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Phase-matching condition in rotatory nonlinear optics
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Polarization rotation of light beams, such as optical activity and Faraday rotation, is a natural effect that gener-
ates the rotation of the polarized direction of light and some undiscovered characteristics in nonlinear optics. In
our previous study, we theoretically investigated the second-harmonic generation process in rotatory nonlinear
optics and found an unprecedented phase-matching condition. Here, the optical phase-matching condition in the
second-harmonic generation with rotatory polarization is theoretically analyzed and associated with the angular
rotation-induced phases of mixing waves, which goes beyond the previous theoretical analysis. Moreover,
the Pancharatnam-Berry topological phase was found to be periodically generated and could be employed to
compensate for the mismatched phase during nonlinear optical interaction. Possible experimental schemes were
proposed and discussed. This work provides not only a universal and flexible (quasi-) phase-matching condition
for the rotatory nonlinear optics existing in most nonlinear optical media but may also inspire the development
of modern photonics.
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I. INTRODUCTION

Nonlinear frequency conversion has been applied to clas-
sical and quantum optics since the discovery of nonlinear
second-harmonic generation (SHG) in 1961 [1], which sub-
sequently boosted the discovery of many nonlinear optical
effects [2–6]. The phase-matching (PM) condition, which
describes the momentum relationship among the interacting
light, is the most critical factor when ensuring highly effi-
cient nonlinear frequency conversion. In 1962, birefringent
PM and quasi-phase-matching (QPM) conditions were theo-
retically proposed [7], which laid the theoretical foundations
for nonlinear optics. To date, most descriptions of PM con-
ditions in nonlinear optics are based on linearly polarized
light corresponding to the general birefringence, where two
orthonormalized linear polarization states can be used as a set
of basis vectors to describe the possible linear polarization
states. However, in addition to linear polarization, circular
birefringence (or circular dichroism) also exists in nature and
presents itself as the rotation of linear polarization in realistic
materials with helical structures [8]. From the viewpoint of
crystallography, SHG can be generated in acentric crystals
belonging to 20 different types of point groups, and among
them, materials belonging to a possible 15 types of point
groups could perform circular dichroism characterization,
which means that the rotation performance of the polarization
exhibited in nonlinear optics would be significant in the devel-
opment of the theory of nonlinear optics and future photonics.
In fact, little attention has been paid to the role of polarization
rotation [9,10] because current nonlinear optical materials that
are based on linear polarization have negligible optical activ-
ity, which limits the development and discovery of rotatory
nonlinear optics.
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In rotation linear optics, the Pancharatnam-Berry (PB)
topological phase is an important signature and was first
demonstrated by Pancharatnam while investigating the phase
relationship during the evolution of polarization states [11]. In
1986, experimental verification of the PB topological phase
was observed in an optical fiber [12]. In 1987, Berry [13]
unified and extended the theory of the geometric phase, which
inspired the recent theoretical and experimental development
of the higher-order PB phase [14]. Given the established PM
conditions, the PB topological phases should undoubtedly
contribute to the nonlinear optical process, but these have not
yet been explored. Herein, we theoretically study the SHG
with rotatory polarization and achieve the QPM conditions in
rotatory nonlinear optics based on the analysis of the angular
velocity. In addition, we also find that the PB topological
phases could be periodically generated and employed to com-
pensate for the mismatched phase, and hence the realization
of a QPM technique in rotatory nonlinear optics is made
possible.

II. EFFECTIVE ELECTRIC POLARIZATION AND
EFFECTIVE NONLINEAR COEFFICIENT

The SHG process in optically rotatory and nonlinear crys-
tals is shown in Fig. 1(a). A fundamental beam enters the
crystal at normal incidence, and the driving electric polariza-
tion vector of the SHG is generated. The fundamental wave
in the crystal is �Eω(r). The incident direction of the initial

fundamental wave can be expressed as v̂ = (
sin θ cos ψ

sin θ sin ψ

cos θ
), where

θ is the angle between the z axis and v̂, ψ is the angle between
the x axis and the projection of v̂ in the xy plane, and v̂

is a unit vector. The initial fundamental wave is assumed
to be perpendicular to the z axis and can be expressed as

�Eω(0) = | �Eω(0)|(
sin ψ

− cos ψ

0
) to simplify the solution, which does

not impact the PM or QPM results. In the rotatory crystal, the
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fundamental electric field rotates dynamically, which means
that the direction of the induced electric polarization vector
gradually changes. As shown in Figs. 1(a) and 1(b), when
the fundamental wave propagates from the position 0 to r,
the rotation angle of the polarization state is ρ1r, where ρ1 is

the rotational angular velocity of the fundamental polarization
plane. Accordingly, the electric field vector of the fundamen-
tal wave �Eω becomes �Eω(r) = R1 �Eω(0), where R1 = R(ρ1r)
and R(α) is a matrix for the rotation angle of α around the axis
�v, defined as

R(α) =
⎛
⎝ cos α + r1

2(1 − cos α) r1r2(1 − cos α) − r3 sin α r1r3(1 − cos α) + r2 sin α

r2r1(1 − cos α) + r3 sin α cos α + r2
2(1 − cos α) r2r3(1 − cos α1) − r1 sin α

r3r1(1 − cos α) − r2 sin α r3r2(1 − cos α) + r1 sin α cos α1 + r3
2(1 − cos α)

⎞
⎠, (1)

where r1, r2, and r3 are the magnitudes of the wave compo-
nents along the x-, y-, and z axes, respectively. Therefore,
the electric field of the fundamental wave at position r is
expressed as

�Eω(r) = | �Eω(r)|
⎛
⎝sin ρ1r cos θ cos ψ + cos ρ1r sin ψ

sin ρ1r cos θ sin ψ − cos ρ1r cos ψ

− sin ρ1r sin θ

⎞
⎠.

(2)

The dynamic electric polarization vector generated by the
interaction of the rotating fundamental wave and the nonlinear
crystal can be expressed as a function of r, such that �P2ω(r) =
ε0d : �Eω(r) �Eω(r), where ε0 is the permittivity of free space,
and d is the matrix of second-order nonlinear coefficients.
In addition, the component of �P2ω(r) parallel to �r should
be neglected because the second-harmonic (SH) electric field
can only be generated in the direction perpendicular to �v.
Hence, the contributing part is the component perpendicular
to �P2ω(r), which is given by �P2ω

⊥ (r) = �P2ω(r) − �P2ω
‖ (r) as

schematically shown in Fig. 1(b). The differential unit of the
incremental SH wave, dr, at position r can be written in a
differential form as d �E2ω,r , which is proportional and parallel
to �P2ω

⊥ (r) and expressed as d �E2ω,r ∝ �P2ω
⊥ (r) · dr. As shown

in Fig. 1(c), when the incremental SH wave generated at r
travels from r to the exit face L, the vector d �E2ω,r rotates
at an angle of ρ2(L–r) and can be rewritten as R2d �E2ω,r ,
where R2 = R(ρ2(L−r)) is the matrix for the rotation angle
ρ2(L–r) around the axis of �v, and ρ2 is the rotational angular
velocity of the SH polarization plane. Therefore, R2 �P2ω

⊥ (r) can
be considered as an effective electric polarization vector and
can be written as �P2ω

eff (r) = R2 �P2ω
⊥ (r). The effective nonlinear

coefficient for the rotation SHG, �deff (r), can then be obtained
from the expression �P2ω

eff (r) = ε0 �deff (r)| �Eω(r)|| �Eω(r)|.

