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Gyrotropy-governed isofrequency surfaces and photonic spin in gyromagnetic media
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In this paper, we investigate the effect of gyromagnetic terms on the topology of isofrequency surfaces.
The diagonal terms of the permeability tensor are known to govern the topology of isofrequency surfaces.
However, here we show that the off-diagonal gyrotropic terms of the material tensor also govern the existence of
isofrequency surfaces. The relative strength of the gyrotropic term with respect to the permeability term decides
the number of isofrequency surfaces which can exist in a gyromagnetic medium. We show that gyrotropy can
either suppress an isofrequency surface or support an otherwise nonexistent isofrequency surface. Moreover, the
dependence of isofrequency surfaces on gyrotropy is linked to the photonic spin of these isofrequency surfaces.
Further, the photonic-spin profile indicates that the photonic spin is locked to the material and not the direction of
momentum. This leads to a conflict between spin-momentum locking and material-locked photonic spin, which
can be exploited in waveguiding structures to get an asymmetric mode profile and gyrotropy-induced cutoff.
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I. INTRODUCTION

Gyrotropic materials are the most commonly employed
materials for achieving nonreciprocity in wave propaga-
tion from optical to microwave frequencies. Gyroelectric
properties have been used to achieve nonreciprocal wave
propagation [1–4], isolation [5], asymmetric, and extreme
scattering properties in plasmonic structures [6,7] at optical
frequencies. Traditionally, gyromagnetic materials have been
extensively used in nonreciprocal devices at microwave fre-
quencies [8–10], with microwave isolators and circulators
being their primary applications. Conventionally, such gy-
romagnetic devices were bulky and not suitable for system
integration. However, recently researchers have successfully
integrated ferrite slabs in substrate-integrated waveguides [11]
for nonreciprocal mode conversion and for filter applications
[12]. The application of ferrite nanoconduits for nanometer-
scale RF magnonic interconnects has also been reported
recently [13]. Even though gyromagnetic materials have been
employed in microwave applications for decades, the investi-
gation and control of the supported wave characteristics still
form an active area of research. In Refs. [14,15], hyperbolic
isofrequency surfaces were reported for bulk propagation.
In Refs. [16,17], negative refraction and a tunable focusing
effect in a gyromagnetic medium were attributed to the hyper-
bolic dispersion in the gyromagnetic medium. Experimental
demonstration of the hyperbolic nature of bulk isofrequency
surfaces was demonstrated in Ref. [18]. The hyperbolic nature
of isofrequency surfaces in gyromagnetic materials arises due
to negative permeability along two directions of the material.

The topology of the isofrequency surfaces is primarily
governed by the anisotropic permittivity and permeability of
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the material, which can be tailored by forming a composite
substrate from layered materials [19–22]. Wide applications
of engineered materials exhibiting hyperbolic isofrequency
curves [23–27] have been reported in the past. Prominent
applications of hyperbolic materials include superresolution
microscopy with hyperlensing [28,29], enhanced near-field
thermal radiation [30], and thresholdless Cherenkov radiation
[31–33].

Combining engineered hyperbolic dielectric properties
with gyromagnetic material [34,35] provides integration of
engineered isofrequency surfaces with gyrotropic properties.
Reference [34] presents the behavior of surface magnon po-
laritons governed by the hyperbolic topology in a canted
antiferromagnetic crystal. More recently, photonic Chern in-
sulators using gyromagnetic hyperbolic metamaterial formed
by a superlattice of indium-antimony and yttrium iron garnet
[35] has been reported. In Ref. [36], the effect of negative
effective permeability on the bihyperbolic nature of isofre-
quency surfaces has been investigated. However, the specific
effect of the gyrotropic terms (off-diagonal terms in the
permeability tensor) on the isofrequency surfaces and the
mechanism by which gyrotropy affects the isofrequency sur-
faces requires a comprehensive investigation.

In this paper, we extensively investigate the effect of gy-
rotropy on the isofrequency surfaces. We report the gyrotropy-
imposed conditions on the existence of isofrequency surfaces
and reveal that the effect of gyrotropy is intricately linked
with the photonic spin of the electromagnetic (EM) waves in
the medium. The photonic spin of EM waves has attracted
interest in recent years [37–41]. The presence of photonic spin
has been reported in surface polaritons [42], spin-momentum
locking in reciprocal structures [43–45], spin-governed opti-
cal forces [46–48], and spin-photonic forces in nonreciprocal
waveguides [49]. Here we report that the photonic spin also
plays a central role in controlling the existence and shape of
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FIG. 1. Gyromagnetic materials exhibit the three important yet
seemingly different phenomena of photonic spin, nonreciprocity, and
hyperbolic isofrequency surface.

isofrequency surfaces in a gyromagnetic medium. Here, we
report the nature of photonic spin along the three-dimensional
(3D) isofrequency surfaces for a gyromagnetic medium in
elliptical and hyperbolic regimes. We show that when the
gyrotropy is strong, it can suppress the existence of one
of the isofrequency surfaces, which would have existed in
a nongyromagnetic medium. Similarly, a strong gyrotropy
can support the existence of an isofrequency surface that
would not exist in the absence of gyrotropy. Further, we show
that the spin profile along an isofrequency surface is locked
to the direction of magnetic bias and not to the direction
of propagation, resulting in a violation of spin-momentum
locking. We also consider a case where interaction between
structure-induced and material-induced photonic spin leads
to an asymmetric mode profile in a waveguide. Moreover,
we report that the dominance of material-induced spin over
structure-induced spin leads to a gyrotropy-controlled cutoff
condition for the waveguide. The analysis presented in this
paper shows that photonic-spin also plays a crucial role in
the propagation characteristics in a gyromagnetic medium.
Thus, gyromagnetic materials exhibit the three important elec-
tromagnetic wave phenomena, namely, (i) hyperbolic isofre-
quency surfaces, (ii) photonic spin, and (iii) nonreciprocity,
as illustrated in Fig. 1. The analysis presented in this paper
will provide guiding principles for engineering gyrotropy of
materials for controlling the isofrequency surfaces and the
photonic-spin profile.

