SL− 1

2 )ν ′η′

× (SL 1
2 )η′μ′[σ−, σ−[a†

Lν ′ , ρ̃]]a†
Lν

)
. (C34)

Next, the trace trem for every Mηη′
j is performed. Since

the trace and the commutator are linear operations, one can

perform the trace internally to the electromagnetic degrees of
freedom. Applying the trace to, e.g., Mηη′

ll,1 yields

trem[σ−, σ−[a†
Lν ′ , ρ̃]]a†

Lν = [σ−, σ−trem([a†
Lν ′ , ρ̃]a†

Lν )] = 0,

(C35)
where the cyclic property of the trace and the fact that a†

Lν ′ and
a†

Lν commute were used, i.e.,

trem([a†
Lν ′ , ρ̃]a†

Lν ) = trem(a†
Lν ′ ρ̃a†

Lν − ρ̃a†
Lν ′a

†
Lν )

= trem(a†
Lν ′ ρ̃a†

Lν − ρ̃a†
Lνa†

Lν ′ )

= trem(a†
Lνa†

Lν ′ ρ̃ − a†
Lνa†

Lν ′ ρ̃ ) = 0. (C36)

The same result holds true for the trace over
Mηη′

ll,4,M
ηη′
gg,1,M

ηη′
gg,4 as well as for all gain-loss cross terms

Mηη′
gl,i(M

ηη′
lg,i ). The traces for Mηη′

gg,2,M
ηη′
gg,3 and Mηη′

ll,2,M
ηη′
ll,3

are nontrivial since the QNM gain and loss annihilation
and creation operators do not commute for identical QNM
indices. The explicit forms of these remaining contributions
are

Mηη′
gg,2ρ̃ = −

∑
μν

∑
μ′,ν ′

(
g̃G,s∗

μ g̃G,s
μ′ (SG− 1

2 )μη(SG 1
2 )ην (SG− 1

2 )ν ′η′ (SG 1
2 )η′μ′aGν[σ−, σ+[a†

Gν ′ , ρ̃]]
)
, (C37a)

Mηη′
ll,2ρ̃ = −

∑
μν

∑
μ′,ν ′

(
g̃L,s

μ g̃L,s∗
μ′ (SL− 1

2 )μη(SL 1
2 )ην (SL− 1

2 )ν ′η′ (SL 1
2 )η′μ′aLν[σ+, σ−[a†

Lν ′ , ρ̃]]
)
, (C37b)

Mηη′
ll,3ρ̃ = −

∑
μ,ν

∑
μ′,ν ′

(
g̃L,s∗

μ g̃L,s
μ′ (SL 1

2 )μ′η′ (SL− 1
2 )η′ν ′ (SL 1

2 )νη(SL− 1
2 )ημ[σ−, [aLν ′ , ρ̃]σ+]a†

Lν

)
, (C37c)

Mηη′
gg,3ρ̃ = −

∑
μ,ν

∑
μ′,ν ′

(
g̃G,s

μ g̃G,s∗
μ′ (SG 1

2 )μ′η′ (SG− 1
2 )η′ν ′ (SG 1

2 )νη(SG− 1
2 )ημ[σ+, [aGν ′ , ρ̃]σ−]a†

Gν

)
. (C37d)

The corresponding t-dependent classical numbers C( j)
ν,ν ′ are

given as

Cηη′
gg,2 = e(γη′ −γη )t ei(ωη−ωη′ )t

∫ t

0
dτ e−γη′ τ e−i(ωa−ωη′ )τ , (C38a)

Cηη′
ll,2 = e(γη′ −γη )t ei(ωη′ −ωη )t

∫ t

0
dτ e−γη′ τ ei(ωa−ωη′ )τ , (C38b)

Cηη′
ll,3 = e(γη′ −γη )t e−i(ωη′ −ωη )t

∫ t

0
dτ e−γη′ τ e−i(ωa−ωη′ )τ , (C38c)

Cηη′
gg,3 = e(γη′ −γη )t e−i(ωη−ωη′ )t

∫ t

0
dτ e−γη′ τ ei(ωa−ωη′ )τ . (C38d)

For deriving the traces over the remaining superoperators,
we obtained the following relations:

[σ+, σ−trem(aLν[a†
Lν ′ , ρ̃])]

= [σ+, σ−trem(aLνa†
Lν ′ ρ̃ − aLν ρ̃a†

Lν ′ )]

= [σ+, σ−trem(δνν ′ ρ̃)] = δνν ′ (σ+σ−ρa − σ−ρaσ
+)
(C39)

for the operators terms in Mηη′
ll,2,

[σ−, trem([aLν ′ , ρ̃]a†
Lν )σ+]

= [σ−, trem(aLν ′ ρ̃a†
Lν − ρ̃aLν ′a†

Lν )σ+]

= [σ−, trem(−δνν ′ ρ̃ )σ−] = δνν ′ (ρaσ
+σ− − σ−ρaσ

+)
(C40)

for the operators terms in Mη,η′
ll,3 ,

[σ−, σ+trem(aGν[a†
Gν ′ , ρ̃])]

= [σ−, σ+trem(aGνa†
Gν ′ ρ̃ − aGν ρ̃a†

Gν ′ )]

= [σ−, σ+trem(δνν ′ ρ̃ )] = δνν ′ (σ−σ+ρa − σ+ρaσ
−)
(C41)

for the operators terms in Mη,η′
gg,2; and

[σ+, trem([aGν ′ , ρ̃]a†
Gν )σ−]

