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Probing the rotational spin-Hall effect in a structured Gaussian beam
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Spin-to-orbit conversion of light is a dynamical optical phenomenon in nonparaxial fields leading to various
manifestations of the spin and orbital Hall effect. However, the effects of the spin-orbit interaction (SOI) have
not been explored extensively for structured Gaussian beams carrying no intrinsic orbital angular momentum.
Indeed, the SOI effects on such structured beams can be directly visualized due to azimuthal rotation of their
transverse intensity profiles, a phenomenon we call the rotational spin-Hall effect. In this paper we show that
for an input circularly polarized (right or left) Hermite-Gaussian (HG10) mode, the SOI leads to a significant
azimuthal rotation of the transverse intensity distribution of both the orthogonal circularly polarized (left or
right) component and the longitudinal field intensity with respect to the input intensity profile. We validate our
theoretical and numerically simulated results experimentally by tightly focusing a circularly polarized HG10

beam in an optical tweezers configuration and projecting out the opposite circular polarization component and
the transverse distribution of the longitudinal field intensity at the output of the tweezers. We also measure the
rotational shift as a function of the refractive index contrast in the path of the tightly focused light and in general
observe a proportional increase. The enhanced spin-orbit conversion in these cases may lead to interesting
applications in inducing complex dynamics in optically trapped birefringent particles using structured Gaussian
beams with no intrinsic orbital angular momentum.
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I. INTRODUCTION

Spin angular momentum (SAM) and orbital angular mo-
mentum (OAM) are nearly independent quantities when
light beams propagate paraxially in vacuum or through
isotropic and homogeneous media [1–3]. However, prop-
agation through inhomogeneous or anisotropic media [4],
scattering processes [5], and tight focusing in isotropic in-
homogeneous media lead to interactions between SAM and
OAM, giving rise to tangible effects in the mesoscopic scale
with applications in nanosensing [5], or particle manipulation
[6]. In the case of tight focusing in optical tweezers, even a
fundamental Gaussian beam evolves nonparaxially due to the
presence of a spin-orbit and an orbit-orbit interaction term
in the expression of total angular momentum so that J =
S(σ ) + L1(l ) + L2(σ + l ) [5,7–10], where L2 is the spin-orbit
interaction (SOI) term. Now both the spin-orbit interaction
term and the orbit-orbit interaction terms are enhanced as a
result of the generation of a large longitudinal component of
the electric field due to tight focusing and further accentu-
ated by inserting a refractive index contrast in the path of
the light beam that increases the geometric phase gradient
of the focused light. Another interesting manifestation of the
interplay between spin and orbital angular momenta arises
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in the spin and orbital Hall effect, which is essentially the
transverse spatial separation of opposite angular momentum
components induced by the spin-orbit and orbit-orbit inter-
actions, preserving the angular momentum conservation law.
This angular-momentum-dependent separation may be repre-
sented in terms of spin-spin separation called the spin-Hall
effect [8,11–16], orbit-orbit separation called the orbital Hall
effect [17–19], and spin-orbit separation called the spin-orbit
Hall effect [20], where the transverse spatial separation of
the respective opposite spin and/or orbital angular momentum
components is observed.

The spin and orbital Hall effects have been extensively
studied in both fundamental Gaussian beams [6] and orbital
angular momentum carrying Laguerre-Gaussian (LG) beams
[1,21], with interesting effects in spin-orbit and orbit-orbit
conversions in tightly focused LG beams leading to intriguing
orbital motion of single optically trapped birefringent parti-
cles [22]. However, the effects of the spin-orbit interaction
in structured Gaussian beams carrying no intrinsic orbital
angular momentum [typically called Hermite-Gaussian (HG)
beams] have largely been ignored in the literature. A study of
such beams, however, merits attention, since any HG mode
may be written as a superposition of two LG modes having
opposite topological charge. This may lead to very interesting
effects of the spin-orbit interaction, especially in the case of
input spin-polarized HG beams. In addition, the breaking of
azimuthal symmetry in the intensity profile distribution of
such beams may lead to direct visualization of SOI effects in
the beam structure itself.
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In this paper we study this problem in detail and demon-
strate clear manifestations of azimuthal rotation of the
transverse intensity profile of a circularly polarized HG10

beam after it is tightly focused using optical tweezers. We de-
scribe this as a rotational spin-Hall effect. Interestingly, while
rotation of the intensity profile due to spin-orbit conversion
has been experimentally observed in speckle patterns emanat-
ing from multimode optical fibers (the optical Magnus effect)
[23,24], it has not been observed for light beams, since most
Gaussian beams (both fundamental and angular momentum
carrying) possess circular symmetry in their transverse pro-
files, rendering the observation of such rotations impossible.
The HGnm modes, by virtue of their rectangular symmetry, ac-
tually provide excellent avenues for observing such rotations.
Thus, we observe that for an input right-circularly polarized
(RCP) or left-circularly polarized (LCP) HG10 mode, tight
focusing using a high numerical aperture (NA) objective lens
in an optical tweezers setup leads to the generation of the
opposite spin component that is also coupled with a cor-
responding orbital angular momentum mode, with the final
effect being the rotation of the transverse intensity profile of
the output. For the same reason, the transverse distribution of
the longitudinal field component generated due to nonparaxial

propagation of the light [25–29] also displays a rotation. The
magnitude of rotation for the respective components is deter-
mined by the diffraction integrals (or Debye-Wolf integrals)
I11, I12, and I14 for transverse field components and I10 and I13

for longitudinal field components, which provide the extent
of the spin-to-orbit conversion of angular momentum [5,30].
We also study the dependence of the rotation on the refractive
index (RI) contrast in the path of the beam after it is tightly
focused and observe that the rotational spin-Hall effect in
general increases monotonically with increasing RI contrast.
We verify this experimentally by projecting out the oppo-
site spin-polarized transverse intensity component from the
input and the longitudinal component in an optical tweezers
configuration.

