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We derive a general theory of linear coupling and Kerr nonlinear coupling between modes of dielectric
optical resonators from first principles. The treatment is not specific to a particular geometry or choice of
mode basis, and can therefore be used as a foundation for describing any phenomenon resulting from any
combination of linear coupling, scattering, and Kerr nonlinearity, such as bending and surface roughness losses,
geometric backscattering, self- and cross-phase modulation, four-wave mixing, third-harmonic generation, and
Kerr frequency comb generation. The theory is then applied to a translationally symmetric waveguide in order
to calculate the evanescent coupling strength to the modes of a microresonator placed nearby, as well as the
Kerr self- and cross-phase modulation terms between the modes of the resonator. This is then used to derive a
dimensionless equation describing the symmetry-breaking dynamics of two counterpropagating modes of a loop
resonator and prove that cross-phase modulation is exactly twice as strong as self-phase modulation only in the
case that the two counterpropagating modes are otherwise identical.
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I. INTRODUCTION

Since research into dielectric optical microcavities and
microresonators began in the late 1980s [1,2], we have un-
derstood them using coupled mode theory [3–5], a framework
that was first established in the 1950s in the context of waveg-
uides [6–9]. This approach underpins our descriptions of
linear coupling between resonators and other dielectric bodies
such as prisms, waveguides, and tapered optical fibers [10,11]
as well as optomechanical, Brillouin, and Raman coupling
[12–14] and second- and third-order (Kerr) nonlinear optical
effects [15,16] including frequency comb generation [17–19].
For the latter, the modal expansion approach [20] forms the
basis of a description based on the Lugiato-Lefever equation
(LLE) [21–23] that has been particularly successful in model-
ing soliton comb generation [24–26].

Another interesting effect of the Kerr nonlinearity in
whispering-gallery-mode (WGM), ring, and other loop mi-
croresonators is symmetry breaking between counterpropa-
gating light [27,28], obtained, for example, by pumping a
WGM microresonator bidirectionally via a single tapered op-
tical fiber. Universal behaviors at the critical point of this
symmetry-breaking regime [29,30] similar to those found
at exceptional points [31,32] have been demonstrated in a
nonlinear enhanced gyroscope [33], and could enable other
enhanced sensors, e.g., for refractive index changes [34].
Meanwhile, the bistable symmetry-broken regime has been
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used to realize optical isolators and circulators [35], memories
[36], and logic gates [37].

The symmetry breaking between counterpropagating light
relies upon a well-known factor of 2 between the coefficients
of Kerr cross-phase modulation (XPM) and self-phase mod-
ulation (SPM) [38,39], that is also instrumental in frequency
comb generation and other Kerr-nonlinearity-related bistabil-
ities, multistabilities, and oscillatory and chaotic dynamical
behaviors [40–52].

Whereas the coupled mode theory of waveguides is very
well developed [9], this is less the case for microresonators,
where much of the literature relates to specific geometries
such as plane-wave cavities [4], microspheres [3,10], micro-
toroids [20], and ring waveguides [5]. Here we adopt a general
approach that makes no assumptions about the geometry of
the resonator, initially defining modes simply as basis states
for the electromagnetic field and only subsequently stating a
condition for them to be stationary or nearly stationary states.
We then derive a Schrödinger-like equation (equivalent to the
single-photon Schrödinger equation) for the evolution of the
amplitudes of a collection of modes under linear coupling.
The treatment, given in Secs. II and III, is self-contained and
based entirely on Maxwell’s equations, avoiding variational
approaches and making approximations only when absolutely
necessary, whereupon they are clearly stated. The relationship
between standing- and traveling-wave modes is elucidated, as
is the physical meaning of the complex amplitude of a mode.
Our approach also explains why, even for a purely classical
treatment, it makes sense to choose a normalization in which
the modulus squared of the complex amplitude of a mode is
proportional to the number of photons in it, rather than, for ex-
ample, its energy. The same formalism is used to describe the
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modes of both resonators and waveguides as well as evanes-
cent coupling between the two [53]. It can equally be applied
to other linear coupling phenomena such as coupling between
two resonators or two waveguides, Rayleigh backscattering
[54] and bending [55] and scattering losses [56,57] in res-
onators and fibers, mode splitting in ring resonators caused by
coupling to a waveguide [58], and scattering of plane waves
by dielectric bodies [59].

In Sec. IV we introduce the Kerr nonlinearity into this
framework, again defining everything from first principles
and keeping the treatment initially very general. We briefly
discuss the different phenomena that the Kerr effect gives rise
to including third-harmonic generation and four-wave mixing,
before focusing on SPM and XPM in the context of symmetry
breaking between two modes of the same microresonator.
We show that when these modes are counterpropagating but
otherwise identical the coefficient of XPM is exactly twice
that of SPM, while if they are from the same WGM family but
of different azimuthal order, or if they are of opposite circular
polarizations but otherwise identical, XPM is slightly less than
twice as strong as SPM [45,46,48,60].

Finally we put everything together to derive the dimen-
sionless equations [Eq. (90)] that govern the evolution of
the complex amplitudes of two counterpropagating modes in
a microresonator pumped via a waveguide, in the presence
of the Kerr nonlinearity. These equations form a basis for
explaining the aforementioned symmetry breaking between
counterpropagating light in WGM microresonators and the
interesting dynamics associated with it [27–30]. The gener-
ality of the framework developed means that it can also act
as the foundation for explaining any phenomenon involving
linear and Kerr nonlinear coupling in dielectric bodies. For
example, it could be applied to a WGM family to derive the
LLE [21–23], which can be used to model Kerr frequency
comb generation [24–26].

