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Extreme events in a broad-area semiconductor laser with coherent injection
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Spatiotemporal extreme events are interesting phenomena, both from a fundamental point of view, as manifes-
tations of complexity in dynamical systems, and for their possible applications in different research fields. Here,
we present some recent results for extreme events in spatially extended semiconductor laser systems (broad-area
vertical cavity surface-emitting lasers) with coherent injection. We study the statistics of spatiotemporal intensity
peaks occurring in the transverse (x, y) section of the field perpendicular to the light propagation direction and
identify regions in the parameter space where extreme events are more likely to occur. Searching for precursors
of these phenomena, we concentrate, on the one hand, on the spatiotemporal dynamics of the field phase and,
in particular, on the presence of optical vortices in the vicinity of an extreme event. On the other hand, we
focus on the laser gain dynamics and the phase-space trajectories of the system close to the occurrence of an
extreme event. Both these complementary approaches are successful and allow us to shed some light on potential
prediction strategies.
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I. INTRODUCTION

In the last few decades, extreme events have been studied
in many different physical systems, from hydrodynamics to
optics. In the latter field, they have been defined as optical
rogue waves (RWs) [1] and were the topic of a vast amount of
literature in many different optical systems (for a review, see
Refs. [2–4] and references therein). Optical fibers and fiber
lasers have been identified since the beginning as systems
of choice for optical rogue-wave studies due to their natural
longitudinal extension (see, for instance, Refs. [5–7] for con-
servative cases and Refs. [8,9] for dissipative rogue waves in
resonators and laser devices).

Semiconductor systems have also emerged as experi-
mentally convenient test beds for the analysis of extreme
phenomena. For instance, low-dimensional semiconductor
systems, in which the wave envelope is severely constrained
by boundary conditions, served to demonstrate that the emer-
gence of rogue events can be associated with an external
crisis in a chaotic regime [10], thus showing the deterministic
character of these extreme events. This deterministic nature
was also revealed in the analysis of delayed-feedback semi-
conductor lasers in which the effect of increased noise reduces
the probability of rogue waves by preventing the dynamics
from approaching the narrow path in the phase space that leads
to extreme pulses [11].

Various mechanisms have been identified for the formation
of rogue waves, from modulational instability [12] to soli-
ton and breather occurrence [5] and competition of extended
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structures associated with opposite signs of nonlinearity
[13,14]. Rogue waves have also been reported from the in-
teraction of optical vortices with opposite chiral charges [15].
However, a unifying mechanism for extreme-event genera-
tion in the optical context and thus their potential prediction
[16,17] remains undiscovered.

Very recently, extreme events were studied both exper-
imentally and numerically [18,19] in the intensity of the
electric field emitted by a monolithic broad-area vertical
cavity surface-emitting laser (VCSEL) with a saturable ab-
sorber for the case of a linear pump (which reduces the
number of transverse dimensions to one), and spatiotemporal
chaos was claimed to be at the dynamical origin of these
objects. The very same system has been under investigation
in a two-dimensional configuration, where spatiotemporal ex-
treme events have been identified as maxima of the field
intensity in the three-dimensional space (x, y, t ) [20] and
can be controlled through harmonic pump modulation [21].
Extreme events have been analyzed following their various
definitions and through different RW indicators, and the best
parameter choice to observe them has been identified. Further-
more, it has been possible to determine the typical temporal
and spatial size (FWHM) expected for such extreme events
and to compare it with stationary and oscillating solitons.
As suggested in Ref. [22] for a similar system, we believe
that two-dimensional spatial effects play a crucial role in the
formation of extreme events.

