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Proposal for a Bell test in cavity optomagnonics
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We present a proposal to test the Bell inequality in the emerging field of cavity optomagnonics, where a
sphere of ferromagnetic crystal supports two optical whispering gallery modes and one magnon mode. The two
optical modes are driven by two laser pulses, respectively. Entanglement between the magnon mode and one of
the two optical modes will be generated by the first pulse, and the state of the magnon mode is subsequently
mapped into another optical mode via the second pulse. Hence correlated photon-photon pairs are created out
of the cavity. A Bell test can be implemented by using these pairs, which enables us to test the local hidden-
variable models at macroscopic scales. Our results show that a significant violation of the Bell inequality can
be obtained in the weak-coupling regime. The violation of the Bell inequality not only verifies the entanglement
between magnons and photons, but also implies that cavity optomagnonics is a promising platform for quantum
information processing tasks.
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I. INTRODUCTION

A hybrid system enables the combination of distinct phys-
ical systems with complementary characteristics, which has
played an important role in the development of quantum in-
formation [1–3] and quantum sensing [4]. In recent years, a
new hybrid system based on the collective magnetic excita-
tions in magnetic materials has emerged as a platform for
novel quantum technologies [5,6]. The quanta of the collective
magnetic excitations, called magnons, have great tunability
and a low damping rate which make them ideal information
carriers. The magnons can interact coherently with microwave
photons via magnetic dipole interaction [7], and the strong
coupling between magnons and microwave photons has been
demonstrated experimentally with a magnetic insulator yt-
trium iron garnet (YIG) sphere [8–12] and stripe [13,14]. This
coupling not only allows us to study magnon-photon entan-
glement [15,16], but also makes it possible to engineer an
effective interaction between magnons and superconducting
qubits [17,18]. Benefiting from the large spin density of a
YIG crystal, magnons in a YIG sphere can also couple with
phonons through magnetostrictive interaction [19,20]. More
recently, an exciting field named cavity optomagnonics has
emerged, in which a YIG sphere supports both the whispering
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gallery modes (WGMs) for optical photons and magnetostatic
modes for magnons [21].

Different from the resonance interaction between mi-
crowave photons and magnons, the optomagnonic coupling
between optical photons and magnons is parametrical. This
is because the frequency of optical photons is in the
range of 100 THz, while the magnons are in the giga-
hertz range. Indeed, the optomagnonic coupling originates
from magneto-optical effects, which have been used to study
magnon-based microwave-optical information interconver-
sion [22]. By cavity-enhanced magnon-photon coupling in
cavity optomagnonical systems, several experiments have
demonstrated magnon-induced Brillouin light scattering of
the optical WGMs [23–27]. These experiments work in the
weak-coupling regime, where the intrinsic optomagnonic cou-
pling strength is much lower than the decay rates of both
optical photons and magnons. A theoretical framework for
cavity optomagnonics has been established to overcome the
shortcoming in this field [28–35]. It is expected that the strong
optomagnonic coupling will be achieved in the future, open-
ing the opportunity for applications such as optical cooling
the magnons [36], preparation of a magnon Fock state [37],
magnon-based photon blockade [38], and a magnon cat state
[39,40].

Although it is still a challenge to realize the quantum fea-
tures of cavity optomagnonics in the weak-coupling regime,
it is interesting to determine whether the nonclassicality
can be characterized without quantum assumptions. A Bell
test is a genuine test of nonclassicality without the need of
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quantum formalism [41]. In this paper, we propose to violate
the Clauser-Horne-Shimony-Holt (CHSH) inequality (a Bell-
type inequality) [42] by using entanglement between optical
photons and magnons in a YIG sphere, which allows us to
test the local hidden-variable models at macroscopic scales.
A test of the CHSH inequality has been performed in various
systems [43–52], including recently in a macroscopic optome-
chanical system [53–55]. However, it would be interesting
to perform a Bell test in a magnetically ordered solid-state
system consisting of millions of spins.