II. RESONATOR MODES AND COUPLINGS

A system of dielectric bodies surrounded by free space can
be described by a spatially dependent permittivity ε(r), which
we will treat for conciseness as though it is differentiable
everywhere. Working in the Weyl gauge in which the scalar
potential is set to zero, the optical electromagnetic field can
be described purely by the vector potential A(r, t ), which, in
the absence of free charge and current, obeys the following
form of Maxwell’s equations:

∇×(∇×A) = −μ0 ε
∂2A
∂t2

(1)

where μ0 is the permeability of free space. There is the addi-
tional constraint ∇ · (εA) = 0 [61], although for optical fields
this is already implied by Eq. (1) due to the divergence-free
nature of the form on its left-hand side. It is useful to describe
the physics in terms of the time evolution of complex am-
plitudes ασ of a complete basis of spatial modes with vector
potential profiles aσ (r), which may be either real or complex,
by expanding out A(r, t ) as [61]

A(r, t ) =
∑

σ

[ασ (t )aσ (r) + α∗
σ (t )a∗

σ (r)]. (2)

If the basis states are stationary states of the system, i.e., states
where all fields oscillate at a single frequency, then a real
basis [aσ (r) = a∗

σ (r)] would correspond to linearly polarized
standing-wave modes in which the electric field vanishes ev-
erywhere twice during each period of oscillation, whereas a
complex basis would correspond to modes in which different
polarizations or spatial regions oscillate out of phase with each
other.

In order to develop a unique and physically meaningful
definition for the complex amplitudes ασ , we will start by
working in a real basis {a′

ρ (r)} with real amplitudes {uρ (t )}:

A(r, t ) = 2
∑

ρ

uρ (t )a′
ρ (r). (3)

Substituting this into Eq. (1), taking the dot product with a′
ρ ,

and integrating over all space gives us

∑
ρ ′

N ′
ρρ ′

d2uρ ′

dt2
= −

∑
ρ ′

D′
ρρ ′uρ ′ (4)

where

D′
ρρ ′ = 1

μ0

∫
a′

ρ (r) · ∇× [∇×a′
ρ ′ (r)]d3r (5)

and N ′
ρρ ′ =

∫
ε(r) a′

ρ (r) · a′
ρ ′ (r) d3r. (6)

Note that D′
ρρ ′ = D′

ρ ′ρ and N ′
ρρ ′ = N ′

ρ ′ρ , the first of which is
easy to verify via integration by parts given a suitable bound-
ary condition at infinity. We now transform Eq. (4) into two
first-order differential equations by defining

vρ =
∑
ρ ′

N ′
ρρ ′

duρ ′

dt
(7)

so that

duρ

dt
=

∑
ρ ′

(N ′−1)ρρ ′vρ ′ and
dvρ

dt
= −

∑
ρ ′

D′
ρρ ′uρ ′ . (8)

Defining the complex amplitudes {α′
ρ = uρ + ivρ}, we obtain

dα′
ρ

dt
= −i

∑
ρ ′

(S′
ρρ ′α

′
ρ ′ + T ′

ρρ ′α
′∗
ρ ′ ) (9)

where the matrices

S′ = D′ + N ′−1

2
and T ′ = D′ − N ′−1

2
(10)

are real and symmetric.
We can now transform these results back into the complex

basis {aσ (r)} as long as the two bases are related by a unitary
transformation:

aσ =
∑

ρ

Uσρ a′
ρ where U −1 = U †. (11)

Using 2uρ = α′
ρ + α′∗

ρ and letting

ασ =
∑

ρ

U ∗
σρ α′

ρ so that
∑

σ

ασ aσ =
∑

ρ

α′
ρa′

ρ, (12)
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Eq. (3) is transformed back into Eq. (2). Furthermore Eq. (9)
becomes

dασ

dt
= −i

∑
σ ′

(Sσσ ′ασ ′ + Tσσ ′α∗
σ ′ ) (13)

where the matrices

S = U ∗S′U T = D + N−1

2
, (14)

Dσσ ′ = 1

μ0

∫
a∗

σ (r) · ∇×[∇×aσ ′ (r)]d3r, (15)

and Nσσ ′ =
∫

ε(r) a∗
σ (r) · aσ ′ (r) d3r (16)

are all Hermitian, and

T = U ∗T ′U † = D̃∗ − Ñ−1

2
, (17)

D̃σσ ′ = 1

μ0

∫
aσ (r) · ∇×[∇×aσ ′ (r)]d3r, (18)

and Ñσσ ′ =
∫

ε(r) aσ (r) · aσ ′ (r) d3r (19)

are all symmetric.
When working in an orthogonal basis of stationary states,

that is, one which diagonalizes both N and D, a useful choice
of normalization for those basis states is to impose the condi-
tion N = D−1, which makes T vanish (since T ′ vanishes) and
S = N−1 = D. We can thus say that

Dσσ ′ = δσσ ′ωσ and Nσσ ′ = δσσ ′

ωσ

(20)

where ωσ > 0 is the angular frequency of mode σ in the sense
that ασ ∝ e−iωσ t . In this case, it can be shown that the total
electromagnetic energy in the system is

Etot = 2
∑

σ

ωσ |ασ |2, (21)

meaning that |ασ |2 corresponds to h̄/2 times the number of
photons in mode σ . Such a basis, with this normalization,
would always be transformable to a real basis via a block-
diagonal unitary matrix in which each block operates within a
subspace of states with equal ωσ .