Spatially extended semiconductor lasers in a macroscopic
ring-cavity configuration and with coherent injection have
also been extensively studied in recent years [23,24], and
extreme events have been identified in different parametric
regimes. Interestingly, the dynamics of the electric-field phase

2469-9926/2022/105(2)/023525(9) 023525-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4175-5832
https://orcid.org/0000-0002-5491-8082
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.023525&domain=pdf&date_stamp=2022-02-25
https://doi.org/10.1103/PhysRevA.105.023525


RIMOLDI, ESLAMI, PRATI, AND TISSONI PHYSICAL REVIEW A 105, 023525 (2022)

seems to play an important role in the generation of extreme
events, allowing us to draw a natural analogy with the par-
ticular kind of dissipative solitons existing in these systems,
i.e., phase solitons [25], with which extreme events share their
chiral nature.

In this paper we consider a broad-area semiconductor laser
(VCSEL) with coherent injection [26] and focus on the (spa-
tiotemporal) “turbulent” regime occurring for low values of
injection where the lower branch of the homogeneous station-
ary solution (HSS) is Hopf unstable. A similar regime was
studied in [15] for a generic class-A laser when the atomic
medium and injection are at resonance with each other, i.e.,
with � = 0, and was characterized as vortex turbulence. We
would like to stress that, even if the model here preserves
some of the features illustrated in [15] (for instance, we will
see that the phase of the electric field still seems to play an
important role), the system dynamics is dramatically different.
This is because (i) the insertion of the linewidth enhancement
factor α for semiconductor lasers in the model equations,
playing the role of the atomic detuning �, changes the degree
of complexity of the observed turbulence and (ii) the carrier
density dynamics is not fast enough to be (adiabatically or
nonadiabatically) eliminated, which leads to interesting con-
sequences in the prediction of extreme events.

Finally, some dynamical similarities can be drawn with
the model studied in [23,24], for a semiconductor ring laser
with injection. As mentioned already in [27], for a model
fairly similar to the one utilized here, the exponential de-
cay of the merging time of two cavity solitons (CSs) as a
function of their initial distance somehow resembles the tran-
sition time necessary for two phase solitons carrying a single
chiral charge along the propagation direction to merge in a
phase soliton complex carrying a double charge. The main
difference between these two cases consists of the fact that
in [23,24] the system (single) spatial dimension was given
by the propagation along the ring cavity, while here the two
spatial dimensions describe the laser transverse plane and are
perpendicular to the propagation direction.

This paper is structured as follows. In Sec. II, we illustrate
the theoretical model and show the main results of a linear
stability analysis of the homogeneous steady-state solution.
In Sec. III, we show the results of numerical simulations and
statistically prove the presence of extreme events in the system
and study the mechanism leading to their generation, with
a particular focus on optical vortices. In Sec. IV, we study
rogue-wave occurrence in terms of optical-gain dynamics, and
in Sec. V, we prove that these events persist in the presence of
a finite-pump profile. Finally, in Secs. VI and VII, we discuss
our work, draw our conclusions, and suggest some possible
extensions of these results.

II. THEORY

The model describing a broad-area semiconductor laser
(VCSEL) with injection is given by the following set of rate
equations:

Ė = σ[EI − (1 + iθ )E + (1 − iα)DE + (d + i)∇2
⊥E ],

Ḋ = μ − D(1 + |E |2), (1)

FIG. 1. (a) Homogeneous stationary solution (HSS) for the laser
intensity Is = |Es|2 as a function of EI . (b) The same HSS plotted
together with the branch for the stable turbulent solution (orange line
with dots). (c) Stationary and (d) Hopf instability domains for the
fixed parameters α = 4, θ = −2, μ = 6, d = 0.01, and σ = 400.

