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Mean path length in refractive regular polygons and prisms
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We analytically derive the mean path length of light rays diffusely incident on refractive regular polygons
of n sides (n-gons), analyzed from the dynamical billiards perspective and from ray optics. In polygons with
sufficiently low refractive index, the mean path length is found to be equal to that in the invariant scattering case,
i.e., the product of the mean chord length with the refractive index. If the refractive index is higher than some
critical value, the mean path length is lower than the scattering value due to inaccessibility of trapped modes.
Regular odd n-gons are found to have the same mean path length as 2n-gons, when normalized against their
mean chord length. There is a discontinuity between the mean path length in high n-gons and that in a circle,
attributed to quasitrapped modes in high n-gons. This difference is removed with a small amount of absorption.
We extend the results to refractive prisms with a regular polygon base, for example, hexagonal ice crystals. For
prisms with any ergodic shaped base, we derive a simple formula for the mean path length.
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I. INTRODUCTION

The absorption of light by a particle is a fundamental prop-
erty pertaining to many areas of optics, including the studies
of atmospheric aerosols and ice crystals, spectroscopy, optical
cavities, and photovoltaic devices. Large weakly absorbing
particles may be treated using the geometric optics regime
where the absorption is derived from the path lengths of light
rays incident on any object. For a nonrefractive object the
mean path length reduces to the mean chord length, which
depends only on the ratio of area to perimeter, due to the
mean chord length theorem [1]. For a refractive material the
mean path length is much more interesting. In particular, total
internal reflection allows the possibility of trapped trajectories
which reflect indefinitely at every interaction with the surface,
which may be known as whispering gallery modes. These
are typically studied in spheres, but have also been observed
experimentally in hexagonal-based crystals [2], where rays are
not strictly trapped.

The situation changes dramatically if we consider that all
physical objects have imperfections which scatter rays ran-
domly inside the medium. In this case the mean path length
is simply related to the mean chord length by a factor of the
refractive index (in two dimensions) or its square (in three
dimensions), regardless of how quickly the light is scattered,
so long as it is scattered at all [3,4]. However, physical objects
also absorb light, and if the rate of scattering is insignificant
compared to the rate of absorption, then the nonscattering
mean path length is the relevant quantity (see [4], Supplemen-
tal Material IX). So here we study the nonscattering mean path
length, but to do this we must consider the effect of scattering,
together with concepts of dynamical billiards. A billiard is
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an idealized billiard table of any shape with a point billiard
ball that reflects specularly, i.e., the angle of reflection equals
the angle of incidence. Light rays in refracting objects are
known as dielectric billiards [5] or open billiards [6], since
if diffraction effects are negligible then rays reflect just like
billiard balls but also have a probability of refracting out of the
object. Billiard theory provides useful concepts and theorems
from studying dielectric microcavities [7], which behave like
dielectric billiards.

In this work we investigate the ray dynamics in regular
polygons, regular polygon-based prisms, and prisms with ir-
regular base shapes. In Sec. II we analytically calculate the
mean path length in polygons. Section III considers ergodicity
and its relationship to mean path length, and plots of phase
portraits which encode the ray dynamics. Section IV discusses
the effects of quasitrapped modes on mean path length. In
Sec. V we consider absorption. In Sec. VI we derive the mean
path length in polygon-based prisms. All results are checked
against a customized R, C++ Monte Carlo ray tracing code on
a standard desktop and the Rāpoi cluster.

II. MEAN PATH LENGTH IN A REGULAR POLYGON

Consider an n-sided regular polygon with a relative refrac-
tive index s > 1 to its surroundings, as shown in Fig. 1. The
polygon is illuminated by diffuse lighting which corresponds
to a Lambertian cosine distribution of rays externally incident
at each surface point. A ray hits the surface at an angle θ1,
where it may either reflect back out or refract in and change
angle according to Snell’s law sin θ1 = s sin θ2, with proba-
bility given by the Fresnel coefficients. When the ray hits the
surface from the inside it may reflect back in with the same
angle, but it may only refract out if its angle to the normal is
less than the critical angle of reflection θc = asin(1/s); other-
wise it undergoes total internal reflection. One may consider
a simplified scenario where all probabilistic reflections are
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FIG. 1. Schematic of the system considered, for an example
polygon with n = 5, edge length �, apothem a5, internal angle β,
and relative refractive index s to its surroundings, which determines
the critical angle of reflection θc. A representative example of a light
ray refracts in from an angle θ1 to θ2, hitting an edge with θ ′ > θc

and therefore undergoing total internal reflection and then refracting
out of the object due to hitting the surface with an angle less than θc.

replaced with refractions so that all external rays enter if they
touch the surface and internal rays only reflect if θ > θc. This
simplification does not affect the mean path length [4].