= [σ+, trem(aGν ′ ρ̃a†
Gν − ρ̃aGν ′a†

Gν )σ−]

= [σ+, trem(−δνν ′ ρ̃ )σ−] = δνν ′ (ρaσ
−σ+ − σ+ρaσ

−)
(C42)

for the operators terms in Mη,η′
gg,3.
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Inserting these back into Eqs. (C37) yields the four remaining terms:

Mηη′
gg,2ρ̃ =

∑
μ,μ′

(
g̃G,s∗

μ g̃G,s
μ′ (SG− 1

2 )μηδηη′ (SG 1
2 )η′μ′

)
(σ+ρaσ

− − σ−σ+ρa), (C43)

Mηη′
ll,2ρ̃ =

∑
μ,μ′

(
g̃L,s

μ g̃L,s∗
μ′ (SL− 1

2 )μηδηη′ (SL 1
2 )η′μ′

)
(σ−ρaσ

+ − σ+σ−ρa), (C44)

Mηη′
ll,3ρ̃ =

∑
μ,μ′

(
g̃L,s∗

μ g̃L,s
μ′ (SL 1

2 )μ′η′δηη′ (SL− 1
2 )ημ

)
(σ−ρaσ

+ − ρaσ
+σ−), (C45)

Mηη′
gg,3ρ̃ =

∑
μ,μ′

(
g̃G,s

μ g̃G,s∗
μ′ (SG 1

2 )μ′η′δηη′ (SG− 1
2 )ημ

)
(σ+ρaσ

− − ρaσ
−σ+), (C46)

where the the Kronecker delta δνν ′ was applied and the multiplication of the matrix SL/G 1
2 with its inverse SL/G− 1

2 was also
performed.

Next, the time integrations in Cηη′
ll,i and Cηη′

gg,i (corresponding to the nonvanishing operator contributions) from Eqs. (C38) are
derived in the spirit of the Markov approximation, i.e., the upper integral limit is set to t → ∞ [17,69]. In this way, the integrals
can be analytically solved as

Cηη′
gg,2 = e(γη′−γη )t ei(ωη−ωη′ )t −i

ωa − ωη′ − iγη′
, (C47)

Cηη′
ll,2 = e(γη′−γη )t ei(ωη′ −ωη )t i

ωa − ωη′ + iγη′
, (C48)

Cηη′
ll,3 = e(γη′−γη )t e−i(ωη′ −ωη )t −i

ωa − ωη′ − iγη′
, (C49)

Cηη′
gg,3 = e(γη′−γη )t e−i(ωη−ωη′ )t i

ωa − ωη′ + iγη′
. (C50)

Finally, the four terms are summarized to obtain∑
η,η′

trem
{[
Lηη′

ll (t ) + Lηη′
lg (t ) + Lηη′

gl (t ) + Lηη′
gg (t )

]
ρ̃(t )

}
=
∑
μ,μ′

g̃L,s
μ g̃L,s∗

μ′

{∑
η

(SL− 1
2 )μη

i

ωa − ωη + iγη

(SL 1
2 )ημ′

}
(σ−ρaσ

+ − σ+σ−ρa)

+
∑
μ,μ′

g̃L,s∗
μ g̃L,s

μ′

{∑
η

(SL 1
2 )μ′η

−i

ωa − ωη − iγη

(SL− 1
2 )ημ

}
(σ−ρaσ

+ − ρaσ
+σ−)

+
∑
μ,μ′

g̃G,s
μ g̃G,s∗

μ′

{∑
η

(SG− 1
2 )ημ

i

ωa − ωη + iγη

(SG 1
2 )μ′η

}
(σ+ρaσ

− − ρaσ
−σ+)

+
∑
μ,μ′

g̃G,s∗
μ g̃G,s

μ′

{∑
η

(SG 1
2 )ημ′

−i

ωa − ωη − iγη

(SG− 1
2 )μη

}
(σ+ρaσ

− − σ−σ+ρa),

≡ �̃loss(σ−ρaσ
+ − σ+σ−ρa) + �̃loss∗(σ−ρaσ

+ − ρaσ
+σ−)

+ �̃gain(σ+ρaσ
− − ρaσ

−σ+) + �̃gain∗(σ+ρaσ
− − σ−σ+ρa). (C51)

Using the definition of the symmetrized light-TLS coupling
constants (cf. Secs. III C and III D), we obtain

�̃loss =
∑
ηη′

g̃ηSL
ηη′ g̃∗

η′
−i

�ηa − iγη

≡ �loss

2
+ iωloss

LS , (C52)

�̃gain =
∑
ηη′

g̃ηSG
η′ηg̃∗

η′
−i

�ηa − iγη

≡ �gain

2
+ iωgain

LS , (C53)

which leads finally to the bad cavity limit master equa-
tion (108), when neglecting the photonic Lamb shift.

In contrast to the separated gain-loss operator approach, the
bad cavity limit derivation from the lossy mode quantization
cannot be directly applied to the unified gain-loss operator
approach and must be generalized since there are also reversed
Lindblad dissipator terms L[a′†], describing incoherent pump-
ing. To be more specific, the action of Lem on the TLS-QNM
interaction Liouvillian LI changes significantly. For instance,
Lem(a′ρ) will couple to terms a′Lemρ and i[χ′+ − iχ′L−] · a′ρ
(similar to the separated gain-loss operator approach), but it
will also couple to −ρχ′G− · a′ in a different operator order-
ing. Consequently, Lem(ρa′) must be also taken into account,
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resulting in a linear system of equations for the underly-
ing superoperators that must be solved to obtain the explicit
expression of exp(−Lemt )LIρ. However, after the more com-
plicated algebra is performed, the remaining procedure of
the above derivation is formally identical (cf. Ref. [17] for a
single-mode case).