which derives from a set of effective Maxwell-Bloch
equations known for properly describing this kind of system
[26], where the polarization of the semiconductor medium has
been adiabatically eliminated. The dynamical variables E and
D are, respectively, the slowly varying electric field and the
semiconductor carrier density. EI is the injected field ampli-
tude, θ represents the detuning between the cavity and the
injected field frequencies, α is the linewidth enhancement fac-
tor typical of semiconductor lasers, σ is the ratio of the carrier
lifetime to photon lifetime, and μ is the injection current (the
free-running laser threshold is μthr = 1). For θ + α = 0 the
injected field is resonant with the free-running laser frequency.
Finally, d is a diffusive term phenomenologically introduced
to take into account a finite linewidth for the laser gain. A
detailed analytic derivation for this term from a nonstandard
adiabatic elimination of the polarization can be found in [28]
for a broad-area laser with a saturable absorber. Time is scaled
to the carrier lifetime (≈1 ns), and space is scaled to the square
root of the diffraction parameter (leading to a space unit of
about 4 μm).

The HSS for the model in Eq. (1) reads Es = |Es| exp(iφs)
and Ds = μ/(1 + |Es|2), with

E2
I = |Es|2[(1 − Ds)2 + (θ + αDs)2], (2)

φ = arctan

(
θ + αDs

Ds − 1

)
. (3)

In Fig. 1(a) we plot Eq. (2) for the laser intensity as a function
of the injection amplitude for the following choice of param-
eters: α = 4, θ = −2, μ = 6, and σ = 400. In particular, the
given value of σ implies the values τp = 2.5 ps for the photon
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lifetime and τc = 1 ns for the carrier recombination time,
according to the literature and experimental measurements
[26]. The diffusion term d = 0.01 was chosen as the smallest
possible value to avoid self-collapsing. In Figs. 1(c) and 1(d)
we illustrate, respectively, the stationary and Hopf instability
domains in the plane defined by the square modulus of the
transverse wave vector |k|2 = k2

x + k2
y and the laser intensity.

According to Figs. 1(c) and 1(d) the HSS is stationary unstable
in the negative-slope branch (plane-wave instability, |k| = 0)
and in part of the upper branch (modulational or Turing insta-
bility, with |k| �= 0) and Hopf unstable in the lower branch.

For a slightly different model and a lower current value
that is still above the free-running laser threshold, the in-
teraction of cavity solitons was recently investigated in the
presence of a lower HSS branch that was only partially Hopf
unstable and compared with similar results for a soliton merg-
ing time in hydrophobic materials [27]. Here, we focus instead
on the model dynamics when the system undergoes Hopf
instability in its entire lower branch (i.e., for low values of
injection). We would also like to point out that, different
from [20], in which parameter regions with the coexistence
of CSs and spatiotemporal chaos could be found, in the
present context CSs exist only where (part of) the lower HSS
branch is stable, as in [27], given the requirement for a stable
background.

Although stable CSs have been reported to exist atop tem-
porally (due to Hopf instability) [26,29] and/or spatially (due
to Turing instability) [30] unstable backgrounds, in the present
model a profile comparison with CSs is not possible since ex-
treme events are found for values of the current for which the
coexistence of a higher-intensity spatially modulated branch
and a homogeneous low-intensity branch, which is essential
to the creation of CSs, is absent. For the choice of parameter
values indicated above, the system exhibits a turbulent behav-
ior in the branch highlighted by the orange line with dots in
Fig. 1(b) for 0 < EI < 2.6, where we illustrate the temporal
average of the spatial maxima recorded in the transverse plane
during 25-ns-long simulations. In Fig. 1(b), a decrease in the
value of averaged maxima for higher values of injection is
evident.

III. EXTREME EVENTS AND THEIR STATISTICS

In order to characterize the presence of extreme events
in the system, we ran simulations for the set of parameters
mentioned in the previous section, fixed μ = 6, and varied
the injection amplitude EI (and, vice versa, fixed EI = 0.5
and varied μ). For each simulation we initialized the system
long enough to overcome any transient behavior and then
performed data acquisition for a 25-ns-long window (unless
stated otherwise). The sampling rate in the transverse plane
was 1 ps on a grid size of 256 × 256 pixels (corresponding
approximately to 256 × 256 μm2 when a space step of 0.25 is
adopted, as in most of our simulations).

