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Internal transformations and internal symmetries in linear photonic systems
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Lorentz reciprocity, energy conservation, and time-reversal symmetry are three important global constraints
of Maxwell’s equations. Unlike time-reversal symmetry, Lorentz reciprocity and energy conservation usually
are not considered as symmetries, i.e., they are not associated with operators. In this paper, we provide a
unified treatment of these three global constraints from a perspective of internal symmetry. We define operators
of transformations associated with each of these constraints, referred to as internal transformations. When
Maxwell’s equations are written as a linear system of equations, these internal transformations correspond to
the operations of transpose, conjugate transpose, and conjugate of the system matrix, respectively. We show
the three global constraints naturally follow from three fundamental identities of linear systems under the three
matrix operations. We discuss the properties of electromagnetic fields and scattering matrices associated with
these internal transformations. These internal transformations form the Klein four-group V4 = Z2 × Z2, and the
internal symmetry group of any photonic structure corresponds to one of the five subgroups of V4. Our paper
provides a theoretical foundation for further exploration of symmetries in photonic systems.
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I. INTRODUCTION

In physics, the investigation of symmetries yields some
of the most profound results. One prominent example is the
standard model, a gauge quantum field theory containing the
internal symmetries of U (1) × SU (2) × SU (3) [1]. Photonic
structures are physical systems designed to manipulate light,
which have great importance in scientific and engineering
applications. Photonic structures can possess many symme-
tries. A thorough investigation of these symmetries can lead
to a deeper understanding of photonic systems. For example,
rotational symmetry is crucial for understanding the modes in
optical fibers [2]; mirror symmetry was exploited in designing
photonic crystal add-drop filters [3]; parity-time symmetry
[4], i.e., the invariance under the combined operation of parity
and time reversal, has generated significant recent interest in
photonics [5–8].

Photonic systems are also subject to a set of global
constraints, including time-reversal symmetry, Lorentz reci-
procity, and energy conservation. Understanding these global
constraints has been very important for photonic design. Un-
like time-reversal symmetry, however, Lorentz reciprocity and
energy conservation usually are not considered as symmetries,
i.e., one does not associate them with operators that transform
Maxwell equations.

In this paper, we show that these three global constraints
on photonic structures, including time-reversal symmetry, en-
ergy conservation, and Lorentz reciprocity, can be studied in
a uniform way using the language of symmetry. We define
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operators of transformations associated with each of these
constraints. To distinguish transformations and symmetries
of different natures, we denote the transformations and sym-
metries associated with the global constraints as “internal”
and the usual geometrical transformations and symmetries as
“external”. We discuss the properties of electromagnetic fields
and scattering matrices associated with these internal trans-
formations. We also show that these internal transformations
form the Klein four-group V4 = Z2 × Z2, and the internal
symmetry group of any photonic structure corresponds to one
of the five subgroups of V4. Our paper provides a natural
group theory framework to study the global constraints on
photonic structures. It should be fruitful in future works to
further elucidate the symmetry properties of photonic systems
by incorporating both internal and external symmetries into a
unified group theory.

We note that the three global constraints and their condi-
tions on scattering matrices are known. One objective of our
paper is to rederive these fundamental results in a unified way
from the perspective of symmetry. Such a viewpoint eluci-
dates the origins of these constraints from the fundamental
identities of linear systems. It also leads to new results such as
the Klein four-group classification.

The rest of this paper is organized as follows. In Sec. II, we
provide the mathematical background. In Sec. III, we intro-
duce operators of transformations associated with reciprocity,
energy conservation, and time reversal, and discuss the im-
plications of these internal transformations on the properties
of electromagnetic fields. In Sec. IV, we discuss the implica-
tions of the internal transformations on scattering matrices. In
Sec. V, we discuss the group theory structure associated with
these internal transformations and symmetries. We conclude
in Sec. VI.
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II. MATHEMATICAL BACKGROUNDS

A. Fundamental identities of linear systems

We start by reviewing the relevant fundamental identities
of linear systems. Additional details can be found in Ref. [9].

Consider an arbitrary linear system of equations, referred
to as the “original” system:

Ax = b (1)

where A is a complex matrix, and x and b are complex column
vectors.