Below we show a different method to obtain the bad cavity
limit, where it is explicitly proven for a single-mode case that
both approaches coincide.

APPENDIX D: BAD CAVITY LIMIT WITHIN
A BLOCH EQUATION TREATMENT FOR

THE QUANTIZED QNM MODELS

To demonstrate the agreement of the bad cavity limit be-
tween the unified and separated gain-loss operator approach,
we employ a Bloch equation treatment for the special case of a

single QNM (the corresponding derivation for the multimode
case is straightforward).

1. Unified gain-loss operator approach

We start with the unified gain-loss operator approach and
investigate the equation of motion for the TLS lowering oper-
ator expectation value in a frame rotating with ωa,

d

dt
〈σ̃−〉 = −�B

2
〈σ̃−〉 + i

√
S′g̃〈σzã

′〉, (D1)

where

σ̃−(t ) = eiωatσ−(t ), ã′(t ) = eiωat a′(t ) (D2)

are the slowly varying operators and S′ = SL − SG. Here, we
have chosen normal ordering for the photon operator. Next,
we formally solve the Heisenberg equation of motion for the
QNM operator ã′ to get

ã′(t ) = ei(ωa−ω̃c )t ã′(0) − i
√

S′g̃∗
∫ t

0
dt ′ ei(ωa−ω̃c )(t−t ′ )σ̃−(t ′) (D3)

+
√

2(SL/S′)γceiωat
∫ t

0
dt ′ e−iω̃c (t−t ′ )c′L

in (t ′) +
√

2(SG/S′)γceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )c′G†

in (t ′). (D4)

Inserting back into Eq. (D1) yields

d

dt
〈σ̃−〉 = −�B

2
〈σ̃−〉 + i

√
S′g̃ei(ωa−ω̃c )t 〈σz(t )a′(0)〉 + S′|g̃|2

∫ t

0
dt ′ ei(ωa−ω̃c )(t−t ′ )〈σz(t )σ̃−(t ′)〉

+ ig̃
√

2SLγceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )〈σz(t )c′L

in (t ′)〉 + ig̃
√

2SGγceiωat
∫ t

0
dt ′ e−iω̃c (t−t ′ )〈σz(t )c′G†

in (t ′)〉. (D5)

The second term on the right-hand side quickly decays to zero and is thus neglected in the following, while the third term can be
rewritten via a coordinate transformation t − t ′ → τ :∫ t

0
dt ′ ei(ωa−ω̃c )(t−t ′ )〈σz(t )σ̃−(t ′)〉 =

∫ t

0
dτ ei(ωa−ω̃c )τ 〈σz(t )σ̃−(t − τ )〉. (D6)

Within a Markov approximation we approximately replace σ̃−(t − τ ) ≈ σ̃−(t ) under the integral and extend the upper
integral boundary to +∞ to obtain∫ t

0
dτ ei(ωa−ω̃c )τ 〈σz(t )σ̃−(t − τ )〉 ≈ 〈σz(t )σ̃−(t )〉

∫ ∞

0
dτ ei(ωa−ω̃c )τ = i

ωa − ω̃c
〈σz(t )σ̃−(t )〉. (D7)

Using properties of the Pauli matrices, we can further simplify this term as

i

ωa − ω̃c
〈σz(t )σ̃−(t )〉 = − i

ωa − ω̃c
〈σ̃−(t )〉. (D8)

Inserting back into Eq. (D5) yields

d

dt
〈σ̃−〉 ≈ −�B

2
〈σ̃−〉 − i

S′|g̃|2
ωa − ω̃c

〈σ̃−〉 + ig̃
√

2SLγceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )〈σz(t )c′L

in (t ′)
〉

+ ig̃
√

2SGγceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )〈σz(t )c′G†

in (t ′)
〉
. (D9)

Thus, to obtain a closed equation of motion, we are left with terms proportional to the photon reservoir operators. Assuming
the reservoir is initially in the vacuum state (consistent with the assumptions to derive the QNM master equation), we get
〈σz(t )c′L

in (t ′)〉 = 0, so that

d

dt
〈σ̃−〉 = − �B

2
〈σ̃−〉 − i

S′|g̃|2
ωa − ω̃c

〈σ̃−〉 + ig̃
√

2SGγceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )〈σz(t )c′G†

in (t ′)
〉
. (D10)

We see a potential difficulty of the Fock space construction here, namely, that the last expectation value does not vanish, although
we have chosen normal ordering of the system photon operator. This is because there appears an adjoint reservoir operator on
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the very right of the operator product, which represents the pumping mechanism. To proceed, we first formally write the above
equations into the form

d

dt
〈σ̃−〉 = −�B

2
〈σ̃−〉 − i

(SL − SG)|g̃|2
ωa − ω̃c

〈σ̃−〉 + Kgain(ωa ), (D11)

with the gain-induced term

Kgain(ωa ) = ig̃
√

2SGγceiωat
∫ t

0
dt ′ e−iω̃c (t−t ′ )〈σz(t )c′G†

in (t ′)
〉
. (D12)

Transforming back into the nonrotating frame yields

d

dt
〈σ−〉 = −iωa〈σ−〉 − �B

2
〈σ−〉 − i

(SL − SG)|g̃|2
ωa − ω̃c

〈σ−〉 + e−iωat Kgain(ωa ). (D13)