III. PHASE-MATCHING CONDITION OF ROTATORY
ELECTRIC FIELDS

Here, we express the fundamental wave, �Eω, the output SH
wave, �E2ω, and the effective electric polarization for SHG as:

�Eω = �Aωe−i(ωt−ϕ1ol ), (3)

�E2ω = �A2ωe−i(2ωt−ϕ2ol ), (4)

�P2ω
eff (r) = R2 �P2ω

⊥ (r) = ε0 �deff (r)| �Aω|2e−2i(ωt−ϕ1ol ), (5)

where the vectors �Aω and �A2ω represent the complex am-
plitude in the directions of Ẽω and �E2ω, respectively, which

contain no time-variant elements and can be written in the

form of Cartesian coordinates, such that �Aω = (
Aω

1
Aω

2
Aω

3

) and �A2ω =
(
A2ω

1
A2ω

2
A2ω

3

); ω is the angular frequency of the fundamental wave; ϕ1ol

and ϕ2ol are time-independent phases of the fundamental and
SH waves, given by ϕ1ol = k1r and ϕ2ol = k2r, respectively,
where k1 and k2 are the wave number of the fundamental wave
and SH wave, respectively. The Maxwell equations describing
the SHG in a nonmagnetic material containing no free charges
can be expressed as [15]

∇2 �E2ω − μ0ε0εrelative(ω)
∂2 �E2ω

∂t2
= μ0

∂2 �P2ω
eff

∂t2
, (6)

where μ0 is the permeability of free space, and εrelative(ω) is
the relative permittivity of the material. Substituting Eqs. (3)–
(5) in Eq. (6), the following equation can be obtained using
the slowly varying amplitude approximation:

d �A2ω

dr
= π i �deff (r)| �Aω|2

n2λ
ei�ϕol , (7)

where n2 is the refractive index of the material for the SH
wave, λ is the SH wavelength, and �ϕol is the phase dif-
ference caused by the different optical lengths, given by
�ϕol = 2ϕ1ol − ϕ2ol . Supposing that the crystal does not ab-
sorb both fundamental and SH waves, and very low optical
power is transferred from fundamental to SH wave (small-
signal approximation, expressed as | �Aω(r)| ∼= | �Aω(0)|) [16],
the amplitude of fundamental wave | �Aω| is approximately
constant.

Without loss of generality, we investigated the rotatory
nonlinear optics from the optically rotatory cubic materials
belonging to classes 23 and 4̄3m. Cubic crystals have isotropic
refractive indices for any polarization direction and any inci-
dent direction, which result in obvious optical rotation [17].
In addition, classes 23 and 4̄3m were acentric structures.
Therefore, crystals belonging to classes 23 and 4̄3m have both
obvious optical rotation (and Faraday rotation) and nonlin-
earity for nearly all incident conditions. With the notation
simplified by introducing a contracted matrix dil , the matrix
of the second-order nonlinear optical coefficient for cubic
nonlinear crystals [18] can be represented as

d =
⎛
⎝0 0 0 d14 0 0

0 0 0 0 d14 0
0 0 0 0 0 d14

⎞
⎠. (8)
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FIG. 1. (a) Schematic of how a fundamental beam moves in a
rotatory crystal for SHG. (b) Schematic for the electric polarization at
the position r in the crystal �P2ω, �P2ω

⊥ , �P2ω
‖ (blue arrows). (c) Rotation

of the fundamental electric field from 0 to r and the incremental
SH electric field at r from r to L. The brown planes represent the
different positions in the crystal. The plane 0 (r = 0) is the incident
face. The plane L (r = L) is the exit face. The plane r is a certain
position between 0 and L, where the fundamental beam travels a
distance r from the incident face. The orange (larger) and green
(smaller) cylinders with arrowheads indicate the propagations of
the fundamental and SH beams, respectively. The twisted shadow
regions in red (dark gray) and green (light gray) schematically show
the rotations of the fundamental electric field �Eω and the incremental
SH wave generated at r. The arrows in red (black) and blue (dark
gray) indicate the directions of �Eω and �P2ω

⊥ . The green (light gray)
arrows at planes r and L represent d �E 2ω,r and R2d �E 2ω,r . Note that
�Eω, �P2ω

⊥ , d �E 2ω,r, and R2d �E 2ω,r are all functions of r.

Then, the effective nonlinear coefficient �deff (r) in cubic
crystals is shown as Eqs. (A1)–(A4).

By solving Eq. (7) with the boundary condition of A2ω
1 =

A2ω
2 = A2ω

3 = 0 at L = 0, the expression for the components

along the x-, y-, and z axes of �A2ω is obtained as follows:

A2ω
1 = π i| �Aω|2

n2λ

[
ei(�k−ρ2 )L − 1

�k − ρ2
X1eiρ2L

+ ei(�k+ρ2 )L − 1

�k + ρ2
X2e−iρ2L

+ ei(�k−2ρ1+ρ2 )L − 1

�k − 2ρ1 + ρ2
X3e−iρ2L

+ ei(�k+2ρ1−ρ2 )L − 1

�k + 2ρ1 − ρ2
X4eiρ2L

+ ei(�k−2ρ1−ρ2 )L − 1

�k − 2ρ1 − ρ2
X5eiρ2L

+ ei(�k+2ρ1+ρ2 )L − 1

�k + 2ρ1 + ρ2
X6e−iρ2L

]
, (9)

A2ω
2 = π i| �Aω|2

n2λ

[
ei(�k−ρ2 )L − 1

�k − ρ2
Y1eiρ2L

+ ei(�k+ρ2 )L − 1

�k + ρ2
Y2e−iρ2L

+ ei(�k−2ρ1+ρ2 )L − 1

�k − 2ρ1 + ρ2
Y3e−iρ2L

+ ei(�k+2ρ1−ρ2 )L − 1

�k + 2ρ1 − ρ2
Y4eiρ2L

+ ei(�k−2ρ1−ρ2 )L − 1

�k − 2ρ1 − ρ2
Y5eiρ2L

+ ei(�k+2ρ1+ρ2 )L − 1

�k + 2ρ1 + ρ2
Y6e−iρ2L

]
, (10)

A2ω
3 = π i| �Aω|2

n2λ

[
ei(�k−ρ2 )L − 1

�k − ρ2
Z1eiρ2L

+ ei(�k+ρ2 )L − 1

�k + ρ2
Z2e−iρ2L

+ ei(�k−2ρ1+ρ2 )L − 1

�k − 2ρ1 + ρ2
Z3e−iρ2L

+ ei(�k+2ρ1−ρ2 )L − 1

�k + 2ρ1 − ρ2
Z4eiρ2L

+ ei(�k−2ρ1−ρ2 )L − 1

�k − 2ρ1 − ρ2
Z5eiρ2L

+ ei(�k+2ρ1+ρ2 )L − 1

�k + 2ρ1 + ρ2
Z6e−iρ2L

]
, (11)

where �k = 2k1 − k2, Xi, Yi, and Zi (i = 1, 2, 3, 4, 5, and
6) are functions of d14, θ , and ψ , but are independent of
L, �k, ρ1, and ρ2 [see Eqs. (B1)–(B18)]. These equations
indicate that the general PM conditions in rotatory crystals are
�k ± ρ2 = 0, �k ± (2ρ1 − ρ2) = 0, and �k ± (2ρ1 + ρ2) =
0, which is in line with the previous results from the theo-
retical analysis of the SHG along the z axis of a crystal of
class 32 [9]. The different values of Xi, Yi, and Zi indicate
that the six PM conditions have different maximum gains.
Considering that only one condition can be existent and that
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the SH output under the PM condition is much greater than
the phase-mismatched output, the other five conditions can
be neglected if one condition is realized. According to the
relationship between the intensity and the electric field, I =
2nε0cAA∗, where n is the refractive index of the medium, ε0

is the vacuum permittivity, and c is the speed of light, we can
obtain the relative intensity of the output SH radiation:

Ii ∝ I2
1 sinc2

(
�kiL

2

)
L2(XiX

∗
i + YiY

∗
i + ZiZ

∗
i ), (12)

where I1 is the intensity of fundamental wave, �ki

takes the value of �k–ρ2, �k + ρ2, �k–(2ρ1–ρ2), �k +
(2ρ1–ρ2), �k–(2ρ1 + ρ2), and �k + (2ρ1 + ρ2) correspond-
ing to i = 1, 2, 3, 4, 5, and 6, respectively. If �ki =
0, the maximum intensity is relatively given by Ii max ∝
I1

2L2(XiXi
∗ + YiYi

∗ + ZiZi
∗). Therefore, if the fundamental

beam and SH beam have the same beam cross section, the
maximum conversion efficiency is

ηimax = π2| �Aω|2
n1n2λ2

L2(XiX
∗
i + YiY

∗
i + ZiZ

∗
i ), (13)

where n1 is the refractive index of the material for the funda-
mental wave.