The direct approach to calculate the mean path length 〈L〉
would be to integrate the path lengths over all possible ray
entry points and angles. However, rays may undergo total
internal reflection multiple times, depending on their entry
point and angle. Instead we will use a more nuanced approach,
by comparison to the mean path length in the same object with
scattering 〈Lsca〉. A simple model for scattering is to introduce
a scattering coefficient that defines a finite probability per unit
time that a ray will spontaneously change direction isotropi-
cally. When scattering is introduced the light rays will evenly
fill the polygon both spatially and angularly, and this holds
no matter how small the scattering coefficient, as argued in
Appendix A. In two dimensions, 〈Lsca〉 has a simple formula
independent of the scattering coefficient [3,4],

〈Lsca〉 = s〈C〉 = sπ
A

P
, (1)

where 〈C〉 is the mean chord length, A denotes the area, and
P denotes the perimeter [8–10]. For regular polygons 〈Cn〉 =
πan/2, where the apothem an is the distance from the center
to the midpoint of a side. In special cases, 〈L〉 and 〈Lsca〉 are
simply related by [4]

〈L〉 = PE 〈Lsca〉, (2)

where PE is the probability that a scattered ray will escape
the object without having to scatter again. Equation (2) only
applies for objects where the internal spatial distribution of
rays is uniform (without scattering). The distribution is in fact
uniform regular polygons, which derives from a result in bil-
liard theory [11] that for any closed polygonal billiard, almost
every orbit (trajectory that reflects inside forever) fills the area
uniformly. In an open billiard, the orbits eventually leave, but
a diffuse distribution of rays will still fill the interior uniformly
because of optical reciprocity: For any ray that leaves, there is

FIG. 2. Normalized mean path length of light rays in regular
polygons with no scattering. Small values of n are shown, while
n = 9, 11, 13, 15 and n � 17 lie entirely on the line 〈Ln〉 = s for the
values of s shown.

another that enters at the same point and angle at the exterior
(in the limit of an infinite number of rays) that continues
the first ray’s orbit inside the billiard. This uniformity is also
confirmed by numerical simulations in Fig. 7.

Here PE may be calculated as the fraction of scattering
angles in [0, 2π ) that lead the ray to hit the surface with θ < θc

after any number of reflections. Heuristically, each side adds
two escape wedges of angular width 2θc, rotated by π relative
to each other, one corresponding to rays that refract out and
the other for rays that refract in; by optical reciprocity, if a
ray can enter, it can also leave. There are 2n escape wedges
evenly spaced around [0, 2π ), but in even polygons, pairs of
these wedges are identical. Defining n̄ = n for n even and
n̄ = 2n for n odd, there are effectively n̄/2 wedges with total
angle 2n̄θc, giving PE = n̄θc/π . If s is low enough such that
θc > π/n̄, then n̄θc/π > 1, which means rays cannot escape,
but by reciprocity they cannot get trapped either. In this case
we set PE = 1.

Then Eq. (2) leads to the mean path length 〈Ln〉 of light
rays inside an n-sided regular polygon:

〈Ln〉 =
{πans

2 for s � sn = 1
sin π

n̄ans
2 n̄θc for s � sn,

(3)

n̄ =
{

n for n even
2n for n odd.

(4)

These are plotted in Fig. 2. The formula (3) agrees with
Monte Carlo simulations of 107 rays to within accuracy of the
standard deviation of five digits. For s lower than the critical
refractive index sn, we have 〈Ln〉 = 〈Lsca,n〉. For s > sn, 〈Ln〉
decreases slightly with s and approaches n̄an/2. We have
〈Ln〉 < 〈Lsca,n〉 because a range of trajectory angles is only
accessible with the addition of scattering. This is discussed
in Sec. III.

A curious feature of Eq. (3) is the discontinuity at n = ∞
where the polygon tends to a circle of radius a∞ = a. The
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FIG. 3. Phase portraits of externally incident light rays on three polygons. The top panels are closed billiards where the first 1000 reflections
of three random rays are shown, using one color for each ray. The bottom panels are open billiards with s = 4, where many random externally
incident rays are shown, using one shade of color for each ray. The white gaps (trapped region) begin outward from p = 1/s = 0.25 for each
polygon.

mean path length in the circle is [4]

〈Lcircle〉 = a(sθc + cos θc). (5)

However, for an ∞-gon Eq. (3) gives 〈L∞〉 = πas/2, which
is significantly higher, as shown in Fig. 2. This discrep-
ancy is due to quasitrapped modes as discussed in Sec. IV
and is resolved by considering an infinitesimal absorption in
Sec. V.

