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Optical theorem of an infinite circular cylinder in weakly absorbing media
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The conventional optical theorem cannot consider losses of host media. As a fundamental problem of light
scattering, the generalized optical theorem of an infinite cylinder embedded in a weakly absorbing host is studied
in this paper. Using the analytical way, we derive the generalized far-field and distance-independent extinction
efficiencies per unit length of the cylinder under normally incident p- and s-polarized waves, which reduce
to the conventional formulas in the transparent host media. For large cylinders, the increasing absorption of
the host medium leads to an increasing amplitude of interference oscillation and the emergence of negative
extinction, which is similar to that for spheres. Furthermore, the absorption of the host medium is proved to
destroy the morphology-dependent resonance structure in extinction and suppress the electric field resonance
inside the cylinder. For small cylinders in a weakly absorbing host medium, we present the conditions for
negative extinction and quantitatively analyze the differences in extinction between the absorbing host medium
and the nonabsorbing counterpart. It is found that the ratio of the extinction from the generalized theory to
conventional formulas depends only on the refraction indices of the cylinder and the host medium. The results
for small cylinders are rather sensitive to the state of polarization of the light. By illustrating the significant
differences between the generalized optical theorem and the conventional theory with a specific case of a Ge
cylinder in polyethylene, we show the non-negligible impacts of the absorption of the host media on the optical
extinction of the cylinder for the two polarizations.
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I. INTRODUCTION

The optical theorem, also termed the forward scattering
theorem, is a fundamental law in light scattering theory of
particles [1]. It relates the scattering amplitude in the forward
direction to the extinction cross section of the particle. Extinc-
tion of light by particles is not only a ubiquitous phenomenon
in nature as in the lingering light of the setting sun [2], but also
a useful tool in diverse sciences and engineering disciplines,
including, but not limited to, astronomy [3], atmospheric ra-
diation and climate science [4], bio-optics [5], radiative heat
transfer [6], and metamaterials [7]. To obtain meaningful in-
sights of the physical measurement and practical observations
in these disciplines, a comprehensively theoretical knowledge
on the optical theorem for various circumstances is required.
The optical theorem has been generalized to Gaussian beams
[8], radially polarized beams [9], surface waves [10,11], in-
version symmetry particles [12], nonlinear and lossy particles
with time-varying optical properties [13], and source-induced
electromagnetic fields [14]. However, in the above general-
izations, the host medium surrounding particles is usually
assumed to be transparent.

In certain circumstances, however, it is also necessary to
consider the electromagnetic losses of the host media. In the
atmosphere, ozone, carbon dioxide, and water vapor have fea-
tured absorptive bands at infrared spectral regions [15]. The
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commonly used polymeric matrices in nanophotonics, such as
polymethyl methacrylate (PMMA) and polydimethylsiloxane
(PDMS), show optical losses in the infrared band [16]. More-
over, another concrete instance is the radio-frequency heating
of the metallic nanoparticles dispersed in biological tissues for
photothermal therapy, where the tissues should be considered
as lossy media [17,18].

Electromagnetic scattering of an infinite cylinder in the
absorbing host medium has both fundamental and practical
significance. The famous Mie theory is developed for spheres
and infinite cylinders [19,20], which gives our insights into
electromagnetic scattering. In addition, a recent work demon-
strates that, under the radio-frequency electromagnetic waves,
a nanocylinder or nanowire in human tissue has a higher
photothermal conversion efficiency than a nanosphere [21], in
which the tissue is considered as an absorbing medium.

In a transparent host medium, the optical theorem can
be derived in two conventional ways. One is the analytical
way to define the extinction by integrating the total Poynting
vector on the conceptual spherical/cylindrical surface (CSS)
in a far-field region [19]. The extinction integral over the CSS
surface surrounding the particle depends only on the forward
direction interference, while the contributions from the other
directions on the integral will be canceled mutually [22]. The
other is the operational way originating from the seminal
work by van de Hulst [23], who gives the extinction by the-
oretically modeling the difference between the readings of a
well-collimated detector (WCD) in the presence and absence
of the particle [20,24]. The operational way is a supplement
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to the analytical way since it discusses the ability of a WCD
to measure the forward direction interference and the extinc-
tion properties of particles. The preliminary limitation on the
WCD is the larger sensitive area than the particle projection
[24]. However, further rigorous analysis reveals that a valid
measurement requires a WCD to satisfy more restrictions, for
example, to be large enough [22], to be far enough from the
particle, and it should have a noncircular sensitive area [25].

Based on the above two ways, there are a lot of research
efforts to develop the generalized optical theorem in absorbing
host media. However, since Mundy et al. first derived the gen-
eralized Mie scattering theory of a sphere in absorbing host
media in 1974 [26], the generalization of the optical theorem
to the absorbing host medium has suffered long-lasting con-
troversies. The controversies arise from the desire to preserve
the derivation methods and definitions of the conventional
theory.

In the generalization of the analytical way for absorbing
host media, the extinction power absorbed inside the CSS is
a quantity dependent on the size of the CSS. The far-field
extinction efficiency of the particle is thus a CSS-dependent
quantity, which is defined as, according to the conventional
definition, the ratio of the extinction power absorbed inside the
CSS to the mean incident energy flow entering the sphere [26]
or the cylinder [27]. However, this runs counter to the physical
intuition that the physical property of the particle should be a
distance-independent quantity [28].