This formalism also works well when {aσ (r)} are not quite
stationary states but couple slowly to each other relative to
their own natural frequencies, in other words if we can write

Dσσ ′ = δσσ ′ ω̄σ + Gσσ ′ and Nσσ ′ = δσσ ′

ω̄σ

+ Cσσ ′ (22)

where ω̄σ is the approximate frequency of mode σ and, for all
σ ′, |Gσσ ′ | � ω̄σ and |Cσσ ′ | � 1/ω̄σ . Such a situation could
arise if {aσ (r)} are stationary states with eigenfrequencies
ω̄σ = ωs,σ under a different permittivity profile εs(r) of a
subsystem s, which is sufficiently similar to ε(r) that Gσσ ′

and Cσσ ′ are small. For example, εs(r) could be the permit-
tivity profile of a single resonator surrounded everywhere by
vacuum, and {aσ (r)} its (approximate) stationary states, e.g.,
whispering-gallery modes, while ε(r) describes a system con-
taining other dielectric bodies as well. Suppose for instance
that we wish to describe weak evanescent coupling between n

modes of a resonator and m modes of a waveguide. Labeling
these bodies with s = 1 and 2, respectively, their individual
permittivity profiles (when surrounded by vacuum) would be
ε1(r) and ε2(r), while ε(r) describes the system as a whole.
We may describe the dynamics in a basis {aσ (r)} that is a
union of the n resonator modes and m waveguide modes,
labeled by 1 � σ � n and n + 1 � σ � n + m, respectively.
This can be expressed in general by

{aσ (r)} =
⋃

s

{aσ (r), σ ∈ {σ }s} (23)

where in the current example {σ }1 = {1, . . . , n} and {σ }2 =
{n + 1, . . . , n + m}. Note that for dielectric bodies with geo-
metric losses, such as WGM resonators which have bending
losses, or any body with scattering losses due to surface
roughness, it may not be convenient to use a basis of true
stationary states as these are not localized to the dielectric
body. However, as long as these losses are small, we may use
basis states consisting of the localized portions of the modes,
a procedure that may be formalized by modifying εs(r) far
from the dielectric so that the localized modes become true
stationary states. One way to quantify the geometric losses
would now be to treat the vacuum as a separate subsystem
s′ with εs′ (r) = ε0 and follow the procedure described here
to calculate the coupling strengths between the localized sta-
tionary states of εs(r) and the stationary states of εs′ (r), i.e.,
free traveling-wave states aσ (r) = eσ eikσ ·r. Calculations of
the mode profiles and their coupling strengths for specific
geometries are covered elsewhere, particularly in the case of
WGM resonators [3,10,20].

Letting ω̄σ = ωsσ ,σ where sσ denotes the subsystem in
which aσ (r) is a stationary state, i.e., σ ∈ {σ }sσ

, we will use
the normalization

Dσσ ′ = δσσ ′ωsσ ,σ and Nsσ ,σσ ′ = δσσ ′

ωsσ ,σ

(24)

for states σ and σ ′ for which sσ ′ = sσ , i.e., states from the
same subsystem, where

Nsσ ,σσ ′ =
∫

εsσ
(r) a∗

σ (r) · aσ ′ (r) d3r. (25)

Note that Gσσ ′ = 0 for states from the same subsystem since
Dσσ ′ does not depend on ε(r). For general states σ and σ ′ that
are not necessarily from the same subsystem, using Eqs. (22)
and (24), we can write

Gσσ ′ = ω2
sσ ,σCsσ ,σσ ′ = ω2

sσ ′ ,σ ′Csσ ′ ,σσ ′ (26)

where Csσ ,σσ ′ = Nsσ ,σσ ′ − δσσ ′/ωsσ ,σ . In the limit of small
Cσσ ′ we have (N−1)σσ ′ = δσσ ′ ω̄σ − Cσσ ′ ω̄σ ω̄σ ′ . Although T
no longer vanishes, since we are concerned with dynamics
on timescales much longer than the inverse optical frequen-
cies, the couplings between {ασ } and {α∗

σ } mediated by T in
Eq. (13) can be neglected as they are off-resonant by twice the
optical frequency. This means that the dynamics are described
by

i
dασ

dt
= ω̄σ ασ +

∑
σ ′

Hσσ ′ασ ′ (27)
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where the Hermitian matrix

Hσσ ′ = Gσσ ′ − Cσσ ′ ω̄σ ω̄σ ′

2
= ω̄2

σCsσ ,σσ ′ − ω̄σ ω̄σ ′Cσσ ′

2
(28)

can be thought of as the single-photon interaction Hamiltonian
divided by h̄. If |ω̄σ − ω̄σ ′ | � ω̄σ , which must be true in order
for the effect of these small coupling terms to be significant,
then

Hσσ ′ = ω̄2
σ (Csσ ,σσ ′ − Cσσ ′ )

2
= ω̄2

σ (Nsσ ,σσ ′ − Nσσ ′ )

2

= ω̄2
σ

2

∫
(εsσ

(r) − ε(r)) a∗
σ (r) · aσ ′ (r) d3r. (29)

Losses such as absorption, scattering, or bending losses
can be included at this point by adding an anti-Hermitian
matrix to Hσσ ′ . Bringing dielectrics together in this way can
thus introduce both couplings between confined modes on the
same dielectric, leading most notably to frequency splittings
between previously degenerate standing-wave modes, and
transfer of light between dielectrics. This general approach
can also be used in other situations, for example, to calculate
scattering between free traveling-wave states mediated by a
dielectric.

III. WAVEGUIDE-RESONATOR COUPLING

Here we are concerned with coupling between guided
traveling-wave states in a single-mode tapered optical fiber
and whispering-gallery modes in a microresonator. A straight
waveguide or sufficiently short section of a tapered optical
fiber can be modeled as a permittivity profile ε(r) = ε(x, y).
Such a profile will have traveling-wave stationary states
aτk (r) = a0τk (x, y) eikz labeled by their transverse mode index
τ and longitudinal wave vector k. The formalism intro-
duced above can be reproduced exactly by assuming that the
waveguide has length L with periodic boundary conditions.
However, it will then be necessary to let L → ∞ to simulate
an open-ended waveguide with a continuum of k states, which
leads to problems with the normalization of states. We will fix
this by replacing instances of aτk (r) and ατk (t ) with aτ (k, r)
and ατ (k, t ), respectively, defined as follows:

aτ (k, r) = lim
L→∞

√
L aτk (r) = a0τ (k, x, y) eikz, (30)

ατ (k, t ) = lim
L→∞

√
L ατk (t ), (31)

replacing any sums over k with

lim
L→∞

1

L

∑
k

= 1

2π

∫
dk (32)

and any instances of δkk′ with 2πδ(k − k′). Hence we have

A(r, t ) = 1

2π

∑
τ

∫
[ατ (k, t )aτ (k, r)+α∗

τ (k, t )a∗
τ (k, r)]dk,

(33)