III. NONERGODICITY AND PHASE PORTRAITS

We should consider how the mean path length is related to
ergodicity of the polygon when viewed as a closed billiard.
For this we summarize some mathematical concepts of bil-
liard theory [12–15].

The phase space of a billiard is the space of points on
the perimeter and directions relative to the normal at each
point. When a ray reflects inside the billiard it adds a point
on the phase space at each reflection. An orbit is a trajectory
extended infinitely forward and backward in time and fills
countably many points on the phase space. A set of orbits
occupies some measure (area) of the phase space. A billiard
is ergodic if every set of orbits occupies either a measure of
0 (an infinitesimal area) or a measure of 1 (the entire phase
space, possibly minus an infinitesimal area). Equivalently, a
billiard is ergodic if almost all orbits explore the phase space
uniformly densely. A regular polygon billiard is not ergodic
because there are nonzero measure sets of orbits that omit
some solid intervals in [0, 2π ) (shown in Fig. 3).

Nonergodic open billiards contain significant areas of or-
bits which may be confined to a region entirely outside the

critical angle of reflection |sin θ | > 1/s. These orbits are in-
finite chains of total internal reflection. For diffuse external
illumination these regions of the phase space will be empty,
while the phase space is uniformly filled in the scattering case
(see Appendix A), so we can deduce that 〈L〉 � 〈Lsca〉. Er-
godic billiards do not support any nonzero measure of trapped
trajectories and the mean path length in ergodic shapes is
unchanged by the addition of scattering, i.e., 〈L〉 = 〈Lsca〉 for
all s.

The top row of Fig. 3 plots three random orbits of the
phase portraits of a closed triangle, hexagon, and octagon. In
general, each orbit is restricted to a set of n horizontal lines,
corresponding to the n angles that a ray acquires after many re-
flections. Almost any orbit will fill the boundary densely [16],
but only strike the boundary with n angles. If n is odd or n = 4,
the orbit fills the boundary completely with all n angles, but
if n is even and n � 6, only half of the boundary is filled for
each angle; rays never approach an edge with an angle that
they would have reflected off at. This is seen in that the phase
portraits are checkered. The square is an exception where a ray
may hit the same face with opposing angles; the sharp angles
between sides makes reversing direction within a small area
ergonomically possible. The lower phase portraits in Fig. 3 are
for a refractive index of s = 4, with many random externally
incident rays. Nonergodicity is seen in that part of the phase
space is empty; external rays cannot access some ranges of
θ with θ > θc. The filled regions near p = ±1 correspond
to total internal reflections of rays in free modes. The filled
phase portraits for a triangle and hexagon are identical, due
to the redundancy of opposing sides in scattering rays. The
octagon portrait shows that as the number of sides increases,
the trapped region splits into multiple regions, due to the
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FIG. 4. Segment of a light ray reflecting and undergoing total
internal reflection multiple times. Here β is the interedge angle, θ ′ =
2π (n/2 − 2)/n − θ , and θ < θc, while both θ ′ > θc and β − θ ′ > θc.

increased range of angles generated by reflections. In contrast,
irrational angled polygons are ergodic, for example the phase
space of an irrational angled triangle is uniformly filled by one
ray [17]. The phase portraits of polygons are very different to
those of infinitely differentiable (smooth) billiards [18], where
orbits are confined to either smooth curves or areas of chaos.

IV. QUASITRAPPED MODES

There are two types of long-lived modes in regular
polygons: the strictly trapped orbits described in the preced-
ing section, also known as whispering gallery modes, and
quasitrapped modes, which are accessible from the outside
and stay inside for a long time. These can occur in regular
polygons with n � 5.

As shown schematically in Fig. 4, a ray may become
trapped in a long cycle of total internal reflection if it refracts
in at an angle θ such that it next reflects off an edge two edges
along, at an angle θ ′ > θc, so that it undergoes total internal
reflection, and then hits the next edge along. The next angle it
makes is β − θ ′, where β is the internal angle between sides.
If β − θ ′ > θc and the ray keeps hitting sequentially adjacent
edges, it will alternate between θ ′ and β − θ ′ and continually
undergo total internal reflection until eventually it skips one
too many edges and leaves. These are more prevalent if n is
large, where rays do not have to cycle through strictly adjacent
edges, while they cannot occur in triangles and squares since
β is too small. These quasitrapped modes are what causes the
mean path length in a high n-gon to differ from that in a circle.

