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Angular momentum transferred by the field of a moving point charge
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The flux of angular momentum of the electromagnetic field of an arbitrarily moving point charge is investi-
gated. General equations for the transfer of angular momentum at arbitrary distance from the charge are obtained,
and corresponding equations in the far-field approximation are derived. An explicit expression is obtained
for the flux of angular momentum in the wave zone in terms of coordinates, velocity, and acceleration of the
charge. The torque that would act on an object if it absorbs the incident radiation is calculated. It is shown that this
torque is proportional to the curl of the stress tensor of the electromagnetic field; in the far-field approximation
the torque is proportional to the curl of the Poynting vector. Application of the obtained formulas is illustrated
by the example of a rotating dipole.
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I. INTRODUCTION

It is well known that the electromagnetic field of a point
charge carries angular momentum [1]. The angular mo-
mentum is usually divided into a spin part associated with
polarization and an orbital part associated with the helical
wave front. A light beam with a helical wave front is usu-
ally referred to as a twisted light. The first theoretical and
experimental research on twisted light or vortex radiation
was devoted to the laser radiation modified by an astigmatic
optical system, numerically computed holograms [2,3], or
microscopic spiral phase plates. These publications have stim-
ulated extensive studies of the vortex optical beam. A more
extensive bibliography of the history in this field can be found
in a recent review [4]. Interest in vortex radiation quickly
spread into different areas of physics: transfer of information,
interaction with atoms, and high-energy particle collision and
radiation processes. The vortex light beams have opened a
wide range of applications, such as spatial optical trapping of
atoms or microscopic objects, phase-contrast microscopy, and
nano- or microscale physics [4,5].

The first experiments on capture of the particles in traps
and their rotation were carried out at the end of the last cen-
tury [6,7] and are still being carried out with metal particles
[8–10], birefringent particles [11], and dielectric spherical or
spheroidal particles [12–14]. Most of these papers also contain
a theoretical description of the interaction of a twisted laser
beam with small particles. A theoretical description of twisted
electrons interacting with electric and magnetic fields is pre-
sented in Ref. [15]. A detailed description of these and similar
works is given in review papers [16–18]. Various methods are
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being developed to register the orbital angular momentum of
radiation [19,20].

High-energy photons carrying angular momentum can be
emitted by the vortex beams of charged particles. In recent
years, attention to the x-ray vortices produced by high-energy
particles has been boosted by the interest in microscopy and
spectroscopy at the atomic and nanometric scale. Radiation in
the x-ray range carrying the angular momentum was obtained
by converting an x-ray beam [21] and by use of a helical
undulator [22]. Various schemes of twisted photon beam pro-
duction in undulators [23–25] and free-electron lasers [26]
have been proposed. Cherenkov radiation and transition radi-
ation emitted by vortex electrons were studied theoretically
[27–29]. Radiation of high-energy charged particles chan-
neled in solid and liquid crystals has been studied theoretically
in recent papers [30–33]. X-ray vortex radiation has found
numerous applications in both classical and quantum optics
condensed matter, high-energy physics, optics, etc. (see the
review in Ref. [34] and references therein).

Despite active experimental research, there is a lack of the-
oretical studies on transfer of angular momentum by the field
of an arbitrarily moving charge. Most of the work related to
the angular momentum of the electromagnetic field relates to
the laser radiation. The available theoretical papers in the area
of particle radiation cover the angular momentum of radiation
only in some special cases, such as synchrotron radiation,
radiation in crystals, or polarization radiation [25,27–33].

This paper aims to fill this gap. In Sec. II we obtain a
general expression for the flux of angular momentum through
a unit area in terms of the stress tensor of the field of a point
charge. In Sec. III, we study the flux of angular momentum
in the far-field approximation. Since the angular momentum
essentially depends on the specific coordinate system, we
consider two cases: when the coordinate origin is relatively
far from the charge, and when the distance between the charge
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and the coordinate origin is much less than the distance to
the observation point. Approximate expressions for the flux of
angular momentum of a nonrelativistic charge are obtained in
Sec. IV. Section V is devoted to study of the torque exerted on
an area element due to the electromagnetic field. The obtained
expressions were applied to calculate the angular momentum
flux and the torque in the near field and far field of a rotating
dipole in Sec. VI. Finally, Sec. VII is devoted to discussion of
the results obtained.