In certain special cases, the values of Xi, Yi, and Zi can be
zero. The expressions of the PM condition for class 32 and
the corresponding Xi, Yi, and Zi are calculated as shown in
Appendix C.

For the particular case as shown in Ref. [9] (class
32, θ = 0), it can be obtained that X1 = X2 = X3 = X4 =
0, Y1 = Y2 = Y3 = Y4 = 0, Z1 = Z2 = Z3 = Z4 = Z5 = Z6 =
0, X5 = 1/2id11e−2iψ , X6 = 1/2id11e2iψ , Y5 = 1/2d11e−2iψ , and
Y6 = −1/2d11e2iψ . Therefore, the PM conditions are simplified
as �k ± (2ρ1 + ρ2) = 0. In this case, the total intensity of
the output SH radiation without neglecting phase-mismatched
terms is given by

I ∝ 1/2{sinc2[�k − (2ρ1 + ρ2)L/2]

+ sinc2[�k + (2ρ1 + ρ2)L/2]}I2
1 L2d2

11. (14)

These results shown above agree well with the results de-
scribed in Ref. [9].

The above analysis indicates that the presence of the rota-
tional angular velocity ρ provides an additional phase. The
angular velocity terms in the equation for the PM condi-
tions, �ρ [�ρ = ±ρ2, ±(2ρ1–ρ2), or ± (2ρ1 + ρ2)] repre-
sent this type of phase difference between the fundamental
wave (or rather, electric polarization) and the SH wave. Here
we assume that the waves propagate in the z direction; the fun-
damental and generated SH waves in the crystal with optical
rotation can be described by

�Eω = Aω(x̂ cos ρ1z + ŷ sin ρ1z)e−i(ωt−k1z), (15)

�E2ω = A2ω(x̂ cos ρ2z + ŷ sin ρ2z)e−i(2ωt−k2z), (16)

where Aω and A2ω are the amplitudes, and x̂ and ŷ are the unit
vectors along the x- and y axes, respectively. Equations (15)

and (16) can be written in exponential form as

�Eω = {
1
2 x̂Aωe−i[ωt−(k1+ρ1 )z] + 1

2 ŷAωe−i[ωt−(k1+ρ1 )z]
}

+ {
1
2 x̂Aωe−i[ωt−(k1−ρ1 )z] − 1

2 ŷAωe−i[ωt−(k1−ρ1 )z]
}
, (17)

�E2ω = {
1
2 x̂A2ωe−i[2ωt−(k2+ρ2 )z] + 1

2 ŷA2ωe−i[2ωt−(k2+ρ2 )z]
}

+ {
1
2 x̂A2ωe−i[2ωt−(k2−ρ2 )z] − 1

2 ŷA2ωe−i[2ωt−(k2−ρ2 )z]
}
.

(18)

We found two different phase velocities from Eqs. (17)
and (18) according to ω/(k1 + ρ1) and ω/(k1 − ρ1) for �Eω,
and 2ω/(k2 + ρ2) and 2ω/(k2 − ρ2) for �E2ω. The electric
polarization �P can be described as

�P = �P1e−i[ωt−(k1+ρ1 )z]e−i[ωt−(k1+ρ1 )z]

+ �P2e−i[ωt−(k1−ρ1 )z]e−i[ωt−(k1−ρ1 )z]

+ �P3e−i[ωt−(k1+ρ1 )z]e−i[ωt−(k1−ρ1 )z]

= �P1e−i[2ωt−2(k1+ρ1 )z]

+ �P2e−i[2ωt−2(k1−ρ1 )z] + �P3e−i(2ωt−2k1z), (19)

where �P1, �P2, and �P3 represent the amplitudes in the directions
of the three electric polarizations with different phase veloci-
ties. Therefore, three different phase velocities in the electric
polarizations and two different phase velocities in the SH
field can form six pairs of phase velocity matching: 2ω/2k1 =
2ω/(k2 − ρ2), 2ω/2k1 = 2ω/(k2 + ρ2), 2ω/2(k1 + ρ1) =
2ω/(k2 + ρ2), 2ω/2(k1 − ρ1) = 2ω/(k2 − ρ2), 2ω/2(k1 +
ρ1) = 2ω/(k2 − ρ2), and 2ω/2(k1 − ρ1) = 2ω/(k2 + ρ2),
corresponding to six PM conditions: �k ± ρ2 = 0, �k ±
(2ρ1 − ρ2) = 0, and �k ± (2ρ1 + ρ2) = 0, respectively.

IV. QUASI-PHASE-MATCHING EMPLOYING
PANCHARATNAM-BERRY PHASES

Considering the PB topological phase generated during
the rotatory polarization, the polarization states can be de-
scribed with the Poincaré sphere, as shown in Fig. 2(a) [19],
where the north–south poles and the equator represent the
left–right circular polarization and the linear polarization on
the Poincaré sphere, respectively. The polarization plane of
the linearly polarized states rotates in an optically rotatory
crystal, corresponding to the state moving along the equator
of the Poincaré sphere. A PB phase would only appear when
the polarization state returns to the initial state, which equals
half of the solid angle spanning the Poincaré sphere [13]. The
generation conditions of the PB topological phase indicate
that the propagation of light with left- or right-handed circular
polarization cannot give rise to the PB topological phase, and
it is only when the polarization plane rotates by 180 ° in the
optically rotatory crystals, corresponding to a point along a
closed cycle around the equator on the Poincaré sphere, that
the additional phase of π would be generated immediately.

The phase difference between the electric polarization
wave and the SH wave is expressed as �ϕ = 2ϕ1 − ϕ2, and
can be resolved by the phase difference caused by the different
optical lengths (�ϕol ), rotation angles (�ϕro), and PB topo-
logical phases (�ϕPB). Here, �ϕol is defined as �kr, �ϕro

is present in the rotation and eventually expressed as �ρr,
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FIG. 2. (a) Illustration of the Poincaré sphere. N/S is the north–
south pole; S1, S2, S3 are Stokes parameters. The red line on the
equator represents the rotating polarization state in the crystals.
(b) Variation of �ϕol + �ϕro and �ϕPB as a function of propagation
length r. The phases �ϕol + �ϕro (red) and �ϕPB (black) change by
π when the waves propagate along intervals of the coherence length
Lc. In this condition, �ϕPB can compensate for the phase difference
caused by the �ϕol and �ϕro in SHG. The x axis is in units of Lc,
where Lc = π/(�k + �ρ). (c) Step function ϕPB. PB phase ϕPB shift
by π when the wave propagates along intervals of distance π/ρ in
the optical rotatory crystals. The x axis is in units of π/ρ. (d) Step
function exp(iϕ2PB). The x axis is in units of π/ρ2.

and �ϕPB depends on the PB phase of both the fundamental
wave ϕ1PB and the SH wave ϕ2PB. As shown in Fig. 2(c),
ϕPB increases by π as the waves propagate. The nonzero
sum of �ϕol and �ϕro in the nonlinear frequency conversion
shifts by π when the waves propagate a coherence length of
Lc = π/(�k + �ρ ), and this can periodically modulate the
energy conversion from the fundamental wave to the SH wave
with a period of π . In SHG, the double PB phase of the
fundamental wave is equivalent to zero (2ϕ1PB = 2π ), so that
the phase difference from the PB phases is only determined
by ϕ2PB, defined as �ϕPB = ϕ2PB. Therefore, a phase shift of
π , arising from the phase difference of the PB phase, appears
when the waves propagate a distance of π/ρ2 in the crystal.
If the equation π/ρ2 = π/(�k + �ρ ) is satisfied, �ϕPB can
periodically compensate for the phase difference caused by
�ϕol and �ϕro in SHG. Thus, the phase condition for QPM,
�ϕPB = �ϕol + �ϕro, is achieved. The changing phase of
�ϕPB and �ϕol + �ϕro as a function of the propagation length
r is shown in Fig. 2(b).