Dττ ′ (k, k′) = 1

μ0

∫
a∗

τ (k, r) · ∇×[∇×aτ ′ (k′, r)]d3r, (34)

and

Nττ ′ (k, k′) =
∫

ε(r) a∗
τ (k, r) · aτ ′ (k′, r) d3r, (35)

with

Dττ ′ (k, k′) = 2πδ(k − k′) δττ ′ ωτ (k) (36)

and

Nττ ′ (k, k′) = 2πδ(k − k′) δττ ′

ωτ (k)
, (37)

and thus

1

μ0

∫∫
a∗

0τ (k, x, y) · ∇×[∇×a0τ ′ (k, x, y)]dx dy = δττ ′ ωτ (k)

(38)
and∫∫

ε(r) a∗
0τ (k, x, y) · a0τ ′ (k, x, y) dx dy = δττ ′

ωτ (k)
. (39)

Equation (21) becomes

Etot = 1

π

∑
τ

∫
ωτ (k)|ατ (k, t )|2dk, (40)

meaning that |ατ (k, t )|2 is π h̄ times the density of photons
with respect to k. Monochromatic light of wave vector k0 in
transverse mode τ is represented as

ατ (k, t ) = 2πA0δ(k − k0)e−iωτ (k0 )t , (41)

which gives

A(r, t ) = A0 e−iωτ (k0 )aτ (k0, r) + A∗
0 eiωτ (k0 )a∗

τ (k0, r). (42)

This corresponds to a total electromagnetic energy of
2ωτ (k0)|A0|2 per unit length, a result that can be derived
from Eqs. (40) and (41) by substituting one of the factors of
δ(k − k0) with

∫ ∞
−∞ ei(k−k0 )zdz/(2π ). Since for an arbitrarily

narrow distribution of wave vectors around k0 the electromag-
netic energy travels along the waveguide at the speed of the
envelope function, which is the mode’s group velocity vg τ (k0)
defined as

vg τ (k) = dωτ (k)

dk
, (43)

the optical power is equal to

P = 2 ωτ (k0)|A0|2 vg τ (k0). (44)

It is important to note that waveguides and tapered fibers
used for coupling light into microresonators are usually
single-mode at the operating wavelength, meaning that there
are only two possible values of τ , corresponding to the two
polarizations of the fundamental transverse mode. Particularly
in the case of the fundamental transverse mode, the variation
of the transverse mode profile a0τ (k, x, y) with k is extremely
gradual, taking place over a range of k of the order of k
itself, and so can be neglected in the context of a narrow
band of optical frequencies. We can thus write a0τ (k, x, y) =
a0τ (k0, x, y) for a narrow range of k centered around k0. By
defining

Aτ (z, t ) = 1

2π

∫
ατ (k, t )ei(k−k0 )zdk, (45)

023517-4



GENERALIZED THEORY OF OPTICAL RESONATOR AND … PHYSICAL REVIEW A 105, 023517 (2022)

in which the k integral is over this narrow range, we ob-
tain, again in the case where there is only light in transverse
mode τ ,

A(r, t ) = Aτ (z, t ) aτ (k0, r) + A∗
τ (z, t ) a∗

τ (k0, r), (46)

where we can use ωτ (k) � ωτ (k0) + vg τ (k0)(k − k0) to say
that

∂Aτ (z, t )

∂t
� −iωτ (k0)Aτ (z, t ) − vg τ (k0)

∂Aτ (z, t )

∂z
. (47)

Bringing a microresonator with whispering-gallery modes
aσ (r) close to the waveguide, we may calculate the transfer-
matrix element Hσ τ (k) between mode aσ (r) of the resonator
and mode aτ (k, r) of the waveguide using the formula for
Hσσ ′ given in Eq. (29) but replacing aσ ′ (r) with aτ (k, r).
Noting that in a system of two dielectrics surrounded by vac-
uum εsσ

(r) − ε(r) for each body sσ simply equals −ε0 times
the electric susceptibility of the other body, and that Hσσ ′ is
Hermitian, we obtain

Hσ τ (k) = −ε0ω̄
2
σ

2

∫
χwav(r) a∗

σ (r) · aτ (k, r) d3r

= −ε0ω̄
2
σ

2

∫
χres(r) a∗

σ (r) · aτ (k, r) d3r (48)

where χwav(r) and χres(r) are the electric susceptibility pro-
files of the waveguide and resonator, respectively. In the
case where the dielectrics are surrounded by a medium with
nonzero susceptibility, χwav(r) and χres(r) would refer to the
difference in susceptibility between the body in question and
this medium. For k close to k0 as above, we may express
Eq. (48) as

Hσ τ (k) =
∫

H̃σ τ (k0, z) ei(k−k0 )zdz (49)

where

H̃σ τ (k0, z) � −ε0ω̄
2
σ

2

∫∫
χres(r) a∗

σ (r) · aτ (k0, r) dx dy.

(50)
Thus, if we assume that there is only one resonator mode,

namely, aσ (r), that couples significantly to aτ (k, r) for k close
to k0 since its frequency is much closer to ω̄τ (k0) than that
of any other resonator mode, then, combining Eq. (27) with
Eq. (47) as well as Eqs. (32), (45), and (49), and adding an
intrinsic loss rate γ0 to the resonator mode (from processes
such as absorption and scattering), we have

∂Aτ (z, t )

∂t
� −iω̄τ (k0)Aτ (z, t ) − vg τ (k0)

∂Aτ (z, t )

∂z

− iH̃∗
σ τ (k0, z) ασ (t ) (51)

and

dασ (t )

dt
= −(iω̄σ + γ0) ασ (t ) − i

∫
H̃σ τ (k0, z)Aτ (z, t ) dz.