II. THE FLUX OF ANGULAR MOMENTUM IN THE FIELD
OF A POINT CHARGE

The flux of angular momentum L of an electromagnetic
field across an infinitely large spherical surface is defined by
the Poynting vector P as [35]

dL
dt

= 1

c

∮
(r × P)ds, P = c

4π
(E × H ), (1)

where E and H are the electric and magnetic fields, respec-
tively, r is the radius vector, and c is the speed of light. This
expression can be interpreted so that the angular momentum
density (r × P)/c2 is transported at the speed of light in the
radial direction from the source charge. Equation

dL
ds dt

= 1

c
(r × P) (2)

is conventionally used for calculation of the angular momen-
tum flux in the wave beam [36]. However, it is not applicable
to the flux of angular momentum in the near field of a pointlike
charge. In general, the angular momentum flux of an arbitrary
electromagnetic field is defined by the energy-momentum
tensor.

An explicit expression for the angular momentum flux
in terms of electric and magnetic fields is obtained in Ap-
pendix A. It follows from Eq. (A4) that the flux of angular
momentum through an area ds orthogonal to the radius vector
r of arbitrary coordinate system is equal to

dL
dt ds

= 1

4πr
[(E × r)(E r) + (H × r)(H r)]. (3)

This expression takes a simpler form written in terms of the
Maxwell stress tensor σi j (A2) in the spherical coordinate
system r, θ, ϕ with unit vectors er, eθ , eϕ

dL
dt ds

= r(σ12eϕ − σ13eθ ). (4)

The electric and magnetic fields of an arbitrary moving
charge at a point r and at a time moment t are [37]

E = E1 + E2, H = (R × E )/R, (5)

E1 = eR2κ

c(R − βR)3
, E2 = e(1 − β2)(R − Rβ)

(R − βR)3
,

κ = [R × [(R − Rβ) × β̇]]/R2, (6)

where R = r − r′ is the vector from the charge position to
the point r (see Fig. 1), r′ = r′(t ′) is the charge position
at the retarded time moment t ′ = t − R/c, e is the charge,
β = v/c, v = v(t ′) is the particle velocity, and the dot denotes
the time derivative.

R

r

r’

ds

FIG. 1. Notations used.

Equations (3)–(6) determine the flux of angular momentum
of the electromagnetic field at any distance from the charge.
It is useful to find approximate equations for the angular
momentum flux at large distance. The field E1 decreases with
distance as 1/R, and the field E2 decreases with distance as
1/R2. At large distances from the charge, where R � cβ̇, the
electric field E1 and the corresponding magnetic field prevail.
Therefore, when calculating the intensity of radiation, we can
neglect the field E2 and the corresponding magnetic field.

In calculating the angular momentum at large distances, we
must not, however, neglect the terms of order 1/R2, because
in approximation 1/R the longitudinal components (E r) and
(H r) vanish. The next section is devoted to calculation of the
angular momentum flux in the far-field approximation.

III. FLUX OF ANGULAR MOMENTUM IN THE
FAR-FIELD APPROXIMATION

Calculation of the angular momentum of radiation has
one outstanding distinction compared with calculation of
the intensity of radiation: The angular momentum depends
significantly on the choice of the coordinate system. When
calculating the intensity of radiation, two conditions are usu-
ally assumed to be satisfied: (i) R � cβ̇ (then the field E2 can
be neglected) and (ii) R, r � r′ (see Fig. 1; then you can put
r ≈ R). However, in practice, there are cases when the sec-
ond condition is not met. For example, when calculating the
intensity of synchrotron radiation, it is convenient to choose
the origin at the center of a circular orbit, but measurements
are carried out at a distance comparable to or even less than
the orbital radius, as, for example, in Fig. 2. Nevertheless,
approximation (i), R � cβ̇ (the far-field or wave zone approx-
imation), is sufficient to calculate the radiation intensity.

x

y

z

L g

FIG. 2. Synchrotron radiation. The main part of the angular mo-
mentum transferred to the target is due to the radiation pressure g on
the target, which causes the torque relative to the z axis.
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A completely different situation arises when calculating
the angular momentum of radiation. Two substantially dif-
ferent situations should be distinguished here: (i) The target
is in the wave zone (R � cβ̇), but the distances R and r′
are comparable; and (ii) the target is in the wave zone and
R, r � r′. Let us consider these cases separately.