To avoid the distance-dependent extinction properties,
the researchers adopt two different routines: (i) taking the
CSS on the surface of the spheres [29–38] or the cylinders
[27,39–44] and (ii) using the operational way to consider the
readings of the WCD [45–55]. Routine (i) leads to an apparent
contradiction since it neglects the near-field effects whereas
the actual measurements would include these effects [15,45].
Routine (ii) takes advantage of the merits of the operational
way which considers the actual experimental configuration
[19]. Therefore, the operational way is used to derive the
generalized optical theorem of an arbitrary finite-volume par-
ticle in absorbing host media by Videen and Sun [45] and
Mishchenko [46], which is then integrated with the general-
ized radiative transfer theory [47,48]. Following routine (ii),
a number of studies evaluate the impact of external losses
on the extinction of a single particle [49–51] or a particle
system [52–55]. However, the validity of the latter routine is
limited by the facts that the rigorous conditions have not been
discussed in relating the extinction to the readings of a WCD
in the absorbing medium.

To conclude, we stress two important aspects of the prob-
lem. First, the two ways described above (the analytical
and operational ways) should be two sequential steps of a
complete derivation. However, sustaining the conventional
definition of the analytical way gives the distance-dependent
extinction which is not an intrinsically physical property of the
particle. Then, it is necessary to adopt a generalized definition
to eliminate this distance dependence.

Second, a singular property of the particle made from the
passive material occurs if the host medium is absorbing, that
is, the extinction of the particle may be negative [28]. A recent
work demonstrates in detail that negative extinction arises
from the amplifying interference in Fraunhofer diffraction by

the increasing absorption of the host [50,52]. This interpre-
tation focuses on large particles; however, it was mentioned
recently that negative extinction can also occur for small par-
ticles compared with the wavelength [53,56]. The extinction
properties for small particles should receive more attention.

In this work, we develop the optical theorem of an in-
finite cylinder in absorbing host media under the normally
incident p- and s-polarized plane waves. In Sec. II, we de-
rive the extinction of the unit length cylinder by means of
the analytical way. The distance-independent extinction cross
section is obtained by using the forward incident intensity.
In Sec. III, extinction of large cylinders and small cylinders
will be studied separately. For small cylinders, we try to give
the conditions for the emergence of negative extinction and
demonstrate the differences in the results between absorbing
and nonabsorbing host media.

II. THEORY

A. Conventions and notations

Let ε0 and μ0 denote the vacuum permittivity and perme-
ability, respectively. A time-harmonic homogeneous incident
plane wave with the term of e−iωt is used in this paper, where
ω is the angular frequency, t is the time, and i = √−1. Both
the cylinder and the host medium are homogeneous, linear,
local, isotropic, and lossy media; the physical quantities of
the cylinder and the host medium are represented by the
subscripts of 1 and 2, respectively. In this regard, the relative
magnetic permeabilities of the cylinder and the host medium
are μ1 and μ2, respectively. The complex refraction indices of
the cylinder and the host medium are

n1 = n′
1 + in′′

1 and n2 = n′
2 + in′′

2, (1)

respectively. The complex wave numbers of the sphere and the
host are given, respectively, by

k1 = k′
1 + ik′′

1 = k0n1 and k2 = k′
2 + ik′′

2 = k0n2, (2)

where the vacuum wave number k0 has the relation of

k0 = ω

c
= 2π

λ
, (3)

with c the vacuum light speed and λ the wavelength of light
in a vacuum. The relative refraction index m is defined as

m = n1

n2
= k1

k2
, (4)

and the complex size parameter q is

q = k2a = q′ + iq′′, (5)

with a the radius of the cylinder. Since q is complex in the
absorbing host, a real-valued size parameter in a vacuum q0 is
defined as [50]

q0 = k0a. (6)

The cylindrical coordinate system (r, φ, z) and rectangular
coordinate system (x, y, z) of the cylinder are illustrated in
Fig. 1, which also shows the incident linear-polarized plane
waves and the scattered waves. The physical quantities corre-
sponding to the incident p and s polarization are represented
by the superscripts p and s, respectively. The incident and
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FIG. 1. Schematic diagram of light scattering by a circular cylin-
der under the normally incident p- and s-polarized waves. Incident
and scattered electromagnetic fields are represented with the sub-
scripts “inc” and “sca,” respectively. The rectangular coordinate
system (x, y, z) and cylindrical coordinate system (r, φ, z) are shown
in the diagram.

scattered fields in this paper are represented by the subscripts
“inc” and “sca,” respectively.

B. Expansion of fields and asymptotic scattered field

In an absorbing medium, the refraction index n2 is a com-
plex parameter. In this regard, the wave number k2 is also
complex, which enters the wave equation of ∇2E2 + k2

2E2 =
0. The separation-of-variables solution of the wave equation
is invariant for the complex k2 [57]. That is, the solution can
be derived by expanding the fields in terms of the vector
cylindrical harmonics, Mn and Nn. In component form these
vector cylindrical harmonics are [19]

Mn = k2

[
inH (1)

n (ρ)

ρ
êr − H (1)

n
′
(ρ)êφ

]
einφ, (7)

Nn = k2H (1)
n (ρ)êze

inφ, (8)

where H (1)
n is the Hankel function of the first kind and the

prime in H (1)′
n (ρ) represents differentiation about ρ = k2r

with r the radial coordinate.
In this system, the incident electric fields can be repre-

sented by

Ep,s
inc = Ep,s

0 eik2x, (9)

where the superscripts p and s represent, respectively, p and s
polarizations, and Ep,s