(52)

Defining the amplitudes Fτ (z, t ) = Aτ (z, t ) eiω̄τ (k0 ) t and
ψσ (t ) = ασ (t ) eiω̄τ (k0 ) t in the rotating wave approximation, as

well as the detuning θ = ω̄τ (k0) − ω̄σ , we obtain

∂Fτ (z, t )

∂t
� −vg τ (k0)

∂Fτ (z, t )

∂z
− iH̃∗

σ τ (k0, z) ψσ , (53)

dψσ (t )

dt
= (iθ−γ0) ψσ − i

∫
H̃σ τ (k0, z)Fτ (z, t ) dz. (54)

Now for a high-Q resonator, the dynamics of light in a single
resonance takes place on a timescale of the inverse cavity
linewidth, which is many orders of magnitude larger than
the time it takes light to traverse the coupling region, i.e.,
the region where H̃σ τ (k0, z) is non-negligible, while traveling
along the waveguide. Therefore, assuming that the light input
into the waveguide is of a linewidth similar to or smaller than
the resonance of the cavity (as indeed it must be in order
to couple resonantly into it), we may say that |∂Fτ /∂t | �
|vg τ (k0) ∂Fτ /∂z|, allowing us to neglect the left-hand side of
Eq. (53) to obtain

∂Fτ (z, t )

∂z
= − iH̃∗

σ τ (k0, z)

vg τ (k0)
ψσ . (55)

We thus have ∂Fτ (z, t )/∂z = 0 outside the coupling region.
Defining Fin(t ) and Fout(t ) to be the values of Fτ (z, t ) for z
before and after the coupling region, respectively, we may
integrate Eq. (55) over z to give

Fout(t ) = Fin(t ) − iH∗
σ τ (k0)

vg τ (k0)
ψσ (t ) (56)

via Eq. (49). For convenience, we treat integrals over z
through the entire coupling region as being between −∞ and
∞, meaning that Eq. (49) is equivalent to

H̃σ τ (k0, z) = 1

2π

∫
Hσ τ (k) e−i(k−k0 )zdk. (57)

Integrating Eq. (55) up to an arbitrary z thus gives

Fτ (z, t ) = Fin(t ) − iψσ (t )

vg τ (k0)

∫ z

−∞
H̃∗

σ τ (k0, z′)dz′ (58)

= Fin(t ) − iψσ (t )

2πvg τ (k0)

∫
H∗

σ τ (k)I (k, z)dk (59)

where

I (k, z) =
∫ z

−∞
ei(k−k0 )z′

dz′ (60)

= ei(k−k0 )z

(
πδ(k − k0) − i

k − k0

)
. (61)

Substituting for H̃σ τ (k0, z) and Fτ (z, t ) in Eq. (54) using
Eq. (57) (with the dummy variable k replaced by k′) and
Eq. (59), respectively, and integrating first over z and then over
k′, we obtain

dψσ (t )

dt
= (iθ ′ − γ ) ψσ (t ) − iHσ τ (k0)Fin(t ) (62)

where γ = γ0 + κ , θ ′ = θ − δωσ , and

κ = |Hσ τ (k0)|2
2vg τ (k0)

, (63)

δωσ = − 1

2πvg τ (k0)

∫ |Hσ τ (k)|2
k − k0

dk. (64)

023517-5



JONATHAN M. SILVER AND PASCAL DEL’HAYE PHYSICAL REVIEW A 105, 023517 (2022)

We refer to κ as the coupling half linewidth; to γ0 and γ

as the intrinsic and total half linewidths, respectively; and
to θ ′ again as the detuning. These expressions can also be
derived from Fermi’s “golden rule” and second-order pertur-
bation theory, respectively. Although unlikely to be zero, the
second-order correction δωσ to the frequency of the resonator
mode will likely be negligible compared to the first-order
correction given by Hσσ that comes from the modification
of the permittivity in the vicinity of the resonator due to the
waveguide. First-order interaction terms Hττ ′ (k, k′) between
the waveguide modes also exist, and have the effect of slightly
increasing the wave vector of light as it traverses the coupling
region, perhaps in a polarization-dependent way, although this
would have little effect on the phenomenology apart from a
slight change in the apparent values of the coupling strengths
Hσ τ (k). Bringing the waveguide close to the resonator will
also in general increase the effective intrinsic loss rate γ0 due
to coupling to the other guided mode of the waveguide and to
free-space modes. Note also that momentum-nonconserving
couplings between modes in either the waveguide or resonator
that are counterpropagating at the coupling region are strongly
suppressed due to the fact that the coupling region is uniform
over a lengthscale of many wavelengths.

In the steady state where Fin, Fout, and ψσ are all time
independent, we can thus say that

ψσ = − iHσ τ (k0)Fin

γ − iθ ′′ and Fout = Fin

(
1 − 2κ

γ − iθ ′′

)
,

(65)
where θ ′′ = θ ′ − Hσσ = ω̄τ (k0) − ω̄σ − δωσ − Hσσ .

The input and output optical powers of the waveguide and
stored energy in the cavity are given, respectively, by

Pin,out = 2 ω̄τ (k0)vg τ (k0)|Fin,out|2 and Eσ = 2ω̄σ |ψσ |2.
(66)

Thus Eσ and Pout follow Lorentzian profiles with respect to θ ′′
with half linewidth γ , and

Pout = Pin

(
1 − ηin

1 + (θ ′′/γ )2

)
(67)

where the in-coupling efficiency ηin = 4κγ0/γ
2. For a

whispering-gallery mode, we may define the circulating
power to be

Pcirc = Eσ �νFSR (68)

where �νFSR is the free spectral range of the mode family in
question at mode σ , which is also the mode’s angular group
velocity around the resonator divided by 2π .