A. Angular momentum in the wave zone when r′ ∼ r, R

In this case, the longitudinal components (E r) and (H r)
in Eq. (3) do not vanish in the approximation of order 1/R.
Hence we can neglect the field E2 and put E ≈ E1. Then the
vectors of the electric and magnetic fields are mutually orthog-
onal and orthogonal to the direction of radiation N = R/R.
If we put in Eq. (3) H = N × E, (EN) = 0, then it can be
transformed to the form

dL
dt ds

= r

4π
E2(n × N)(nN)ds = 1

c
(r × P)(Nn). (7)

Thus, if the distances r′, r, and R are comparable in magni-
tude, then the flux of angular momentum in the radiation field
can be considered as a mechanical torque due to the radiation
pressure. The multiplier (nN) in Eq. (7) takes into account that
the area ds = nds is oriented at an angle to the direction of
radiation N. In this case, the angular momentum of radiation
can be definitely considered as the orbital angular momentum.

B. Angular momentum in the wave zone when R, r � r′

Let us consider the case when the charge moves in a region
whose dimensions are much less than the distance R and we
are interested in the angular momentum of the field relative
to some point lying in the region of motion of the charge
(r′ � R). Then the scalar products (E r) and (H r) in Eq. (3)
become small and decrease with distance as 1/R. In this case,
the contribution of the E2 field should also be taken into
account. In the limit r → ∞, Eq. (3) takes the form

dL
d�dt

= r3

4π
[(E1 × n)(E2 n) + (H1 × n)(H2n)], (8)

where H i = (R × E i )/R. Each term of the last equation de-
creases as 1/r3 as r → ∞.

This expression can also be written in terms of the Poynting
vector. If we make the substitution H1 = n × E1 in Eq. (8),
then we get

dL
ds dt

= r

4π
[E1(H2n) − H1(E2n) − n(H2n)(E1n)]. (9)

The first two terms decrease with distance as 1/r3, and the last
term decreases with distance as 1/r4. Therefore it can be ne-
glected. On the other hand, in the considered approximation,

n × P = c

4π
[E1(nH2) − H1(nE2)]. (10)

Hence the flux of angular momentum in the wave zone in ap-
proximation R, r � r′ can be calculated through the Poynting
vector

dL
ds dt

= 1

c
(r × P) (11)

in agreement with Eq. (2). This equation, in essence, coincides
with Eq. (7), since in the expansion of the scalar product
(Nds) in powers of r′/r the first term is equal to 1.

The flux of the modulus of the angular momentum of radi-
ation can be related to the radiation intensity. Let us denote by
α the angle between the vectors n and P, and by I the radiation
intensity (energy per unit time). Then

d|L|
ds dt

= 1

c
r sin α

dI

ds
. (12)

Let us find an explicit expression for the angular momen-
tum flux in terms of the charge position and its velocity and
acceleration. Substituting R = r − r′ into Eqs. (5), (6), and
(8), and keeping the largest term in the expansion in powers
of 1/r, we obtain

dL
d�dt

= e2

4πc(1 − βn)5

[
(1 − β2)(κ × n) + κ2(r′ × n)

c(1 − βn)

]
.

(13)

Now, the vector κ contains only the main term of the
expansion in powers of 1/r:

κ = [n × [(n − β) × β̇]]. (14)

This equation determines the angular distribution of the
angular momentum carried by radiation of an arbitrarily mov-
ing charge. The first term in Eq. (13) does not depend on the
choice of the origin of the coordinate system, while the second
one linearly depends on the position vector of the charge. In
this sense, the first term can be associated with the spin of
the radiation, and the second one can be associated with the
orbital angular momentum. The classical theory, in principle,
does not distinguish the spin and orbital parts of the total
angular momentum. Nevertheless, there is active discussion
on the issue of dividing the angular momentum of electro-
magnetic field into orbital and spin parts. See, for example,
Refs. [23,38,39] and references therein. We will not plunge
into this discussion here. Therefore we denote the studied
total angular momentum just as the angular momentum of
radiation.