0 satisfies

Ep
0 = E0êz and Es

0 = E0êy, (10)

with E0 the incident electric field at the origin of the coor-
dinate system. The corresponding scattered electromagnetic
waves can be expanded in terms of vector cylindrical harmon-
ics, Mn and Nn, as [19]

Ep
sca = −

∞∑
n=−∞

EnbnNn, Hp
sca = ik2

ωμ0μ2

∞∑
n=−∞

EnbnMn,

(11)

Es
sca = −

∞∑
n=−∞

EnianMn, Hs
sca = −k2

ωμ0μ2

∞∑
n=−∞

EnanNn,

(12)

with En = E0/(−i)nk2. The expansion coefficients, an and bn,
are obtained from the electromagnetic boundary conditions,
as [19]

bn = μ1Jn(mq)J ′
n(q) − μ2mJ ′

n(mq)Jn(q)

μ1Jn(mq)H (1)′
n (q) − μ2mJ ′

n(mq)H (1)
n (q)

, (13)

an = μ2mJn(mq)J ′
n(q) − μ1J ′

n(mq)Jn(q)

μ2mJn(mq)H (1)′
n (q) − μ1J ′

n(mq)H (1)
n (q)

, (14)

where Jn(z) is the Bessel function and the prime here
represents differentiation with respect to the argument in
parentheses.

In the far-field approximation, the Hankel function H (1)
n

can be given asymptotically by [58]

H (1)
n (ρ) ∼

√
2

πρ
ei(ρ−nπ/2−π/4). (15)

Therefore, the asymptotic scattered fields can be written in
the form of

Ep,s
sca = eik2r

√
r

Ep,s
sca,0(φ), (16)

Hp,s
sca = k2

ωμ0μ2

eik2r

√
r

êr × Ep,s
sca,0(φ), (17)

where the distance-independent quantity Ep,s
sca,0(φ) can be rep-

resented as

Ep,s
sca,0(φ) = ei3π/4

√
2

πk2
T1,2(φ)E0êz,y, (18)

with T1,2 the amplitude scattering matrix elements given by

T1 =
+∞∑

n=−∞
bneinφ, (19)

T2 =
+∞∑

n=−∞
aneinφ. (20)

C. Far-field extinction of the cylinder

In the host medium the fields are the summation of incident
and scattered waves, and then the electric and magnetic fields
in the host, respectively, are

E2 = Einc + Esca and H2 = Hinc + Hsca. (21)

Therefore, the time averaged Poynting vector of electro-
magnetic waves in the host medium can be expressed as the
sum of three terms:

S2 = 1
2 Re[E2 × H∗

2] = Sinc + Ssca + Scross, (22)

where the Poynting vectors contributed from the incident and
the scattered field are

Sinc = 1

2
Re[Einc × H∗

inc] = 1

2

k′
2

ωμ0μ2
e−2k′′

2 x|E0|2êx, (23)
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and

Ssca = 1

2
Re[Esca × H∗

sca] = 1

2

k′
2

ωμ0μ2

e−2k′′
2 r

r
|Esca,0|2êr, (24)

respectively, while the cross term,

Scross = 1
2 Re[Esca × H∗

inc + Einc × H∗
sca], (25)

describes the Pointing vector component associated with the
interaction (interference) between the incident and the scat-
tered fields.

Let us now consider the electromagnetic energy budget
when the wave is scattered by the cylindrical particle. We
can construct an imaginary cylindrical surface with radius r
around the particle. The total power per unit length cylinder
absorbed within the imaginary cylinder surface is

Wabs = −r
∫ 2π

0
S2(r) · êr dφ, (26)

which, according to Eq. (22), can be separated into three
terms:

Wabs = Winc + Wsca + Wcross. (27)

The term Winc due to the incident field can be given by

Winc = πk′
2r

ωμ0μ2
|E0|2I1(2k′′

2 r), (28)

with I1(z) the first-order modified Bessel function of the first
kind. The quantity Wsca is

Wsca = − k′
2

2ωμ0μ2
e−2k′′

2 r
∫ 2π

0
|Esca,0|2 dφ, (29)

which describes the net power entering the imaginary surface
contributed by the scattered field. Furthermore, after some
algebra calculations, the cross term Wcross can be written
as

Wcross = −r
∫ 2π

0
Scross · êr dφ

= −√
r

2ωμ0μ

∫ 2π

0
dφRe{k∗

2 [eir(k2 cos φ−k∗
2 )E0 · E∗

sca,0+eir(k2−k∗
2 cos φ) cos φE∗

0 · Esca,0−eir(k2−k∗
2 cos φ)(êr · E∗

0 )(êx · Esca,0)]}.
(30)

The integral in Eq. (30) can be asymptotically solved using
the stationary phase method [59], since it can be simplified
into the form

J =
∫ 2π

0
g(φ)eik′

2r f (φ) dφ. (31)

In the far-field approximation of k′
2r � 1, the asymptotic

behavior of the integral J comes from the critical points of
phase function f (φ) where the first derivative of f (φ) van-
ishes. The underlying principle of stationary phase requires
that the phase exponent eik′

2r f (φ) in Eq. (31) must be a rapidly
oscillating function of φ and the amplitude function g(φ)
should be a slowly varying function [60]. This restriction leads
to the weakly absorbing condition of

k′′
2

k′
2

= n′′
2

n′
2

	 1. (32)