From the original system, one can define three related
systems: (1) the transposed system

AT x1 = b1, (2)

(2) the c-transposed system

A†x2 = b2, (3)

and (3) the conjugated system

A∗x3 = b3 (4)

where AT , A†, and A∗ are the transpose, conjugate transpose,
and conjugate of the matrix A. These operations are all invo-
lutory, i.e., (AT )T = (A†)† = (A∗)∗ = A, thus each operation
defines a mutual relation. A system of Eq. (1) is defined as
self-transpose, self-c-transpose, or self-conjugate if and only
if A is invariant under transpose, conjugate transpose, or con-
jugate, respectively.

We note the following fundamental relations between the
original system and each of the three related systems.

1. Original and transposed system

From Eqs. (1) and (2),

xT
1 Ax = xT

1 b, xT AT x1 = xT b1. (5)

Since a complex scalar is invariant under transpose,

xT
1 Ax = (

xT
1 Ax

)T = xT AT x1. (6)

Therefore,

xT
1 b − xT b1 = xT

1 Ax − xT AT x1 = 0. (7)

2. Original and c-transposed system

From Eqs. (1) and (3), similar to the procedure above, we
have

x†
2b − (x†b2)∗ = x†

2Ax − (x†A†x2)∗ = 0. (8)

3. Original and conjugated system

The complex conjugate of Eq. (1) yields

A∗x∗ = (Ax)∗ = b∗. (9)

When a system is self-transpose, self-c-transpose, or
self-conjugate, these identities Eqs. (7)–(9) reduce to the cor-
responding symmetry constraints of the system.

In the subsequent discussion, we will see that Eqs. (7), (8),
and (9) have direct connections to Lorentz reciprocity, energy
conservation, and time-reversal symmetry, respectively.

B. From linear systems to linear differential equations

Now we extend the above analysis of linear systems to
linear differential equations.

Let V be an open subset of Rn, let F = {u : V → Cm}
be the space of complex vector functions on V , and let A :
F → F be a linear differential operator. Consider a system of
complex linear partial differential equations (PDEs) [10]:

Au = f, (10)

where f ∈ F is given, and u ∈ F is unknown. To ensure a
unique solution, one usually provides boundary conditions,
denoted as B, on some part � of ∂V . (V, �,A, f,B) is referred
to as the original PDE problem.

A system of linear differential equations can be trans-
formed into a system of linear algebraic equations through
discretization such as by using finite-difference methods [11].
A detailed procedure can be found in Ref. [11]. Then V is
discretized into D, and the PDE together with the boundary
conditions are transformed into a system of linear equations:

Au = f . (11)

(D, A, f ) is referred to as the original algebraic problem.
Our analysis in Sec. II A applies to (D, A, f ). We de-

fine the three related systems (D, AT , f1), (D, A†, f2), and
(D, A∗, f3). Then we take the continuum limit and trans-
form them into three related PDE problems: the transposed
PDE problem (V, �1,AT , f1,B1), the c-transposed PDE prob-
lem (V, �2,A†, f2,B2), and the conjugated PDE problem
(V, �3,A∗, f3,B3). The obtained linear differential operators
AT , A†, and A∗ are defined as the transpose, the conjugate
transpose, and the conjugate of A. We establish the following
relations between these linear differential operators by taking
the continuum limit of Eqs. (7), (8), and (9):∫

V
[v TAu − uTAT v] dV = 0, (12)

∫
V

[v†Au − (u†A†v)∗] dV = 0, (13)

A∗u∗ = (Au)∗, (14)

which hold for all u that solves the original PDE problem
and v that solves the related PDE problem. In particular, u
and v must satisfy the respective partial differential equations
and the corresponding boundary conditions; these boundary
conditions may be different for the two problems.

While this procedure is cumbersome, it in principle yields
AT , A†, and A∗ of any given A [9]. In practice, we have a
much simpler method. Motivated by the discussions above,
we use a set of relations related to Eqs. (12)–(14) as the alter-
native definitions of AT , A†, and A∗. Since the definition of a
differential operator is independent of boundary conditions, it
is useful to reformulate Eqs. (12)–(14) as∫

V
[v TAu − uTAT v] dV = boundary terms, (15)

∫
V

[v†Au − (u†A†v)∗] dV = boundary terms, (16)

A∗u∗ = (Au)∗, (17)
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which holds for all u and v that satisfy the respective
partial differential equations without specific boundary con-
ditions. Here “boundary term” means the integration result
depends solely on the values of u and v—and some of their
derivatives—taken on the boundary ∂V . Equations (15) and
(16) are called the “extended Green’s identity” [9].