The model of our proposal involves two nondegenerate
cavity modes and one magnon mode, which has been demon-
strated with YIG spheres in recent experiments [23–27].
Starting with a cavity optomagnonical system close to its
ground state, we use two laser pulses to excite the two cav-
ity modes, respectively. First, optical mode 2 is driven at
resonance and then the entanglement between the magnon
mode and optical mode 1 can be obtained by means of a
two-mode squeezed interaction. The magnonic state can be
subsequently mapped into the photonic state of optical mode
2 by a beam-splitter interaction, which is induced by driving
optical mode 1 with the second pulse. Therefore, the photon-
photon pairs of the two optical modes are generated out of the
cavity optomagnonical system. The correlation of the photon-
photon pairs is measured by a photon detector preceded by
a displacement operation in phase space. Our results show
that a significant violation of the CHSH inequality can be ob-
tained in the experimentally relevant weak-coupling regime.
The violation of the CHSH inequality rules out any local and
realistic explanation of the measured data without quantum
assumption and it also verifies the existence of entanglement
between magnons and photons.

The paper is organized as follows. The model based on cav-
ity optomagnonics is presented in Sec. II. Section III provides
analytical discussion of the dynamical evolution of the system
and the violation of the CHSH inequality in phase space.
Section IV discusses the results and provides a summary.

II. MODEL

Consider a cavity optomagnonical system where a YIG
sphere supports both the WGMs for optical photons and
magnetostatic modes for magnons. The optomagnonic Hamil-
tonian is given by

H = H0 + Hint + Hdr, (1)

where

H0 = ω1a†
1a1 + ω2a†

2a2 + ωmm†m (2)

is the free-evolution part of the system with bosonic operators
ai (i = 1, 2) and m, and ωi and ωm are the frequencies of
the cavity modes and the magnon mode, respectively. The
Hamiltonian Hint describes the interaction between two non-
degenerate cavity modes and the magnon mode, which can be
written as

Hint = g(a1a†
2m + a†

1a2m†). (3)

Note that such an interaction in the optomagnonical sys-
tem is subject to selection rules of angular momentum
and the energy conservation requirement with ω2 − ω1 = ωm

[25,30,32]. This means that the creation (annihilation) of a
photon in optical mode 2 is accompanied by the annihilation
(creation) of a photon in optical mode 1 and a magnon. This
optomagnonic coupling has been demonstrated experimen-
tally in a YIG sphere, where the transverse-electric modes
and the transverse-magnetic modes of the cavity interact with
the magnetostatic modes [23–27]. When the cavity is pumped
with an external field, the driving Hamiltonian reads

Hdr = εi(aie
iωLt + a†

i e−iωLt ), (4)

where i = 1 or 2 and εi and ωL are the driving amplitudes and
the driving frequencies, respectively. In the rotating frame of
the driving field, the full Hamiltonian of the system becomes

H = �1a†
1a1 + �2a†

2a2 + ωmm†m

+g(a1a†
2m + a†

1a2m†) + εi(ai + a†
i ), (5)

with �i = ωi − ωL.
In the case in which cavity mode 2 is pumped and cav-

ity mode 1 is undriven, following the standard linearization
procedure, we split both the cavity modes and the magnon
mode into an average amplitude and a fluctuation term, i.e.,
ai → αi + ai and m → β + m. The average amplitude can be
obtained as α2 = ε2/(iκ2,ex/2 − �2) and β = 0, where κi,ex

denotes the loss rate of the ith cavity mode associated with
the external coupling. Since only mode 2 is pumped we have
α1 = 0. Note that the coherent amplitude αi can be chosen to
be real by a suitable choice of the phase of the pumping field.
The linearized Hamiltonian of the system in the interaction
picture can be gained

Hint1 = G1(a1mei(�1+ωm )t + a†
1m†e−i(�1+ωm )t ), (6)

where G1 = gα2 and the small nonlinear term has been ne-
glected. When cavity mode 2 is driven at resonance ωL = ω2

such that �1 = −ωm, Eq. (6) becomes

Hint1 = G1(a1m + a†
1m†), (7)

which represents a two-mode squeezing interaction. Assum-
ing that both the optical modes and the magnon mode are
initially prepared in their ground state, the entanglement be-
tween cavity mode 1 and the magnon mode can be generated
after the pulse duration. In the weak-coupling regime, i.e.,
when the effective optomagnonic coupling strength G1 is
much lower than the decay rate κ1 of the cavity, the entangled
photons leak out of the cavity faster than they are generated,
and thus the magnon mode becomes entangled with a travel-
ing optical pulse. Here we will show the entangled states of
the traveling-wave optical fields and the magnon mode can be
utilized to test the Bell inequality.