In the phase portrait of the octagon in Fig. 3 (top right),
the dark colored points represent a ray in a quasitrapped
mode, which for 1000 bounces has managed to graze between
sequentially adjacent edges (there are actually two closely
spaced lines, one representing θ and the other β − θ ). The
ray will eventually skip an edge and hit the boundary with a
lower angle.

Figure 5 shows the number of rays that undergo a given
number of total internal reflection events, taken from Monte
Carlo data. The slope of the graphs is roughly N ∝ r−3 (where
N is the number of rays and r is the number of reflections)

21-gon

FIG. 5. Number of rays that experienced a certain number of
internal reflections in a square, pentagon, and 21-gon with refractive
index s = 1.5. Here 107 rays were used in each simulation. The
highest number of recorded bounces was 270 in the square, ∼3800
in the pentagon, and ∼27 000 in the 21-gon.

and hence the average number of reflections is finite. The
quasitrapped modes are represented in the tails of the graphs.
These modes can be surprisingly long; our Monte Carlo
simulation of 10 × 106 rays incident on a 51-sided polygon
produced a ray that reflected 40 × 106 times. This makes nu-
merical simulations for high-n-gons very noisy and billions of
rays are required to calculate the mean path length accurately.

A peculiar feature seen in Fig. 5 is the bifurcation of re-
flection statistics, especially clear for n = 5. The lower split
of the data represents even numbers of reflections, which
means that rays are unlikely to undergo an even number of
internal reflections. In fact, simulations showed that without
probabilistic reflections, rays never reflect an even number of
times in any regular polygon-shaped billiard.

V. ABSORPTION

We have seen that the mean path length in a high-n-gon
differs significantly from that in a circle. In a physical sce-
nario this will not necessarily be the case, because physical
materials also absorb light. Of course there will also be scat-
tering or surface imperfections, but as argued in [4] we may
neglect scattering if it is insignificant compared to the rate of
absorption. We introduce an absorption coefficient α which is
a probability per short distance of a ray being absorbed by the
medium. Another mechanism is tunneling through the bound-
ary, even at angles corresponding to total internal reflection
[5]; this could be modeled by a small probability of absorption
per reflection. The exact mechanism does not affect the main
results, so we will consider medium absorption.

The absorption of a sample illuminated by light rays with
a path length distribution p(L) is

A = 1 −
∫ ∞

0
e−αL p(L)dL, (6)

and for αL → 0 the exponential may be replaced by its series
expansion so that the fraction of rays absorbed A is propor-
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FIG. 6. Normalized mean path length in regular polygons with
increasing number of sides, for glass with refractive index s = 1.5,
with and without a small absorption of α〈C〉 = 0.01. These are
compared to the circle with and without absorption (which differ
slightly, but this difference vanishes as α → 0). Here 109 rays were
simulated for each n. For glass with a typical absorption coefficient of
α ≈ 1 m−1, α〈C〉 = 0.01 corresponds to a diameter of about 12 cm.

tional to the mean path length:

A = α〈L〉 + O((α〈L〉)2). (7)

This would imply that a high-n-gon absorbs more light than
a circle, even as n → ∞. However, the approximation (7)
assumes that αL is small for all L where p(L) has a significant
contribution, i.e., that the absorption mean path length is much
greater than the lengths of the ray paths. For a high-n-gon,
quasitrapped modes are rare but long, such that they have a
significant contribution to the mean path length. For n → ∞,
the vast majority of rays simply refract through with no to-
tal internal reflection just as they would in a circle, so the

absorption A approaches that for a circle as n → ∞, while
the rare, would-be long modes get absorbed before making a
significant contribution to the mean path length. This ability
of absorption to quench the effects of small deviations in the
boundary is similar to the effect that absorption has on small
amounts of scattering [4]. Numerical simulations somewhat
show this in Fig. 6, where for a small absorption of α = 0.01
the general trend is 〈Ln→∞〉 → 〈Lcircle〉. Unfortunately, we
could not compute 〈L〉 for n > 100 because the simulation
time and statistical variance grow rapidly with n.