IV. NONRELATIVISTIC APPROXIMATION

In the nonrelativistic approximation, β � 1. Assuming in
Eq. (13) β = 0, we obtain

dL
d�dt

= e2

4πc
(n × β̇). (15)

Hence the angular momentum of the radiation is orthogonal
to the vectors n and β̇. If the particle moves within a limited
region of space, then the time-averaged flux of angular mo-
mentum transferred by radiation is zero. Actually, Eq. (15)
describes the exchange of angular momentum between the
near and far zones and therefore does not represent emission
of angular momentum. Moreover, the integral of the angular
momentum of the radiation over the solid angle is in this
approximation zero.

In order to calculate the nonzero value of the angular mo-
mentum flux, it is necessary to take into account the next term
in the expansion in β. As a result of expansion up to β2, we
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obtain

dL
d�dt

= e2

4πc
[(n × β̇)(1 + 4βn) + (n × β)(nβ̇)]. (16)

Let us find the time-average angular momentum flux.
When averaging over time t , one should keep in mind that
the right-hand side of the last expression depends on t ′ and
that dt = (1 − βn)dt ′. Hence〈

dL
d�dt

〉
= e2

4πc

1

T

∫ T

0
[(n × β̇)(1 + 4βn)

+ (n × β)(nβ̇)](1 − βn)dt ′. (17)

The average of the term linear in β̇ is zero, and averaging the
remaining term gives〈

dL
d�dt

〉
= e2

4πc
〈3(n × β̇)(βn) + (n × β)(nβ̇)〉. (18)

Integrating this expression over the solid angle, we obtain the
total angular momentum emitted per unit time〈

dL
dt

〉
= 2e2

3c

〈
β × β̇

〉
. (19)

The vector (β × β̇) indicates the direction of the instanta-
neous mechanical angular momentum of the particle. The last
expression up to sign coincides with the well-known equa-
tion for the loss of angular momentum of a charged particle
due to radiation friction [37].

V. TORQUE EXERTED BY THE FIELD

By definition, the angular momentum of the electromag-
netic field depends on the choice of the coordinate system.
Under certain conditions, as discussed in Sec. III A, radiation
pressure can make a significant contribution to the angular
momentum flux. For example, the orbital angular momentum
of a photon of synchrotron radiation in an accelerator (Fig. 2)
is equal to the product of the photon momentum and the
orbital radius a:

L = h̄ω

c
a ∼ γ 3h̄,

where ω ∼ γ 3c/a is the photon frequency and γ = (1 −
β2)−1/2 is the relativistic factor. In modern accelerators, the
angular momentum flux can reach enormous values. In this
case, as in many others, the angular momentum of the ra-
diation relative to the geometric center of the trajectory is
of interest. However, if we investigate the radiation of an
unknown source, then the position of this geometric center is
not determined. It can also be that the source of radiation is so
far away that the entire area of radiation shrinks to a point, as
is usually the case in astronomy. In these cases, Eq. (13) has
little sense. Only the integral over the solid angle is important,
because it determines the rate of loss of angular momentum
by the charge due to radiation friction.

However, the “vortex radiation” has a property that can the-
oretically be measured without being bound to any particular
coordinate system. To date, a large number of experiments
cited above have been carried out in which a vortex laser beam
drives the microparticles into rotation both on the laser beam

r0

r

n0

S

FIG. 3. The flux of the radial component of the angular momen-
tum of the field through the area S.

axis and around the beam axis. Detailed discussion of the
forces acting on small particles is presented in Refs. [40–42].

The flux of the radial component of the angular momentum
through an infinitely small area orthogonal to the radius vector
is zero because (Lr) = 0 as one can see in Eq. (3). However,
we are going to show that if the field of the stress tensor is
not uniform and the area is of finite dimension, this flux is not
zero.