The paper is organized as follows. In Sec. II, we report
that the relative magnitude of the permeability and gyrotropy
terms either suppresses or supports the existence of isofre-
quency surfaces. In Sec. III, the photonic-spin profile of
isofrequency surfaces in elliptical and hyperbolic regimes is
investigated. It is shown that the photonic spin is locked to
the material, and when the gyrotropy is strong, the photonic
spin only along the direction of magnetic bias is supported.
In Sec. IV, we show that the material-locked nature of pho-
tonic spin in gyromagnetic material comes in conflict with

the structure-induced transverse photonic spin in guided-
wave structures and leads to an asymmetric mode profile and
gyrotropy-induced cutoff.

II. GYROTROPY-CONTROLLED
ISOFREQUENCY SURFACES

In this section, we investigate the effect of gyromagnetic
terms on the topology of the isofrequency surfaces in a general
gyromagnetic medium, with permeability tensor

↔
μr given by

[8]

↔
μr =

⎡
⎣ μ′ − jκ ′ 0

jκ ′ μ′ 0
0 0 1

⎤
⎦. (1)

We consider a magnetic medium biased in the ẑ direction.
Here, μ′ is the permeability term along x̂ and ŷ directions, and
κ ′ represents gyrotropy. The equation governing the topology
of isofrequency surfaces of the medium is (see Appendix A)

0.5εrk2
0

(
k4

r (μ′ + 1) + 2ε2
r k4

0 (μ′2 − κ ′2)

+ εrk2
0k2

r (κ ′2 − μ′(3 + μ′)) − k2
r

(
k2

r (μ′ − 1)

+ εrk2
0 (κ ′2+μ′ − μ′2)

)
cos 2θ

) = 0. (2)

Here, the dielectric permittivity of the medium is denoted by
εr . k0 is the propagation constant in free space. The term kr

defines the propagation constant in the medium over spherical
coordinates. θ represents the angle of elevation. Isofrequency
surfaces are computed by solving this equation for kr , which
gives two distinct equations due to its biquadratic nature. The
two isofrequency surfaces correspond to two different modes.
However, depending on the values of μ′ and κ ′, only one of
the surfaces may exist. The effect of the gyrotropic term on
the isofrequency surfaces can be understood by taking the
following four cases:

(1) μ′ > 0 and |μ′| > |κ ′|.
(2) μ′ > 0 and |μ′| < |κ ′|.
(3) μ′ < 0 and |μ′| > |κ ′|.
(4) μ′ < 0 and |μ′| < |κ ′|.
Cases (a) and (b) with μ′ > 0 support elliptical isofre-

quency surface, while cases (c) and (d) correspond to the
hyperbolic regime. Cases (a) and (c) hold the condition |μ′| >

|κ ′|, whereas, cases (b) and (d) satisfy |μ′| < |κ ′|. The topol-
ogy of isofrequency surfaces corresponding to these cases is
shown in Fig. 2.

For a positive value of μ′, in a nongyromagnetic (κ ′ = 0)
medium, we would expect the existence of two concentric
ellipsoidal surfaces, touching one another. However, in the
presence of gyrotropy (κ ′ �= 0) with the magnitude of the gy-
rotropic term less than the permeability term, i.e., |μ′| > |κ ′|,
the topology consists of two completely noncontact, concen-
tric ellipsoids as observed in Fig. 2(a). As we increase the
magnitude of κ ′, the effects of gyrotropy start playing a more
prominent role, and when |κ ′| > |μ′| only one ellipsoidal
isofrequency surface exists, as plotted in Fig. 2(b). Gyrotropy,
in this case, limits the topology of the medium to a single
isofrequency surface.
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FIG. 2. The topology of isofrequency surfaces in a gyromagnetic
medium. (a), (b) The elliptical regime having material parameters
(μ′, κ ′) as (1, 0.75) and (1, 1.25), respectively. Free-space prop-
agation constant k0 corresponds to the frequency of 6 GHz. (c),
(d) The hyperbolic regime having material parameters (μ′, κ ′) as
(−1.5, −0.5) and (−1.5, −2.5), respectively. k0 corresponds to the
frequency of 11 GHz. (a) It can be seen that for positive μ′ two propa-
gating modes exist with ellipsoidal topology when μ′ > κ ′. (b) When
μ′ < κ ′ only one ellipsoidal surface exists. (c) For negative μ′, only
the hyperbolic mode exists when |μ′| > |κ ′|. (d) For negative μ′, an
additional ellipsoidal isofrequency surface exists when |μ′| < |κ ′|.
The dielectric constant of the medium εr is 14.