To perform a measurement on the magnon mode, the
magnon state should be transferred to the optical field. We
now consider that only cavity mode 1 is pumped. Similar
to the process of pumping mode 2 discussed above, we can
obtain the interaction Hamiltonian

Hint2 = G2(a2m†e−i(�2−ωm )t + a†
2mei(�2−ωm )t ), (8)

with G2 = gα1, and the average amplitude of mode 1 is given
by α1 = ε1/(iκ1,ex/2 − �1). When mode 1 is driven at reso-
nance ωL = ω1 so that �2 = ωm, the Hamiltonian becomes

Hint2 = G2(a2m† + a†
2m). (9)
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FIG. 1. (a) Schematic of the cavity optomagnonical system for
the Bell test proposal. The first pumping pulse drives cavity mode
2 at resonance to create entanglement between cavity mode 1 and
magnon mode m. The second pulse drives cavity mode 1 at res-
onance to transfer the state of the magnon mode to cavity mode
2. The photons of cavity modes 1 and 2 leaking out of the cavity
(A1,out and A2,out) are measured with a photon detector preceded by a
displacement, which can be realized by an input coherent state and
beam splitter (BS). (b) Two nondegenerate cavity modes a1 and a2

are detuned by a magnon resonance frequency ωm.

The Hamiltonian is often referred to as a beam-splitter inter-
action, which is relevant for the state transfer between cavity
mode 2 and the magnon mode.

Note that the coupling between cavity mode 1 (2) and the
magnon mode is achieved by pumping the other cavity mode
2 (1). The proposal for a Bell test in cavity optomagnonics is
depicted in Fig. 1. It can be summarized as three steps. (i) The
entanglement between cavity mode 1 and the magnon mode
is generated by resonantly pumping mode 2. (ii) The quantum
state of the magnon mode is subsequently mapped into cavity
mode 2 by resonantly driving mode 1, and therefore modes 1
and 2 are entangled. (iii) The measurement for the correlation
between the two traveling optical pulses of modes 1 and 2
is performed. The measurement setting consists of a single-
photon detector preceded by a displacement operation D(α),
which can be implemented by an input coherent state and an
unbalanced beam splitter [56]. Such a measuring apparatus
has been used for Bell tests in optical experiments [57].

III. BELL TEST IN CAVITY OPTOMAGNONICS

A. Generation of optomagnonical entanglement

In this section we study the evolution of the dynamics
of the system and the generation of optomagnonical entan-
glement for the Bell test. When cavity mode 2 is driven
at resonance, the quantum Langevin equations with the
Hamiltonian Hint1 are

da1

dt
= −iG1m† − κ1

2
a1 + √

κ1,exa1,in + √
κ1,ia1,th, (10a)

dm

dt
= −iG1a†

1 − γ

2
m + √

γ min, (10b)

where κ1 = κ1,ex + κ1,i is the total linewidth of cavity mode
1 in terms of the external coupling κ1,ex and material optical

loss κ1,i, γ denotes the decay rate of the magnon mode, a1,in is
the vacuum input noise for the cavity, a1,th denotes the thermal
noise introduced by material, and min represents the stochas-
tic magnetic field. The noise correlators associated with
the memoryless Markov-like fluctuations are 〈X †(t )X (t ′)〉 =
n̄thδ(t − t ′) and 〈X (t )X †(t ′)〉 = (n̄th + 1)δ(t − t ′), where X ∈
{a1,in, a1,th, min}. The optical field has zero thermal occupation
(n̄th ≈ 0) even at room temperature, but this is not the case for
magnons.

For simplicity, we consider the total loss of the cavity to be
dominated by the external coupling κ1 ≈ κ1,ex 	 κ1,i, i.e., the
cavity is overcoupled. Assuming that the magnon is initially
prepared in its ground state, then the noise introduced by
material is negligibly small. After neglecting the decay of the
magnon mode, which is reasonable when the pulse duration
is shorter than the magnon decoherence time (γ n̄th)−1, the
quantum Langevin equations can be simplified as

da1

dt
≈ −iG1m† − κ1

2
a1 + √

κ1a1,in, (11a)

dm

dt
≈ −iG1a†

1. (11b)

In the weak-coupling regime G1 
 κ1, the cavity is
damped at a rate that is much faster than the rate at which
the magnon mode changes the cavity state, thus the cavity
will reach a quasistationary state, which quickly adjusts to
changes in the magnon mode. Therefore, the mode a1 can be
adiabatically eliminated by setting da1/dt = 0, and we have

a1 ≈ (−i2G1/κ1)m† + (2/
√

κ1)a1,in. (12)