Consider a small area S orthogonal to the radius vector
passing through the center of the area. The smallness of the
area means that its dimensions are much less than r. Let us
denote the coordinate of the center of the area by r0 as shown
in Fig. 3. The unit normal to the area is n0 = −r0/r0. Let us
find the torque acting on the area due to the total flux of the
angular momentum through the area. The physical meaning
of the components of the stress tensor σi j defined by Eq. (A2)
is that they represent forces acting per unit area. The diagonal
elements represent pressure, and the off-diagonal element σi j

is shear acting in the ith direction on a unit area with the jth
normal.

Figure 4 schematically shows the lines of the shear force
vector σi1 on the area orthogonal to the radius vector r0. If the
field of shears is not uniform, they produce a torque acting
on the area. The flux of the radial component of the angular
momentum through the area is given by integral

dLn

dt
=

∫
n0igi1(r)ds =

∫
n0iei jmx jσm1(r)ds. (20)

Here, gi j (r) is the tensor (A3), and index 1 corresponds to
the radial coordinate. The flux of the radial component of
the angular momentum through the center of the area is zero,
since n0iei jmx0 j ∼ n0 × r0 = 0. However, as can be seen from
Fig. 3, at a distance from the center, the cross product n0 × r
is no longer zero.

ρ

v

u

FIG. 4. Lines of force of the vector gi1 on the area S.
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Let us expand the components of the tensor σm1(r) in a
Taylor series in the vicinity of the center. Further on, we use
the spherical coordinate system (x1, x2, x3) = (r, θ, ϕ). Let us
introduce on the area mutually orthogonal coordinates u, v

such that the coordinate lines of u and v coincide with the
coordinate lines of θ and ϕ, respectively. Then

σm1(r) = σm1(r0) +
(

u
∂σm1(r)

∂u

∣∣∣∣
0

+ v
∂σm1(r)

∂v

∣∣∣∣
0

)
.

The vertical bar means that the value of derivatives is taken at
the center. Next we substitute this in Eq. (20). The vector n0

has coordinates n0i = (n01,−u/r,−v/r). For the sake of sim-
plicity, assume that the area is a disk. Using polar coordinates
on the surface of the disk

u = ρ cos ψ, v = ρ sin ψ,

we transform the integral (20) to the form

dLr

dt
= π

(
∂σ31(r)

∂u

∣∣∣∣
0

− ∂σ21(r)

∂v

∣∣∣∣
0

) ∫
ρ3dρ

= 1

4π
S2

(
∂σ31(r)

∂x2

∣∣∣∣
0

− ∂σ21(r)

∂x3

∣∣∣∣
0

)
, (21)

where S is the area of the disk. Thus the flux of the radial
component of the angular momentum through the area is
proportional to the square of its area and to the curl of σi j ,
taken with respect to the first index.

If the expression in parentheses is denoted by �n,

�n =
(

∂σ31

∂x2
− ∂σ21

∂x3

)∣∣∣∣
0

, (22)

then the torque acting on the area which is orthogonal to the
radius vector takes the form

dLn

dt
= 1

4π
S2�n. (23)

The off-diagonal elements of the tensor σi j decrease with
distance as 1/r3, and the curl of these components decreases
as 1/r4; therefore the torque acting on an area of finite di-
mensions decreases with distance as 1/r4, as, for example,
in the case of a rotating dipole [Eq. (31)]. This may cause
the difficulties in measuring the torque of radiation at large
distances.

Obviously, the calculations performed can be generalized
to areas orthogonal to other coordinate lines. The curl of the
stress tensor σi j is a tensor of the second rank

Ri j = ekli
∂σl j

∂xk
. (24)

Using the diagonal elements of this tensor, we can compose a
vector

� =
(

∂σ31

∂x2
− ∂σ21

∂x3
,
∂σ12

∂x3
− ∂σ32

∂x1
,
∂σ23

∂x1
− ∂σ13

∂x2

)
, (25)

which, by analogy with the hydrodynamics, is usually referred
to as vorticity of the electromagnetic field [41,43,44]. Some-
times this term is used to refer to the curl of the Poynting
vector of light [41,43]. The components of the vector � des-
ignate the torque acting on an area of finite size, orthogonal
to the corresponding axis. In an experiment with a twisted

laser beam [11], the rotation of small particles away from
the axis of the laser beam was observed. This is probably a
manifestation of the nonzero vorticity of the laser beam in the
off-axis direction.