One can take Eqs. (15), (16), and (17) as alternative defi-
nitions of AT , A†, and A∗, respectively. It can be proved that
such definitions are equivalent to the original definitions by
discretization [9]. A linear differential operator A is defined
to be self-transpose, self-c-transpose, and self-conjugate if
A = AT , A = A†, and A = A∗, respectively.

Here we briefly remark on the terminology. In the study
of linear differential operators, one usually uses the term
“adjoint” to refer to the transpose for a real operator and the
c transpose for a complex operator. Our discussion involves
both the transpose and c transpose of a complex operator. To
avoid confusion, we adopt the more specific terms “transpose”
and “c transpose” instead of “adjoint.”

C. Symmetry properties of the curl operator

In this subsection, we focus on a special linear differential
operator, the curl operator ∇×. The curl operator plays a
central role in Maxwell’s equations. It is a linear differential
operator that acts on the space of three-dimensional complex
vector fields over R3. Below, we show that it is self-transpose,
self-c-transpose, and self-conjugate.

1. Self-transpose

From the basic vector formulas, for two complex vector
fields a(r) and b(r),

aT ∇ × b − bT ∇ × a ≡ a · (∇ × b) − b · (∇ × a)

= ∇ · (b × a). (18)

Integrating Eq. (18) over an arbitrary volume V ∈ R3 enclosed
by a surface S, we get∫

V
[aT ∇ × b − bT ∇ × a] dV =

∮
S
(b × a) · dS. (19)

Thus ∇× is self-transpose by the definition in Eq. (15).

2. Self-c-transpose

From the basic vector formulas,

a†∇ × b − (b†∇ × a)∗ ≡ a∗ · (∇ × b) − b · (∇ × a∗)

= ∇ · (b × a∗). (20)

Integrating Eq. (20) over an arbitrary volume V ∈ R3 en-
closed by a surface S, we get∫

V
[a†∇ × b − (b†∇ × a)∗] dV =

∮
S
(b × a∗) · dS. (21)

Thus ∇× is self-c-transpose by the definition in Eq. (16).

3. Self-conjugate

For a complex vector a,

(∇ × a)∗ = ∇ × (a∗). (22)

Thus ∇× is self-conjugate by the definition in Eq. (17).

III. FUNDAMENTAL INTERNAL TRANSFORMATIONS
AND SYMMETRIES

A. Maxwell’s equations and three fundamental internal
transformations

Now we apply the general mathematical theory in
Sec. II to Maxwell’s equations. This investigation natu-
rally yields three fundamental internal transformations and
symmetries.

For linear time-invariant systems, Maxwell’s equations are

∇ × E(ω, r) = iωB(ω, r),

∇ × H (ω, r) = −iωD(ω, r) + J(ω, r). (23)

Maxwell’s equations must be complemented by constitutive
relations, which defines a linear photonic system. In this pa-
per, we consider a general linear photonic system made of any
linear local inhomogeneous dispersive bianisotropic medium
described by a 6 × 6 constitutive matrix C(ω, r):(

D(ω, r)
B(ω, r)

)
= C(ω, r)

(
E(ω, r)
H (ω, r)

)

=
(

ε(ω, r) ζ (ω, r)
η(ω, r) μ(ω, r)

)(
E(ω, r)
H (ω, r)

)
, (24)

where ε, μ, ζ , and η are 3 × 3 matrices of electric per-
mittivity, magnetic permeability, electric-magnetic coupling
strength, and magnetoelectric coupling strength, respectively.
We refer to C(ω, r) as the original physical system.

Substituting Eq. (24) in Eq. (23), we obtain

M� = a (25)

where

M ≡
( −ωε iωζ + ∇×

−iωη + ∇× −ωμ

)
, � ≡

(
E
iH

)
,

a ≡
(

iJ
0

)
. (26)

We have omitted the arguments ω and r for brevity. We choose
(E, iH )T instead of (E, H )T as the independent variables;
such a choice is important to establish the connection of the
three mathematical identities of Eqs. (7), (8), and (9), to the
three global constraints for Maxwell’s equations.