An estimation of the data extremeness can be obtained by
computing the probability density function (PDF) of all the
values explored by the electric-field intensity I during the
simulations. As discussed in the literature [2], if the “sur-
face elevation” of the real and imaginary parts of the electric
field follows Gaussian statistics, that is reflected by negative

FIG. 2. Kurtosis K, in blue (lower line), and extreme-event (EE)
ratio, in red (upper line), of the total-intensity PDF for simulations
with different (a) injection amplitudes EI and (b) pump currents, re-
spectively for μ = 6 (a) and EI = 0.5 (b). From these two indicators
we can observe that extreme events are more likely to be observed for
low values of EI , while variations of pump current for fixed injection
do not have a significant effect on extreme-event occurrence.

exponential behavior as exp(−Itot/〈Itot〉)/〈Itot〉 for the PDF
of the total intensity. Hence, any positive deviation from a
negative exponential statistics has to be considered a signa-
ture of the presence of extreme events in the system. An
indicator often used to characterize the extreme nature of the
turbulent regime as a function of the injection is the kurtosis
K, which is the ratio of the fourth momentum about the mean
of the data to the square of its variance. This statistical tool
gives a measure of the tails of a distribution. Even though
the kurtosis should not be interpreted as a measure of the
heaviness of a distribution tail [31], a value of K higher than
9 (which corresponds to a negative exponential) shows how
much the tail of the considered distribution positively deviates
from a negative exponential. In Fig. 2(a) we illustrate, with
the blue lower line, the kurtosis of the total-intensity PDFs
obtained from simulations for different values of optical in-
jection and fixed pump current μ = 6. Further, we display,
with the red upper line, the ratio of extreme events occurring
during each simulation according to a specific threshold of
intensity. This threshold is defined in the literature (see, e.g.,
[2] and references therein) and corresponds to the mean of
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FIG. 3. Statistical analysis for a 250-ns-long simulation at μ = 6
and EI = 0.1. (a) PDF of the total intensity, where we indicate
(light-blue solid line) the negative exponential behavior which would
be followed by the data in the case of Gaussian statistics. (b) PDF
of the spatiotemporal maxima occurring during the simulation. The
magenta (dark gray) and green (light gray) curves represent the
Weibull and Gumbel PDFs from extreme value theory. The vertical
black [in (a)], red [in (b), at lower intensity], and blue [in (b), at
higher intensity] dashed lines indicate the extreme-event thresholds
discussed in the text. Other parameters are α = 4, θ = −2, σ = 400,
and d = 0.01.

the total intensity plus 8 times its standard deviation. Both
indicators support the claim of extreme events in the system.
Further, we can clearly observe that the biggest deviations
from the negative exponential behavior of the data happen for
low values of injection and correspond to a higher percentage
of extreme events. The same is done in Fig. 2(b) for fixed
injection amplitude (EI = 0.5) and variable pump current μ

(starting close to threshold), showing that the pump current
does not appear to play a significant role in extreme-event
occurrence.

Motivated by these results, we focus on a longer sim-
ulation at EI = 0.1, μ = 6, and we report in Fig. 3(a) the
total-intensity PDF for a 250-ns-long simulation (K = 9.92).
We can observe the clear presence of a heavy tail in the data.
Furthermore, we indicate with the vertical black dashed line
the threshold for extreme events, defined as the average of the
field intensity values plus 8 times their standard deviation.

FIG. 4. (a) Three-dimensional intensity profile of an extreme
event in the spatial transverse plane for the 250-ns-long simulation
at μ = 6 and EI = 0.1 (s.u. stands for spatial units) and its temporal
profile (b), zoomed in (c). The temporal axis in (b) and (c) and the
space grid in (a) are centered on the extreme-event maximum.