Finally, we split the prefactor of the third term on the right-hand side into a real and imaginary part to obtain

d

dt
〈σ−〉 = −i

[
ωa + �loss

LS − �
gain
LS

]〈σ−〉 − �B

2
〈σ−〉 − �loss − �gain

2
〈σ−〉 + e−iωat Kgain(ωa ), (D14)

where

�loss
LS = SL|g̃|2(ωa − ωc)

(ωa − ωc)2 + γ 2
c

, (D15)

�
gain
LS = SG|g̃|2(ωa − ωc)

(ωa − ωc)2 + γ 2
c

, (D16)

�loss = 2SL|g̃|2γc

(ωa − ωc)2 + γ 2
c

, (D17)

�gain = 2SG|g̃|2γc

(ωa − ωc)2 + γ 2
c

. (D18)

2. Separated gain-loss operator approach:
Normal operator ordering

Before we proceed to investigate Kgain(ωa ) in more detail,
we now turn to the separated gain-loss operator approach,

where the equation of motion for the TLS lowering oper-
ator expectation value, in a frame rotating with ωa, reads
as

d

dt
〈σ̃−〉 = −�B

2
〈σ̃−〉 + i

√
SLg̃〈σzãL〉 + i

√
SGg̃〈ã†

Gσz〉,
(D19)

with

σ̃−(t ) = eiωatσ−(t ), ãL(t ) = eiωat aL(t ),

ã†
G(t ) = eiωat a†

G(t ). (D20)

Here, we have again chosen normal ordering of the system
photon operators. Next, we formally solve the Heisenberg
equation of motion for aL and a†

G:

ãL(t ) = ei(ωa−ω̃c )t aL(0) − i
√

SLg̃∗
∫ t

0
dt ′ ei(ωa−ω̃c )(t−t ′ )σ̃−(t ′) +

√
2γceiωat

∫ t

0
dt ′ e−iω̃c(t−t ′ )cin

L (t ′), (D21)

ã†
G(t ) = ei(ωa−ω̃c )t a†

G(0) + i
√

SGg̃∗
∫ t

0
dt ′ ei(ωa−ω̃c )(t−t ′ )σ̃−(t ′) +

√
2γceiωat

∫ t

0
dt ′ e−iω̃c (t−t ′ )cin†

G (t ′). (D22)

Inserting back into Eq. (D19) yields

d

dt
〈σ̃−〉 = −�B

2
〈σ̃−〉 + i

√
SLg̃ei(ωa−ω̃c )t 〈σz(t )aL(0)〉 + i

√
SGg̃ei(ωa−ω̃c )t 〈a†

G(0)σz〉

+ SL|g̃|2
∫ t

0
dt ′ ei(ωa−ω̃c )(t−t ′ )〈σz(t )σ̃−(t ′)〉 − SG|g̃|2

∫ t

0
dt ′ ei(ωa−ω̃c )(t−t ′ )〈σ̃−(t ′)σz(t )〉

+ i
√

SLg̃
√

2γceiωat
∫ t

0
dt ′e−iω̃c(t−t ′ )〈σz(t )cin

L (t ′)〉 + i
√

SGg̃
√

2γceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )〈cin†

G (t ′)σz(t )〉. (D23)

Similar to the unified gain-loss operator approach, the second and third terms on the right-hand side of the above equa-
tion rapidly decay to zero, and thus are neglected in the following. Applying then the same Markov approximation as in the last
subsection to the terms in the second line of the above equation yields

d

dt
〈σ̃−〉 = −�B

2
〈σ̃−〉 + i

SL|g̃|2
ωa − ω̃c

〈σzσ̃
−〉 − i

SL|g̃|2
ωa − ω̃c

〈σ̃−σz〉 + i
√

SLg̃
√

2γceiωat
∫ t

0
dt ′ e−iω̃c (t−t ′ )〈σz(t )cin

L (t ′)〉

+ i
√

SGg̃
√

2γceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )〈cin†

G (t ′)σz(t )〉. (D24)
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Next, we use again the properties of the Pauli operators, namely, σ̃−σz = σ̃− and σzσ̃
− = −σ̃−, to obtain

d

dt
〈σ̃−〉 ≈ −�B

2
〈σ̃−〉 − i

(SL + SG)|g̃|2
ωa − ω̃c

〈σ̃−〉 + i
√

SLg̃
√

2γceiωat
∫ t

0
dt ′ e−iω̃c (t−t ′ )〈σz(t )cin

L (t ′)〉

+ i
√

SGg̃
√

2γceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )〈cin†

G (t ′)σz(t )〉. (D25)

In contrast to the unified gain-loss operator approach, the sum SL + SG appears as the prefactor of the second term on the
right-hand side (rather then the difference S′ = SL − SG). This crucial difference is induced by the different ordering of σz and
σ̃+ for the gain- and loss-related part, respectively. Moreover, since we have initially chosen normal ordering for the photon
operators, the reservoir contributions in the above equation immediately vanish, since we assume the vacuum state, so that

d

dt
〈σ̃−〉 = −�B

2
〈σ̃−〉 − i

(SL + SG)|g̃|2
ωa − ω̃c

〈σ̃−〉. (D26)

Transforming back into the nonrotating frame yields

d

dt
〈σ−〉 = −iωa〈σ−〉 − �B

2
〈σ−〉 − i

(SL + SG)|g̃|2
ωa − ω̃c

〈σ−〉. (D27)

Finally, we again split the prefactor of the third term on the right-hand side into a real and imaginary part to obtain

d

dt
〈σ−〉 = −i

[
ωa + �loss

LS + �
gain
LS

]〈σ−〉 − �B

2
〈σ−〉 − �loss + �gain

2
〈σ−〉, (D28)

where the rates are defined at the end of the last subsection. This is formally identical to the results from Ref. [37], namely,
the dephasing is exponentially damped with (�loss + �gain + �B)/2, not related to the LDOS, which would be proportional to
(�loss − �gain + �B)/2 (as would be the case for the unified gain-loss operator approach if one neglects Kgain).