Speaking of torque acting on an area, we mean the flux
of the normal component of angular momentum through the
area. Actually, the angular momentum absorbed by a real
object depends significantly on the optical properties of the
material and on diffraction at its edges.

Until now, we have not made any assumptions about the
distance between the charge and the point of observation. Let
us now find the asymptotic expressions for the torque of the
field at distances r, R � r′. We introduce a vector g⊥ with
components σi1. The vector g⊥ is orthogonal to the vector n
and represents the shear force acting tangentially on the area
orthogonal to the vector n. Arguing as in the derivation of
Eq. (8), we obtain a similar expression for the vector g⊥ in a
spherical coordinate system

g⊥ = − 1

4π
[E1(E2 n) + H1(H2n)], i = θ, ϕ. (26)

Bearing in mind that in this approximation H1 = (n × E1)
and taking into account the equality (10), we obtain

g⊥ = 1

c
(n × (P × n)).

One can see from the last expression that the vector g⊥ is
proportional to the transverse, with respect to n, component
of the Poynting vector. Therefore the lines shown in Fig. 4 can
be interpreted as the field lines of the transverse component of
the Poynting vector. Accordingly, the vorticity of radiation in
the far-field approximation is

�n = 1

c
(nrotP). (27)

Equations (7), (11), and (27) show that in the far-field ap-
proximation, the angular momentum flux is determined by
the transverse component of the Poynting vector and that the
torque acting on an area of finite dimensions is proportional to
the curl of the transverse component of the Poynting vector.

VI. ROTATING ELECTRIC DIPOLE

As a simple example, we consider the field produced by a
rotating electric dipole. This is the simplest source of vortex
radiation, and therefore it has attracted the attention of many
authors. The rate of loss of angular momentum by an electric
dipole is calculated in Sec. 72 of the textbook by Landau
and Lifshitz [37]. Gough [45] found the intrinsic angular
momentum of the radiation field of a rotating dipole and
the flux of angular momentum in the far-field approximation.
An experiment to measure the angular momentum flux from
a rotating dipole was proposed by Vul’fson [46] and then
implemented by Emile et al. [47,48]. The time-averaged flux
of angular momentum through a radially oriented element of
the spherical surface was calculated by Barnett [49].

A rotating dipole field is a good example to show the
physical content of the angular momentum flux in the near
and far field and the vorticity of radiation. A derivation of the
main formulas is given in Appendix B. Here, we will consider
only the field properties related to its angular momentum.
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z

x

y

z
P

FIG. 5. The wave front of the field defined by Eqs. (B1) has a
typical singularity on the z axis (left). One of the Poynting vector
force lines (right).

Let the law of motion of the dipole vector d in the Cartesian
coordinate system (x, y, z) be d = d (cos ωt, sin ωt, 0). The
field of the rotating dipole (B1) obviously has the properties of
a vortex field. The wave front given by the equation τ = const
is shown in Fig. 5. Obviously, this surface is not orthogonal to
the direction of propagation of radiation and has a singularity
on the z axis.

Averaging the Poynting vector (B2) over time, we obtain

〈Pr〉 = d2ω4

8πc3r2
(1 + cos2 θ ), 〈Pθ 〉 = 0,

〈Pϕ〉 = d2ω

4πr5
(1 + k2r2) sin θ. (28)

The last equation shows that the Poynting vector is directed
tangentially to the surface of a cone with apex at the origin and
an angular opening θ . Figure 5 shows one of the lines of force
of the Poynting vector. In the near zone, in the region of small
ρ, the azimuthal component 〈Pϕ〉 prevails. This component is
responsible for the angular momentum of the field. It varies as
1/r5 at r → 0 and falls off as 1/r3 in the far-field region. In the
far zone prevails the radial component 〈Pr〉, which determines
the radiation intensity and decreases as 1/r2.