In Fig. 3(b) we also illustrate the PDF of the spatiotemporal
maxima occurring during the simulation. A spatiotemporal
maximum is defined as a local spatial maximum in the trans-
verse plane recorded in its temporal peak value [20]: statistics
performed for data sets of spatiotemporal maxima allows us to
identify any extreme event with a single data element, which
is different from the previous analysis in which multiple data
points correspond to a single event. With the vertical red
dashed line (at lower intensities) we report another threshold
for extreme events given by 2 times the significant wave height
Hs, which is the mean of the highest third of the maximum
data. Further, we report the more restrictive threshold (in blue,
at higher intensities), which was already introduced in [20],
given by the mean of the maximum data plus 8 times their
standard deviation. By means of these two thresholds, this al-
ternative statistical study further supports the claim of extreme
events in the system. The magenta (dark gray) and green (light
gray) curves represent the Weibull [axk−1 exp(−xk ) with x =
Imax/λ and a = k/λ] and Gumbel (exp{−[z + exp(−z)]}/β,
with z = (Imax − 〈Imax〉)/β + γ and γ being Euler’s con-
stant) PDFs as families of the generalized extreme-value
distribution. The data are found to follow relatively well a
Gumbel distribution but display a clear deviation for very high
values of intensity. In general, in comparison with the sys-
tem studied in [20] (a broad-area semiconductor laser with
an intracavity saturable absorber and no external injection),
we notice that the total-intensity statistics are more sensitive
than the spatiotemporal maximum statistics to the presence
of extreme events. In Fig. 4 we report the three-dimensional
profile of an extreme event occurring during the simulation at
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FIG. 5. Temporal trace in a single grid point for (a) laser intensity
I (in logarithmic scale) and population D and (b) for phase φ and
population in the presence of the extreme event illustrated in Fig. 4.

EI = 0.1, μ = 6 [Fig. 4(a)] as well as the (zoomed) temporal
profile in the spatial grid point where the extreme event takes
place [recentered at the occurrence time; Figs. 4(b) and 4(c)].
Given the periodic boundary conditions, we rearrange the
spatial grid in Fig. 4(a) in order to visualize the extreme event
at the center of the transverse plane. We can notice already
in Fig. 4(b) that prior to an extreme event the laser intensity
exhibits a couple of regular pulsations onto an almost zero
background. In Fig. 5 we illustrate temporal profiles of the
same maximum intensity point in logarithmic scale together
with that of the population variable D [Fig. 5(a)] and the
population at the location of the same maximum intensity
point along with the (unwrapped) phase of the slowly varying
envelope of the electric field [Fig. 5(b)].

The entire process of extreme-event occurrence can be
observed in several stages: (i) 20 ns before the occurrence
of an extreme event the population variable starts increasing
and pulsating. (ii) This progressively leads to lower values
of intensity, also through a pulsating behavior. (iii) When the
population variable reaches its maximum and starts decreas-
ing, the extreme event occurs. (iv) Finally, D rapidly drops
to lower values (≈0–1). From Fig. 5(b) we can also observe
that, even before D starts increasing, the electric-field phase
has started to monotonically decrease (instead of oscillating
around zero, which is the usual behavior at other points of the
grid). This dynamical description seems to be common to all
the extreme events encountered for different values of pump
current μ and injection EI .

In Fig. 6 we illustrate the trajectory of the same point in
(I, φ, D) phase space when approaching the extreme event.
The blue solid line highlights the unstable focus point C
[24] on the lower branch of the stationary curve in Fig. 1(a)
for the chosen value of the injection amplitude (EI = 0.1).
C has a specific value in phase, but given the large excursion
in φ, even marking such a value with a dot (with modulus
2π ) visually results in a line along the phase axis for this
scale. The trajectory evolves in time from green to yellow (in
the direction of the arrows), and as the trajectory approaches
the fixed point C, the phase starts to decrease, the amplitude
of the electric field diminishes, and the population variable
continues to increase. When the trajectory grows close enough
to the fixed point, the repulsive nature of C pushes the system
to spike in intensity, which is accompanied by a rapid decrease