Because the PB topological phase only appears with a
phase value of π or 0, the phase difference �ϕPB can be
assumed to be ϕ2PB based on Bloch theory [20]. For the
integrity of rotatory nonlinear optical theory, the periodic step
functions of ϕ1PB and ϕ2PB should be discussed and expressed
as

ϕ1PB =
{

0, 2aL1 � r < (2a + 1)L1

π, (2a + 1)L1 � r < (2a + 2)L1
,

a = 0, 1, 2, 3 . . . (20)

ϕ2PB =
{

0, 2aL2 � r < (2a + 1)L2

π, (2a + 1)L2 � r < (2a + 2)L2
,

a = 0, 1, 2, 3 . . . (21)

where L1 and L2, defined as L1 = π/ρ1 and L2 = π/ρ2, are
the propagation lengths in the crystal that allow for the gen-
eration of a PB phase of π in the fundamental and SH waves,
respectively, and a is a non-negative integer. If PB phases
are introduced, the phase terms in �Eω and �E2ω will have an
additional step function of ϕ1PB and ϕ2PB, where ϕ1PB and
ϕ2PB are the added PB phases of the fundamental and SH
waves, respectively. Then, �Eω(r), �E2ω(r), and �P2ω

eff (r) become

�E ′
1(r) = �Aωe−i(ωt−k1r+ϕ1PB ), (22)

�E ′
2(r) = �A2ω′

e−i(2ωt−k2r+ϕ2PB ), (23)

�P2ω′
eff (r) = ε0 �deff (r)| �Aω|2e−2i(ωt−k1r+ϕ1PB ). (24)

Considering that the value of the step function ϕ1PB dou-
bled is equivalent to zero, only ϕ2PB is added to the phase of
the coupling wave equation, which can be expressed as

d �A2ω′

dr
= π i �deff (r)| �Aω|2

n2λ
ei(�kr+ϕ2PB ). (25)

The term exp(i ϕ2PB) is a step function of length r, as shown
in Fig. 2(d). Using the Fourier transform to decompose the
right-hand side of Eq. (25) and considering only the odd mth-
order terms, a coupled-amplitude equation for SHG in rotatory
crystals is obtained as

d �A2ω′

dr
= −π �deff (r)| �Aω|2

n2λ

2

mπ
ei�kQr, m = ±1,±3,±5, . . . ,

(26)

where the wave-vector mismatch for the mth-order QPM is
given by �kQ = 2k1–k2 + mρ2, mρ2 can be assumed as the
“grating wave vector” in QPM, and the sign of m depends on
that of �k. By analyzing Eqs. (7) and (26), the PM conditions
involving PB phases can be inferred as �kQ ± ρ2 = 0, �kQ ±
(2ρ1–ρ2) = 0, and �kQ ± (2ρ1 + ρ2) = 0. Furthermore, the
analysis shows that ρ2 plays a more important role in the
rotation QPM compared with ρ1, and 2ρ1 is usually lower
than ρ2, considering the dispersion of optical rotation. If 2ρ1

is much less than (m ± 1)ρ2, meaning that it can be neglected,
the PM conditions can be simplified to �k + (m ± 1)ρ2 = 0.
Equations (9)–(11) then become

A2ω′
1 =−π | �Aω|2

n2λ

2

mπ

{
ei[�k+(m−1)ρ2]L − 1

�k+(m − 1)ρ2
(X1+X4+X5)eiρ2L

+ ei[�k+(m+1)ρ2]L − 1

�k + (m + 1)ρ2
(X2 + X3 + X6)e−iρ2L

}
, (27)

A2ω′
2 = −π | �Aω|2

n2λ

2

mπ

{
ei[�k+(m−1)ρ2]L − 1

�k + (m − 1)ρ2
(Y1 + Y4 + Y5)eiρ2L

+ ei[�k+(m+1)ρ2]L − 1

�k + ρ2
(Y2 + Y3 + Y6)e−iρ2L

}
, (28)
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FIG. 3. Schematic of (a) rotatory power of cubic crystals (class
of 432 and 23), (b) rotatory power of birefringent crystals (class of
4̄2m and mm2), (c) rotation QPM in cubic crystals, and (d) rotation
QPM in birefringent crystals. The gray (light gray) and blue (dark
gray) regions represent the rotatory power but are of opposite signs.
The partial deletion of spheres in (c) is plotted for the exhibition
of the inside. The red (outer) and purple (inner) spheres in (c) and
(d) represent the wave vector of 2k1 and k2. Optical rotation can
contribute to the PM and connect the surface of 2k1 and k2. The
intersection of 2k1 + (m ± 1)ρ2 (purple and gray) and k2 (red) in (d)
represents the PM orientation.

A2ω′
3 = − π | �Aω|2

n2λ

2

mπ

{
ei[�k+(m−1)ρ2]L−1

�k+(m−1)ρ2
(Z1+Z4+Z5)eiρ2L

+ ei[�k+(m+1)ρ2]L − 1

�k + (m + 1)ρ2
(Z2 + Z3 + Z6)e−iρ2L

}
. (29)

Obviously, if there is no rotation in the nonlinear crystal,
that is, ρ1 = ρ2 = 0, Eqs. (27)–(29) agree exactly with the
results of the SHG without rotation. The above results of the
rotation QPM conditions for SHG cannot only be applied
to the groups 23 and 4̄3m but also to all 20 acentric point
groups. The only difference among the different point groups
are the factors Xi, Yi, and Zi, which result from the differ-
ent second-order susceptibility tensors. Correspondingly, the
relative intensity and conversion efficiency of the output SH
radiation, taking into account the PB phases, are given by

I ′
± ∝

(
2

m

)2

I1
2sinc2

(
�k±L

2

)
L2(X±X ∗

± + Y±Y ∗
± + Z±Z∗

±),

(30)

where �k± = �k + (m ± 1)ρ2, and X+ = X2 + X3 + X6,
X− = X1 + X4 + X5, Y+ = Y2 + Y3 + Y6, Y− = Y1 + Y4 + Y5,
Z+ = Z2 + Z3 + Z6, and Z− = Z1 + Z4 + Z5. If �k± = 0, the
corresponding maximum conversion efficiency is

η′
±max = 4| �Aω|2

mn1n2λ2
L2(X±X ∗

± + Y±Y ∗
± + Z±Z∗

±). (31)

This analysis shows that the optical rotation of waves can
compensate for the phase mismatch in SHG. The QPM in the
rotatory crystals is shown schematically in Fig. 3. The PB and

FIG. 4. (a) Amplitude of the SH wave as a function of the prop-
agation length r under the 1-, 3-, and 5-order QPM conditions with a
wave-vector mismatch of �k. (b) Amplitude of the SH waves under
propagation length L2 = 2π/�k, 4π/�k, and 6π/�k.

rotation phases can work together during QPM. Figures 3(a)
and 3(b) show two types of schematic rotatory power, and the
summation of 2k1 and (m ± 1)ρ2 could intersect with k2, as
shown in Figs. 3(c) and 3(d). Note that the optical rotatory
power of birefringent crystals is not a scalar, as shown in
Fig. 3(b). Therefore, the value of ρ is associated with gyration
tensor of the corresponding crystal. The contributions of the
PB phases and the rotation to the QPM were mρ2 and ±ρ2,
respectively. They provide a function for filling the gap of
the wave-vector mismatch, �k, for SHG. With a mismatched
wave vector, �k, the amplitudes of the output SH waves for
the 1-, 3-, and 5-order QPMs are shown in Fig. 4(a) as a
function of r. If the period L2 is sufficient, the other orders can
be neglected, and the curves can be approximately linear with
length r [see dotted line in Fig. 4(a)]. The conditions of m − 1
and m + 1 for the mth order have the same gain, although
the conditions m − 1 and m + 1 have different values of L2,
corresponding to a different ρ2. The conditions of m = 3 with
m + 1 = 4 and m = 5 with m − 1 = 4 have the same value
of L2, which means that the two conditions can be achieved
simultaneously. The summed output amplitudes for different
L2 values are shown in Fig. 4(b).