Similarly, when μ′ is negative in a nongyromagnetic
medium (κ ′ = 0), there would exist a single type-II hyper-
boloid. The negative diagonal terms in the permeability tensor
would suppress the existence of the second surface. In the
presence of gyrotropy, as long as |μ′| > |κ ′|, there exists a
single hyperbolic isofrequency surface as in Fig. 2(c). How-
ever, when |μ′| < |κ ′|, we get two isofrequency surfaces, one
hyperboloid and the second ellipsoid, shown in Fig. 2(d). In
this case, the gyrotropy supports the existence of the second
ellipsoidal surface, which would otherwise be nonexistent.
These conditions are summarized in Table I. Note that, al-
though some of these gyrotropy conditions are achieved in a
natural gyromagnetic medium, an engineered gyromagnetic
medium may be required to realize some of these cases. In
a nutshell, ellipsoidal and hyperbolic isofrequency regimes
are the two main classes of isofrequency surfaces depending
on the sign of μ′. However, based on the gyrotropicity, a
second elliptical isofrequency surface exists in the ellipsoidal

regime when |κ ′| < |μ′|, and in the hyperbolic regime when
|κ ′| > |μ′|.

While the nature of the isofrequency surface depends on
the permeability term, gyrotropy also strongly influences the
topology. This influence is manifested in the form of material-
induced photonic spin, along the isofrequency surfaces, and
forms the subject of investigation in Sec. III.

III. PHOTONIC SPIN PROFILE OF
ISOFREQUENCY SURFACES

The sense of rotation of fields in electromagnetic waves has
been characterized as photonic spin [37–41]. Note that this
photonic spin is different from conventional magnon polari-
tons, where the later deals with coupling of EM energy with
the magnetic dipoles of the medium. The net photonic spin
of a medium is defined as the combination of both electric
(Im{ �E∗ × �E}) and magnetic (Im{ �H∗ × �H}) photonic spins.
Since we are considering a gyromagnetic medium, we are
concerned with the photonic spin of a magnetic field defined
by �S = Im{ �H∗ × �H}. This definition of spin is equivalent to
defining the three-dimensional third Stokes parameter for the
magnetic field (see Appendix C). In this section, we inves-
tigate the photonic-spin profile of the isofrequency surfaces
and reveal the photonic-spin-dependent nature of gyrotropy-
imposed conditions on the topology, which were reported in
the previous section. We consider a gyromagnetic material
biased in the ẑ direction. To compute the photonic spin of
�H , the magnetic vector components Hy and Hz are expressed

relative to Hx, using the condition [
↔
k ·

↔
k + k2

0εr
↔
μr] · �H = 0.

To plot the spin profile of the isofrequency surfaces, the
fields are converted from Cartesian (Hx, Hy, Hz ) to spherical
(Hr, Hθ , Hφ ), and normalized to limit the Stokes parameter
value within the range of −1 to 1. The three components of
the spin are then computed in the spherical coordinates as
�S = Sr r̂ + Sθ θ̂ + Sφφ̂, where each of these orthogonal spin
components can be individually explored.

Figure 3 maps the photonic spin of the magnetic field along
the isofrequency surfaces, corresponding to the ellipsoidal
and hyperbolic regimes. We can observe from Table I that,
depending on the material parameters μ′ and κ ′, either one
or two isofrequency surfaces will exist. To present a com-
prehensive mapping of the spin profile, we select the values
of μ′ and κ ′ following Table I, such that two isofrequency
surfaces exist for both the elliptical and hyperbolic regimes.
Figure 3(a) shows the radial (longitudinal) spin Sr when μ′ >

0 and |μ′| > |κ ′|, while Fig. 3(b) shows Sr when μ′ < 0 and
|μ′| < |κ ′|. These two cases correspond to the ellipsoidal and
hyperbolic regimes, respectively. From Fig. 3(a), it can be
seen that Sr reaches its extreme values along the positive and
negative z axis (the axis of bias), with the two isofrequency

TABLE I. Topological regimes for different values of μ′ and κ ′, as depicted in Fig. 2.

Gyrotropic term μ′ > 0 (Ellipsoidal regime) μ′ < 0 (Hyperbolic regime)

κ ′ = 0 Two concentric touching ellipsoids Single hyperboloid
|μ′| > |κ ′| Two concentric nontouching ellipsoids Single hyperboloid
|μ′| < |κ ′| A single ellipsoid One hyperboloid and one ellipsoid
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FIG. 3. Representation of photonic-spin profile on the isofre-
quency surfaces corresponding to ellipsoidal and hyperbolic regimes.
Material parameters μ′ and κ ′ are selected to allow the existence of
two isofrequency surfaces. Material parameters (μ′, κ ′) are (a), (c),
(e) (1.79, 0.47) and (b), (d), (f) (−1.38, 2.62), respectively. The free-
space propagation constant k0 for elliptical and hyperbolic regimes
corresponds to the frequencies of 6 and 11 GHz, respectively. Spin
profiles along the (a), (b) r̂ direction, (c), (d) θ̂ direction, and (e), (f)
φ̂ direction, respectively.

surfaces supporting opposite spins. In the hyperbolic regime,
Fig. 3(b), it can be seen that one surface is hyperbolic with
Sr having significantly low magnitude. Figures 3(c) and 3(d)
represent Sθ , and Figs. 3(e) and 3(f) show the spin Sφ compo-
nent in the two regimes, respectively. It is also observed from
Figs. 3(e) and 3(f) that no spin exists for the Sφ for both the
regimes. Since there is an axial symmetry around the direction
of bias—ẑ in this case—we can limit our analysis to the kx-kz

plane without loss of generality.
To further investigate the interlink between photonic spin

and the gyrotropy-imposed conditions over the two topo-
logical regimes, we compute the photonic spin along the
isofrequency surfaces while restricting the wave propagation
along the x-z plane.