3. Separated gain-loss operator approach: Mixed operator ordering

To connect the separated and unified gain-loss operator approach, here, we leave the gain photon part in antinormal ordering
and the loss photon part in normal ordering, where the equation of motion for the TLS lowering operator expectation value, in a
frame rotating with ωa, reads as

d

dt
〈σ̃−〉 = −�B

2
〈σ̃−〉 + i

√
SLg̃〈σzãL〉 + i

√
SGg̃〈σzã

†
G〉. (D29)

Inserting Eqs. (D21) and (D22) into Eq. (D29) and applying the same manipulations as in Eqs. (D23)–(D25) yields

d

dt
〈σ̃−〉 ≈ −�B

2
〈σ̃−〉 − i

(SL − SG)|g̃|2
ωa − ω̃c

〈σ̃−〉 + i
√

SLg̃
√

2γceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )〈σz(t )cin

L (t ′)
〉

+ i
√

SGg̃
√

2γceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )〈σz(t )cin†

G (t ′)
〉
. (D30)

In contrast to the normal operator ordering, we recognize the same prefactor (proportional to SL − SG) in the second term on
the right-hand side as in the unified gain-loss operator approach. Moreover, due to the mixed operator ordering of the photon
operators, the reservoir contributions in the above equation only vanish for the loss-related part, which is again similar to the
unified gain-loss operator description. Reformulating the above equation leads to

d

dt
〈σ̃−〉 = −�B

2
〈σ̃−〉 − i

(SL − SG)|g̃|2
ωa − ω̃c

〈σ̃−〉 + Mgain(ωa ), (D31)

where

Mgain(ωa ) = i
√

SGg̃
√

2γceiωat
∫ t

0
dt ′ e−iω̃c (t−t ′ )〈σz(t )cin†

G (t ′)〉. (D32)

Transforming back into the nonrotating frame yields

d

dt
〈σ−〉 = −iωa〈σ−〉 − �B

2
〈σ−〉 − i

(SL + SG)|g̃|2
ωa − ω̃c

〈σ−〉 + e−iωat Mgain(ωa ). (D33)

Finally, we again split the prefactor of the third term on the right-hand side into a real and imaginary part to obtain

d

dt
〈σ−〉 = −i

[
ωa + �loss

LS − �
gain
LS

]〈σ−〉 − �B

2
〈σ−〉 − �loss − �gain

2
〈σ−〉 + e−iωat Mgain(ωa ). (D34)
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This is formally identical to the results from the unified gain-loss operator approach, with the only formal difference being the
definition of the reservoir input operators. However the algebraic properties of cin

G (t ′) and c′in
G (t ′) are the same. This fact on its

own partially confirms that both approaches yield the same result, and it will be explicitly shown in the next subsection.

4. Derivation of Kgain(ωa )

Comparing the results from the separated and unified gain-loss operator approach implies that Kgain(ωa ) must be identical to
Mgain(ωa ) and both should take the form

Kgain(ωa ) = ig̃
√

2SGγceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )〈σz(t )c′G†

in (t ′)
〉 = 2

[
−i�gain

LS − �gain

2

]
〈σ̃−〉, (D35)

within a Markov approximation (twice the gain-related part of the complex cavity-induced pump rate) in order to ensure that the
unified gain-loss operator approach predicts the correct bad cavity limit.

To further investigate Kgain(ωa ), we start by solving the equation of motion for σz:

σz(t ) = e−�Btσz(0) + 2i
√

S′
∫ t

0
dτ e−�B(t−τ )[−g̃σ̃+(τ )ã′(τ ) + g̃∗σ̃−(τ )ã′†(τ )]

− �B
∫ t

0
dτ e−�B(t−τ ) − 2

√
�B

∫ t

0
dτ e−�B(t−τ )

[−σ+(τ )ca
in(τ ) + ca†

in (τ )σ−(τ )
]
. (D36)

When inserting back into Eq. (D10), the first and third terms on the right-hand side will not contribute to the expectation value
because of 〈c′G†

in (t ′′)〉 = 0. We are left with〈
σz(t )c′G†

in (t ′)
〉 = 2i

√
S′
∫ t

0
dτ e−�B(t−τ )[−g̃〈σ̃+(τ )ã′(τ )c′G†

in (t ′)〉 + g̃∗〈σ̃−(τ )ã′†(τ )c′G†
in (t ′)

〉]
+ 2i

√
�B

∫ t

0
dτ e−�B(t−τ )

[−〈σ+(τ )ca
in(τ )c′G†

in (t ′)
〉+ 〈

ca†
in (τ )σ−(τ )c′G†

in (t ′)
〉]
. (D37)