Now we can define the internal transformations and sym-
metries of linear photonic systems. To motivate our definition,
we first consider a more familiar type of external symmetry:
rotational symmetry. We start from an original system as de-
scribed by C(ω, r) in Eq. (24). Suppose we apply a rotation to
the system; the transformed system is then described by [12]

C̃(ω, r) =
(

R ε(ω, R−1r) R−1 R ζ (ω, R−1r) R−1

R η(ω, R−1r) R−1 R μ(ω, R−1r) R−1

)
, (27)

where R is a 3 × 3 orthogonal real matrix that describes the ro-
tation in real space. We claim that the rotation R is a symmetry
of the system if C̃(ω, r) = C(ω, r). The external symmetries,
however, are not the only symmetries available for pho-
tonic structures. Below we discuss the transformations and
symmetries associated with reciprocity, energy conservation,
and time reversal. We show that the relevant transformations
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correspond to the transpose, c transpose, and conjugate oper-
ations, respectively.

1. Transposed system

Starting from the original system as described by Eq. (25),
we consider its transposed system:

MT �1 = a1 (28)

where

MT ≡
( −ωεT −iωηT + ∇×

iωζ T + ∇× −ωμT

)
, �1 ≡

(
E1
iH1

)
,

a1 ≡
(

iJ1
0

)
. (29)

Hence the transposed system is described by a constitutive
matrix:

C1(ω, r) =
(

εT −ηT

−ζ T μT

)
. (30)

We define the transformation C(ω, r) → C1(ω, r) as the trans-
formation of reciprocity. A self-transpose system satisfying
C(ω, r) = C1(ω, r) is called reciprocal.

2. c-transposed system

Starting from the original system as described by Eq. (25),
we consider its c-transposed system:

M†�2 = a2 (31)

where

M† ≡
( −ωε† iωη† + ∇×

−iωζ † + ∇× −ωμ†

)
, �2 ≡

(
E2
iH2

)
,

a2 ≡
(

iJ2
0

)
. (32)

Hence the c-transposed system is described by a constitutive
matrix

C2(ω, r) =
(

ε† η†

ζ † μ†

)
. (33)

We define the transformation C(ω, r) → C2(ω, r) as the trans-
formation of energy conservation. A self-c-transpose system
satisfying C(ω, r) = C2(ω, r) is called energy conserving or
lossless.

3. Conjugated system

Starting from the original system as described by Eq. (25),
we consider its conjugated system:

M∗�3 = a3 (34)

where

M∗ ≡
( −ωε∗ −iωζ ∗ + ∇×

iωη∗ + ∇× −ωμ∗

)
, �3 ≡

(
E3
iH3

)
,

a3 =
(

iJ3
0

)
. (35)

Hence the conjugated system is described by a constitutive
matrix:

C3(ω, r) =
(

ε∗ −ζ ∗
−η∗ μ∗

)
. (36)

We define the transformation C(ω, r) → C3(ω, r) as the trans-
formation of time reversal. A self-conjugate system satisfying
C(ω, r) = C3(ω, r) is called time-reversal symmetric.

Our definitions of reciprocal, lossless, and time-reversal
symmetric systems are identical to the standard definitions
[13]. Our treatment, however, allows us to discuss these gen-
eral constraints in terms of symmetry. A system is reciprocal,
for example, if and only if the transformation of reciprocity
is a symmetry of the system. We note that while reciprocity
is well known, the discussion of reciprocity as a symmetry is
not widely recognized.

B. Fundamental relations under fundamental internal
transformations

Now we derive the three fundamental constraints on linear
photonic systems as imposed by the three fundamental trans-
formations discussed in the previous section. Our derivation
directly uses the fundamental identities [Eqs. (15), (16), and
(17)] as discussed in Sec. II A. The constraints that we derive
are known in the literature. However, the connection of these
constraints to the fundamental identities of linear systems has
not been emphasized. Moreover, our derivation here provides
a unified view of these constraints from the perspective of
internal transformation and internal symmetry.

1. Original and transposed systems

�T
1 M� = (

ET
1 iHT

1

)( −ωε iωζ + ∇×
−iωη + ∇× −ωμ

)(
E
iH

)
,

(37)

�T MT �1

= (ET iHT )

( −ωεT −iωηT + ∇×
iωζ T + ∇× −ωμT

)(
E1
iH1

)
.

(38)

Subtracting Eq. (38) from Eq. (37), we obtain

�T
1 M� − �T MT �1 = i

(
ET

1 ∇ × H + HT
1 ∇ × E − ET ∇

× H1 − HT ∇ × E1
)

= i∇ · (E × H1 − E1 × H ) (39)

where all the terms without ∇× have been canceled.
On the other hand, from Eqs. (25) and (28),

�T
1 M� − �T MT �1 = �T

1 a − �T a1 = i(E1 · J − E · J1).
(40)

Combining Eqs. (39) and (40), we obtain

∇ · (E × H1 − E1 × H ) = E1 · J − E · J1. (41)
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We integrate Eq. (41) over an arbitrary volume V enclosed by
a surface S to get∮

S
(E × H1 − E1 × H ) · dS =

∫
V

(E1 · J − E · J1) dV.