A. Elliptical regime

We first analyze the spin profile along the isofrequency
curves in the kx-kz plane in the elliptical regime. For in-plane
propagation, the y and z components of the magnetic field
can be expressed in terms of Hx in the form of analytical

FIG. 4. Representation of photonic-spin profile along the two-
dimensional (2D) isofrequency contours for the elliptical regime.
Color map shows the ẑ-oriented spin (Sz). The arrows represent the
direction and magnitude of the spin. Free-space propagation constant
k0 corresponds to the frequency of 6 GHz. μ′ is fixed at 1.79, whereas
panels (a)–(d) correspond to the values of κ ′ as 0.5, 1.5, 3.8, and 5.8,
respectively.

expressions (see Appendix B), given by

Hy = − jεrk2
0κ

′

εrk2
0μ

′ − k2
r

Hx (3)

and

Hz = − k2
r cos θ sin θ

εrk2
0 − k2

r sin2 θ
Hx. (4)

From Eqs. (3) and (4), it can be seen that x and z components
of the magnetic field are in phase while the y component is
90◦ out of phase. Note that κ ′ appears in the numerator of
Eq. (3) as a linear term, indicating the presence of a gyrotropy-
induced spin in the EM wave, which reverses its direction with
the sign of κ ′.

Photonic spins for the ellipsoidal regime are computed for
a fixed permeability value μ′ = 1.79 while varying the value
of κ ′ from 0.5 to 5.8. The resultant spin profiles along the
isofrequency surfaces are shown in Fig. 4. The arrows repre-
sent the magnitude and direction of net spin, and the color map
of the contour represents the spin Sz, i.e., the spin component
along the direction of the magnetic bias. The values of κ ′ are
selected such that Figs. 4(a) and 4(b) correspond to the case
when |μ′| > |κ ′| and two isofrequency surfaces are supported.
The gyrotropic effect, in this case, allows the existence of
both modes. The inner isofrequency contour holds a negative
spin along the ẑ axis; i.e., the spins are antiparallel to the
direction of bias for this mode. For the outer isofrequency
surface, though, both parallel as well as antiparallel spins
exist. As the gyrotropy increases further, the spins over the
inner ellipse align further antiparallel, and the ellipse shrinks.
When |μ′| < |κ ′| the inner ellipse ceases to exist. Figures 4(c)
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and 4(d) depict this condition. In this scenario, the gyrotropy
is strong enough to suppress the inner ellipse, which had
photonic spin antiparallel to the magnetic bias.

We observe an additional effect of the gyrotropy over the
outer ellipsoid of Fig. 4. The photonic spin corresponding
to the inner ellipsoid along the z axis is entirely negative.
In comparison, the outer ellipse contains both positive and
negative photonic spin along the z axis. There is a specific
spin-crossover angle ζsc (with respect to the x̂ axis) over the
isofrequency surface, below and above which the photonic
spins along the z axis are observed to be negative and positive,
respectively. As we increase the value of κ ′, the photonic spin
below ζsc having negative spin sense along the z axis tends to
diminish. Note that though we only show ζsc in Figs. 4(c) and
4(d) for the sake of simplicity; this crossover angle exists for
the entire elliptical regime. This crossover angle ζsc is given
by (see Appendix D)

ζsc = cos−1

√
1

μ′ . (5)

Interestingly, Eq. (5) is independent of the gyrotropic term κ ′.
The definition of ζsc using Eq. (5) is only valid for the elliptical
regime (positive μ′), whereas it is invalid for the hyperbolic
regime (negative μ′). The spin-crossover angle ζsc can be
physically interpreted as the intersection of the isofrequency
curve with the circle [see the dashed circle in Figs. 4(c) and
4(d)] defined as k2

x + k2
z = k2

0

√
μ′εr .

In addition to the inner ellipse being suppressed once gy-
rotropy is strong enough, we can observe the antiparallel spins
below ζsc being diminished, making the region increasingly
spinless. Moreover, parallel photonic spins lead to elongation
of the outer ellipse along the bias direction with an increasing
gyrotropy.

B. Hyperbolic regime with gyrotropy-supported
secondary isofrequency surface

Similar to Sec. III A, we investigate the photonic-spin pro-
file in the hyperbolic regime over the isofrequency surfaces by
taking a fixed value of μ′ = −1.38, and four distinct values
of κ ′. Isofrequency contours corresponding to the κ ′ values
of 0.5 and 1.1, are shown in Figs. 5(a) and 5(b), respec-
tively. These values satisfy the condition of |μ′| > |κ ′|, where
the gyrotropy is not strong enough to support the elliptical
mode, and only the hyperbolic mode exists. For smaller values
of |κ ′|, the photonic spin along the hyperbolic isofrequency
curve is negligibly weak. The hyperbolic mode, in this case,
is predominantly spinless. The other two values, κ ′ = 2.5 and
5, hold the condition |μ′| < |κ ′|, where the gyrotropy can
support the existence of the second elliptical mode. These two
cases are shown in Figs. 5(c) and 5(d), respectively. Note that
the spins along the elliptical isofrequency contour are aligned
parallel to the direction of bias. Thus a strong gyrotropy can
support an isofrequency surface, which otherwise would not
have existed in a nongyromagnetic or a weakly gyromagnetic
medium.