Using the principle of stationary phase, we can calculate
Eq. (31) with [59],

J ∼ g(φc)

√
2π

k′
2r| f ′′(φc)|eik′

2r f (φc )eiπ sgn[ f ′′(φc )]/4, (33)

where φc is the critical point of f (φ) and sgn[ f ′′(φc)] is the
sign of f ′′(φc). Since φ = 0 and π are the two critical points
of f (φ) = ±(cos φ−1) in Eq. (31), Wcross can be written,
according to Eq. (31) as the sum of two terms:

Wcross = Wext (φ = 0) + Wbi(φ = π ), (34)

where

Wext (φ = 0) = −
√

2πk′
2

ωμ0μ2
e−2k′′

2 rRe{eπ i/4E∗
0 · Esca,0(φ = 0)}

(35)

represents the extinction term relating to the forward scatter-
ing interference and

Wbi(φ=π )=
√

2π

ωμ0μ2

k′′
2√
k′

2

Im{e−π i/4e2ik′
2rE∗

0 · Esca,0(φ = π )}
(36)

is the backscattering interference term. Further details about
Wbi have been discussed in Ref. [61] for a three-dimensional
scattering problem of a finite particle in the absorbing media.

The above results indicate that Wcross is contributed by both
the forward and backward scattering interference. When the
host media is nonabsorbing, Winc and Wbi are zeros since
k′′

2 = 0, and Wext is a distance-independent quantity, which
allows the classical definition of extinction cross section
as Cext = Wext

I0
inc

with I0
inc the distance-independent incident

intensity.
However, in absorbing host media, both Wext and the in-

cident intensity Iinc depend upon the distance r. It is worth
noting that Wext relates to the distance r and the scattering
amplitude in the forward direction. In other words, Wext in
Eq. (35) is a directly measurable quantity using the appropri-
ate experimental configuration, which has been discussed in
Refs. [6,22,25,62]. Therefore, the normalization factor should
be taken as a measurable Iinc, which is the incident intensity
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situating at distance r in the forward direction when the parti-
cle is not in the path:

Iinc(φ = 0) = 1

2

k′
2

ωμ0μ2
|E0|2e−2k′′

2 r . (37)

The distance-independent extinction cross section per unit
length of the cylinder can then be defined as

Cext = Wext

Iinc(φ = 0)
= −2

√
2π√

k′
2

Re{eπ i/4E∗
0 · Esca,0(φ = 0)}
|E0|2

.

(38)
Substituting Eqs. (10) and (18) into Eq. (38), we can obtain

the extinction cross sections per unit length of the cylinder for
p and s polarizations,

Cp,s
ext = 4√

k′
2

Re

{
T1,2(φ = 0)√

k2

}
, (39)

and the corresponding extinction efficiencies

Qp,s
ext = Cp,s

ext

2a
= 2√

q′ Re

{
T1,2(φ = 0)√

q

}
. (40)

When the host media are transparent, Eq. (40) reduces
to the classical form of Qp,s

ext = 2
q Re{T1,2(φ = 0)}, which is

equivalent to Eqs. (8.36) and (8.37) in the monograph by
Bohren and Huffman [19]. It is worth noting that the above
extinction cross section and efficiency are intrinsic properties
of the particles, which do not depend on the distance.

Finally, we should stress three aspects of the derivation.
First, the rigorous mathematical analysis of real measure-
ments of Wext in absorbing media is beyond the scope of this
work. In transparent media, some researchers have argued that
the effective measurement requires a large enough [22] and
noncircular detector [70]. In absorbing media, however, more
research needs to be done. Second, using the operational way,
Mishchenko et al. [50] have derived the extinction efficiency
of a sphere in absorbing media as Qext = 4

q′ Re{ S11(0)
q } with

S11(0) the forward amplitude scattering matrix element. It is
obvious that their result is a three-dimensional analogy to our
Eq. (40), although our results are based on the analytical way.
This correspondence between the analytical and operational
ways requires an in-depth analysis of a real measurement con-
figuration, which is mentioned in the first statement. Third, the
far-field distance should be limited since the intensity of fields
in absorbing media is damped along the optical path. Taking
the incident intensity as an example, the incident intensity
should be assumed to be large enough to be “measured.” If
the light source is located at x = −r, the condition of k′′

2 r < 1
2

makes the detected intensity greater than 14% of the light
source. More specific restrictions on k′′

2 r should depend on the
intensity of the light source and the lower limit of the detector
capability.

III. RESULTS AND DISCUSSION

A. Large cylinders

The extinction efficiencies per unit length cylinder are
calculated for several specific cases. Here, we consider three
cases as cases I–III. Case I corresponds to a typical aerosol

TABLE I. Three cases illustrated in this paper.