(42)
This is the well-known generalized reciprocity theorem
[13,14]. It relates a pair of sources and fields in two mutually

transposed systems. When a system is self-transpose (recipro-
cal), Eq. (42) reduces to the conventional Lorentz reciprocity
theorem that relates a pair of sources and responses in that
single system [15,16].

2. Original and c-transposed systems

�
†
2M� = (E†

2 − iH†
2)

( −ωε iωζ + ∇×
−iωη + ∇× −ωμ

)(
E
iH

)
, (43)

�†M†�2 = (E† − iH†)

( −ωε† iωη† + ∇×
−iωζ † + ∇× −ωμ†

)(
E2
iH2

)
. (44)

Subtracting the conjugate of Eq. (44) from Eq. (43), we obtain

�
†
2M� − (�†M†�2)∗ = i(E∗

2 · ∇ × H − H∗
2 · ∇ × E + E · ∇ × H∗

2 − H · ∇ × E∗
2 )

= −i∇ · (E × H∗
2 + E∗

2 × H ). (45)

On the other hand, from Eqs. (25) and (31),

�
†
2M� − (�†M†�2)∗ = �

†
2a − (�†a2)∗ = i(E∗

2 · J + E · J∗
2 ). (46)

Combining Eqs. (45) and (46), we obtain

−∇ · (E × H∗
2 + E∗

2 × H ) = E∗
2 · J + E · J∗

2. (47)

We integrate Eq. (47) over an arbitrary volume V enclosed by
a surface S to get

−
∮

S
(E × H∗

2 + E∗
2 × H ) · dS =

∫
V

(E∗
2 · J + E · J∗

2 ) dV.

(48)
This is the less-known modified mutual energy theorem
[17]. It relates a pair of sources and fields in two mutu-
ally c-transposed systems. When a system is self-c-transpose
(lossless), Eq. (48) reduces to the mutual energy theorem that
relates a pair of sources and responses in that single system
[18]. If one further chooses the pair of sources and responses
to be identical (J2 = J, E2 = E, H2 = H), the mutual energy
theorem reduces to the conventional Poynting theorem for
lossless systems [19,20].

3. Original and conjugated systems

The complex conjugate of Eq. (25) yields

M∗�∗ = a∗. (49)

The complex conjugate of Eq. (49) returns Eq. (25). There-
fore,

M� = a ⇐⇒ M∗�∗ = a∗, (50)

where

�∗ =
(

E∗

−iH∗

)
, a∗ =

(−iJ∗

0

)
. (51)

This is the generalized time-reversal theorem. It states that
(E, H, J) satisfy Maxwell’s equations for an original system
if and only if (E∗,−H∗,−J∗) satisfy Maxwell’s equations
for its conjugated system. When the system is self-conjugate
(time-reversal symmetric), Eq. (50) reduces to the usual con-
straint from time-reversal symmetry [21,22].

In summary, the general relations between mutually trans-
posed, c-transposed, and conjugated systems naturally yield
the generalized theorems of reciprocity, energy conservation,
and time-reversal symmetry, respectively.

IV. PHYSICAL IMPLICATIONS ON SCATTERING
MATRICES

So far, we have introduced three fundamental internal
transformations, defined three related systems, and derived
three fundamental relations of the electromagnetic fields in the
original and the related systems. These fundamental results
have direct physical implications. In this section, we discuss
their implications on scattering matrices.