The hyperbolic mode also shows interesting spin character-
istics. Increasing the magnitude of |κ ′| makes the spins along
the hyperbolic isofrequency curve more prominent. However,

FIG. 5. Representation of photonic-spin profile along the 2D
isofrequency contours for the hyperbolic regime. Color map shows
the ẑ-oriented spin (Sz). The arrows represent the direction and mag-
nitude of the spin. Free-space propagation constant k0 corresponds to
the frequency of 11 GHz. μ′ is fixed at −1.38, whereas panels (a)–(d)
correspond to the values of κ ′ as 0.5, 1.1, 2.5, and 5, respectively.

the hyperbolic mode has significantly low longitudinal (radial)
spin throughout the curve, and the net spin also goes to zero
along the asymptote of the hyperbola. Near the kx axis, the
spin is aligned parallel to the direction of bias.

Thus gyrotropic terms play an important role in influencing
the existence and shape of the isofrequency surfaces, and
hence the wave propagation characteristics in a gyromagnetic
medium. This influence is mediated via the photonic spin.
Therefore, engineering the gyrotropicity of the medium can
lead to interesting device-level applications, especially where
photonic spin is also involved. In the next section, we show
that the material-locked nature of the photonic spin in a gyro-
magnetic medium leads to an asymmetric mode profile and a
gyrotropy-induced cutoff in a guided-wave structure.

IV. MATERIAL-LOCKED PHOTONIC SPIN
IN GUIDED-WAVE STRUCTURE

The photonic-spin profile of the isofrequency surfaces in-
vestigated in the previous section reveals that the spins for
a pair of antipodal points on the isofrequency surfaces are
aligned in the same direction. This indicates that even the
transverse photonic spin for two counterpropagating waves
is aligned in the same direction and does not revert with the
direction of propagation. However, it has been reported that
the photonic spin is locked to the direction of propagation
[43]. The nonreversal of spin with the reversal of direction of
propagation indicates the disruption of this spin-momentum
locking in a gyromagnetic medium. In this section, we discuss
the potential application of the breaking of spin-momentum
locking in waveguiding structures filled with gyromagnetic
material.
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A. Spin-momentum locking in a waveguide

In Ref. [43], Van Mechelen and Jacob reported that
the transverse spin is locked to the direction of propaga-
tion and that this locking is a universal phenomenon. In
Ref. [46], Kalhor et al. showed that the locking of trans-
verse spin to the direction of propagation is responsible
for the direction-dependent transverse optical forces on chi-
ral particles. Spin-momentum locking in the near field of
metal nanostructures was reported in Ref. [50]. In Ref. [49],
Pendharker et al. showed that the photonic spins of two
counterpropagating waves are opposite but not equal (nonde-
generate) as the time reversal is broken by motion-induced
nonreciprocity.

The reversal of photonic spin with the direction of prop-
agation is also observed across the cross section of typical
waveguiding structures. The analytical equation defining the
photonic spin for a dielectric-filled parallel plate waveguide
(y is taken from −a/2 to a/2) in its dominant mode is given
as

�Sz,diel = sin

(
2 tan−1

(
akx

π
cot

(
πy

a

)))
. (6)

This equation indicates symmetrical photonic spin reversal for
forward- and backward-propagating waves, which will have
the kx of the same magnitude but positive and negative signs,
respectively.

Let us consider a transverse electric (TE) mode of propa-
gation in a simple metallic rectangular waveguide filled with
nongyrotropic material as shown in Fig. 6(a). The magnetic
field of the propagating mode has out-of-phase longitudinal
and transverse components, which results in a transverse pho-
tonic spin. We call this the structure-induced spin because
it arises from the bounded nature of wave propagation. This
photonic spin �S = Im{ �H∗ × �H} computed over the values
obtained through CST Microwave Studio simulation is shown
for the forward and backward propagation in Figs. 6(b) and
6(c), respectively. It can be observed that the spin profile is
symmetric about the center (y = 0), and with the reversal of
the direction of propagation, the sign of the spin profile also
reverses.

B. Material-induced spin versus spin-momentum locking

We have seen in Sec. III that gyrotropic medium exhibits
material-induced spin where the two counterpropagating
modes have equal and aligned spins. On the other hand,
the structure-induced spin reverts its direction for counter-
propagating modes. In a scenario where both these spins
are oriented along the same axis, we would expect the
material-induced spin to maintain its direction on the reversal
of propagation. On the contrary, the structure-induced spin
would tend to reverse its direction due to spin-momentum
locking. This happens in a waveguide filled with a gyromag-
netic medium which is also biased in the direction of the
structure-induced spin.