Refraction index Refraction index
of cylinders of host media

Case I n1 = 1.4 (aerosol particles) n2 = 1 + in′′
2 (atmospheres)

Case II n1 = 1 (air) n2 = 1.33 + in′′
2 (water)

Case III n1 = 0.5 + 1.8i (gold) n2 = 1.33 + in′′
2 (water)

particle with refraction index n1 = 1.4 embedded in atmo-
spheres with n2 = 1 + in′′

2. Case II is an air bubble with
n1 = 1 immersed in water with n2 = 1.33 + in′′

2. Case III rep-
resents a gold particle with n1 = 0.5 + 1.8i near the surface
plasmon resonance submerged in water with n2 = 1.33 + in′′

2.
The three cases are listed in Table I.

Figure 2 shows the extinction efficiencies of case I for both
p and s polarizations. The imaginary parts of the host media
n′′

2 are chosen to be 0, 0.002, 0.02, and 0.05. It is noted in the
figures that the vertical coordinates apply to the transparent
host media (i.e., n′′

2 = 0) and the curves with the other n′′
2 are

successively translated upward with an increment of 10. The
dashed curves in Fig. 2 are the extinction efficiencies of a
sphere in lossy media calculated by the equation of Qext =
4
q′ Re{ S11(0)

q } with S11(0) the amplitude scattering matrix in
the forward direction [50], and the parameters applied to the
sphere are the same as those for the cylinder.

The features of the extinction curves for the transparent
host media (n′′

2 = 0) have been mentioned and discussed in
some classical monographs about light scattering [19,20,63].
We can observe three main features from the n′′

2 = 0 curve
in Fig. 2: first, a series of regular and slow oscillations
which are usually referred to as the interference structure;
second, a damping interference structure finally approach-
ing value 2 at the sufficiently large size parameter, which is
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FIG. 2. Extinction efficiencies Qp
ext and Qs

ext versus the vacuum
size parameter q0 for n1 = 1.4 and n2 = 1 + in′′

2. The values of n′′
2 are

labeled beside the corresponding curves. The curves with different
n′′

2 are successively shifted upward by 10 in both figures. The dashed
curves give the extinction efficiency of a sphere in lossy media calcu-
lated by the equation of Qext = 4

q′ Re{ S11(0)
q } [50], where S11(0) is the

amplitude scattering matrix of the sphere in the forward direction.
The light cyan areas are results calculated by (Qext − 2)e−2n′′

2 q0 + 2
at n′′

2 = 0.05.
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called the extinction paradox; third, sharp and irregular res-
onance peaks superimposed upon the interference structure,
which are known as the ripple structure and also termed as
morphology-dependent resonances (MDRs) or “whispering
gallery” modes.

When the absorption of the host media is introduced, sev-
eral special features emerge in Fig. 2:

(a) The period of the interference structure is independent
of n′′

2.

(b) The increasing of n′′
2 results in the amplifying amplitude

of the interference oscillation, which destroys the conven-
tional extinction paradox since Qp,s

ext cannot converge to a
definite value with the increasing size parameter. A byproduct
of this amplifying amplitude is the emerging negative extinc-
tion at some q0 values.

(c) The ripple structure is diminished by the increasing n′′
2.

As for (a), we can write an (and bn) in the asymptotic form
for thick cylinders as

an = Fn

Fn + iGn
∼ S(mq)C(q) − mC(mq)S(q)

S(mq)C(q) − mC(mq)S(q) + i[mC(mq)C(q) + S(mq)S(q)]
, (41)

where S(z) = sin[z−(n+ 1
2 )π

2 ] and C(z) = cos[z − (n + 1
2 )π

2 ].
By some algebra, we can get

Fn ∼ (m + 1) sin (m − 1)q + (−1)n(m − 1) cos (m + 1)q,

(42)

Gn = [(m + 1) cos (m − 1)q + (−1)n(m − 1) sin (m + 1)q].

(43)

Since m and q are complex, we can expand the
trigonometric function as sin(m−1)q = sin[q0(n′

1 − n′
2)]

cosh[q0(n′′
1 − n′′

2 )] + i cos[q0(n′
1 − n′

2)] sinh[q0(n′′
1 − n′′

2 )],
with which the other trigonometric function terms of
sin(m + 1)q, cos(m−1)q, and cos(m + 1)q have a similar
form. Although it is complicated to further give a more
simplified form of Re{an/

√
q}, we can conclude that the

periodicity is determined by the competitive effects among
trigonometric function terms including sin[q0(n′

1 − n′
2)],

sin[q0(n′
1 + n′

2)], cos[q0(n′
1 − n′

2)], and cos[q0(n′
1 − n′′

2 )].
The hyperbolic functions, influenced by q0n′′

1 and q0n′′
2, can

determine which trigonometric function is the dominating
factor in periodicity of the interference oscillation. It has
been concluded in Ref. [64] that, for a transparent sphere in
a transparent host medium, sin2[q0(n′

1 − n′
2)] dominates

over the other terms within an approximate range of
0.5 � n′

1/n′
2 � 2.5. We can see in case I that the leading

role of sin2[q0(n′
1 − n′

2)] is not influenced by the absorbing
host media.