FIG. 6. Three-dimensional representation of the (I, φ, D) phase
space for the trajectory of a single grid point following the develop-
ment of an extreme event. The trajectory evolves in time from green
to yellow, as also illustrated by the arrows. The blue line (at high D)
highlights the unstable focus C of the HSS for the chosen value of
injection (EI = 0.1).

in population. Finally, after the trajectory reaches its minimum
in intensity and population, D starts to oscillate around 1. For
longer times (t > 80 ns), not illustrated in Fig. 6, the phase
of the electric field starts to oscillate around a constant value,
which would be zero if we took into account the 2π modulus,
which occurs at other points of the spatial grid lacking ex-
treme events. Such a specific behavior for the phase variable
allows us to anticipate the formation of extreme events up to
20 ns before their actual occurrence, which may potentially
pave the way for their suppression through carefully thought
out experimental techniques [32].

To further elucidate the role of the electric-field phase
in the dynamics, its behavior in the transverse plane at the
extreme-event occurrence time is shown in Fig. 7(a), where
a red cross marks the location where the extreme event takes
place. We can observe the presence of concentric structures
around the red cross simultaneously with the occurrence of

FIG. 7. (a) Phase and (b) contour plot for the real [blue (dark
gray)] and imaginary [red (light gray)] parts of the electric field at
the time of extreme-event occurrence in the spot highlighted by the
red cross. In (b) the color-filled areas correspond to positive values
for the respective variables; hence, the border of each area identifies a
zero isoline. The crossings between blue and red isolines, highlighted
by green circles, identify optical vortices.
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FIG. 8. Intensity (black line with circles) and optical gain (blue
line with squares) values versus time at the point where the extreme
event occurs (at time 0). The peak of the optical gain happens
4 ps before the extreme event. Control parameters are μ = 8 and
EI = 0.5.

ripples in the transverse profile of the laser intensity also
evident in Fig. 4(a). It is important to observe that these
ripples appear in the transverse plane long before the ac-
tual occurrence of the extreme event and are associated with
the formation of vortices in the transverse plane around the
extreme-event future location. To better justify this point in
Fig. 7(b) we illustrate a contour plot for the real [blue (dark
gray)] and imaginary [red (light gray)] parts of the electric
field, where color-filled areas correspond to positive values for
Re(E ) and Im(E ), and the border of each area corresponds to a
zero isoline for the respective variable. Each crossing between
blue and red isolines in Fig. 7 corresponds to a zero for the
laser intensity and gives rise to an optical vortex [33], further
highlighted by green circles. Even if optical vortices (both
positive and negative) occur all over the transverse plane, their
specific configuration around extreme-event locations seems
to participate in the formation of high-intensity structures.

IV. OPTICAL-GAIN ANALYSIS

Alongside the phase and population, a closer look into
the optical-gain dynamics of the considered system can
shed further light on the underlying mechanism of extreme-
event formation and its prediction. The optical gain for the
model in Eq. (1) can be defined as the absolute value of
(1 − iα)ED [26].

For a given set of control parameter values, μ = 8 and
EI = 0.5, we sketch in Fig. 8 the temporal trace of optical
gain and intensity at the spatial location of an extreme event.
Here, we observe that the optical gain reaches its maximum
value 4 ps before the extreme-event occurrence.