Since the atomic and QNM input operators are assumed to be statistically independent, the second line of the right-
hand side also vanishes because of the vacuum state assumption for the atomic reservoir. Furthermore, we approximate
〈σ̃+(t ′)ã′(t ′)c′G†

in (t ′′)〉 ≈ 〈ã′(t ′)c′G†
in (t ′′)〉〈σ̃+(t ′)〉 and only take the free parts of a′(t ) into account [meaning the first, third, and

fourth terms of Eq. (D4)] to be consistent with second-order perturbation theory:〈
σz(t )c′G†

in (t ′)
〉 ≈ −2i

√
S′
∫ t

0
dτ e−�B(t−τ )g̃ei(ωa−ω̃c )τ

〈
ã′(0)c′G†

in (t ′)
〉〈σ̃+(τ )〉

+ 2i
√

S′
∫ t

0
dτ e−�B(t−τ )g̃∗e−i(ωa−ω̃∗

c )τ
〈
ã′†(0)c′G†

in (t ′)
〉〈σ̃−(τ )〉

− 2i
√

2SLγc

∫ t

0
dτ e−�B(t−τ )eiωaτ

∫ τ

0
dτ ′ e−iω̃c(τ−τ ′ )g̃

〈
c′L

in (τ ′)c′G†
in (t ′)

〉〈σ̃+(τ )〉

− 2i
√

2SGγc

∫ t

0
dτ e−�B(t−τ )eiωaτ

∫ τ

0
dτ ′ e−iω̃c(τ−τ ′ )g̃

〈
c′G†

in (τ ′)c′G†
in (t ′)

〉〈σ̃+(τ )〉

+ 2i
√

2SLγc

∫ t

0
dτ e−�B(t−τ )e−iωaτ

∫ τ

0
dτ ′ eiω̃∗

c (τ−τ ′ )g̃∗〈c′L†
in (τ ′)c′G†

in (t ′)
〉〈σ̃−(τ )〉

+ 2i
√

2SGγc

∫ t

0
dτ e−�B(t−τ )e−iωaτ

∫ τ

0
dτ ′ eiω̃∗

c (τ−τ ′ )g̃∗〈c′G
in (τ ′)c′G†

in (t ′)
〉〈σ̃−(τ )〉. (D38)

We see that only the last term will contribute to the correlation function 〈σz(t )c′G†
in (t ′)〉 since [a′(0), c′L(G)

in (t )] = 0 (the same
applies for any other combination) and since the loss- and gain-related reservoir operators are statistically independent. Using
〈c′G

in (τ ′)c′G†
in (t ′)〉 = δ(τ ′ − t ′), we obtain〈

σz(t )c′G†
in (t ′)

〉 = 2i
√

2SGγc

∫ t

0
dτe−�B(t−τ )e−iωaτ

∫ τ

0
dτ ′ eiω̃∗

c (τ−τ ′ )g̃∗δ(τ ′ − t ′)〈σ̃−(τ )〉. (D39)

Inserting back into Kgain(ωa ) yields

Kgain(ωa ) = −4|g̃|2SGγceiωat
∫ t

0
dt ′ e−iω̃c(t−t ′ )

∫ t

0
dτ e−�B(t−τ )e−iωaτ

∫ τ

0
dτ ′ eiω̃∗

c (τ−τ ′ )g̃∗δ(τ ′ − t ′)〈σ̃−(τ )〉 (D40)

= −4|g̃|2SGγceiωat
∫ t

0
dτ

∫ τ

0
dτ ′ e−iω̃c (t−τ ′ )e−�B(t−τ )e−iωaτ eiω̃∗

c (τ−τ ′ )g̃∗〈σ̃−(τ )〉

= −4|g̃|2SGγceiωat
∫ t

0
dτ

[∫ τ

0
dτ ′ ei(ω̃c−ω̃∗

c )τ ′
]

e−iω̃ct e−�B(t−τ )e−iωaτ eiω̃∗
c τ g̃∗〈σ̃−(τ )〉. (D41)
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The temporal integral with respect to τ ′ is performed via∫ τ

0
dτ ′ ei[ω̃c−ω̃∗

c ]τ ′ = 1

2γc
(e2γcτ − 1), (D42)

and we are left with

Kgain(ωa ) = −2|g̃|2SG
∫ t

0
dτ ei(ωa−ω̃c+i�B )(t−τ )〈σ̃−(τ )〉 + 2|g̃|2SGe−γct

∫ t

0
dτ−γcτ ei(ωa−ωc+i�B )(t−τ )〈σ̃−(τ )〉. (D43)

Within the bad cavity limit regime, we can neglect the second term (which rapidly decays to zero) and applying a Markov
approximation to the first term would approximately give

Kgain(ωa ) ≈ −2|g̃|2SG〈σ̃−(t )〉
∫ ∞

0
dτ ei(ωa−ω̃c+i�B )(t−τ ). (D44)

To be consistent with the assumption that the atomic reservoir is independent from the photonic reservoir and taking into
account the bad cavity limit parameter regime (�B � γc), we neglect �B and arrive at

Kgain(ωa ) ≈ −2|g̃|2SG〈σ̃−(t )〉 i

ωa − ω̃c
. (D45)

This is precisely twice the gain-related part of the TLS rate. Indeed, inserting Kgain(ωa ) into Eq. (D13) leads to

d

dt
〈σ−〉 = −iωa〈σ−〉 − �B

2
〈σ−〉 − i

(SL − SG)|g̃|2
ωa − ω̃c

〈σ−〉 − 2|g̃|2SG〈σ−〉 i

ωa − ω̃c
(D46)

= −iωa〈σ−〉 − �B

2
〈σ−〉 − i

(SL + SG)|g̃|2
ωa − ω̃c

〈σ−〉, (D47)

which is identical to the expression derived from the separated gain-loss operator approach, and which completes this proof.