The increasing amplitude of the interference oscillation
and negative extinction in (b) are discussed in the following.
These remarkable phenomena are first found for a sphere in
lossy media in Ref. [50], which can be seen from the dashed
curves in Fig. 2. The authors of Ref. [50] provide a qualitative
explanation on the anomalous interference oscillation as being
the result of interference between the light diffracted and
directly transmitted by the particle. When the host medium
is transparent, both the diffracted and the transmitted fields
suffer no attenuation. However, when the host medium is
absorbing with n′′

2 
= 0 and the particle is transparent with
n′′

1 = 0, the diffracted field attenuates over the path length
with a factor of e−2k0n′′

2a and the transmitted field is not subject
to this factor. This differential attenuation factor of e−2k0n′′

2a

leads to the exponentially growing amplitude of the interfer-
ence structure with increasing q0 = k0a for a nonzero value

of n′′
2. If the differential attenuation factor was compensated

on extinction results, the anomalous interference structure
at large n′′

2 would resemble that at n′′
2 = 0 [50]. Indeed, re-

placing Qext at n′′
2 = 0.05 by (Qext − 2)e−2q0n′′

2 + 2 will give
an indistinguishable curve with the Qext at n′′

2 = 0, which
can be seen from the light cyan area in Fig. 2. We note in
Fig. 2 that, at n′′

2 = 0.05, the increasing interference amplitude
with the vacuum size parameter q0 for the cylinder is larger
than that for the sphere. Since the differential attenuation
factor of the cylinder equals that of the sphere, the large
difference of interference oscillations at n′′

2 = 0.05 between
the cylinder and the sphere can be attributed to the moder-
ate difference of Qext in transparent media between the two
geometries.

The above qualitative explanation confirms the physical
relevance of the amplifying interference oscillation with the
negative extinction and the extinction paradox. According to
the definition, negative extinction means that the received
energy in the detector area is increased due to the presence
of the scattering cylinder. Since the extinction cross sections
are seen as the reduction in the detector area after interposing
a particle between source and detector, it is possible for the
detector to receive more radiation when the particle is less
absorbing than the host medium.

Next, we discuss the diminished ripple structure with the
increasing n′′

2 in (c). The ripple structure in the extinction
curve is well known to be formed by the resonances in the
partial wave expansion coefficients, an and bn [19]. Reso-
nances from the lower-order coefficients are relatively broad
with overlapping peaks. However, with the increasing mode
number of n, the resonances become narrower so that each
ripple peak corresponds to an individual resonance in an and
bn. These sharp resonances (i.e., MDR) are of fundamen-
tal importance in optical levitation experiments, fluorescence
emission spectra, and Raman scattering spectra (see Ref. [65]
and references therein).

The internal fields at MDR are of fundamental importance
in both elastic scattering and inelastic scattering. Since the
diminished MDRs are observed in Fig. 2, we plot the internal
electric field |Ep

1 |2/|E0|2 for p polarization inside the cylinder
in case I, as seen in Fig. 3. The fields outside the cylinder
are not shown in the figure. The first row in Fig. 3 shows
the internal electric field on the cylinder in transparent me-
dia with n′′

2 = 0. At q0 = 44.35 and n′′
2 = 0, the parameters
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FIG. 3. Relative internal electric field to incident electric field at origin |Ep
1 |2/|E0|2 for p-polarized incidence in case I. The first column

corresponds to the vacuum size parameters q0 = 44.38, which satisfies an on-resonance condition of MDR. The second column corresponding
the off-resonance condition with q0 = 44.35. The first and second rows correspond to the results for transparent media with n′′

2 = 0 and
absorbing host media with n′′

2 = 0.005, respectively.

do not satisfy the resonance condition and the maximum
of the internal electric field is around 7, where the internal
fields distribute mainly on the forward portion of the cylinder.
However, for q0 = 44.38 at n′′

2 = 0, the MDR is “on”, which
largely enhances the internal field to about 37. Besides the
enhancement of fields at the “on-resonance” condition, a dra-
matic change occurs in the distribution of the internal field. At
the on-resonance condition, hundreds of peaks distribute near
the circumference of the cylinder.

The second row in Fig. 3 shows the internal electric field
with n′′

2 = 0.005. We can see that the internal fields between
the two different size parameters have little difference in both
distribution and amplitude. This is in remarkable contrast
to the internal fields at n′′

2 = 0. Although it is at the MDR
position of q0 = 44.38, the internal fields in a lossy host
do not present either the large enhancement or the circular
distribution pattern. In addition, it is worth noting that the
disappearance of MDR in internal fields at n′′

2 = 0.005 and
q0 = 44.38 cannot be viewed simply as the radiation loss with
the optical path, since the internal fields are normalized with
the incident intensity at origin. As a result, it is concluded
that the MDR features of the field inside the cylinder are
diminished and even removed by the absorption of the host
media.

Until now, MDRs have been weakened by the absorption
of the host media, which is reflected in not only the ripple
structure of far-field extinction efficiencies but also in the

internal electric fields. In Fig. 2, it is revealed that the higher-
order and narrower MDRs are more easily extinguished by
the increasing n′′

2 than the lower-order and broader MDRs.
As mentioned in Ref. [50], the effect of increasing n′′

2 on
the ripple structures of extinction curves is similar to that of
increasing n′′

2 of a sphere in a nonabsorbing host (refer to
Refs. [19,66] for explaining the effects of n′′

2 on MDRs). It
is correct that, since an and bn are functions of mq = q0n1 and
q = q0n2, the introduction of n′′

1 is somewhat similar to that
of n′′

2. However, the similarity between n′′
1 and n′′

2 is not exact
either in formulas of an or bn or in their physical meanings,
for which further detailed analysis is required.

Figure 4 shows the extinction efficiencies for case II. In this
case, the amplitude of the interference oscillations is increased
by n′′

2 in the same way as in case I, and the periodicity of
the interference structure is independent of n′′

2. However, the
extinction curves exhibit no MDRs in this case. According
to the phenomenological interpretation of MDRs arising from
totally reflected rays at the internal surface of particles, the
disappearance of MDR at n′′

2 = 0 is reasonable since total
internal reflection is impossible for n′

1/n′
2 < 1. Therefore, no

MDRs exist in this case for any n′′
2.