Next we calculate the flux of angular momentum in the
radial direction by use of Eq. (4). Averaging over time the
stress tensor (B3), we obtain〈

dL
dt ds

〉
= d2 sin θ

4πr5
(eϕ cos θ − eθρ

3). (29)

At small distances, the flux of the component Lϕ prevails. At
larger distances, only the θ component of the flux remains in
the radiation [45]〈

dL
dt d�

〉
= −d2ω3

4πc3
sin θ eθ . (30)

Note that the angular momentum flux has its maximum
in direction θ = π/2 and is zero on the axis of rotation.
Equation (30) can be obtained by use of Eq. (2) if the Poynting
vector (28) is averaged over time and the term with the highest
power of r is kept. However, at arbitrary distances, Eq. (2) is
not correct.

Integration of Eq. (30) over the solid angle gives the well-
known formula for the rate of loss of the angular momentum

of the dipole due to radiation reaction〈
dL
dt

〉
= 2d2ω3

3c3
ẑ.

In order to find the vorticity of the electromagnetic field,
we calculate the radial component of the vector �. According
to Eqs. (22) and (B3), we have

�n = 1

r sin θ

(
∂ (σ31 sin θ )

∂θ
− ∂σ21

∂ϕ

)
= d2ω3

2πc3r4
cos θ. (31)

This value, in contrast to the angular momentum flux, is max-
imum in the direction of the z axis, that is, in the direction
of the vortex axis (see Fig. 5). In the equatorial plane xy, the
vorticity is zero. This property resembles the polarization of
radiation. It can be seen from Eqs. (B1) that in the direction of
the z axis the field is circularly polarized, and in the equatorial
plane it is linearly polarized, since

E2
ϕ

cos2 θ
+ E2

θ = const.

The sign of �n changes when passing through the equato-
rial plane: The sign of the vorticity coincides with the sign of
the projection of the angular velocity of rotation of the dipole
onto the direction of radiation. We also note that �n decreases
with distance as 1/r4 and this dependence is the same at both
large and small distances from the dipole.

Finally, we show that in the far-field approximation the
vorticity of radiation can be calculated as the curl of the
Poynting vector in accordance with the general formula (27).
Indeed, taking the curl of P in Eqs. (B2) and averaging over
time, we obtain

〈(nrotP)〉 = d2ω3

2πc2r4
cos θ (1 + ρ−2), (32)

which, generally speaking, is not the vorticity, but coincides
with its exact value (31) in asymptotics r → ∞, when the
second term in (32) vanishes.

VII. DISCUSSION

We investigated the angular momentum of the electro-
magnetic field of an arbitrarily moving point charge. In the
general case, the angular momentum flux is determined by the
stress tensor of the electromagnetic field [Eqs. (3) and (4)].
From a practical point of view, the angular momentum flux
at distances much greater than the characteristic wavelength
of radiation is of interest. This area is usually referred to as a
wave zone. We have shown that the flux of angular momentum
in the wave zone is proportional to the vector product of the
radius vector of the observation point by the Poynting vector
[Eqs. (2) and (7)]. Since the angular momentum depends
significantly on the choice of coordinate system, two limiting
cases can be distinguished.

(i) The distance between the charge and the coordinate
origin is comparable to the distance between the charge and
the point of observation.

(ii) The distance between the charge and the origin is much
less than the distance between the charge and the point of
observation.
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In the first case, the flux of the angular momentum of radi-
ation can be interpreted as the pressure of radiation on a target
that produces a torque around the origin of the coordinate
system. In this case, one can take into account only the main
part of electromagnetic field decreasing with distance as 1/r
and assume that the vectors of the electric field, the magnetic
field, and the Poynting vector are mutually orthogonal.

In the second case, it is necessary to take into account
the components of the electromagnetic field that decrease
with distance as 1/r2. Thus we take into account that the
direction of the Poynting vector does not coincide with the
direction of radiation, more precisely, with the direction of
the radius vector of the observation point. In this case, the flux
of the angular momentum of the radiation is determined by
the component of the Poynting vector that is transverse to the
radius vector. In the last case, we have obtained an explicit
expression for the flux of angular momentum of radiation as
a function of coordinates, velocity, and acceleration of the
charge [Eq. (13)].