The white noise a1,in has an infinite bandwidth; thus it is
not strictly possible to slave a1 that only responds to a fi-
nite bandwidth κ1 to the vacuum fluctuation. However, as
far as the magnon mode m is concerned, vacuum fluctuation
restricted to a finite bandwidth can be effectively treated as
white noise; hence there is no harm that a1 is subject to the
vacuum fluctuation [58]. Although the noise a1,in restricted
to a finite bandwidth in the adiabatic elimination leads to an
incorrect communication relation of a1, it is known that only
the frequency near resonance with the system is important;
the high-frequency part of the noise which is far from reso-
nance contributes little when tracing over the bath. Hence the
adiabatic elimination of mode a1 can simplify the calculation
while maintaining physical reliability.

Substituting the expression of a1 into the input-output rela-
tion a1,out = −a1,in + √

κ1a1 and Eq. (11b), we get

a1,out = a1,in − i
√

2G̃1m†, (13a)

dm

dt
= G̃1m − i

√
2G̃1a†

1,in, (13b)

where G̃1 = 2G1
2/κ1. To solve these equations, it is conve-

nient to introduce the effective temporal modes [59,60]. For
cavity mode 2 driven by a pulse with the duration t = τ1, the

023701-3



XIE, SHI, HE, CHEN, LIAO, AND LIN PHYSICAL REVIEW A 105, 023701 (2022)

effective temporal modes read

A1,in(τ1) =
√

2G̃1

1 − e−2G̃1τ1

∫ τ1

0
dt e−G̃1t a1,in(t ), (14a)

A1,out(τ1) =
√

2G̃1

e2G̃1τ1 − 1

∫ τ1

0
dt eG̃1t a1,out(t ). (14b)

Then the explicit solution of Eq. (13b) can be expressed as

m(τ1) = eG̃1τ1 m(0) − i
√

e2G̃1τ1 − 1A†
1,in(τ1). (15)

Note that Eq. (13b) can be rewritten as a†
1,in =

(1/i
√

2G̃1)(G̃1m − dm
dt ). Substituting that into Eq. (13a), we

obtain the equation of motion dm
dt + G̃1m = −i

√
2G̃1a†

1,out,
which relates the dynamic evolution of magnons to the
output optical field. The solution of this equation is given by
m(τ1) = e−G̃1τ1 m(0) − i

√
e1−2G̃1τ1 A†

1,out(τ1). Combining this
with Eq. (15), we have

A1,out(τ1) = eG̃1τ1 A1,in(τ1) − i
√

e2G̃1τ1 − 1m†(0). (16)

The solutions (15) and (16) can be written as A1,out =
U †

1 (τ1)A1,inU1(τ1) and m(τ1) = U †
1 (τ1)m(0)U1(τ1), where the

propagator U1(τ1) is extracted as [60]

U1(τ1) = e−i
√

pA†
1,inm†

e−G̃1τ1(1+A†
1,inA1,in+m†m)ei

√
pA1,inm, (17)

with p = 1 − e−2G̃1τ1 . Assuming that the system is initially
in the vacuum state ρ0 = |000〉A1A2m〈000|, at the end of the
pumping pulse, the system evolves into

ρ1 = U1(τ1)|000〉A1A2m〈000|U †
1 (τ1). (18)

Note that the operators A1,inm, A†
1,inA1,in, and m†m

have zero eigenvalue for the state |000〉, so ρ1 =
e−2G̃1τ1 e−i

√
pA†

1,inm† |000〉A1A2m〈000|ei
√

pA1,inm. Then we have

ρ1 = (1 − p)
∞∑

n,n′=0

(−1)n(i
√

p)n+n′ |n, 0, n〉A1A2m〈n′, 0, n′|.