To further this point, in Fig. 9 we show the trajectory in
the subspace of intensity and optical gain. Here, the system
trajectory is initially fluctuating around optical-gain values of
8 (a.u.) and usually remains below 20. Then, this fluctuating
behavior changes, and the optical gain starts to grow beyond
70 about 22 ps before the occurrence of the extreme event,
which increases the temporal range of a possible prediction
window. Two clear peaks for the optical gain (marked by
red asterisks in Fig. 9), one immediately before the event
and another one after the gain starts its large excursion, can
act as warnings for the upcoming extreme intensity peak. We
can also observe that the extreme-event threshold based on the
values of total intensity (vertical blue dashed line in Fig. 9)

FIG. 9. Trajectory of the system in the (intensity, optical gain)
subspace. When the fluctuating trend of the trajectory breaks, the
relevant excursion leading to an extreme event begins. The arrows
show the trajectory direction. The extreme event is marked by a red
cross, while the optical-gain peaks are marked by red asterisks. The
vertical dashed line corresponds to the extreme-event threshold as
defined in Fig. 3(a). Parameters are the same as in Fig. 8.

occurs after the first optical-gain peak, which therefore seems
more sensitive as an indicator of extreme-event behavior.

In order to summarize the evolution of the laser output
in the proximity of an extreme event, we report in Fig. 10
the behavior of optical gain (top row), electric-field intensity
(middle row), and phase (bottom row) in a time window of
24 ps with an extreme event occurring at t = 12 ps (second
column). Here, we can observe a peak in the optical gain
occurring 12 ps before the formation of the extreme event
in the electric-field intensity. Note also that, while the spa-
tiotemporal maximum in optical gain occurs 12 ps before the
event, if we were to consider the beginning of the optical-gain
increase in the system trajectory, as illustrated in Fig. 9, this
would allow for a larger prediction window. Vortices visible in
the phase plots in Figs. 10(g) and 10(h) give rise to intensity
ripples in Figs. 10(d) and 10(e), and this process represents
a precursor of extreme-event occurrence in a time window
of the order of tens of nanoseconds, as discussed in the
previous section.

V. EXTREME EVENTS IN THE PRESENCE OF FINITE
CIRCULAR PUMP

In all simulations we used periodic boundary conditions,
which is required by the fast-Fourier-transform algorithm to
solve the transverse Laplacian for the diffraction and diffu-
sion terms. This assumption, which physically corresponds to
an infinitely broad area for light emission in the transverse
section of the laser, may give rise to unrealistic behaviors
in simulations. Therefore, in order to confirm the results re-
ported here, we replaced the flat pump current profile with
the following function of the transverse plane coordinates,
which simulates a finite circular pump profile with rapidly
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FIG. 10. Laser output variables in a zoom of the transverse plane
at times 9.180 ns (first column), 9.192 ns (second column), and
9.204 ns (third column). Top row: optical gain (a.u.), reaching its
maximum in (a). Middle row: electric-field intensity (a.u.), display-
ing an extreme event in (e). Bottom row: electric-field phase (rad),
showing the presence of vortices around the location of the event
(marked with a black cross). The optical-gain matrix shows a spa-
tiotemporal maximum before the emission of the extreme event.
Parameter values are the same as in Fig. 8.

decaying tails:

μ(r) = μ/2{1 − tanh[ρ(r − r0)]}, (4)

where ρ and r0 regulate the size of the tail and flat part of
the pump, respectively. In Fig. 11(a) we show the form of
this circular flat-top pump profile along the x axis on a 256 ×
256 grid, together with that of the population D profile at the
pump diameter during the simulation. In Fig. 11(b) we show
instead the transverse snapshot of the intensity at the time of
an extreme-event occurrence.

Performing the statistics of the total-intensity data in a
simulation for μ = 6 and EI = 0.5 in the case of both infinite

FIG. 11. (a) Profile of the finite-pump current of Eq. (4) (in red,
with the flat-top shape) and population (in blue) at the pump diameter
on the x axis. (b) Intensity snapshot at the time of extreme-event
formation. Parameter values are μ = 6 and EI = 0.5.

FIG. 12. Total-intensity statistics affected by finite pump:
(a) PDF in the case of an infinite (flat) pump and (b) PDF for the
circular flat-top pump. We can observe extreme events still occur in
the presence of a finite-pump profile. Parameter values are μ = 6 and
EI = 0.5 in both cases.