IV. KERR NONLINEARITY

Turning now to the Kerr effect in the resonator, this adds an
extra term ε0χ

(3)(E · E)E to the electric polarization vector
P [62], where E(r) = −∂A/∂t is the electric field. We are
assuming a scalar form for χ (3)(r) as is necessarily true for
isotropic materials, and that both the Kerr and linear dielec-
tric effects act instantaneously. If we include this term in
Maxwell’s equations as part of the displacement field D =

ε0E + P, Eq. (1) becomes

∇×(∇×A) = −μ0

[
ε
∂2A
∂t2

+ ε0χ
(3) ∂

∂t

(∣∣∣∣∂A
∂t

∣∣∣∣
2
∂A
∂t

)]
. (69)

Since this is a small perturbation, we can work in the basis
{aσ (r)} of stationary states of Eq. (1) as previously defined,
and let ασ (t ) = ξσ (t )e−iωσ t where |dξσ /dt | � ωσ |ξσ |. To first
order in |dξσ /dt |/(ωσ |ξσ |), looking at Eq. (2), we have

∂2A
∂t2

=
∑

σ

[(
−ω2

σ ξσ − 2iωσ

dξσ

dt

)
e−iωσ t aσ (r)

+
(

−ω2
σ ξ ∗

σ + 2iωσ

dξ ∗
σ

dt

)
eiωσ t a∗

σ (r)

]
. (70)

Since the χ (3) term in Eq. (69) is already small, we only need
to calculate it to leading order, giving

μ0ε0χ
(3) ∂

∂t
[(E0 · E0)E0] (71)

where

E0(r, t ) = i
∑

σ

ωσ [ξσ e−iωσ t aσ (r) − ξ ∗
σ eiωσ t a∗

σ (r)]. (72)

As the basis states {aσ (r)} are unperturbed, so too is the left-
hand side of Eq. (69) (when expressed in terms of {ασ } or
{ξσ }), so we may equate the total first-order perturbation to
the right-hand side of Eq. (69) to zero, which yields

2iε(r)
∑

σ

ωσ

(
dξσ

dt
e−iωσ t aσ (r) − dξ ∗

σ

dt
eiωσ t a∗

σ (r)

)

= −ε0χ
(3) ∂

∂t
[(E0 · E0)E0]. (73)

We may expand the right-hand side as a triple sum over ρ,
μ, and ν by expressing each instance of E0 in the form given
in Eq. (72), but with the index σ replaced by ρ, μ, and ν,
respectively. Doing this, we see that for one of the resulting
eight terms to be resonant with the positive-frequency (e−iωσ t )
term on the left-hand side it must satisfy ωσ ± ωρ ± ωμ ±
ων � 0 for some combination of plus and minus signs. Terms
that satisfy this with one or three minus signs correspond to
processes that convert one photon into three or vice versa,
such as third-harmonic generation, and will not be discussed
here. We are interested in terms that satisfy it with two minus
signs, that correspond to processes that conserve the total
photon number and can thus operate entirely within a sin-
gle narrow band of optical frequencies. As explained below,
these processes comprise self- and cross-phase modulation
(which cause frequency shifts of modes) and four-wave mix-
ing (which transfers light between modes), although in a given
situation the choice of term may depend on the mode basis
being used. Thus, taking the dot product of both sides of
Eq. (73) with a∗

σ (r) and integrating over all space, noting the
normalization Nσσ ′ = δσσ ′/ωσ , equating the e−iωσ t terms on
each side, and using the fact that to leading order the d/dt
on the right-hand side simply multiplies these by −iωσ , we
obtain

dξσ

dt
= i

∑
ρ

∑
μ

∑
ν

Kσρμν ξ ∗
ρ ξμξνei(ωσ +ωρ−ωμ−ων )t (74)
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or equivalently

dασ

dt
= −iωσασ + i

∑
ρ

∑
μ

∑
ν

Kσρμν α∗
ραμαν (75)

where

Kσρμν = ε0

2
ωσωρωμων

∫
χ (3)[(a∗

σ ·a∗
ρ )(aμ ·aν )

+ (a∗
σ ·aμ)(a∗

ρ ·aν ) + (a∗
σ ·aν )(a∗

ρ ·aμ)]d3r. (76)

Terms with σ = ρ = μ = ν correspond to SPM, which can be
seen as coming from a change in the refractive index seen by
a light wave that is proportional to the wave’s own local inten-
sity. For a linearly polarized plane-wave mode, which satisfies
a∗

σ = eiϕ(r)aσ for some spatially dependent phase factor eiϕ(r),

Kσσσσ = 3ε0ω
4
σ

2

∫
χ (3)‖aσ‖4d3r. (77)

Observing that this term results in a self-induced frequency
shift �ωσσ = −Kσσσσ |ασ |2, we may use this to calculate the
change in refractive index for a given optical intensity by
treating a traveling plane wave in an infinite uniform medium
as though it is propagating inside a cuboid with volume V
and periodic boundary conditions. We equate �ωσσ /ωσ to
−�n/n0 where �n is this change in refractive index and
n0 = √

ε/ε0 is the linear refractive index. Noting that the
optical intensity is I = 2ωσ |ασ |2c/(n0V ) where c is the speed
of light in a vacuum and that

Kσσσσ = 3ω2
σχ (3)

2n2
0εV

(78)

given the normalization of aσ , we can show that

�n = n2I, where n2 = 3χ (3)

4εc
(79)

is known as the nonlinear refractive index, and hence

Kσσσσ = 2cn2ω
2
σ

n2
0V

. (80)

We can generalize this to any optical mode in a resonator by
letting n0 and n2 be equal to some nominal values n0,nom and
n2,nom, for example, their values at a certain point inside the
resonator, and letting V be equal to an effective mode volume
Vσ defined such that

n2
0,nomVσ

n2,nom
=

[ ∫
n2

0(r)‖aσ (r)‖2d3r
]2∫

n2
0(r)n2(r)‖aσ (r)‖4d3r

. (81)