(19)
It is clear that optical mode 1 and the magnon mode are
entangled and optical mode 2 stays in the vacuum state. We
introduce formally p = 1 − e−2G̃1τ1 = tanh2 r and 1 − p =
e−2G̃1τ1 = cosh−2 r, where r denotes the squeezing parameter.
Then the state of mode 1 and the magnon mode becomes
|�〉A1,m = cosh−1 r

∑∞
n=0(−i)n tanhn r|n, n〉A1,m, which is the

standard form of the two-mode squeezed state.
In order to test the Bell inequality by using the entangle-

ment between mode 1 and the magnon mode m, the magnonic
state should be transferred to optical mode 2 for the mea-
surement purpose. We now consider that cavity mode 1 is
pumped by the second pumping pulse. In this case, the dy-
namics of mode 2 and the magnon mode is described by the
Hamiltonian Hint2. The corresponding simplified quantum
Langevin equations are

da2

dt
≈ −iG2m − κ2

2
a2 + √

κ2a2,in, (20a)

dm

dt
≈ −iG2a2. (20b)

Following the same procedures as discussed for mode 1 and
the magnon mode, we can obtain a2,out = a2,in − i

√
2G̃2m and

dm
dt = −G̃2m − i

√
2G̃2a1,in, where G̃2 = 2G2

2/κ2. By intro-
ducing the effective temporal modes of cavity mode 2,

A2,in(τ2) =
√

2G̃2

e2G̃2τ2 − 1

∫ τ2

0
dt eG̃2t a2,in(t ), (21a)

A2,out(τ2) =
√

2G̃2

1 − e−2G̃2τ2

∫ τ2

0
dt e−G̃2t a2,out(t ), (21b)

with the duration τ2 of the pumping pulse, we have

A2,out(τ2) = e−G̃2τ2 A2,in(τ2) − i
√

1 − e−2G̃2τ2 m(0), (22a)

m(τ2) = e−G̃2τ2 m(0) − i
√

1 − e−2G̃2τ2 A2,in(τ2). (22b)

By rewriting the solutions (22a) and (22b) as A2,out =
U †

2 (τ2)A2,inU2(τ2) and m(τ2) = U †
2 (τ2)m(0)U2(τ2), the prop-

agator U2(τ2) can be obtained as

U2(τ2) = e−i
√

T ′A†
2,inmeG̃2τ2(A†

2,inA2,in−m†m)ei
√

T ′A2,inm†
, (23)

with T ′ = e2G̃2τ2 T , where T = 1 − e−2G̃2τ2 defines the conver-
sion efficiency between the magnon mode m and mode 2. If
G̃2τ2 is sufficiently large, Eq. (22a) is reduced to A2,out(τ2) =
−im(0). This means that the magnon quantum state created
by the first pulse can be nearly perfectly mapped onto optical
mode 2 apart from a phase shift. When the two cavity modes
and the magnon mode are initially in the vacuum state, by
sequentially pumping the two cavity modes at resonance, the
final state of the system can be described by the density matrix

ρ2 = U2(τ2)U1(τ1)|000〉A1A2m〈000|U †
1 (τ1)U †

2 (τ2). (24)

Recalling Eqs. (18) and (19), the density matrix can be written
as ρ2 = U2(τ2)ρ1U

†
2 (τ2). Then the density matrix is calculated

as

ρ2 = (1 − p)
∞∑

n,n′=0

(−
√

pT )n+n′ |n, n, 0〉A1A2m〈n′, n′, 0|. (25)

By tracing out the magnon mode, we gain the density matrix
of the two traveling optical pulses

ρA1A2 = (1 − p)
∞∑

n=0

(−
√

pT )n+n′ |n, n〉A1A2〈n′, n′|. (26)

In the case of G̃2τ2 	 1, the conversion efficiency T ap-
proaches 1 and the state ρA1A2 is close to the two-mode
squeezed state.

B. Violation of the CHSH inequality

The type of Bell inequality relevant to our proposal is the
CHSH inequality [42]. We are interested in the measurements
that allow us to identify the vacuum state and all nonzero-
photon-number states, i.e., the on-off detection. When the
application of coherent displacement D(α) is in front of
the photon detector, the measurement can be described by the
positive-operator-valued measure with two orthogonal pro-
jection operators Pα = D(α)|0〉〈0|D†(α) = |α〉〈α| and Qα =
I − |α〉〈α|. We assign the outcome +1 to the detection of
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|α〉 and −1 otherwise; then the observable for the system
is described by 2Pα − I. Therefore, the correlation function
Eαβ = 〈(2Pα − I) ⊗ (2Pβ − I)〉 for the two optical fields is
given by

Eαβ = 4P(+1 + 1|αβ ) − 2[P(+1|α) + P(+1|β )] + 1.