An important property of radiation is the torque acting
on the object due to the electromagnetic field. This property
allows us to use the radiation field as optical tweezers and
optical traps [6,7,9,17]. From this point of view, it is of interest
to find the flux of the radial component of the angular mo-
mentum through an area of finite dimensions. We have shown
that this quantity, denoted as the vorticity of the radiation, is
proportional to the curl of the stress tensor [Eq. (25)], and in
the wave zone it is proportional to the curl of the Poynting
vector [Eq. (27)].
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APPENDIX A: THE FLUX OF ANGULAR MOMENTUM

The angular momentum tensor Lμν of the electromagnetic
field is defined by the energy-momentum tensor T μσ as [37]

Lμν =
∫

(xμT νσ − xνT μσ )dSσ , (A1)

where dSσ is the vector equal in magnitude to the area of a
hypersurface element and normal to this element. The spatial
components of the energy-momentum tensor form a three-
dimensional stress tensor

σik = 1

4π

[
−EiEk − HiHk + 1

2
δik (E2 + H2)

]
, (A2)

with Ei and Hi being the components of electric and magnetic
fields, respectively, and δik being the Kronecker symbol. The

time components determine the energy and momentum den-
sity of the electromagnetic field

T 00 = E2 + H2

8π
, T 0i = 1

c
Pi, P = c

4π
(E × H ),

where P is the Poynting vector.
Passing to three-dimensional notation, we introduce a

three-dimensional angular momentum vector with compo-
nents Li = 1

2 ei jkL jk , where ei jk is the unit antisymmetric
symbol. The flux of the ith component of the vector L through
the unit area orthogonal to the kth axis is determined by the
three-dimensional tensor [37,40]

gik = ei jmx jσmk

= 1

4π

[
−(r × E )iEk − (r × H )iHk + 1

2
(E2 + H2)ei jkr j

]
.

(A3)

The flux of the angular momentum of the field through an
arbitrarily oriented area ds is

dL
dt

= 1

4π

[
−(r × E )(E ds) − (r × H )(H ds)

+1

2
(E2 + H2)(r × ds)

]
. (A4)

APPENDIX B: THE POYNTING VECTOR AND THE
STRESS TENSOR FOR THE FIELD OF A ROTATING

DIPOLE

The electromagnetic field of a rotating electric dipole in a
spherical coordinate system (r, θ, ϕ) is as follows [37, §72]:

Hθ =dω

r2c
(cos τ − ρ sin τ ),

Hϕ =dω

r2c
cos θ (sin τ + ρ cos τ ),

Er =2d

r3
sin θ (cos τ − ρ sin τ ),

Eθ = d

r3
cos θ (− cos τ + ρ sin τ + ρ2 cos τ ),

Eϕ = d

r3
(− sin τ − ρ cos τ + ρ2 sin τ ), (B1)

where

ρ = ωr

c
, τ = ωt ′ − ϕ, t ′ = t − r

c
.

The Poynting vector

P = c

4π
(E × H )

has the components

Pr =P0[2ρ3(sin2 τ + cos2 θ cos2 τ ) − 2ρ2 sin 2τ sin2 θ + 2ρ cos 2τ sin2 θ + sin 2τ sin2 θ ],

Pθ =2P0 sin θ cos θ (ρ2 sin 2τ − 2ρ cos 2τ − sin 2τ ),

Pϕ =4P0 sin θ
(
ρ2 sin2 τ − ρ sin 2τ + cos2 τ

)
, (B2)
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where

P0 = d2ω

8πr5
, ρ = ωr

c
, τ = ωt − kr − φ.

The angular momentum flux is determined by the off-diagonal elements of the stress tensor (A2)

σ12 = d2

4πr6
sin 2θ

(
cos2 τ − ρ sin 2τ − ρ2 cos 2τ + 1

2
ρ3 sin 2τ

)
,

σ13 = d2

4πr6
sin θ (sin 2τ + 2ρ cos 2τ − 2ρ2 sin 2τ + 2ρ3 sin2 τ ),

σ23 = − d2

4πr6
cos θ

(
1

2
sin 2τ + ρ cos 2τ − ρ2 sin 2τ

)
. (B3)
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