Figure 7 shows how a small absorption coefficient affects
the spatial density in polygons. Without absorption, the ray
density appears uniform (we did not have enough computation
time to display the 100-gon without absorption, but it should
be uniform). When absorption is added to the 20-gon and
especially to the 100-gon, the ray density appears similar to
that in the circle. We found that the internal density smoothly
transitions from uniformity to that in a circle as either the
absorption or number of sides increases. A similar aspect
of absorption has been investigated in ergodic auditoriums,
which are mathematically equivalent to closed billiards, with
sound modeled as rays with a small probability of absorption
at the boundary. There Ref. [10] draws a similar conclusion
that the invariant mean path length 4V/� may be used to cal-
culate the absorption only if the mixing rate of trajectories is
sufficient compared to the absorption rate. Roughly speaking,
the mixing rate is the rate at which trajectories are randomized
over the phase space. The analog for our polygons is the
rate that externally incident rays become randomly distributed
over the area, which is slow for high-n-gons, and here the
approximation (7) is invalid.

VI. PRISMS

We can extend our results for regular polygons to right
prisms, made of a base shape extended perpendicularly (hence

FIG. 7. Density of light rays from dark (low density) to light (high density). The polygons are made of glass with refractive index s = 1.5.
The polygons in the top row do not absorb light, and this supports our statement that the density inside any sided regular polygon is uniform,
even as the polygon approaches a circle, for which the density is nonuniform. In the bottom panels a reasonably small absorption is added,
corresponding to the absorption of glass of roughly α ≈ 1 m−1. The polygons are about 25 cm across, giving α〈L〉 ≈ 0.25, which is small
enough to compare to the small-absorption limit. A rough indication of the absorption mean path is visible for the circle, which shows a slight
decrease in intensity towards the center. The square appears uniform, but this depends on the absorption mean path. As the number of sides
increases, the density exhibits more complex features but generally approaches that in a circle. The density in the 100-gon with absorption
is indistinguishable from the circle, but we could not include a 100-gon in the nonabsorbing case due to extremely long trajectories causing
issues with memory and time.

023518-5



MATT MAJIC AND WALTER R. C. SOMERVILLE PHYSICAL REVIEW A 105, 023518 (2022)

FIG. 8. Selection of prisms considered in this work, with bases from left to right: triangle, square, pentagon, hexagon, 20-gon, circle,
limaçon, and stadium.

“right”) a finite amount, as shown in Fig. 8. For any polygon-
based prism, the mean path length may be calculated by
assuming a uniform density of rays throughout the volume
(we are not aware of a proof of this in three dimensions,
but it appears true numerically) and using Eq. (2), 〈L〉 =
PE 〈Lsca〉. Actually, it will be easier to work with the probabil-
ity of trapping from a scattering event, PT = 1 − PE . In the
Supplemental Material of Ref. [4], PT for a cube was ex-
pressed in terms of an integral over the spherical angles θ and
φ about the normal of a chosen face that result in trapped
trajectories. A cube is a square-based prism, and the geo-
metrical derivations generalize straightforwardly to regular
polygon-based prisms. Consider a ray that scatters at an angle
θ to the vertical (the end faces are horizontal) and an angle
φ about the vertical where θ = π/2 and φ = 0 point directly
at a vertical face. We may restrict ourselves to 0 � θ � π/2
and 0 � φ � π/m by symmetry and just consider reflection
off the top and one vertical face (whose normal is φ = 0 and
θ = π/2). For a fixed φ, the ray must have θ > θc as to not
escape out the top and θ ′ < θc as to not escape out the vertical,
where θ ′ is the angle to the normal of the vertical face, and one
can show that cos θ ′ = sin θ cos φ. However, if φ < φc where
cos φc = cot θc, the ray is guaranteed to escape out the vertical
side for any θ . Altogether, the probability of trapping is

PT = n̄

π

∫ π/n̄

φc

∫ sin−1 (cos θc/cos φ)

θc

sin θ dθ dφ, (8)

where again n̄ = n for n even or 2n for n odd. The integral
evaluates to

PT = n̄

π
Re

{√
1 − 1

s2

[
sin−1

(√
s2 − 1 tan

π

n̄

)

+ π

n̄
− 2 cos−1(

√
s2 − 1)

]
− sin−1

(
s sin

π

n̄

)

+ sin−1(s
√

2 − s2)

}
. (9)

In three dimensions, the mean path length with scattering is
s2〈C〉, so the mean path length in a regular n-gon-based prism
is 〈

Lprism
n

〉 = (1 − PT )s2〈C〉, (10)

where the mean chord length depends on the volume V and
surface area � as

〈C〉 = 4
V

�
= 2anh

an + h
(11)

for height h and base apothem an. One interesting feature is
that PT is purely a function of refractive index and the number
of sides, independent of the object’s height or base area. In
other words, 〈L〉/〈C〉 is independent of the prism’s size or
aspect ratio.