(27)
Here P(+1 + 1|αβ ) = 〈Pα ⊗ Pβ〉 represents the joint proba-
bility to get the measurement outcome +1 for both optical
fields, and P(+1|α) = 〈Pα ⊗ I〉 and P(+1|β ) = 〈I ⊗ Pβ〉 are
the probabilities of measuring a single field with outcome +1.
The observable and correlation of such a form for Bell tests
were introduced in Refs. [61–64] and had been realized in
experiments with optical two-mode squeezed states produced
by spontaneous parametric down-conversion [57].

For the local hidden-variable model, the four correlation
functions between pairs of measurements obey the CHSH
inequality

S = |Eα1β1 + Eα1β2 + Eα2β1 − Eα2β2 | � 2. (28)

The inequality can be violated with a proper choice of the
observables measured on the quantum entanglement states,
and the allowed maximal violation is S = 2

√
2 [41]. We now

proceed to discuss the correlation function Eαβ between op-
tical modes 1 and 2. The joint probability of measurement
outcomes +1 for both modes 1 and 2 can be written as
P(+1 + 1|αβ ) = Tr(ρA1A2 Pα ⊗ Pβ ). By using the density ma-
trix given by Eq. (26), we calculate the joint probability as

P(+1 + 1|αβ ) = (1 − p)e−|α|2−|β|2 e−√
pT (α∗β∗+αβ ). (29)

The marginals P(+1|α) = Tr(ρA1A2 Pα ⊗ I) and P(+1|β ) =
Tr(ρA1A2I ⊗ Pβ ) are also given by

P(+1|α) = (1 − p)e−(1−pT )|α|2 (30)

and

P(+1|β ) = (1 − p)e−(1−pT )|β|2 , (31)

respectively. Together with the definition of the correlation
function Eαβ , the quantity S can be evaluated by Eq. (28).

We optimize the value of S over the measurement settings
α1,2 and β1,2, and the results as a function of G̃1τ1 for different
conversion efficiencies T are shown in Fig. 2. Obviously,
the violation of the CHSH inequality can be obtained with
a proper choice of G̃1τ1 and a high conversion efficiency T .
The maximal violation S ≈ 2.45 is achieved at G̃1τ1 ≈ 0.25
(p ≈ 0.39) and T = 1. This result agrees well with previous
studies [65,66], where the maximal violation of S ≈ 2.45 for
the squeezing parameter r ≈ 0.76 (p = tanh2 r ≈ 0.40) was
obtained for an ideal two-mode squeezed state.

The quantity S versus G̃2τ2 for different values of p is
depicted in Fig. 3. It is shown that a significant violation is
achieved at p = 0.39 with larger G̃2τ2. An efficient conversion
requires stronger coupling strength G2 between the magnon
mode and cavity mode 2, which can be obtained by increasing
the input pumping power encoded in α1.

Recall the approximations that have been made in the
model: (i) weak-coupling conditions G1,2 
 κ and (ii) neg-
ligible magnon dissipation, which implies that the pulse
duration should be shorter than the magnon decoherence time

FIG. 2. Optimal values of S as a function of G̃1τ1 for various
magnon-photon conversion efficiencies T .

τ1 + τ2 
 (γ n̄th)−1. In the YIG-based cavity optomagnonical
system, the cavity decay rate κ ∼ 1 GHz and magnon decay
rate γ ∼ 1 MHz were demonstrated in experiment [24,25].
Assuming that the coupling strengths are G1 ∼ 20 MHz and
G2 ∼ 100 MHz, with the pulse durations τ1 ∼ 31 ns and τ2 ∼
75 ns, an optimal value of G̃1τ1 around 0.25 and high con-
version efficiency T = 1 − e−2G̃2τ2 ≈ 0.95 can be achieved.
In this case, the requirement imposed by the two approxima-
tions above can be satisfied. Although the required coupling
strength is still unavailable in current experiments, great effort
has been made to enhance the optomagnonic coupling by
reducing the mode volume of the optical mode in the YIG disk
[31] or by selecting magnon modes to maximize the overlap of
the magnon and photon modes [34]. The coupling strength is
expected to be improved in the next-generation experiments.