According to the higher-order Poincaré sphere and the
higher-order PB phase for vectorial vortex beams [14], the
higher-order PB phase is given by ϕHPB = (±l + l )ϕPB,
where l is the topological charge corresponding to the or-
bital angular momentum. Considering the angular momentum
conversion [21], the topological charge of the SH wave is
2l for the case of the fundamental vortex with a topological
charge l . Therefore, the periodically added PB phases of the
fundamental and SH waves are expressed as (±l + l )π and
(±2l + l )π , respectively. The double higher-order PB phase
of the fundamental wave, 2(±l + l )π , can also be reduced
to zero, and the higher-order PB phase, (±2l + l )π , equals
π . Therefore, in SHG, the orbital angular momentum has no
modulation of the PM.

V. DISCUSSION

Table I provides a comparison of the natural rotatory power
and the phase mismatching in the orientation of the maximum
rotatory power for several optically active crystals. Unfor-
tunately, it is difficult to compensate for the typical phase
mismatch, although some crystals possess a large optical
rotatory power. To achieve rotation QPM, magneto-optical
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TABLE I. Phase mismatch and rotatory power of typical nonlinear or optical activity crystals.

Orientation of maximum Phase mismatch in this Rotatory power
Crystal Point group rotatory power orientation @2ω (°/mm) (°/mm) Ref.

CsLiB6O10 (CLBO) 4̄2m θ = 90◦, 22 835.7@633 nm 19@633 nm [26,27]
ψ = 45◦

KH2PO4 4̄2m θ = 90◦, 4 792.8 @633 nm 7.42@633 nm [28,29]
(KDP) ψ = 45◦

KTiOPO4 mm2 θ = 90◦, 16 931.6@633 nm 20.5@633 nm [30,31]
(KTP) ψ = 45◦

La3Ga5.5Nb0.5O14 32 θ = 0◦ 25 688@532 nm ∼27@532 nm [32,33]
(LGN)
AgGaS2 4̄2m θ = 90◦, 97 086.3 @532 nm ∼250@532 nm [34,35]
(AGS) ψ = 45◦

CdSiP2 4̄2m θ = 90◦, 25 331.8@800 nm ∼155@800 nm [36,37]
(CSP) ψ = 45◦

ZnGeP2 4̄2m θ = 90◦, 28 241.5 @1064 nm ∼68@1064 nm [36,38]
(ZGP) ψ = 45◦

Bi12GeO20 23 Isotropy 12 0413 @532 nm ∼35@532 nm [39,40]
(BGO)

materials with large Faraday rotations are required. It has
also been found that Bi3Fe5O12 films show a high Faraday
rotation over 2 × 104◦

/mm at ∼530 nm under a magnetic
field of 120 mT [22], corresponding to length L2 = 9 μm for
the generation of a PB phase π . This is of the same order
of magnitude as the typical grating period of periodically
poled lithium niobate [23] and can compensate for the wave-
vector mismatch of ∼4 × 104◦

/mm, ∼8 × 104◦
/mm, and

∼12 × 104◦
/mm corresponding to |m ± 1| = 2, |m ± 1| = 4,

|m ± 1| = 6, respectively. In contrast to the periodic polar-
ization QPM, the length of the period in rotation QPM is
determined by the rotation velocity of the linear polarization
plane. Considering the dependence on the applied magnetic
field, the QPM conditions are more flexible for tunable
wavelength generation as compared to the traditional PM.
Associated with the Faraday rotation applied in optical and
quantum chips [24,25], the proposed QPM conditions could
give rise to nonlinear optics to further develop modern optics
on chips.

In conclusion, the QPM conditions in rotatory nonlinear
optics were theoretically presented, which indicated that PB
topological phases can be employed to compensate for mis-
matched phases in SHG. Compared with the previous work
[9], we do not only extend the PM results in this to general
cases, but also introduce the PB phases to QPM which should
be more flexible in further application. The possible QPM
conditions were then analyzed and calculated. It is believed
that the proposed QPM conditions in rotatory nonlinear optics
should be universal and could have promising applications
in modern optoelectronics and photonics, especially in chip
optics with Faraday rotation and nonlinear frequency conver-
sions.
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APPENDIX A: EFFECTIVE NONLINEAR COEFFICIENT IN CUBIC NONLINEAR CRYSTAL

�deff (r) =

⎛
⎜⎜⎝

[ �deff (r)]1

[ �deff (r)]2

[ �deff (r)]3

⎞
⎟⎟⎠, (A1)

where [ �deff (r)]1, [ �deff (r)]2, and [ �deff (r)]3 represent the components of �deff (r) along the x-, y-, and z axes, respectively, given by

[ �deff (r)]1 = d14
( − sin α2 sin θ (cos θ cos ψ sin α1 + cos α1 sin ψ )(cos θ (−3 + cos 2ψ ) sin α1 + cos α1 sin 2ψ )

+ 1
16 cos α2 sin θ (16 cos ψ (1 + cos 2θ cos 2ψ ) sin 2α1 + ((−13 + 21 cos 2α1) cos θ − 6 cos 3θsin2α1) sin ψ

+ 2 cos θ (3 + cos 2α1 − 6 cos 2θsin2α1) sin 3ψ )
)
, (A2)
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[ �deff (r)]2 = d14
(

1
16 sin θ (cos α2(−3 cos 3θ cos ψ + cos θ ((−13 + 6 cos 2α1(3 + cos 2θ )) cos ψ

− 2 cos 3ψ (3 + cos 2α1 − 6 cos 2θsin2α1)) + 16(−1 + cos 2θ cos 2ψ ) sin 2α1 sin ψ )

+ 2 sin α2(16 cos θcos3ψ sin 2α1 + (−3 + 7 cos 2α1) sin ψ + (1 + 3 cos α1) sin 3ψ

− 2 cos 2θsin2α1(5 sin ψ + sin 3ψ )))
)
, (A3)

[ �deff (r)]3 = d14
(
2sin2θ (−(−1 + cos α2) cos θ cos ψ − sin α2 sin ψ )(cos2θcos3ψ sin 2α1

+ cos2α1 cos θcos2ψ sin ψ + 1
2 sin α1 sin ψ (−cos3θ (3 + cos 2ψ ) sin α1

+ 2 cos θ cos 2ψ sin α1sin2θ + 4 cos α1 cos ψsin2θ sin ψ )) − 1
2 sin2θ (cos ψ sin α2

− (cos α2 − 1) cos θ sin ψ )(4cos2ψ sin 2α1sin2θ sin ψ + 4cos2θ sin 2α1sin3ψ

+ cos θ (((4 + cos 2θ ) cos ψ − cos 2θ cos 3ψ )sin2α1 − 4 cos ψ (cos2α1 + sin2α1sin2θ )sin2ψ )) − 1
4 (cos2θ

+ cos α2sin2θ )(8 cos θ cos 2ψ sin 2α1sin2θ + 8cos2α1 cos ψ sin ψ + cos2θ (−5 + cos 2α1

+ 6 cos 2θsin2α1) sin 2ψ )
)
. (A4)

APPENDIX B: EXPRESSIONS OF Xi, Yi, AND Zi

X1 = − 1
256 id14e−i(4θ+3ψ )(e2iθ − 1)[−3 + 2eiθ + 3e2iθ − 4e3iθ + 3e4iθ + 2e5iθ − 3e6iθ − 12e3iθ+2iψ

− 10e5iθ+2iψ − 12e3iθ+4iψ − 10e5iθ+4iψ + 3e6iθ+4iψ − 3e4iθ+6iψ + 2e5iθ+6iψ − 3e2iψ + 3e
4
iψ + 3e6iψ