Let us consider a rectangular waveguide with dimensions
similar to that of the dielectric waveguide of Sec. IV A [see
Fig. 7(a)], but filled with gyromagnetic material and biased
along the +ẑ direction. The material parameters μ′ and κ ′ are
1.99 and 0.69, respectively. The dielectric permittivity is εr =
14. k0 corresponds to the frequency of 7 GHz. This structure

FIG. 6. (a) 3D view of the rectangular waveguide to be simu-
lated. Photonic spin profile of �H generated using CST simulation for
a dielectric-filled rectangular waveguide, corresponding to (b) for-
ward propagation and (c) backward propagation. Conservation of
spin-momentum locking is visible. The broader and thinner widths of
the waveguide are 8 and 3 mm, along ŷ and ẑ axes, respectively. Rel-
ative permittivity of the dielectric is εr = 14, and k0 corresponds to
the frequency of 7 GHz. Perfect electric conductor (PEC) boundary
conditions are enforced. CST simulations are performed considering
the basis function of e j(kxx−ωt ).

is simulated using CST Microwave Studio to investigate the
photonic-spin profile over the cross section of the waveguide
for both forward and backward propagation. The EM wave
propagation follows a TE10 mode. Figures 7(b) and 7(c) show
the photonic-spin profile for �H corresponding to forward and
backward wave propagation, respectively. As opposed to the
symmetric spin profile of structure-induced spin, where the
positive and negative spins exist in equal proportions, here,
the region of negative spin exceeds that of the positive spin.
This is in agreement with the observed material-induced spin
for propagation along the x-y plane. Compared to the spin of
the dielectric-filled waveguide, there is a relative expansion
of the negative-spin region and shrinkage of the positive-spin
region over the cross section. Moreover, the zero-spin region
is offset from the center, which asserts the asymmetry of the
spin profile. In addition, the negative spin dominates for both
the forward and backward propagation, indicating the pres-
ence of material-induced spin. This asymmetric mode profile
can have several applications in nonreciprocal waveguiding
structures. For instance nonreciprocal mode conversion was
reported in Ref. [11]. However, the photonic-spin origin of the
nonreciprocity in the mode profile was not pointed out there.

C. Gyrotropy-induced cutoff

To get a better physical understanding of this interaction
between material-induced spin and structure-induced spin,
we analytically explore a parallel plate waveguide filled with
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FIG. 7. CST Microwave Studio simulation results, comparison
of the spin-profile nonreciprocity for forward- and backward-
propagating wave, comparing dielectric filled (εr = 14) and gy-
rotropic material filled (ẑ biased with εr = 14, μ′ = 1.99, and κ ′ =
0.69) rectangular waveguide. Free-space propagation constant k0

corresponds to the frequency of 7 GHz. Spin profile is represented for
the X -Y plane at z = 0. (a) 3D view of the waveguide, l = 30 mm,
a = 8 mm, and b = 3 mm. Uniform magnetic bias H0 is represented
as purple arrows along +ẑ. Magnetic field spin profile for gyrotropic
material filled waveguide with (b) forward and (c) backward propa-
gation, respectively. CST simulations are performed considering the
basis function of e j(kxx−ωt ).

gyromagnetic material. The parallel plate waveguide has an
infinite extension along the ẑ direction, enabling a 2D analysis
in the x-y plane. The side view of the waveguide is shown
in Fig. 8(a). The gyromagnetic medium is biased along +ẑ,
which is aligned along the direction of structure-induced spin.
The plate separation is 6 mm, and PEC boundary conditions
are enforced.

The spin profile corresponding to the forward propa-
gation along the waveguide is shown in Fig. 8(b). The
asymmetrical spin profile is visible. Negative spin domi-
nates the overall photonic-spin profile. Gyromagnetic medium
parameters are μ′ = 1.99 and κ ′ = 0.69. Our analytical ap-
proach highlights spin asymmetry and nonreciprocity more
prominently.

As we increase the gyrotropic term κ ′, the material-induced
negative spin dominates, and the positive spin diminishes.
This is shown in Fig. 8(c) for the forward-propagating mode.
When κ ′ = 0, the spin profile is symmetric. However, as
the magnitude of κ ′ increases, the spin profile starts becom-
ing more asymmetric, with a greater region of the cross
section trying to align with the material-induced spin. The
structure-induced spin, however, tries to maintain the positive
and negative spin profile across the cross section. Once the
positive spin ceases to exist, it triggers a cutoff condition in
wave propagation. We call this the gyrotropy-induced cutoff.

FIG. 8. (a) Side view of the parallel plate waveguide filled with
gyrotropic material. Magnetic bias is along +ẑ. (b) Ŝz spin as a color
map for forward propagation. Plate separation distance a = 6 mm,
μ′ = 1.99, and κ ′ = 0.69. k0 corresponds to the frequency of 7 GHz.
The spin tries to align mostly along the direction of material-induced
spin, resulting in an asymmetric mode profile. (c) Asymmetry of
the spin profile Sz along the cross section for varying κ ′. (d) The
gyrotropy-induced cutoff as a result of increased κ ′.

Figure 8(d) shows the diminishing of the propagation constant
kx with the increasing dominance of material-induced spin. As
we increase the magnitude of κ ′, the suppression results in a
gyrotropy-induced cutoff, where kx goes to zero.