A. Definition of scattering matrices

First, we introduce the definition of scattering matrices.
Additional details can be found in Refs. [23,24]. As shown
in Fig. 1, we consider a general linear time-invariant sys-
tem characterized by C(ω, r) within a volume V enclosed
by a surface ∂V . We assume there are no sources within V :
J = 0. The system is connected to its exterior by Q physical
ports through ∂V . The physical ports are waveguides made of
linear time-invariant media characterized by C(m)(ω, r), m =
1, . . . , Q, which are assumed to be reciprocal, lossless, and
time-reversal symmetric, homogeneous along the propagation
direction, and reflection symmetric under the mirror operation
that reverses the propagation direction. Each physical port
supports one or multiple guided modes, i.e., eigensolutions
of Maxwell’s equations. Counting all the Q ports, there are P
incoming and P outgoing modes in total. We assume the field
energy is exclusively carried by these guided modes outside
∂V . The surface ∂V is chosen such that all the physical ports
are aligned normal to ∂V and different physical ports and
their guided modes are assumed to be essentially nonoverlap-
ping. For clarity, we use the indices m and n to enumerate the
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FIG. 1. A general optical circuit. It consists of a linear time-
invariant system characterized by C(ω, r) within a volume V
enclosed by a surface ∂V , which is connected to its exterior by Q
physical ports (Q = 3 is shown). Each physical port is a waveguide
consisting of a linear time-invariant medium that is homogeneous
along the propagation direction and is reciprocal, lossless, time-
reversal symmetric, and reflection symmetric under the mirror
operation that reverses the propagation direction. Each port may sup-
port multiple modes, as labeled by μ. In total, there are P incoming
and P outgoing modes in all the physical ports.

physical ports, μ and ν to enumerate the modes in a single
physical port, and i and j to enumerate all the P modes. We
use the superscript t to denote the transverse components of
a vector field tangential to ∂V . In each physical port, we
specify a Cartesian coordinate system such that rt ≡ (x, y) are
tangential to ∂V , and z is along the outgoing direction with
z = 0 at ∂V .

Under these assumptions, one can construct a set of or-
thonormal bases {ei, hi}, normalized by unit energy flux.
These basis modes can be chosen such that their transverse
fields {et

i (r
t ), ht

i (r
t )} are purely real. This choice has been

used in Ref. [24]. A proof of this choice, for the waveguides
satisfying the constraints as outlined above, can be found in
Ref. [25]. These modes satisfy the orthonormal conditions:

∮
∂V

dS · et
i × ht

j =
∮

∂V
dS · et

j × ht
i = −2 δi j . (52)

Then the transverse fields of light in the physical ports outside
∂V can be expressed as

Et (rt , z) =
P∑

i=1

(aie
−iβiz + bie

iβiz )et
i (r

t ),

H t (rt , z) =
P∑

i=1

(aie
−iβiz − bie

iβiz )ht
i (r

t ). (53)

By Eq. (53), the incoming and outgoing waves can be repre-
sented by complex vectors:

a = [a1, . . . , aP]T , b = [b1, . . . , bP]T , (54)

where ai and bi are the complex coefficients of the ith incom-
ing and outgoing modes, respectively, as determined by

ai = 1

4

∮
∂V

dS · [
ht

i × Et (z = 0) − et
i × H t (z = 0)

]
, (55)

bi = 1

4

∮
∂V

dS · [
ht

i × Et (z = 0) + et
i × H t (z = 0)

]
. (56)

Since the system is linear time invariant and source free,
the outgoing waves are completely determined by the incom-
ing waves and by the system properties as characterized by
C(ω, r). Hence, there is a linear relation between a and b,
which can be written in matrix form as

b = Sa. (57)

S is called a scattering matrix. S has a size of P × P, and its
element Si j gives the transition amplitude for photons from
jth basis mode to ith basis mode.

B. Constraints on scattering matrices under fundamental
internal transformations

We have defined the scattering matrix S for an original
system characterized by C(ω, r). From the original system,
we can define the three related systems characterized by
Ck (ω, r), k = 1, 2, 3, as defined by Eqs. (30), (33), and (36),
respectively, within the same volume V enclosed by the same
surface ∂V . The ports of these related systems are identical to
those of the original system. Thus, we can choose the same
orthonormal basis for light in the physical ports, and define
the scattering matrices for the three related systems:

bk = Skak, k = 1, 2, 3 (58)

where ak, bk, and Sk are the incoming amplitudes, outgoing
amplitudes, and scattering matrices of the kth related systems,
respectively.

A natural question is, what are the relations between S
and Sk?

We answer this question using the fundamental relations in
Sec. III B.

1. Original and transposed systems

Since there are no sources within V , Eq. (42) becomes∮
∂V

(E × H1 − E1 × H ) · dS = 0. (59)

We express the fields at the surface in terms of the incoming
and outgoing amplitudes using the orthonormal basis of the
physical ports, then perform the integration over the cross
sections of each port. Using mode orthonormality [Eq. (52)],
Eq. (59) becomes

P∑
i=1

[(ai + bi )(a1,i − b1,i ) − (a1,i + b1,i )(ai − bi )] = 0, (60)

which can be simplified as

P∑
i=1

(bia1,i − aib1,i ) = bT a1 − aT b1 = 0. (61)
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Substituting Eqs. (57) and (58) into Eq. (61), we obtain

aT (ST − S1)a1 = 0. (62)

Since Eq. (62) holds for any a and a1, it requires

S1 = ST . (63)

This is the relation between S1 and S.