− 13e2i(θ+ψ ) + 13e4i(θ+ψ ) + 3e6i(θ+ψ ) − 13e2i(2θ+ψ ) − 3e2i(3θ+ψ ) − 10ei(θ+2ψ ) + 13e2i(θ+2ψ )

− 4e3i(θ+2ψ ) − 3e2i(θ+3ψ ) − 10ei(θ+4ψ ) + 2ei(θ+6ψ )], (B1)

X2 = − 1
256 id14e−i(4θ+3ψ )(e2iθ − 1)[−3 − 2eiθ + 3e2iθ + 4e3iθ + 3e4iθ − 2e5iθ − 3e6iθ + 12e3iθ+2iψ

+ 10e5iθ+2iψ + 12e3iθ+4iψ + 10e5iθ+4iψ + 3e6iθ+4iψ − 3e4iθ+6iψ − 2e5iθ+6iψ − 3e2iψ + 3e4iψ + 3e6iψ

− 13e2i(θ+ψ ) + 13e4i(θ+ψ ) + 3e6i(θ+ψ ) − 13e2i(2θ+ψ ) − 3e2i(3θ+ψ ) + 10ei(θ+2ψ ) + 13e2i(θ+2ψ )

+ 4e3i(θ+2ψ ) − 3e2i(θ+3ψ ) + 10ei(θ+4ψ ) − 2ei(θ+6ψ )], (B2)

X3 = 1
512 id14e−i(4θ+3ψ )(e2iθ − 1)[−3 − 10eiθ − 13e2iθ − 12e3iθ − 13e4iθ − 10e5iθ − 3e6iθ

− 4e3iθ+2iψ + 2e5iθ+2iψ − 4e3iθ+4iψ + 2e5iθ+4iψ + 3e6iθ+4iψ + 13e4iθ+6iψ − 10e5iθ+6iψ − 3e2iψ

+ 3e4iψ + 3e6iψ + 3e2i(θ+ψ ) − 3e4i(θ+ψ ) + 3e6i(θ+ψ ) + 3e2i(2θ+ψ ) − 3e2i(3θ+ψ ) + 2ei(θ+2ψ )

− 3e2i(θ+2ψ ) − 12e3i(θ+2ψ ) + 13e2i(θ+3ψ ) + 2ei(θ+4ψ ) − 10ei(θ+6ψ )], (B3)

X4 = 1
512 id14e−i(4θ+3ψ )(e2iθ − 1)[−3 + 10eiθ − 13e2iθ + 12e3iθ − 13e4iθ + 10e5iθ − 3e6iθ

+ 4e3iθ+2iψ − 2e5iθ+2iψ + 4e3iθ+4iψ − 2e5iθ+4iψ + 3e6iθ+4iψ + 13e4iθ+6iψ + 10e5iθ+6iψ − 3e2iψ

+ 3e4iψ + 3e6iψ + 3e2i(θ+ψ ) − 3e4i(θ+ψ ) + 3e6i(θ+ψ ) + 3e2i(2θ+ψ ) − 3e2i(3θ+ψ ) − 2ei(θ+2ψ )

− 3e2i(θ+2ψ ) + 12e3i(θ+2ψ ) + 13e2i(θ+3ψ ) − 2ei(θ+4ψ ) + 10ei(θ+6ψ )], (B4)

X5 = 3
512 id14e−i(4θ+3ψ )(e2iθ − 1)[−1 − 2eiθ + e2iθ + 4e3iθ + e4iθ − 2e5iθ − e6iθ − 20e3iθ+2iψ

− 6e5iθ+2iψ − 20e3iθ+4iψ − 6e5iθ+4iψ + e6iθ+4iψ − e4iθ+6iψ − 2e5iθ+6iψ − e2iψ + e4iψ + e6iψ

− 15e2i(θ+ψ ) + 15e4i(θ+ψ ) + e6i(θ+ψ ) − 15e2i(2θ+ψ ) − e2i(3θ+ψ ) − 6ei(θ+2ψ ) + 15e2i(θ+2ψ ) + 4e3i(θ+2ψ )

− e2i(θ+3ψ ) − 6ei(θ+4ψ ) − 2ei(θ+6ψ )], (B5)
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X6 = 3
512 id14e−i(4θ+3ψ )(e2iθ − 1)[−1 + 2eiθ + e2iθ − 4e3iθ + e4iθ + 2e5iθ − e6iθ + 20e3iθ+2iψ

+ 6e5iθ+2iψ + 20e3iθ+4iψ + 6e5iθ+4iψ + e6iθ+4iψ − e4iθ+6iψ + 2e5iθ+6iψ − e2iψ + e4iψ + e6iψ

− 15e2i(θ+ψ ) + 15e4i(θ+ψ ) + e6i(θ+ψ ) − 15e2i(2θ+ψ ) − e2i(3θ+ψ ) + 6ei(θ+2ψ ) + 15e2i(θ+2ψ ) − 4e3i(θ+2ψ )

− e2i(θ+3ψ ) + 6ei(θ+4ψ ) + 2ei(θ+6ψ )] . (B6)

Y1 = − 1
256 d14e−i(4θ+3ψ )(e2iθ − 1)[3 − 2eiθ − 3e2iθ + 4e3iθ − 3e4iθ − 2e5iθ + 3e6iθ − 12e3iθ+2iψ

− 10e5iθ+2iψ + 12e3iθ+4iψ + 10e5iθ+4iψ − 3e6iθ+4iψ − 3e4iθ+6iψ + 2e5iθ+6iψ − 3e2iψ − 3e4iψ + 3e6iψ

− 13e2i(θ+ψ ) − 13e4i(θ+ψ ) + 3e6i(θ+ψ ) − 13e2i(2θ+ψ ) − 3e2i(3θ+ψ ) − 10ei(θ+2ψ ) − 13e2i(θ+2ψ )

− 4e3i(θ+2ψ ) − 3e2i(θ+3ψ ) + 10ei(θ+4ψ ) + 2ei(θ+6ψ )], (B7)

Y2 = − 1
256 d14e−i(4θ+3ψ )(e2iθ − 1)[3 + 2eiθ − 3e2iθ − 4e3iθ − 3e4iθ + 2e5iθ + 3e6iθ + 12e3iθ+2iψ

+ 10e5iθ+2iψ − 12e3iθ+4iψ − 10e5iθ+4iψ − 3e6iθ+4iψ − 3e4iθ+6iψ − 2e5iθ+6iψ − 3e2iψ − 3e4iψ + 3e6iψ

− 13e2i(θ+ψ ) − 13e4i(θ+ψ ) + 3e6i(θ+ψ ) − 13e2i(2θ+ψ ) − 3e2i(3θ+ψ ) + 10ei(θ+2ψ ) − 13e2i(θ+2ψ )

+ 4e3i(θ+2ψ ) − 3e2i(θ+3ψ ) − 10ei(θ+4ψ ) − 2ei(θ+6ψ )], (B8)

Y3 = 1
512 d14e−i(4θ+3ψ )(e2iθ − 1)[3 + 10eiθ + 13e2iθ + 12e3iθ + 13e4iθ + 10e5iθ + 3e6iθ − 4e3iθ+2iψ

+ 2e5iθ+2iψ + 4e3iθ+4iψ − 2e5iθ+4iψ − 3e6iθ+4iψ + 13e4iθ+6iψ − 10e5iθ+6iψ − 3e2iψ − 3e4iψ + 3e6iψ

+ 3e2i(θ+ψ ) + 3e4i(θ+ψ ) + 3e6i(θ+ψ ) + 3e2i(2θ+ψ ) − 3e2i(3θ+ψ ) + 2ei(θ+2ψ ) + 3e2i(θ+2ψ ) − 12e3i(θ+2ψ )

+ 13e2i(θ+3ψ ) − 2ei(θ+4ψ ) − 10ei(θ+6ψ )], (B9)

Y4 = 1
512 d14e−i(4θ+3ψ )(e2iθ − 1)[3 − 10eiθ + 13e2iθ − 12e3iθ + 13e4iθ − 10e5iθ + 3e6iθ + 4e3iθ+2iψ