(flat) and finite circular pump profiles, we obtain the results
illustrated in Fig. 12, where in the second case [Fig. 12(b)]
the data outside the circular area of the pump were excluded.
Here, we can observe that, while the presence of the finite
pump affects the shape of the statistics, it does not inhibit
the presence of extreme events. Note also that while both
simulations were run for a total of 25 ns in order to compare
these two PDFs beyond a qualitative level, the simulation in
the finite-pump case should be extended so that the number
of data points considered in the statistics is the same in both
cases. However, as highlighted by Figs. 12(a) and 12(b), the
deviation of the statistics from the defined threshold is still
apparent, which makes all the arguments presented in this
paper robust.

VI. DISCUSSION

In contrast to the turbulent regime in VCSELs with a
saturable absorber [20] (where extreme events were also ob-
served), the kind of turbulence in the current system presents
different features, namely, the active contribution of vortices
in the formation of extreme events. This makes the system
dynamically closer to similar setups with smaller spatial di-
mensionality, where phase chirality is responsible for both
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the formation of phase solitons [23] and extreme events [24].
Further, we may also argue that, while in the case of Ref. [20]
spatial effects have an important role in the overall system
dynamics, which leads, for example, to the occurrence of
soliton spatial drift instability [34], in the present case, our
turbulent regime seems to develop more evidently in the tem-
poral direction. This feature locks spatiotemporal structures in
a specific spatial point, which is different from [20], in which
structures would constantly move around in the transverse
plane, and allows for a meaningful temporal profile at a single
spatial point of the cavity as well as clearer identification of
possible predictors for extreme events.

While the dynamical description illustrated in Fig. 6 is
reminiscent of the results in [24] obtained for a semiconductor
ring laser with optical injection and one spatial dimension
along propagation, the main difference from the present case
consists of the specific role played by the electric-field phase
[35]. In particular, in [24] high-peak events arose from the
interplay between positive and negative chiral charges, that is,
±2π phase rotations, which developed in the cavity due to
the simultaneous presence of three fixed points: an unstable
focus in the lower branch (point C in Fig. 6), a saddle on
the negative-slope branch, and an unstable node on the upper
branch of the HSS. In the present system, where the only fixed
point is on the lower branch of the HSS, the electric-field
phase in the location of the extreme event continuously de-
creases in time, giving rise to a very large number of negative
charges, while optical vortices form around the event location
contributing to the emergence of intensity ripples before its
occurrence.

Optical vortices in the transverse plane were identified as
a mechanism for the formation of extreme events in [15]

in a regime of vortex turbulence. In the present case, the
dynamical description is more complex due to the slow popu-
lation timescale and the semiconductor nature of the system.
In particular, while in [15] the number of optical vortices was
limited, in the present case we already noticed that vortices
occur at all times and all over the transverse plane. Neverthe-
less, their specific configuration appears to still play a role in
the formation of extreme events and is directly related to the
formation of ripples in the laser intensity. Further similarities
to the vortex turbulence of [15] remain to be investigated
through a more in-depth regime characterization and will be
addressed in future work.

VII. CONCLUSIONS

We have observed the emergence of extreme events in
a broad-area semiconductor laser with optical injection and
justified their extreme nature through statistical analysis.
Extreme events seem more frequent for high pump values
and low values of optical injection. A detailed dynamical
study on specific extreme events revealed a similar formation
mechanism that involves a monotone temporal decrease in
the electric-field phase, a pulsating increase of the population
variable, and a maximum in the optical gain preceding the
event, together with the emergence of optical vortices in the
spatial transverse plane around the spot where the extreme
event would take place. In particular, the process enhancing
extreme events starts to be visible �20 ns before the actual
occurrence of the event. While a more systematic study will
be necessary to further confirm these findings, the results
obtained in this work allow us to suggest a potential predictor
for extreme events in the system.
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