For comparison, a metallic cylinder is also studied in
case III, as shown in Fig. 5. The extinction efficiencies do
not exhibit any interference structure and ripple structure in
this case, which has been revealed for n′′

2 = 0 in Ref. [64].
Since the interference structure does not exist, the remarkable
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FIG. 4. Extinction efficiencies Qp
ext and Qs

ext versus the vacuum
size parameter q0 for n1 = 1 and n2 = 1.33 + in′′

2. The values of
n′′

2 are labeled beside the corresponding curves. The curves with
different n′′

2 are successively shifted upward by 5 in both figures.

amplifying effects on interference oscillations by increasing
n′′

2 cannot exist either. Apart from this, we can observe that the
increasing n′′

2 has less influence on the extinction efficiencies
than case I and case II. The largest increments of Qp

ext and Qs
ext

from n′′
2 = 0 to 0.05 are, respectively, about 0.0025 at q0 = 5

and about −0.2 at q0 = 1, which can be seen in the insets
of Fig. 5. The effects of n′′

2 on the extinction efficiencies of
metallic cylinders are less remarkable than the two previous
cases.

B. Small cylinders

Taking a closer look at the above results, amplifying in-
terference oscillation is not the only way to obtain negative
extinction. For small cylinders at q0 < 1, negative extinction
emerges in a hidden way.

Figure 6 illustrates Qp
ext and Qs

ext in the range of 0 < q0 < 1
for cases I and II. Unlike the similarity of extinction be-
tween p and s polarizations for large cylinders, extinction of
small cylinders presents apparent differences between the two
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FIG. 5. Extinction efficiencies Qp
ext and Qs

ext versus the vacuum
size parameter q0 for n1 = 0.5 + 1.8i and n2 = 1.33 + in′′

2.
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FIG. 6. Extinction efficiencies Qp
ext and Qs

ext versus the small vac-
uum size parameter 0 � q0 � 1. Data in (a,b) and (c,d) correspond
to case I in Fig. 2 and case II in Fig. 4, respectively. Different values
of n′′

2 are represented by different line styles, which are shown in the
legend above the figure.

different polarizations. For example, in cases I and II, both
the magnitude of extinction and the position where negative
extinction occurs are different for the two polarizations.

Here, two questions arise from extinction for the small
cylinders: When will negative extinction emerge? Is ab-
sorption of the host media negligible for extinction of the
embedded cylinders? To answer these two questions, some
analysis is needed. For weakly absorbing host media with
n′′

2 	 n′
2, we approximate the relative refraction index m as

m = n1

n2
∼ p1 + p2τ + i(p2 − p1τ ), (44)

p1
	= n′

1

n′
2

, p2
	= n′′

1

n′
2

, τ
	= n′′

2

n′
2

	 1. (45)

For small particles in the approximation of |q| 	 1, the
expansion coefficients b0 and a1 dominate over the other
coefficients [19]. In this case, extinction efficiencies can be
derived as

Qp
ext ≈ πq0

2
√

n′
2

Im
{
(m2 − 1)n3/2

2

}
, (46)

Qs
ext ≈ πq0√

n′
2

Im

{
m2 − 1

m2 + 1
n3/2

2

}
. (47)

If the absorbing properties of the host media are neglected,
then the relative refraction index m0 is

m0 = n1

n′
2

= p1 + ip2. (48)

When the absorbing of the host media is not considered in
calculations, m and n2 in Eqs. (46) and (47) should be replaced
by m0 and n′

2, respectively. Therefore, extinction efficiencies
neglecting absorption of the host media, Qp,s

ext,0, are

Qp
ext,0 = πq0n′

2

2
Im

{
m2

0 − 1
}
, (49)

Qs
ext,0 = πq0n′

2Im

{
m2

0 − 1

m2
0 + 1

}
. (50)
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FIG. 7. Relative extinction efficiencies Qp,s
ext in absorbing host to Qp,s

ext,0 in transparent counterpart. τ = n′′
2/n′

2 is taken to be 0.002.

Then ratios of Qext to Qext,0 are

Qp
ext

Qp
ext,0

= Im{m2 − 1} + 3
2τ (Re{m2 − 1})

Im{m2
0 − 1} , (51)

Qs
ext

Qs
ext,0

= Im
{

m2−1
m2+1

} + 3
2τ

(
Re

{
m2−1
m2+1

})
Im

{
m2

0−1
m2

0+1

} . (52)

According to the above equations, we can conclude that
these ratios Qp,s

ext/Qp,s
ext,0 are functions of the relative quantities

τ , p1, and p2, and are independent of the size parameter.
We first study in detail the case of p polarization. When
we solve Qp

ext/Qp
ext,0 = c with c a constant, the solution will

give p2 = (3+p2
1 )τ

4(1−c)p1
for c < 1, p2 =

√
3 + p2

1 for c = 1, and

p2 = (3+p2
1 )τ

4(c−1)p1
+ 4(c−1)p1

τ
for c > 1. Therefore, the condition of

Qp
ext = 0 can be given as

p2 =
(
3 + p2

1

)
τ

4p1
. (53)

When p2 <
(3+p2

1 )τ
4p1

, negative extinction occurs. Further-
more, according to these equations, it is appropriate to take
a specific value of τ to calculate Qp

ext/Qp
ext,0 with varying p1

and p2, since the isoline has a simple relation with τ . The de-
pendence of the relative extinction efficiencies of Qp

ext/Qp
ext,0

for τ = 0.002 on p1 and p2 is shown in Fig. 7(a). Since
Qp

ext,0 � 0, we can observe the zero points of extinction and
the conditions for negative extinction.