APPENDIX E: BAD CAVITY LIMIT WITHIN A BLOCH
EQUATION TREATMENT FOR THE IMPROVED

PHENOMENOLOGICAL QUANTUM GAIN MODEL

In this Appendix, we show a derivation of the cavity-
enhanced spontaneous emission rate of the TLS within the
improved phenomenological quantum gain model by explic-
itly taking the bad cavity limit of the corresponding full Bloch
equations. For the derivation of the a bad cavity limit master
equation, one could again apply a similar derivation as in
Ref. [69] and Appendix C (not explicitly shown here).

We start again with the Heisenberg equation of motion for
the expectation value of the TLS lowering operator 〈σ−〉, in a
rotating frame with ωa:

∂t 〈σ̃−〉 = −�B

2
〈σ̃−〉 −

∑
i

gi〈σzãi(t )〉, (E1)

where

ãi = eiωat ai, σ̃− = eiωatσ−, (E2)

and i = L, G. Note again that �B is included ad hoc into the
phenomenological quantum gain model. Next, we look at the
Heisenberg equation of motion for the photon operator ai:

∂t ai = −i
∑

j=L,R

�̃i ja j − giσ
− + ξi, (E3)

where ξL = FL is a phenomenological (quantum) noise force,
which counteracts the loss, and ξG = F †

G is the adjoint op-
erator of a phenomenological (quantum) noise force, which
counteracts the amplification.

The noise forces are assumed to fulfill

〈ξi(t )ξ †
j (t ′)〉 = 2δi jδiLγLδ(t − t ′),

(E4)
〈ξ †

i (t )ξ j (t
′)〉 = 2δi jδiGγGδ(t − t ′),

and thus represents white noise with a reservoir state being the
vacuum state. Next, we recall the photon-photon matrix from
the improved phenomenological quantum gain approach,

�̃ =
(

ω̃L −κ

−κ ω̃G

)
. (E5)

Formally solving the Heisenberg equations of motion in
vector form yields (for a = [aL, aG])

ã(t ) = eiωat e−i�̃t · a(0) −
∫ t

0
dt ′eiωa (t−t ′ )e−i�̃(t−t ′ ) · gσ̃−(t ′)

+
∫ t

0
dt ′eiωat e−i�̃(t−t ′ ) · ξ(t ′). (E6)

Next, we write �̃ in its diagonal form via �̃ = V · D̃ · V−1

and use

e−iV·D̃·V−1t = V · e−iD̃t · V−1 (E7)

to get

ã(t ) = eiωat V · e−iD̃t · V−1 · a(0)

−
∫ t

0
dt ′eiωa (t−t ′ )V · e−iD̃(t−t ′ ) · V−1 · gσ̃−(t ′)

+
∫ t

0
dt ′eiωat V · e−iD̃(t−t ′ ) · V−1 · ξ(t ′). (E8)
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Here, V is the right eigenmatrix of �̃ and D̃ contains the eigenvalues of �̃. In component form, the above equation reads as

ãi(t ) =
∑

j,k

[V]i je
i(ωa−�̃

eig
j )t [V−1] jkak (0) −

∑
j,k

∫ t

0
dt ′[V]i je

i(ωa−�̃
eig
j )(t−t ′ )[V−1] jkgk σ̃

−(t ′)

+
∑

j,k

eiωat
∫ t

0
dt ′[V]i je

−i�̃eig
j (t−t ′ )[V−1] jkξk (t ′). (E9)

When inserting back into Eq. (E1), we can neglect the first part of the above formal solution (which rapidly decays to zero),
and obtain

∂t 〈σ̃−〉 = − �B

2
〈σ̃−〉 +

∑
i, j,k

gi[V]i j

[∫ t

0
dt ′ei(ωa−�̃

eig
j )(t−t ′ )〈σzσ̃

−(t ′)〉
]

[V−1] jkgk

− eiωat
∑
i, j,k

gi[V]i j

[∫ t

0
dt ′e−i�̃eig

j (t−t ′ )〈σzξk (t ′)〉
]

[V−1] jkgk . (E10)

We first concentrate on the first term and the appearing temporal integral. We substitute the integral variable t ′ → τ = t − t ′,
so that the term in brackets can be rewritten as∫ t

0
dt ′ei(ω0−�̃

eig
j )(t−t ′ )〈σzσ̃

−(t ′)〉 =
∫ t

0
dτ ei(ω0−�̃

eig
j )τ 〈σzσ̃

−(t − τ )〉. (E11)

Within a Markov approximation, we replace 〈σzσ̃
−(t − τ )〉 with 〈σzσ̃

−(t )〉 and extend the upper integral limit to t → ∞, so that∫ t

0
dτ ei(ω0−�̃

eig
j )τ 〈σzσ̃

−(t − τ )〉 = 〈σzσ̃
−〉
∫ ∞

0
dτ ei(ω0−�̃

eig
j )τ = i

ω0 − �̃
eig
j

〈σzσ̃
−〉. (E12)

The above approximation is valid for weak light-matter coupling, which is consistent with the bad cavity limit assumptions
|Im[�̃eig

i ]|  gi. Inserting back into Eq. (E10) yields

∂t 〈σ̃−〉 = − �B

2
〈σ̃−〉 +

∑
i, j,k

gi[V]i j
i

ω0 − �̃
eig
j

[V−1] jkgk〈σzσ̃
−〉 − eiωat

∑
i, j,k

gi[V]i j

[∫ t

0
dt ′e−i�̃eig

j (t−t ′ )〈σzξk (t ′)〉
]

[V−1] jkgk .