There are four piecewise components in the mean path
length in Eq. (10). First, for s �

√
1 + cos2(π/n̄), the mean

path is equal to that in the scattering case, because every
trajectory is accessible from outside. For s >

√
1 + cos2(π/n̄)

the mean path length is lower due the presence of trapped
trajectories which spiral up and down the prism at a mod-
erate angle, not too shallow or steep. There is another kink
at s = √

2 (θc = π/4), because trapped trajectories suddenly
no longer need to spiral; they can reflect with θ � π/4 be-
tween the ends and sides as in a rectangle. Finally, at s =
sn = 1/sin(π/n̄), the curve changes again because trapped
trajectories now exist purely in the horizontal plane just
as in the two-dimensional (2D) case. For the square-based
prism, or cuboid, these last two conditions are identical. For
triangular- and hexagonal-based prisms, the critical values are
s = √

7/2 ≈ 1.323,
√

2, and 2, which are shown in Fig. 9(b).
For pentagonal- and decagonal-based prisms, the values are√

(13 + √
5)/8 ≈ 1.380,

√
2, and 4/(

√
5 − 1) ≈ 3.236.

Just like the circle, a high-n-gon-based prism has a mean
path length greater than the finite circular cylinder, which is
derived in Appendix B to be

〈Lcyl〉 =
{

〈Ccyl〉
{
s2(1 − cos θc) + 2

π
[s

√
s2 − 1 cos−1(

√
s2 − 1) + cos−1(s

√
2 − s2)]

}
, 1 < s <

√
2

〈Ccyl〉[s2(1 − cos θc) + 1], s �
√

2,
(12)

where 〈Ccyl〉 = 2ah/(a + h). This is also plotted in
Fig. 9(a). Again, 〈Lcyl〉/〈Ccyl〉 is independent of the aspect
ratio.

As the number of sides of the base increases, the first
critical value approaches

√
2 and the last critical value goes to

infinity. For n → ∞ it can be shown that PT → cos θc − sin θc

for s >
√

2, so the mean path length in a prism with a high-n-
gon base is

〈
Lprism

n→∞
〉 =

{
s2〈C〉, s �

√
2

(1 − cos θc + sin θc)s2〈C〉, s >
√

2.
(13)
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FIG. 9. (a) Mean path length for a variety of prisms, normalized such that 〈C〉 = 1, plotted for high refractive indices to demonstrate the
differences in the curves and test the formula (9) properly for the many sided cases. In the legend, s2 is the mean path length with scattering, and
n → ∞ is calculated via Eq. (13). The curves for n = 7 and 14 overlap. Monte Carlo simulations with 108 rays agree with the analytic curves
to within standard deviation, which is an absolute error ranging from approximately 10−3–10−1 for n = 14, 20 to approximately 10−5–10−3

otherwise, for all s shown. (b) Close-up of the mean path length in a refractive hexagonal-based prism of any aspect ratio, normalized by its
mean chord length. The vertical lines are s = √

7/2,
√

2, 2 from left to right, and mark discontinuities in the derivatives of the expression (9).
(c) Mean path length in prisms with limaçon-shaped bases defined by r = a + b cos θ , with base “aspect ratio” parameter g = (a + b)/(a − b).
The limaçon stretches as g increases from g = 1 (circle) to 3 (the most deformed yet smooth and convex limaçon). For g = 3 the mean path
length is indistinguishable from Eq. (13) and that of a stadium-based prism. The simulations were run with 1011 rays yet still produced noisy
data for limaçons of intermediate aspect ratio, due to an extremely large statistical variance in the path lengths of individual rays.

This formula also applies to any prism with an ergodic base,
and since ergodicity maximizes the mean path length, this
makes 〈Lprism

n→∞〉 the upper bound for the mean path length
in any prism where the top and bottom faces are perfectly
parallel. In Fig. 9(c), Eq. (13) is checked against prisms with
bases of a stadium and convex limaçons of varying eccen-
tricity via Monte Carlo simulations of 1011 rays. The stadium
is known to be ergodic [19] and its mean path length agrees
with Eq. (13). The convex limaçon approaches ergodicity as
it is deformed from the circle with increasing eccentricity,

but is never completely ergodic; there are always small re-
gions of stability [20–22]. Hence the mean path length in
the limaçon prisms approaches Eq. (13) as the eccentricity
increases. Interestingly, the mean path initially decreases with
eccentricity, even though the phase space is more chaotic than
in a circle; this may be due to decreased chord lengths of free
modes. Figure 9(c) also shows that limaçon-based prisms of
intermediate aspect ratio have a huge variation in ray path
lengths. Of the 1011 incident rays, a very small number trav-
eled enormous distances inside the prism and took months of
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computing time to leave. So acquiring the mean path length in
such nonabsorbing objects would require a different approach.