Each mode also experiences frequency shifts proportional
to the intensities of light in the other modes, due to terms in
which σ = μ and ρ = ν, or σ = ν and ρ = μ, but σ 
= ρ.
Known as XPM, the value of this shift induced on mode σ

by mode ρ is thus given by �ωσρ = −2Kσρσρ |αρ |2, since
Kσρμν = Kσρνμ. All other terms transfer light between modes,
and are collectively known as four-wave mixing. Importantly,
in systems with a high degree of symmetry such as a WGM
resonator with rotational symmetry, most of the terms of
Kσρμν will turn out to be zero. These cases can be understood
by realizing that quantum mechanically the Kσρμν term is an-
nihilating a photon in each of modes μ and ν and creating one
in each of modes σ and ρ, and must conserve the total linear or

angular momentum in the cases of translational and rotational
symmetry, respectively. Thus, for whispering-gallery modes,
in order to conserve angular momentum, the sum of the az-
imuthal mode numbers of modes σ and ρ must equal that of
modes μ and ν in order for Kσρμν to be nonzero. In WGM res-
onators, distinct modes with the same azimuthal mode number
tend to differ in frequency by more than the free spectral range
of the resonator. This is due to the strong radial and axial
confinement that splits different radially and axially excited
modes, as well as to the strong geometric birefringence that
splits the radially and axially polarized versions of the same
spatial mode. As a consequence, terms of the form Kσρσμ

or Kσρμσ with ρ 
= μ will usually be strongly off-resonant
and thus negligible. Therefore the total Kerr frequency shift
of mode σ contains only the SPM and XPM terms already
discussed, and so is given by

�ωσ = −Kσσσσ |ασ |2 − 2
∑
ρ 
=σ

Kσρσρ |αρ |2. (82)

By examining terms of the form Kσρσρ (= Kσρρσ ) and Kσσρρ

in Eq. (76) and applying symmetry considerations, we can
derive some important results about the relative magnitudes
of these SPM and XPM shifts in various cases. We start by
noting that Kσρσρ is invariant under multiplication of either
aσ (r) or aρ (r) by a spatially dependent phase factor eiϕ(r).
Now traveling-wave modes in a resonator (waveguide) belong
to mode families, which are series (continua) of modes that
differ only by their azimuthal mode number (longitudinal
wave vector). Modes from the same family, particularly those
that are close in this mode number or wave vector, have
essentially the same spatial mode profile up to a multiplicative
spatially dependent phase factor. They will therefore have
Kσρσρ � Kσσσσ � Kρρρρ and hence XPM that is almost ex-
actly twice as strong as SPM [by Eq. (82)]. Furthermore, all
traveling-wave modes have a counterpropagating but other-
wise identical counterpart, the mode profile aσ (r) of which
is the complex conjugate of that of the first mode. This
can be seen from Eq. (2) by noticing that if ασ (t ) ∝ e−iωσ t

then swapping aσ (r) and a∗
σ (r) is equivalent to exchanging

t and −t . A perfect traveling-wave mode is one that has
a distinct counterpropagating counterpart, in other words if
aσ (r) and aσ ′ (r) = a∗

σ (r) are orthogonal as defined by the
matrix elements Nσσ ′ (and Dσσ ′) between them vanishing.
Note that this is true not only for traveling-wave modes but
in general for any mode with a distinct time-reversal con-
jugate, including, for example, certain types of circularly
polarized standing-wave modes. The antithesis of this would
be a standing-wave mode in which all electric field compo-
nents everywhere oscillate in phase with each other, for which
a∗

σ (r) = aσ (r) as stated in Sec. II. It can be seen from Eq. (76)
that if aμ(r) = a∗

ρ (r) then Kσμσμ = Kσρσρ , meaning that in a
traveling-wave basis the strength of XPM between any two
modes is exactly the same as between the first mode and the
counterpropagating partner of the second. Crucially for this
paper, it also implies that XPM is precisely twice as strong as
SPM for modes that are counterpropagating partners of each
other.

Finding the XPM-SPM ratio between modes of different
polarizations is a little more nuanced. In the case of plane
waves or in the limit of weakly guided waves, aμ(r) is
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everywhere perpendicular to the propagation direction, and
every mode has a counterpart with a different polarization but
otherwise the same spatial mode profile. This can be seen from
the fact that in isotropic media with only small variations in
refractive index Maxwell’s equations can be approximated by
the same scalar wave equation for both polarizations [63]. For
example, a spatial mode propagating along ez will be have
two linearly polarized modes that can be expressed as ax(r) =
exa(r) and ay(r) = eya(r) for some common scalar function
a(r), where ex,y,z are the Cartesian unit vectors. Equation (76)
thus tells us that

Kxxxx = Kyyyy = 3K0 (83)

and Kxyxy = Kxxyy = Kyyxx = K0, (84)

where

K0 = ε0

2
ω4

∫
χ (3)(r) |a(r)|4 d3r (85)

and ω = ωx = ωy. This means that for oppositely linearly po-
larized counterparts XPM is 2/3 as strong as SPM. However,
light is also transferred between the two polarizations due to
the Kxxyy and Kyyxx terms, and so a linearly polarized basis is
only appropriate for describing the physics if there is sufficient
mode splitting in that basis to suppress this transfer (such as
in a WGM resonator or rectangular waveguide, both of which
have strong geometric birefringence). In the absence of such
a mode splitting, a better basis to use is a circularly polarized
one consisting of a+(r) = e+a(r) and a−(r) = e−a(r), where
e± = (ex ± iey)/

√
2. In this basis, Eq. (76) yields

K++++ = K−−−− = K+−+− = 2K0 (86)

and K++−− = K−−++ = 0. (87)

Thus, SPM is only 2/3 as strong as it is in a linearly polarized
basis, however XPM is now twice as strong as SPM and there
is no longer any transfer between the two modes. Equation
(87) can be justified via conservation of spin angular mo-
mentum, since if it were not true two photons with +1 spin
angular momentum would be able to convert into two with
−1 and vice versa. Furthermore, the equality of K+−+− with
K++++ and K−−−− can be deduced from the fact that a+(r) is
equal to a∗

−(r) multiplied by some spatially dependent phase
factor eiϕ(r), as explained earlier. For strongly guided modes,
i.e., ones with transverse features not much larger than the
wavelength, this no longer holds for traveling waves due to the
significant component of a+(r) and a−(r) pointing along the
propagation direction, meaning that XPM between oppositely
circularly polarized traveling-wave modes is less than twice
as strong as SPM.