For s polarization, the equation is more complicated. How-
ever, we can give the condition of Qs

ext = 0 as

τ
[
3p4

1 + 3p4
2 − 8p2

1 + 8p2
2 + 6p2

1 p2
2 − 3

] + 8p1 p2 = 0.

(54)

It is verified that the solution of this equation coincides well
with the numerical results. For τ = 0.002, the dependence of
Qs

ext/Qs
ext,0 on p1 and p2 is shown in Fig. 7(b). The contour

lines are drawn in the figure, where zero value is indicated by
the thick black line.

Here, for small particles, an intuitive explanation of neg-
ative extinction may be provided. The extinction of small
particles will be dominated by the absorption in the particles
when the host media are transparent. And if it is assumed to
be the same for the absorbing host media, the negative extinc-
tion will occur when n′′

2 is larger than n′′
1. The reason is that

the difference in the absorption powers between the particles
and the occupied volume of the host media is negative. We
will show that this qualitative interpretation is valid for p
polarization and can be supported by quantitative formulas.
According to Eq. (53), the occurring condition of negative
extinction is n′′

2 >
4p1

3+p2
1
n′

1, which means that the absorption
of the host media must be larger than the product of a factor
and the absorption of the cylinder. For s polarization, although
the quantitative formulas are hard to obtain, we could find
from Fig. 7(b) that negative extinction occurs for p2 = n′′

1/n′
2

smaller than a threshold value when p1 = n′
1/n′

2 is smaller
than about 2. The threshold is related to the absorption of host
media through τ = n′′

2/n′
2 as seen from Eq. (54). However,

when p1 = n′
1/n′

2 is larger than 2, the above qualitative ex-
planation of negative extinction is invalid, which can be seen
from Fig. 7(b).

It is easily observed from Fig. 7 that neglecting the weak
absorption of the host media would lead to a large devi-
ation from the real extinction. As an illustrating example,
we calculate extinction efficiencies of a germanium (Ge)
cylinder with the radius of 0.05 μm in polyethylene (PE),
where the infrared optical constants of Ge and PE can be
found in Refs. [67,68], respectively. In the far-infrared range,
PE is a highly transparent material for applications of lens
and windows. Considering the Ge cylinder embedded in PE,
we should examine numerically the errors associated with
ignoring the weak absorption of PE. In Fig. 8 the results
corresponding to the generalized theory of this paper are com-
pared with those from the conventional theory which neglects
the absorption of PE. It can be immediately found that huge

023516-9



ZHANG, ZHANG, DONG, AND LIU PHYSICAL REVIEW A 105, 023516 (2022)

40 60 80 100 120 140 160 180 200
-0.5

0.0

0.5

1.0

1.5

2.0

Q
p,
s
ex
t  

10
4

Wavelength (μm)

with loss

without loss

with loss

without loss

150 50250200 100

-6

0

6

12

18

24

s- polarization}

C
p,
s
ex
t
/
cy
li
n
d
er
b
as
e
ar
ea
(c
m

−1
)

Inverse wavelength (cm−1)

} p- polarization

FIG. 8. Qp,s
ext of a Ge cylinder of radius 0.05 μm in polyethylene

(PE) considering and neglecting the absorption of PE.

differences exist between the two theories. For p polarization,
ignoring the absorption of PE will largely overestimate the ex-
tinction. When the absorption is considered, Qp

ext crosses zero
at about 40 μm and becomes negative in the range of 40–200
μm. Contrary to p polarization, ignoring the loss of PE will
underestimate the extinction efficiencies of s polarization.

IV. CONCLUSION

A generalized optical theorem of an infinite cylinder em-
bedded in a weakly absorbing host medium is developed in
this paper. The far-field optical extinction cross sections and
extinction efficiencies are derived in the generalized analytical
way, that is, dividing the energy budget associated with the

forward-scattering interference by the forward incident inten-
sity. We elaborate on the fact that the absorption of the host
medium will exert great impact on the extinction of both thick
and thin cylinders.

For large cylinders, the amplitude of interference structure
will be enlarged by the absorption of the host, which leads
to negative extinction. Furthermore, the narrow ripple reso-
nance structure superposed on the wide interference structure,
also known as morphology-dependent resonance (MDR), is
damped by the optical loss of the host media. The electric
field inside the cylinder verifies the damped MDR in the
absorbing host, which implies that the lossy host media may
weaken or even extinguish the inelastic scattering phenomena
like fluorescence scattering resonances and Raman scattering
resonances.

It is found that negative extinction also exists for very small
cylinders. We give the analytic expressions for the conditions
of zero extinction, from which the conditions for the emer-
gence of negative extinction are also drawn. Furthermore, the
results calculated from the generalized theory in this paper are
compared with those of the conventional theory that ignores
the absorption of the host media. The ratios between the
extinction efficiencies of the two different theories show no
dependence on the size parameter but instead depend only
on the refraction indices of the cylinder and the host media.
Finally, as a practical example, the electromagnetic scattering
by a Ge cylinder in polyethylene is considered to illustrate the
differences between the two theories.
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