2. Original and c-transposed systems

Since there are no sources within V , Eq. (48) becomes
∮

∂V
(E × H∗

2 + E∗
2 × H ) · dS = 0. (64)

After the same expansion and integration procedure, Eq. (64)
becomes

P∑
i=1

[(ai + bi )(a2,i − b2,i )
∗ + (a2,i + b2,i )

∗(ai − bi )] = 0,

(65)
which can be simplified as

P∑
i=1

(a∗
2,iai − b∗

2,ibi ) = a†
2a − b†

2b = 0. (66)

Substituting Eqs. (57) and (58) into Eq. (66), we obtain

a†
2(I − S†

2S)a = 0. (67)

Since Eq. (67) holds for any a and a2, it requires

S2 = (S†)−1. (68)

This is the relation between S2 and S.

3. Original and conjugated systems

Since there are no sources within V , Eq. (50) becomes

M� = 0 ⇐⇒ M∗�∗ = 0, (69)

which states that if (E, H ) is a solution of an original system
then (E3, H3) = (E∗,−H∗) is a solution of the conjugated
system. In particular, this holds for the fields at the surface ∂V .
We express the fields at the surface in terms of the incoming
and outgoing amplitudes using the orthonormal basis, and
then the above condition becomes

a3,i + b3,i = (ai + bi )
∗, (70)

a3,i − b3,i = −(ai − bi )
∗, (71)

which can be simplified as

a3,i = b∗
i , b3,i = a∗

i . (72)

In vector form,

a3 = b∗, b3 = a∗. (73)

Substituting Eq. (73) into Eq. (58), we obtain

a∗ = S3b∗. (74)

Substituting Eq. (57) into Eq. (74), we get

a∗ = S3S∗a∗. (75)

Since Eq. (75) holds for any a, it requires

S3 = (S∗)−1. (76)

This is the relation between S3 and S.
In summary, the transformations associated with reci-

procity, energy conservation, and time reversal naturally yield
the relations of the scattering matrices of mutually transposed,
c-transposed, and conjugated systems, respectively. When
the system is invariant under any of these internal transfor-
mations, these general relations become the corresponding
symmetry constraints, as discussed in standard textbooks such
as Ref. [23].

V. GROUP THEORY OF FUNDAMENTAL INTERNAL
SYMMETRIES

So far, we discuss three fundamental internal transforma-
tions of reciprocity, energy conservation, and time reversal,
which correspond to the transpose, c transpose, and conjugate
of the matrix differential operator M, respectively. We define
three fundamental internal symmetries of reciprocity, energy
conservation, and time reversal if the system is invariant under
the corresponding internal transformations.

We now show that the identity and the three internal trans-
formations form the Klein four-group V4. Consider the set
of transformations G = {1, 1T , 1†, 1∗}, which, respectively,
denote the transformation of identity C(ω, r) → C(ω, r),
of reciprocity C(ω, r) → C1(ω, r), of energy conservation
C(ω, r) → C2(ω, r), and of time reversal C(ω, r) → C3(ω, r).
We emphasize that these operators act on the constitutive
matrix field C(ω, r); they should be distinguished from op-
erators in quantum mechanics, which act on Hilbert space
of states. In our notation, 1 indicates that these purely in-
ternal transformations involve no external transformations;
T, †, and ∗ highlight the fact that the transformations of reci-
procity, energy conservation, and time reversal correspond to
the mathematical operations of transpose, c transpose, and
conjugate, respectively.

One can easily check that the set G forms a group under
the usual composition of transformations ◦. For example,
1T ◦ 1† = 1∗. Moreover, the elements of 1T , 1†, and 1∗ are of
order 2, e.g., (1T )2 = 1, meaning that they are all involutory.
Therefore, G is the Klein four-group, G = V4 = Z2 × Z2.
This group is Abelian and can be generated by any of the
two elements of order 2. The group V4 provides a unified
view of the relations among the three fundamental internal
transformations and symmetries.