− 2e5iθ+2iψ − 4e3iθ+4iψ + 2e5iθ+4iψ − 3e6iθ+4iψ + 13e4iθ+6iψ + 10e5iθ+6iψ − 3e2iψ − 3e4iψ + 3e6iψ

+ 3e2i(θ+ψ ) + 3e4i(θ+ψ ) + 3e6i(θ+ψ ) + 3e2i(2θ+ψ ) − 3e2i(3θ+ψ ) − 2ei(θ+2ψ ) + 3e2i(θ+2ψ ) + 12e3i(θ+2ψ )

+ 13e2i(θ+3ψ ) + 2ei(θ+4ψ ) + 10ei(θ+6ψ )], (B10)

Y5 = 3
512 d14e−i(4θ+3ψ )(e2iθ − 1)[1 + 2eiθ − e2iθ − 4e3iθ − e4iθ + 2e5iθ + e6iθ − 20e3iθ+2iψ

− 6e5iθ+2iψ + 20e3iθ+4iψ + 6e5iθ+4iψ − e6iθ+4iψ − e4iθ+6iψ − 2e5iθ+6iψ − e2iψ − e4iψ + e6iψ

− 15e2i(θ+ψ ) − 15e4i(θ+ψ ) + e6i(θ+ψ ) − 15e2i(2θ+ψ ) − e2i(3θ+ψ ) − 6ei(θ+2ψ ) − 15e2i(θ+2ψ ) + 4e3i(θ+2ψ )

− e2i(θ+3ψ ) + 6ei(θ+4ψ ) − 2ei(θ+6ψ )], (B11)

Y6 = 3
512 d14e−i(4θ+3ψ )(e2iθ − 1)[1 − 2eiθ − e2iθ + 4e3iθ − e4iθ − 2e5iθ + e6iθ + 20e3iθ+2iψ

+ 6e5iθ+2iψ − 20e3iθ+4iψ − 6e5iθ+4iψ − e6iθ+4iψ − e4iθ+6iψ + 2e5iθ+6iψ − e2iψ − e4iψ + e6iψ

− 15e2i(θ+ψ ) − 15e4i(θ+ψ ) + e6i(θ+ψ ) − 15e2i(2θ+ψ ) − e2i(3θ+ψ ) + 6ei(θ+2ψ ) − 15e2i(θ+2ψ ) − 4e3i(θ+2ψ )

− e2i(θ+3ψ ) − 6ei(θ+4ψ ) + 2ei(θ+6ψ )]. (B12)

Z1 = 1
128 d14e−2i(2θ+ψ )(e2iθ − 1)2[−3 − 4eiθ − 2e2iθ − 4e3iθ − 3e4iθ

− 4e3iθ+4iψ + 3e4iψ + 3e4i(θ+ψ ) + 2e2i(θ+2ψ ) − 4ei(θ+4ψ )], (B13)

Z2 = 1
128 d14e−2i(2θ+ψ )(e2iθ − 1)2[−3 + 4eiθ − 2e2iθ + 4e3iθ − 3e4iθ

+ 4e3iθ+4iψ + 3e4iψ + 3e4i(θ+ψ ) + 2e2i(θ+2ψ ) + 4ei(θ+4ψ )], (B14)

Z3 = − 1
256 d14e−2i(2θ+ψ )(e2iθ − 1)2[−3 − 4eiθ − 2e2iθ − 4e3iθ − 3e4iθ − 4e3iθ+4iψ

+ 3e4iψ + 3e4i(θ+ψ ) + 2e2i(θ+2ψ ) − 4ei(θ+4ψ )], (B15)
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Z4 = − 1
256 d14e−2i(2θ+ψ )(e2iθ − 1)2[−3 + 4eiθ − 2e2iθ + 4e3iθ − 3e4iθ + 4e3iθ+4iψ

+ 3e4iψ + 3e4i(θ+ψ ) + 2e2i(θ+2ψ ) + 4ei(θ+4ψ )], (B16)

Z5 = − 3
256 d14e−2i(2θ+ψ )(e2iθ − 1)2[−1 − 4eiθ − 6e2iθ − 4e3iθ − e4iθ

− 4e3iθ+4iψ + e4iψ + e4i(θ+ψ ) + 6e2i(θ+2ψ ) − 4ei(θ+4ψ )], (B17)

Z6 = − 3
256 d14e−2i(2θ+ψ )(e2iθ − 1)2[−1 + 4eiθ − 6e2iθ + 4e3iθ − e4iθ

+ 4e3iθ+4iψ + e4iψ + e4i(θ+ψ ) + 6e2i(θ+2ψ ) + 4ei(θ+4ψ )]. (B18)

APPENDIX C: RESULT FOR CRYSTALS BELONGING TO CLASS 32

A matrix of the second-order nonlinear optical coefficient for crystals belonging to point group 32, under the Kleinman
symmetry condition, is shown [18]:

⎛
⎜⎜⎝

d11 −d11 0 0 0 0

0 0 0 0 0 −d11

0 0 0 0 0 0

⎞
⎟⎟⎠. (C1)

Using the same derivation described above, the result of the complex amplitude of the output SH wave for the point group
32 is obtained. It has the same form of expression as in Eqs. (9)–(11), but different values of Xi, Yi, and Zi. Xi, Yi, and Zi are
defined as

X1 = − 1
256 id11e−4i(θ+ψ )(e2iθ − 1)2[1 − 2e2iθ + e4iθ + 4e3iθ+2iψ + e4iθ+6iψ + e2iψ + e6iψ + e8iψ

+ 6e2i(θ+ψ ) + e2i(2θ+ψ ) + 4ei(θ+2ψ ) − 4e3i(θ+2ψ ) + e4i(θ+2ψ ) + 6e2i(θ+3ψ ) − 2e2i(θ+4ψ ) − 4ei(θ+6ψ )], (C2)

X2 = − 1
256 id11e−4i(θ+ψ )(e2iθ − 1)2[1 − 2e2iθ + e4iθ − 4e3iθ+2iψ + e4iθ+6iψ + e2iψ + e6iψ + e8iψ

+ 6e2i(θ+ψ ) + e2i(2θ+ψ ) − 4ei(θ+2ψ ) + 4e3i(θ+2ψ ) + e4i(θ+2ψ ) + 6e2i(θ+3ψ ) − 2e2i(θ+4ψ ) + 4ei(θ+6ψ )], (C3)

X3 = 1
512 id11e−4i(θ+ψ )(e2iθ − 1)2[1 + 4eiθ + 6e2iθ + 4e3iθ + e4iθ + e4iθ+6iψ − 4e3iθ+8iψ + e2iψ + e6iψ + e8iψ − 2e2i(θ+ψ )

+ e2i(2θ+ψ ) + e4i(θ+2ψ ) − 2e2i(θ+3ψ ) + 6e2i(θ+4ψ ) − 4ei(θ+8ψ )], (C4)

X4 = 1
512 id11e−4i(θ+ψ )(e2iθ − 1)2[1 − 4eiθ + 6e2iθ − 4e3iθ + e4iθ + e4iθ+6iψ + 4e3iθ+8iψ + e2iψ + e6iψ + e8iψ − 2e2i(θ+ψ )

[3pt] + e2i(2θ+ψ ) + e4i(θ+2ψ ) − 2e2i(θ+3ψ ) + 6e2i(θ+4ψ ) + 4ei(θ+8ψ )], (C5)

X5 = 1
512 id11e−4i(θ+ψ )[1 + 4eiθ + 4e2iθ − 4e3iθ − 10e4iθ − 4e5iθ + 4e6iθ + 4e7iθ + e8iθ + 56e3iθ+2iψ

+ 56e5iθ+2iψ + 8e7iθ+2iψ + 70e4iθ+6iψ − 56e5iθ+6iψ − 8e7iθ+6iψ + e8iθ+6iψ + 4e3iθ+8iψ + 4e5iθ+8iψ