Orientation-averaged absorption of refractive particles may
be calculated from the mean path length via Eq. (7), unless
n is very large, as discussed earlier. Atmospheric hexagonal
ice crystals have s ≈ 1.32 <

√
7/2, so their absorption may

simply be taken as αs2〈C〉. For most prisms here except the
cuboid, the mean path length only decreases significantly
from s2〈C〉 for s >

√
2. For cavities made of semiconduc-

tor materials with high refractive indices s ≈ 4 [23], the
mean path length differs significantly between the scattering
and nonscattering cases and the mean path length could lie
anywhere within these limits depending on the degree of im-
perfections.

VII. CONCLUSION AND OUTLOOK

We have investigated the mean path length in regular
polygons and prisms, in relation to trapped modes and qu-
asitrapped modes, and the link to concepts of ergodicity
and phase portraits used in billiard theory. The existence of
trapped modes was seen to decrease the mean path length
compared to the scattering case as they are unpopulated with-
out scattering and therefore the internal density is reduced,
while quasitrapped modes increase mean path length as they
are both long and accessible. We demonstrated the sensitivity
of the mean path length to infinitesimal deviations in the shape
boundary, in particular for a circle versus a regular polygon
with an unbounded number of sides, and their corresponding
prisms. We showed that this is reconciled in an experimental
setting due to nonzero absorption that negates extremely-long-
lived trajectories.

We have distinguished two types of whispering gallery
modes which are an important ingredient for optical devices.
Strictly trapped modes have been analyzed experimentally
and theoretically also for diamond-shaped disks of sufficient
refractive index [23]. We found quasitrapped modes in all
polygons with five or more sides and their corresponding
prisms, making these shapes candidates for optical resonators
[2]. Our mean path length results provide an approximate
absorption for atmospheric ice crystals [24–26]. Photovoltaic
cells under diffuse or orientation-averaged illumination have
upper bounds for mean path length and absorption in the
slab geometry [27–29], but polygons with n � 5 have a wider
range of path lengths than the slab due to whispering gallery
modes; hence these geometries could be used to increase path
lengths in photovoltaic devices. The results apply equally to
high-frequency acoustic waves incident on objects of high
impedance.
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APPENDIX A: ISOTROPY IN OBJECTS
WITH SCATTERING

It has been recognized numerically [4] and experimentally
[3] that the mean path length of light in a convex refractive

FIG. 10. Phase space of an arbitrary billiard with free modes in
beige and trapped modes in dark gray. A scattering event occurs at
the boundary where the ray may travel anywhere on the vertical line
with equal probability.

scattering object 〈Lsca〉 is independent of the medium scat-
tering coefficient αs. This was shown in [3] by assuming a
diffuse distribution of rays throughout the object, but in the
low scattering limit αs → 0, diffusivity is not obvious due to
the low population of rays traveling in trapped trajectories.
Here will present a detailed argument that the internal dis-
tribution is actually diffuse for any αs. We will consider 2D
objects because of their connection to billiard theory, but the
arguments extend naturally to three dimensions.

First consider the object with no scattering: Rays refract in,
may internally reflect a finite number of times, and refract out.
In the phase space, rays incident from outside fill the middle
strip with |sin θ | < 1/s with a density of s relative to the
exterior surroundings, due to the light focusing as it refracts
into a denser medium. Areas with |sin θ | � 1/s will be either
empty or filled uniformly with the same density s because
any area of the phase space is either completely hidden from
or illuminated by internal rays with a density of s. At every
point on the perimeter, there is a one-to-one correspondence
between rays refracting in at some θ and rays about to refract
out at θ + π due to optical reciprocity. This holds when the
internal density is equal to s for all angles |sin θ | < 1/s, i.e.,
when the rates of influx and outflux are equal. So we may
replace all refractions by reflections (the opposite of what we
have done in the main text) and consider the object as a closed
billiard.

1. Surface or boundary scattering

Now we add surface scattering. When a ray scatters it
jumps to another point in the phase space with equal prob-
ability anywhere along the same vertical line, as shown in
Fig. 10. This scattering transfers rays between the free and
trapped subspaces, and the rate of transition of rays from each
subspace is proportional to the area of each subspace, so the
two will eventually equalize their densities. At the same time,
the external flux from medium 1 holds the density of the free
phase space uniformly at s, so ultimately the whole phase
space gets filled with a density of s.
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FIG. 11. Thermodynamic picture of ray scattering. The object
(shaded) contains free modes, which are in thermal contact with the
surroundings via refraction, and trapped modes, which are in thermal
contact only with free modes via scattering.