V. CONCLUSION

In this paper, we have investigated the photonic-spin profile
in a general gyromagnetic medium. We have revealed the
relationship between the topology of isofrequency surfaces
and the underlying photonic-spin profile. We have shown that
gyrotropy can completely suppress an isofrequency surface
or support an otherwise nonexistent surface. Further, we have
shown that the material-induced spin violates spin-momentum
locking, which results in a conflict with the structure-induced
spin in a waveguiding structure. Due to this conflict, an
asymmetric mode profile and a gyrotropy-induced cutoff are
observed in guided-wave structures. Engineering gyrotropy,

023528-7



RAJARSHI SEN AND SARANG PENDHARKER PHYSICAL REVIEW A 105, 023528 (2022)

along with permeability and permittivity, can provide an addi-
tional degree of freedom for designing engineered materials.
Further, since the external biasing field can tune gyrotropy,
the results presented in this paper may lead to a new class of
gyrotropy-controlled tunable components.

APPENDIX A: DERIVATION OF 3D ISOFREQUENCY
SURFACE AND FIELD EQUATIONS

Wave propagation in a medium can be understood with the
help of its propagation constant k along the principal axes.

These principal components of the propagation constant along
x̂, ŷ, and ẑ in the polar form are kr sin θ cos φ, kr sin θ sin φ,
and kr cos θ , respectively. Using these values of k along the

principal axes, we find a k-tensor
↔
k , such that the curl oper-

ation for the electric and magnetic field can be replaced with

a matrix multiplication with the
↔
k ; i.e., ∇ × �E and ∇ × �H is

equivalent to
↔
k · �E and

↔
k · �H , respectively. The generalized

3D k-tensor
↔
k in the polar form is

↔
k =

⎡
⎣ 0 −kr cos θ kr sin θ sin φ

kr cos θ 0 −kr sin θ cos φ

−kr sin θ sin φ kr sin θ cos φ 0

⎤
⎦. (A1)

Using this
↔
k in the wave equation of the form det([

↔
k ·

↔
k + εrk2

0
↔
μr]) = 0, we get

0.5εrk2
0

(
k4

r (μ′ + 1) + 2ε2
r k4

0 (μ′2 − κ ′2) + εrk2
0k2

r (κ ′2 − μ′(3 + μ′))

− k2
r

(
k2

r (μ′ − 1) + εrk2
0 (κ ′2 + μ′ − μ′2)

)
cos 2θ

) = 0. (A2)

Solving Eq. (A2) for the roots gives the solution kr . We get two independent solutions from this biquadratic equation as the two
isofrequency surfaces:

kr1 = √
εrk0((κ ′2 − 3μ′ − μ′2 − cos 2θ (κ ′2 + μ′ − μ′2) + (8(μ′2 − κ ′2)(−1 − μ′ + (μ′ − 1) cos 2θ )

+ (−κ ′2 + μ′(3 + μ′) + (κ ′2 + μ′ − μ′2) cos 2θ )2)0.5)/(2(−1 − μ′ + (μ′ − 1) cos 2θ )))0.5, (A3)

kr2 = √
εrk0((κ ′2 − 3μ′ − μ′2 − cos 2θ (κ ′2 + μ′ − μ′2) − (8(μ′2 − κ ′2)(−1 − μ′ + (μ′ − 1) cos 2θ )

+ (−κ ′2 + μ′(3 + μ′) + (κ ′2 + μ′ − μ′2) cos 2θ )2)0.5)/(2(−1 − μ′ + (μ′ − 1) cos 2θ )))0.5. (A4)

We see that the kr solutions are independent of the azimuth variable φ, which supplements our approach of analyzing the
isofrequency surface as its two-dimensional variants as isofrequency contours. Using the wave equation for the elimination

of the magnetic field [
↔
k ·

↔
k + εrk2

0
↔
μr] · �H = 0, we find the y and z components of the magnetic field with respect to the x

component:

Hy = Hx
jεrk2

0κ
′ cos φ + (

k2
r − εrk2

0μ
′) sin φ(

k2
r − εrk2

0μ
′) cos φ − jεrk2

0κ
′ sin φ

, (A5)

Hz = Hx

(
k4

r − 3εrk2
0k2

r μ
′ + 2ε2

r k4
0 (μ′2 − κ ′2) + k2

r

(
k2

r − εrk2
0μ

′) cos 2θ
)

csc θ sec θ

2k2
r

((
k2

r − εrk2
0μ

′) cos φ − jεrk2
0κ

′ sin φ
) . (A6)

Equations (A5) and (A6) give the Hy and Hz components of the magnetic field with respect to Hx, respectively.

APPENDIX B: DERIVATION OF 2D ISOFREQUENCY CURVES AND FIELD EQUATIONS

Apart from the 3D isofrequency surface equations of Appendix A, it is helpful to have dispersion equations for two-
dimensional isofrequency curves. This becomes useful when we take advantage of the axial symmetry of 3D isofrequency
surfaces.