We visualize the V4 group in two ways. Figure 2(a) shows
its multiplication table. Figure 2(b) shows its Cayley diagram.
Recall that a Cayley diagram is a directed graph [26]. Each
node of the graph represents one element of the group, and
each type of directed edge represents a generator. The direc-
tion of each edge is indicated by an arrowhead, which can
be omitted if the edge is bidirected. In Fig. 2(b), there are
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FIG. 2. (a) Multiplication table of V4 = Z2 × Z2. (b) Cayley dia-
gram of V4 = Z2 × Z2. The green, blue, and yellow edges represent
the action of 1T , 1†, and 1∗, respectively. (In grayscale, the green,
blue, and yellow edges appear gray, dark gray, and light gray, respec-
tively.) The edges are undirected since each action is involutory.

four nodes, each representing one of the four elements of
the V4 group; they are colored red for 1, green for 1T , blue
for 1†, and yellow for 1∗. [These colors agree with those in
Fig. 2(a).] The colored edges represent multiplying by the
corresponding elements. For instance, the two green edges
show that multiplying by 1T maps 1 to 1T and vice versa, and
1† to 1∗ and vice versa.

The main results of our paper in Secs. II–IV can be suc-
cinctly summarized by annotating the Cayley diagram of V4,
as shown in Fig. 3. In this annotated Cayley diagram, the
red, green, blue, and yellow nodes denote the original, trans-
posed, c-transposed, and conjugated systems, respectively. In
each node, we denote the matrix differential operator with
M, constitutive matrix with C, and scattering matrix with S.
The colored edges represent the transformations that connect
two adjacent systems. The green, blue, and yellow edges
denote 1T , 1†, and 1∗, respectively. This diagram provides a
unified view of the three fundamental symmetries: Lorentz
reciprocity, energy conservation, and time reversal.

Describing the internal symmetry in terms of V4 allows
us to classify any photonic system in terms of its internal

FIG. 3. Summary of the main results. The red, green, blue,
and yellow nodes denote the original, transposed, c-transposed, and
conjugated systems, respectively. The colored edges represent the
transformations that connect two adjacent systems. The green, blue,
and yellow edges denote 1T , 1†, and 1∗, respectively. (In grayscale,
the green, blue, and yellow edges appear gray, dark gray, and light
gray, respectively.)

symmetry. Any linear photonic system belongs to one and
only one of the five subgroups of V4.

(0) H0 = {1}: no symmetry.
(1) H1 = {1, 1T }: reciprocal only.
(2) H2 = {1, 1†}: energy conserving (lossless) only.
(3) H3 = {1, 1∗}: time-reversal symmetric only.
(4) H4 = V4: reciprocal, energy-conserving, and time-

reversal symmetric.
Here we provide examples of each class. H0 includes lossy

gyrotropic media such as yttrium iron garnets [27] or magnetic
Weyl semimetals [28–30]. H1 includes lossy nongyrotropic
media. H2 includes lossless gyrotropic media. A proposal of
metamaterials belonging to H3 can be found in Ref. [31]. H4

includes vacuum.

VI. FINAL REMARKS AND CONCLUSION

In conclusion, we have provided a unified theory of the
three global constraints—Lorentz reciprocity, energy conser-
vation, and time-reversal symmetry—from the perspective of
internal symmetry. We define the operators of transforma-
tions associated with each of these constraints, referred to as
internal transformations. These internal transformations cor-
respond to the mathematical operations of matrix transpose,
conjugate transpose, and conjugate, respectively. We point out
that the three global constraints naturally follow from three
fundamental identities of linear systems under the three matrix
operations. We discuss the properties of electromagnetic fields
and scattering matrices associated with these internal transfor-
mations. We show that these internal transformations form the
Klein four-group V4 = Z2 × Z2, and the internal symmetry
group of any photonic structure corresponds to one of the five
subgroups of V4.

Our paper provides a theoretical foundation for further
exploration of symmetries in photonic systems. Our group
theory can be readily extended to include other transfor-
mations and symmetries. In later works, we will use this
theoretical framework to study additional internal transfor-
mations and symmetries. We will also study external and
compound transformations and symmetries. We will summa-
rize all these results into a larger group theory, where V4 is
only a subgroup. These results can be used to systematically
study all symmetry properties of photonic structures.

Symmetries impose direct constraints on many physical
properties of photonic systems. Classification of photonic
systems by symmetries allows us to specify the fundamental
constraints for each class systematically. Such an investiga-
tion has led to some fundamental results such as the adjoint
Kirchhoff’s law for all thermal emitters [32], and symmetry
constraints on many-body radiative heat transfer [33]. More
investigations are expected in the future.
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