+ 4e6iθ+8iψ − 4e7iθ+8iψ + e2iψ + e6iψ + e8iψ + 28e2i(θ+ψ ) + 28e6i(θ+ψ ) + e8i(θ+ψ ) + 70e2i(2θ+ψ )

+ 28e2i(3θ+ψ ) + e2i(4θ+ψ ) + 8ei(θ+2ψ ) − 56e3i(θ+2ψ ) − 10e4i(θ+2ψ ) + 28e2i(θ+3ψ ) + 4e2i(θ+4ψ )

− 8ei(θ+6ψ ) − 4ei(θ+8ψ )], (C6)

X6 = 1
512 id11e−4i(θ+ψ )[1 − 4eiθ + 4e2iθ + 4e3iθ − 10e4iθ + 4e5iθ + 4e6iθ − 4e7iθ + e8iθ − 56e3iθ+2iψ

− 56e5iθ+2iψ − 8e7iθ+2iψ + 70e4iθ+6iψ + 56e5iθ+6iψ + 8e7iθ+6iψ + e8iθ+6iψ − 4e3iθ+8iψ − 4e5iθ+8iψ

+ 4e6iθ+8iψ + 4e7iθ+8iψ + e2iψ + e6iψ + e8iψ + 28e2i(θ+ψ ) + 28e6i(θ+ψ ) + e8i(θ+ψ ) + 70e2i(2θ+ψ )

+ 28e2i(3θ+ψ ) + e2i(4θ+ψ ) − 8ei(θ+2ψ ) + 56e3i(θ+2ψ ) − 10e4i(θ+2ψ ) + 28e2i(θ+3ψ ) + 4e2i(θ+4ψ )

+ 8ei(θ+6ψ ) + 4ei(θ+8ψ )]. (C7)
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Y1 = − 1
256 d11e−4i(θ+ψ )(e2iθ − 1)2[−1 + 2e2iθ − e4iθ + 4e3iθ+2iψ − e4iθ+6iψ + e2iψ − e6iψ + e8iψ

+ 6e2i(θ+ψ ) + e2i(2θ+ψ ) + 4ei(θ+2ψ ) + 4e3i(θ+2ψ ) + e4i(θ+2ψ ) − 6e2i(θ+3ψ ) − 2e2i(θ+4ψ ) + 4ei(θ+6ψ )], (C8)

Y2 = − 1
256 d11e−4i(θ+ψ )(e2iθ − 1)2[−1 + 2e2iθ − e4iθ − 4e3iθ+2iψ − e4iθ+6iψ + e2iψ − e6iψ + e8iψ

+ 6e2i(θ+ψ ) + e2i(2θ+ψ ) − 4ei(θ+2ψ ) − 4e3i(θ+2ψ ) + e4i(θ+2ψ ) − 6e2i(θ+3ψ ) − 2e2i(θ+4ψ ) − 4ei(θ+6ψ )], (C9)

Y3 = 1
512 d11e−4i(θ+ψ )(e2iθ − 1)2[−1 − 4eiθ − 6e2iθ − 4e3iθ − e4iθ − e4iθ+6iψ − 4e3iθ+8iψ + e2iψ − e6iψ + e8iψ − 2e2i(θ+ψ )

+ e2i(2θ+ψ ) + e4i(θ+2ψ ) + 2e2i(θ+3ψ ) + 6e2i(θ+4ψ ) − 4ei(θ+8ψ )], (C10)

Y4 = 1
512 d11e−4i(θ+ψ )(e2iθ − 1)2[−1 + 4eiθ − 6e2iθ + 4e3iθ − e4iθ − e4iθ+6iψ + 4e3iθ+8iψ + e2iψ − e6iψ + e8iψ − 2e2i(θ+ψ )

+ e2i(2θ+ψ ) + e4i(θ+2ψ ) + 2e2i(θ+3ψ ) + 6e2i(θ+4ψ ) + 4ei(θ+8ψ )], (C11)

Y5 = 1
512 d11e−4i(θ+ψ )[−1 − 4eiθ − 4e2iθ + 4e3iθ + 10e4iθ + 4e5iθ − 4e6iθ − 4e7iθ − e8iθ + 56e3iθ+2iψ

+ 56e5iθ+2iψ + 8e7iθ+2iψ − 70e4iθ+6iψ + 56e5iθ+6iψ + 8e7iθ+6iψ − e8iθ+6iψ + 4e3iθ+8iψ + 4e5iθ+8iψ

+ 4e6iθ+8iψ − 4e7iθ+8iψ + e2iψ − e6iψ + e8iψ + 28e2i(θ+ψ ) − 28e6i(θ+ψ ) + e8i(θ+ψ ) + 70e2i(2θ+ψ )

+ 28e2i(3θ+ψ ) + e2i(4θ+ψ ) + 8ei(θ+2ψ ) + 56e3i(θ+2ψ ) − 10e4i(θ+2ψ ) − 28e2i(θ+3ψ ) + 4e2i(θ+4ψ )

+ 8ei(θ+6ψ ) − 4ei(θ+8ψ )], (C12)

Y6 = 1
512 d11e−4i(θ+ψ )[−1 + 4eiθ − 4e2iθ − 4e3iθ + 10e4iθ − 4e5iθ − 4e6iθ + 4e7iθ − e8iθ − 56e3iθ+2iψ

− 56e5iθ+2iψ − 8e7iθ+2iψ − 70e4iθ+6iψ − 56e5iθ+6iψ − 8e7iθ+6iψ − e8iθ+6iψ − 4e3iθ+8iψ − 4e5iθ+8iψ

+ 4e6iθ+8iψ + 4e7iθ+8iψ + e2iψ − e6iψ + e8iψ + 28e2i(θ+ψ ) − 28e6i(θ+ψ ) + e8i(θ+ψ ) + 70e2i(2θ+ψ )

+ 28e2i(3θ+ψ ) + e2i(4θ+ψ ) − 8ei(θ+2ψ ) − 56e3i(θ+2ψ ) − 10e4i(θ+2ψ ) − 28e2i(θ+3ψ ) + 4e2i(θ+4ψ )

− 8ei(θ+6ψ ) + 4ei(θ+8ψ )]. (C13)

Z1 = 1
128 d11e−i(4θ+3ψ )(e2iθ − 1)3[1 + 2eiθ + e2iθ + e6iψ + e2i(θ+3ψ ) − 2ei(θ+6ψ )], (C14)

Z2 = 1
128 d11e−i(4θ+3ψ )(e2iθ − 1)3[1 − 2eiθ + e2iθ + e6iψ + e2i(θ+3ψ ) + 2ei(θ+6ψ )], (C15)

Z3 = − 1
256 d11e−i(4θ+3ψ )(e2iθ − 1)3[1 + 2eiθ + e2iθ + e6iψ + e2i(θ+3ψ ) − 2ei(θ+6ψ )], (C16)

Z4 = − 1
256 d11e−i(4θ+3ψ )(e2iθ − 1)3[1 − 2eiθ + e2iθ + e6iψ + e2i(θ+3ψ ) + 2ei(θ+6ψ )], (C17)

Z5 = − 1
256 d11e−i(4θ+3ψ )(e2iθ − 1)[1 + 6eiθ + 15e2iθ + 20e3iθ + 15e4iθ + 6e5iθ + e6iθ + 15e4iθ+6iψ − 6e5iθ+6iψ

+ e6iψ + e6i(θ+ψ ) − 20e3i(θ+2ψ ) + 15e2i(θ+3ψ ) − 6ei(θ+6ψ )], (C18)

Z6 = − 1
256 d11e−i(4θ+3ψ )(e2iθ − 1)[1 − 6eiθ + 15e2iθ − 20e3iθ + 15e4iθ − 6e5iθ + e6iθ + 15e4iθ+6iψ + 6e5iθ+6iψ + e6iψ

+ e6i(θ+ψ ) + 20e3i(θ+2ψ ) + 15e2i(θ+3ψ ) + 6ei(θ+6ψ )]. (C19)
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