C. Bell test in phase space

In above discussion we have neglected the influence on
measurement of the efficiency of the photon detector and

FIG. 3. Optimal values of S as a function of G̃2τ2 for various
values of p.
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the transmissivity in the beam splitter. In the following, we
discuss the proposal for a Bell test including the detector
efficiencies in phase space. For the measurement setting in
our proposal, it has been shown that the Bell inequality can
be studied in the phase space based on the Wigner function
or Q function [62]. For the on-off detection, which measures
the correlation between the vacuum state and all nonzero-
photon-number states, the mean value of the measurement
is proportional to the Q functions with Q(α, β ) = 1

π2 P(+1 +
1|αβ ) and Q(α) = 1

π
P(+1|α). The CHSH inequality can be

formulated in terms of the Q functions as [62,67]

S = |4π2[Q(α1, β1) + Q(α1, β2) + Q(α2, β1) − Q(α2, β2)]

−4π [Q(α1) + Q(β1)] + 2| � 2. (32)

When the detector efficiency ηd and the transmissivity λt of
the beam splitter are considered, we follow Ref. [65] and de-
fine the overall detection efficiency η = ηdλt . Thus the CHSH
inequality written as a function of η becomes [65]

S =
∣∣∣∣4π2

η2
[Qη(α1, β1) + Qη(α1, β2) + Qη(α2, β1)

−Qη(α2, β2)] − 4π

η
[Qη(α1) + Qη(β1)] + 2

∣∣∣∣ � 2, (33)

where the two-mode Q function of the state described in
Eq. (26) is given by

Qη(α, β ) = 4

π2R(η)
exp

(
−2

S(η)

R(η)
(|α|2 + |β|2)

)

× exp

( −4
√

p

R(η)(1 − p)
(α∗β∗ + αβ )

)
(34)

and the single-mode Q function is

Qη(α) = 2

πS(η)
exp

(
− 2

S(η)
|α|2

)
, (35)

with R(η) = (1 − 2/η)2 − 2(1 − 2/η)(1 + p)/(1 − p) + 1
and S(η) = (1 + p)/(1 − p) + 2/η − 1. Here we have
assumed the conversion efficiency T = 1 for simplicity.

Figure 4 shows S as a function of G̃1τ1 and η at the
optimal values of α1,2 and β1,2. Clearly, the violation of the
Bell inequality requires a detector efficiency η larger than 0.8.
As expected, the maximal violation can be obtained at η = 1
and G̃1τ1 ≈ 0.25. A high overall detection efficiency can be
achieved by the beam splitter with high transmissivity and by
the photon detector with small dark count probability.

IV. CONCLUSION

We have assumed the weak-coupling condition G1,2 
 κ

and have neglected the magnon mode decay γ in our model.
In our YIG-based cavity optomagnonical system, the intrin-
sic magnon-photon coupling strength was demonstrated as
g = 10.4 Hz; the effective coupling strength was obtained as
G = gα = 73 kHz with 30 μW optical power and it could be
further enhanced to G = 10 MHz [24]. The weak-coupling
condition G1,2 
 κ corresponds to the experimental parame-
ters. However, in order to reasonably neglect the decay of the

FIG. 4. Contour plot of S versus G̃1τ1 and η for the optimal
values of α1,2 and β1,2.

magnon mode, the pulse duration should be shorter than the
magnon decoherence time, which in turn requires a stronger
coupling strength to obtain the optimal values of G̃1τ1 and
G̃2τ2. Although the required coupling strength is not available
in the optomagnonic system, it is expected that the coupling
strength will be improved in future experiments. In addition,
we have assumed for simplicity that the magnon mode is ini-
tially prepared in its ground state. Indeed, a rigorous proposal
should include the case that the magnon mode is initially in
a thermal state. For a YIG sphere with magnon frequency
ωm = 7.95 GHz, the average thermal magnon number in a
dilution refrigerator at temperature 10 mK is n0 = 0.026 [18].
For such a small average thermal magnon number, it may not
seriously affect the violation of the Bell inequality [53,54].

In summary, we have proposed a scheme to implement
the violation of the Bell inequality in cavity optomagnonics,
where a magnon mode couples with two nondegenerate cavity
modes. Our model corresponds to recent YIG-based experi-
ments and takes into account the selection rules of angular
momentum and the triple-resonance condition. The Langevin
equations of the optomagnonical system were solved and the
experimental implementation of the Bell test was analyzed in
detail. The results show that a significant violation of the Bell
inequality can be achieved by a proper choice of G̃1τ1, high
magnon-photon conversion efficiency T , and high overall de-
tection efficiency η.
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