(E13)

Next, 〈σzσ̃
−〉 = −〈σ̃−〉 is used to get

∂t 〈σ̃−〉 = −�B

2
〈σ̃−〉 − 1

2

⎡⎣2
∑
i, j,k

gigk[V]i j
i

ωa − �̃
eig
j

[V−1] jk

⎤⎦〈σ̃−〉 − Kphen. (E14)

After some algebra, one can check that the real part of the term in brackets is identical to the LDOS part of the cavity-enhanced
spontaneous emission rate in a nondiagonal GF form [Eq. (101)]

2
∑
i, j,k

gigk[V]i j
i

ωa − �̃
eig
j

[V−1] jk = 2

h̄ε0
d · Im[Gphen(ra, ra, ωa )] · d ≡ �LDOS

phen (E15)

and

Kphen = eiωat
∑
i, j,k

gi[V]i j

[∫ t

0
dt ′e−i�̃eig

j (t−t ′ )〈σzξk (t ′)〉
]

[V−1] jk . (E16)

Next, we investigate Kphen by formally solving the equation of motion for σz(t ): Similar to the unified operator approach, we
only take into account the terms that couple to al , a†

l to obtain, for 〈σzξk (t ′)〉,

〈σzξk (t ′)〉 = 2
∑

l

∫ t

0
dτ e−�B(t−τ )gl [〈σ̃+(τ )ãl (τ )ξk (t ′)〉 + 〈σ̃−(τ )ã†

l (τ )ξk (t ′)〉]. (E17)
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Once again, we approximate 〈σ̃+(τ )ãl (τ )ξk (t ′)〉 ≈ 〈ãl (τ )ξk (t ′)〉〈σ̃+(t ′)〉 and only take the free parts of al (τ ) into account
[meaning the first, third, and fourth terms of Eq. (E9)] to be consistent with second-order perturbation theory:

〈σz(t )ξk (t ′)〉 ≈ 2
∑

l

∫ t

0
dτ e−�B(t−τ )gl

∑
n,m

[V]lnei(ωa−�̃
eig
n )t [V−1]nm〈ãm(0)ξk (t ′)〉〈σ̃+(τ )〉

+ 2
∑

l

∫ t

0
dτ e−�B(t−τ )gl

∑
j,m

[V]∗lne−i(ωa−�̃
eig∗
n )t [V−1]∗nm〈ã†

m(0)ξk (t ′)〉〈σ̃−(τ )〉]

+ 2
∑

l

∫ t

0
dτ e−�B(t−τ )eiωaτ gl

∑
n,m

∫ τ

0
dτ ′[V]lne−i�̃eig

n (τ−τ ′ )[V−1]nm〈ξm(τ ′)ξk (t ′)〉〈σ̃+(τ )〉

+ 2
∑

l

∫ t

0
dτ e−�B(t−τ )e−iωaτ gl

∑
n,m

∫ τ

0
dτ ′[V]∗lnei�̃eig∗

n (τ−τ ′ )[V−1]∗nm〈ξ †
m(τ ′)ξk (t ′)〉〈σ̃−(τ )〉. (E18)

As before, only the last term will survive leading to

Kphen = eiωat
∑
i, j,k

∑
l,n,m

gigl [V]i j[V]∗ln

∫ t

0
dt ′e−i�̃eig

j (t−t ′ )2
∫ t

0
dτe−�B(t−τ )e−iωaτ

×
∫ τ

0
dτ ′ei�̃eig∗

n (τ−τ ′ )〈ξ †
m(τ ′)ξk (t ′)〉〈σ̃−(τ )〉[V−1]∗nm[V−1] jk . (E19)

This can be simplified to

Kphen = 4eiωat
∑
i, j,k

∑
l,n,m

gigl [V]i j[V]∗ln

∫ t

0
dτ

(∫ τ

0
dτ ′ei(�̃eig

j −�̃
eig∗
n )τ ′

)
e−�B(t−τ )e−iωaτ e−i�̃eig

j t

× ei�̃eig∗
n τ δkmδkGγG〈σ̃−(τ )〉[V−1]∗nm[V−1] jk . (E20)

The integral in brackets can be solved as∫ τ

0
dτ ′ei(�̃eig

j −�̃
eig∗
n )τ ′ = 1

i
(
�̃

eig
j − �̃

eig∗
n
) [ei(�̃eig

j −�̃
eig∗
n )τ − 1

]
. (E21)

We again neglect the second term and arrive at

Kphen = 4
∑
i, j,k

∑
l,n,m

gigl [V]i j[V]∗ln
δkmδkGγG

i
(
�̃

eig
j − �̃

eig∗
n
) ∫ t

0
dτ ei(ωa−�̃

eig
j +i�B )(t−τ )〈σ̃−(τ )〉[V−1]∗nm[V−1] jk. (E22)

Applying a Markov approximation, we then get

Kphen = 4
∑
i, j

∑
l,n

gigl [V]i j[V]∗ln
γG

i
(
�̃

eig
j − �̃

eig∗
n
) i

ωa − �̃
eig
j

[V−1] jG[V−1]∗nG〈σ̃−〉 ≡ 2

[
i�gain

LS,phen + �
gain
phen

2

]
〈σ̃−〉. (E23)

After inserting back into Eq. (E14), and transforming into a nonrotating picture, we finally arrive at

∂t 〈σ−〉 = − i
[
�LDOS

LS,phen + 2�
gain
LS,phen

]〈σ−〉 − �B + �LDOS
phen + 2�

gain
phen

2
〈σ−〉, (E24)

which completes this derivation.
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