The
↔
k defining the wave propagation in the 2D X -Z plane can be defined as

↔
k =

⎡
⎣ 0 −kr cos θ 0

kr cos θ 0 −kr sin θ cos φ

0 kr sin θ cos φ 0

⎤
⎦. (B1)

Using this
↔
k in det([

↔
k ·

↔
k + εrk2

0
↔
μr]) = 0, we get

εrk2
0

(
k4

r cos4 θ − (
εrk2

0 − k2
r sin2 θ cos2 φ

)(
εrk2

0 (κ ′2 − μ′2) + k2
r μ

′ sin2 θ cos2 φ
)

+ cos2 θ
(−2εrk2

0k2
r μ

′ + k4
r (1 + μ′) sin2 θ cos2 φ

)) = 0. (B2)
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We solve Eq. (B2) for kr to get two independent equations defining the isofrequency curves in the 2D X -Z plane:

kr1 = √
εrk0((μ′(2 cos2 θ + sin2 θ cos2 φ) + sin2 θ cos2 φ(μ′2 − κ ′2) + (4κ ′2 cos4 θ + 4κ ′2 sin2 θ cos2 θ cos2 φ

+ (κ ′2 + μ′ − μ′2)2 sin4 θ cos4 φ)0.5)/(2(cos2 θ + sin2 θ cos2 φ)(cos2 θ + μ′ sin2 θ cos2 φ)))0.5, (B3)

kr1 = √
εrk0((μ′(2 cos2 θ + sin2 θ cos2 φ) + sin2 θ cos2 φ(μ′2 − κ ′2) − (4κ ′2 cos4 θ + 4κ ′2 sin2 θ cos2 θ cos2 φ

+ (κ ′2 + μ′ − μ′2)2 sin4 θ cos4 φ)0.5)/(2(cos2 θ + sin2 θ cos2 φ)(cos2 θ + μ′ sin2 θ cos2 φ)))0.5. (B4)

Using the wave equation for the elimination of the magnetic

field [
↔
k ·

↔
k + εrk2

0
↔
μr] · �H = 0, we find the y and z compo-

nents of the magnetic field with respect to the x component:

Hy = Hx
jεrk2

0κ
′

k2
r (cos2 θ + sin2 θ cos2 φ) − εrk2

0μ
′ , (B5)

Hz = Hx
k2

r sin θ cos θ cos φ

k2
r sin2 θ cos2 φ − εrk2

0

. (B6)

Equations (B5) and (B6) give Hy and Hz components of �H
with respect to Hx, respectively. Note that, here, the term
φ takes discrete values of 0◦ and 180◦ for forward- and
backward-propagating waves, respectively. A simpler form
for computation of these field components will be obtained
by removing the φ term and varying θ from 0◦ to 360◦ (with
respect to the z axis) instead of the conventional form of 0◦ to
180◦.

APPENDIX C: DEFINITION OF PHOTONIC
SPIN FOR MAGNETIC FIELD

The third Stokes parameter S3 denotes the spin sense and its
magnitude in an arbitrary direction. The magnetic field vector
�H in the Cartesian coordinate system can be written in terms

of its directional elements as

�H = Hxx̂ + Hyŷ + Hzẑ. (C1)

Similarly, the conjugate magnetic field vector �H∗ is

�H∗ = H∗
x x̂ + H∗

y ŷ + H∗
z ẑ. (C2)

The individual directional components of �H are

Hx = |Hx| exp jφx,

Hy = |Hy| exp jφy, (C3)

Hz = |Hz| exp jφz.

We normalize the magnetic field components for simplicity of
computation. The cross product of �H∗ and �H is

�H∗ × �H = 2 j|Hy||Hz| sin(φz − φy)x̂ + 2 j|Hz||Hx|
× sin(φx − φz )ŷ + 2 j|Hx||Hy| sin(φy − φx )ẑ.

(C4)

The imaginary part of Eq. (C4) is

Im( �H∗ × �H ) = S3xx̂ + S3yŷ + S3zẑ. (C5)

The third Stokes parameter S3 is sufficient to describe the
spin profile in any arbitrary direction as a vector sum of spins
along the principal axes. The third Stokes parameters for the
principal axes are

S3x = 2|Hy||Hz| sin(φz − φy),

S3y = 2|Hz||Hx| sin(φx − φz ), (C6)

S3z = 2|Hx||Hy| sin(φy − φx ).

The third Stokes parameter in Eq. (C6) is normalized to limit
S3 within −1 to 1.

APPENDIX D: DERIVATION OF THE
SPIN-CROSSOVER ANGLE

The spin-crossover angle separates the angular region,
defining parallel and antiparallel spin. We use a simplified po-
lar form for defining this spin-crossover angle, which requires
the angle measurement to start from the kx axis and traverse

counterclockwise. This leads to a modified
↔
k sc tensor in the

Cartesian form,

↔
k sc =

⎡
⎣ 0 −kr sin(ζsc) 0

kr sin(ζsc) 0 −kr cos(ζsc)
0 kr cos(ζsc) 0

⎤
⎦. (D1)

Using modified wave equation [
↔
k sc ·

↔
k sc+ εrk2

0
↔
μr] · [ �H ] = 0,

the matrix defining the field component relationship is de-
rived. The magnetic field spin in the x-y plane is defined as

Hx = −Hy
εrk2

0μ
′ − k2

r

jεrk2
0κ

′ . (D2)

We observe kr = k0
√

εrμ′ leads to zero spin along the bias
axis. This point is termed the spin-crossover point as it acts
as the boundary separating parallel and antiparallel material-
induced spin. Solving the modified wave equation for kr , we
get two expressions representing the two independent isofre-
quency surfaces. Only one of these isofrequency surfaces
demonstrates spin inversion corresponding to the propagation
angle. Equating this expression of kr with k0

√
εrμ′, we get the

spin-crossover angle as

ζsc = cos−1

(√
1

μ′

)
. (D3)
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