It may help to think of the thermodynamic diagram in
Fig. 11, where free modes are in thermal contact with a bath
of rays in the surroundings (medium 1) and trapped modes are
in contact with free modes via scattering. The trapped modes
are in thermal equilibrium with the free modes, which in turn
are in equilibrium with the surroundings.

2. Medium or internal scattering

In objects with scattering inside the medium, we can in-
stead consider what may be called the “internal” phase space
of points in the billiard table and directions of travel. For 2D
billiards, the internal phase space has three dimensions, two
spatial and one for ray direction. One dimension is redundant
because rays travel in straight lines, so it is equivalent to the
“boundary” phase space of the preceding section. Crucially,
the boundary space is uniformly dense only when the internal
space is uniformly dense and vice versa [1,8]. For the sim-
plest case of isotropic scattering, when a ray scatters it jumps
anywhere in a line of fixed position with equal probability.
Then, just as argued for surface scattering, the trapped and
free modes may exchange rays until the internal phase space
becomes uniformly dense.

We can even consider a scattering phase function where
a ray scatters at an angle θ relative to its initial direction,
according to a probability distribution g(θ ). If g satisfies de-
tailed balance, meaning that repeated iterations of g lead to
a uniform distribution in [0, 2π ), then this scattering has the
same effect as isotropic scattering, only slower.

APPENDIX B: CALCULATION OF MEAN PATH LENGTH
IN A FINITE CYLINDER

Here we outline the derivation of 〈Lcyl〉 in Eq. (12) for a
cylinder of tube radius a and height h. We calculate the mean
path length as the weighted average (by area) of the mean path

length of rays that enter the ends and the tube separately:

〈Lcyl〉 = a〈Lends〉 + h〈Ltube〉
a + h

. (B1)

We will use two observations: Rays that enter the ends always
leave through the other end if they have not already refracted
out the tube and rays that enter the tube will always leave
the tube if they have not already left through the ends. This
makes the case s >

√
2 (θc < π/4) straightforward because

all rays that enter the sides cannot leave the tube (their angle
of entry points too steeply down the tube) and vice versa;
rays that enter the tube cannot leave the sides. So rays that
enter the ends effectively experience the cylinder as an in-
finite slab; they have the same path length as if there were
no tube (their paths may rotate about the vertical axis when
reflecting off the tube but have the same path length). Then
〈Lends〉 = 〈Lslab〉 = 2hs2(1 − cos θc). Similarly, rays that enter
the tube have a mean path length of that in an infinite cylinder:
〈Ltube〉 = 〈L∞

cyl〉 = 2a [4]. Putting these into Eq. (B1) gives the
bottom line of Eq. (12).

For s �
√

2, we assume that the ratio of mean path length
to mean chord length is independent of aspect ratio, as it was
for s >

√
2. So without loss of generality we may let the

radius a of the cylinder go to infinity. Almost all rays that
enter the ends will leave the other end without touching the
tube, so again they have 〈Lends〉 = 〈Lslab〉. For 〈Ltube〉, the tube
makes up an infinitesimal fraction of the total surface area,
so we may ignore the rays that refract out the ends as these
only have finite path length. However, the rays that enter the
tube and undergo total internal reflection off the ends cannot
be ignored because they may have infinitely long path length.
To calculate the mean path length of these rays, consider a
right angle wedge between the top face and tube and let a ray
enter the tube at an angle θ (post refraction) to the normal and
φ about the normal (φ = 0 points directly upward). Letting θ ′
be the angle that the ray makes with the normal of the top face,
one can show that cos θ ′ = sin θ cos φ. Rays will reflect off the
top if θ ′ > θc, which implies sin θ < cos θc/ cos φ, but if φ >

φc = cos−1 cot θc, rays will reflect regardless of θ . If the rays
reflect they will repeatedly do so and have a path length of that
in an infinite cylinder, L(θ, φ) = 2a cos θ/(1 − sin2 θ cos2 φ)
[4]. Altogether, the mean path length of rays that enter the
tube is

〈Ltube〉 = 2

π

{∫ φc

0

∫ sin−1 (cos θc/cos φ)

0
+

∫ π/2

φc

∫ θc

0

}

× 2s2 cos θ sin θ L(θ, φ)dθ dφ, (B2)

which can be evaluated using Mathematica to give the corre-
sponding term in (12).
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