Turning again to four-wave mixing, in cases where ασ and
αρ are initially both zero, the process governed by Kσρμν

will only occur when |αμαν | surpasses a certain threshold
where the gain in ασ and αρ through mutual positive feedback
becomes greater than their losses. This is true for sideband
and frequency comb generation starting from monochromatic
light. Since this is also governed by the Kerr effect, its
threshold power is roughly the same as that for the symmetry-
breaking effect between counterpropagating light mentioned
in Sec. I and studied in Refs. [27–30], and in fact is nor-

TABLE I. Definition of dimensionless quantities in Eq. (90). ηin

is the resonant in-coupling efficiency equal to 4κγ0/γ
2 where κ , γ0,

and γ = γ0 + κ are the coupling, intrinsic, and total half linewidths,
respectively. Pin,1,2 and Pcirc,1,2 are the pump and circulating powers,
respectively. P0 = πn2

0V/(n2λQQ0 ) is the characteristic in-coupled
power required for Kerr nonlinear effects, where n0 and n2 are the
linear and nonlinear refractive indices, V is the mode volume, and
Q = ω0/(2γ ) and Q0 = ω0/(2γ0 ) are the loaded and intrinsic quality
factors, respectively, for cavity resonance frequency ω0 (without Kerr
shift). F0 = �ωFSR/(2γ0) is the cavity’s intrinsic finesse for free
spectral range �ωFSR, and ω1,2 are the pump frequencies.

Symbol Description Formula

p̃1,2 Pump powers ηinPin,1,2/P0

p1,2 Circulating powers 2πPcirc,1,2/(F0P0 )
�1,2 Pump detunings from resonance (ω0 − ω1,2)/γ

frequency without Kerr shift
ẽ1,2 Pump field amplitudes p̃1,2 = |ẽ1,2|2
e1,2 Circulating field amplitudes p1,2 = |e1,2|2

mally higher due to dispersion in the resonator. Therefore it is
usually possible to pump a pair of counterpropagating modes
with sufficient power to observe the symmetry breaking but
no other Kerr nonlinear processes.

Thus, returning to Eq. (62), letting σ = 1, 2 denote two
counterpropagating partner modes along with waveguide in-
put field amplitudes Fin,1,2(t ) in the corresponding directions
and including the SPM and XPM frequency shifts, we obtain

dψ1,2

dt
= [iθ ′′

1,2+iK (|ψ1,2|2+2|ψ2,1|2) − γ ]ψ1,2 − iHFin,1,2,

(88)

where θ ′′
1,2 are the detunings of the pumps in each direction

from the resonance without Kerr shift, H denotes the value
of Hσ τ (k0) between each resonator mode and the coprop-
agating waveguide mode, and K = K1111 = K2222 = K1212 =
K2121. The values of Hσ τ (k0) for each direction are the same
by symmetry, with any difference due to a difference in pump
frequency being negligible, and linear couplings between
counterpropagating modes are assumed to be negligible. Fi-
nally, we may put this in dimensionless form by letting

t̄ = γ t, �1,2 = −θ ′′
1,2

γ
, e1,2 =

√
K

γ
ψ∗

1,2,

ẽ1,2 = iH∗
√

K

γ 3
F ∗

in,1,2, ė1,2 = de1,2

dt̄
, (89)

yielding

ė1,2 = ẽ1,2 − [1 + i(|e1,2|2 + 2|e2,1|2 − �1,2)]e1,2, (90)

which forms the basis of the analysis of the symmetry-
breaking dynamics in Refs. [29,30]. Table I provides a more
empirical set of definitions for the quantities in Eq. (90) that
mirror those in Refs. [29,30], in which |ẽ1,2|2 and |e1,2|2 are
the dimensionless pump and circulating powers p̃1,2 and p1,2,
respectively. These definitions may be reconciled with the rest
of this paper by examining Eqs. (63), (66), (68), and (80),
substituting ω̄τ (k0), ω̄σ , and ωσ with ω0.
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V. CONCLUSION

We have brought together the various elements of the cou-
pled mode theory descriptions of linear coupling and Kerr
interaction between modes of a dielectric optical microres-
onator and a waveguide, starting from first principles. The
treatment is initially very general and not specific to a particu-
lar geometry or choice of mode basis, and can thus be applied
to many scenarios not discussed here such as geometric scat-
tering between resonator modes, bending losses, and losses
due to surface roughness. We then used this theory to derive
the dimensionless equation governing the symmetry-breaking
dynamics of a pair of counterpropagating modes in a WGM
or ring resonator, proving that the factor of 2 between the
coefficients of SPM and XPM is exact when the two modes are
time-reversal conjugates of each other. This factor is slightly
less than 2 for modes of opposite circular polarization and/or
different frequency, due to small differences between the two
spatial mode profiles. All the approximations used in this pa-
per are essentially based on the same assumption, that all the
dynamical processes in the resonator (decay of light, coupling
of light from and to the waveguide, and Kerr interaction) occur

on timescales much longer than the inverse optical frequency.
They are therefore valid to a very high degree of accuracy on
the order of 1/Q, where the quality factor Q of the resonator
is generally at least 106 (sometimes even exceeding 1010) for
resonators used to realize Kerr nonlinear effects [19]. The
method and assumptions used to describe a continuum of op-
tical modes of a translationally symmetric waveguide in terms
of a complex field variable of a single spatial dimension can
be easily adapted to describe a mode family of a rotationally
symmetric WGM resonator, allowing the LLE to be derived
from the terms already discussed plus one or more dispersion
terms.
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