II. THEORY

We employ the Debye-Wolf theory or angular spectrum
method [30,31] to determine the electric field at the output
of the high NA objective lens for an input spin-polarized HG
beam, also considering RI stratification of the media through
which the beam travels after focusing [6,30–33]. The expres-
sion of the output electric field from the input electric field
may be written as

⎡
⎣Eo

x
Eo

y
Eo

z

⎤
⎦ =

⎡
⎣ iI11 cos ψ + iI14 cos 3ψ −iI12 sin ψ + iI14 sin 3ψ 2I10 − 2I13 cos 2ψ

−iI12 sin ψ + iI14 sin 3ψ i(I11 + 2I12) cos ψ − iI14 cos 3ψ −2I13 sin 2ψ

−2I10 + 2I13 cos 2ψ 2I13 sin 2ψ i(I11 − I12) cos ψ

⎤
⎦ ×

⎡
⎣Ei

x
E i

y
E i

z

⎤
⎦. (1)

Here �Eo and �Ei denote the output and input electric fields
related through the 3 × 3 Jones matrix, respectively; I10,
I11, I12, I14, and I13 are the Debye-Wolf integrals; and ψ

is the azimuthal angle in the cylindrical (or spherical) co-
ordinate system. Now, given that the Jones vectors for x-
and y-polarized input light are Ei

x = [1 0 0]
�

and Ei
y =

[0 1 0]
�

, from Eq. (1) the output electric field for HG10

input x-polarized light is given by

⎡
⎣Eo

x
Eo

y
Eo

z

⎤
⎦

x-pol

=
⎡
⎣ iI11 cos ψ + iI14 cos 3ψ

−iI12 sin ψ + iI14 sin 3ψ

−2I10 + 2I13 cos 2ψ

⎤
⎦. (2)

It is important to note that a circularly polarized HG10

beam does not carry OAM, but does possess an SAM
of magnitude ±h̄, so the total angular momentum equals
the SAM. Now, noting that the Jones vectors for input
RCP and LCP light are ERCP,LCP = [1 ±i 0]

�
, we

use Eq. (1) to determine the output electric field in
both cases as [E0

x E0
y E0

z ]�RCP,LCP = [a b c]
�

, where
a = iI11 cos ψ ± I12 sin ψ + I14(i cos 3ψ ∓ sin 3ψ ), b =
−iI12 sin ψ + iI14 sin 3ψ ∓ (I11 + 2I12) cos ψ ± I14 cos 3ψ ,
and c = −2I0 + 2I13 cos 2ψ ± 2iI13 sin 2ψ .

We then decompose the above output electric fields for
input RCP or LCP light in terms of the SAM and OAM
components (note that the effects of SOI cause all helicity
components to be present along with the corresponding OAM

modes in the output electric field)
⎡
⎣E0

x
E0

y

E0
z

⎤
⎦

RCP,LCP

= i

2
(I11e±iψ + I11e∓iψ + I12e±iψ + I12e∓iψ )

×
⎡
⎣ 1

±i
0

⎤
⎦ + i(I14e±3iψ − I12e±iψ )

⎡
⎣ 1

∓i
0

⎤
⎦

+ (2I13e±2iψ − 2I10)

⎡
⎣0

0
1

⎤
⎦. (3)

It is clear that the first four terms are associated with the
same helicity as the input light, coupled correspondingly with
appropriate positive and negative OAMs, respectively. The
fifth and sixth terms appear purely due to SOI and thus de-
note opposite helicity with l = ±h̄ and l = ±3h̄, respectively,
satisfying the conservation of total angular momentum. The
longitudinal component of the field with l = ±2h̄ and l = 0
appears in the last two terms. Understandably, the effects of
SOI would be extracted by projecting out the field components
having the opposite helicity to the input field, as well as the
longitudinal component. The intensity corresponding to these
terms is obtained from Eq. (3) as ISOI(ρ,ψ ) = Itrans + Ilong,
where the transverse intensity component is given by

Itrans = 2(|I12|2 + |I14|2) − 2(I12I∗
14 + I14I∗

12) cos 2ψ

±2i(I12I∗
14 − I14I∗

12) sin 2ψ (4)
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FIG. 1. (a) Schematic of the stratified medium used in our nu-
merical simulation. (b) Simulation of the rotation of ISOI at z = 2 μm
away the focus of the high NA objective (trap focus) for an input
HG10 beam mode for (i)–(iii) matched RI and (iv)–(vi) mismatched
RI 1.814 for (i) and (iv) input x-polarized light, (ii) and (v) input RCP,
(iii) and (vi) input LCP light, (vii) rotation due to transverse compo-
nents for RI 1.814, and (viii) rotation due to transverse distribution
of longitudinal intensity profile for input RCP using RI 1.814.

and the longitudinal component is given by

Ilong = 4(|I10|2 + |I13|2) − 4(I10I∗
13 + I13I∗

10) cos 2ψ

± 4i(I10I∗
13 − I13I∗

10) sin 2ψ. (5)

Now, for an input RCP (LCP) HG10 mode, both Itrans and
Ilong display an azimuthal rotation about the input beam axis
in a clockwise (counterclockwise) direction [Fig. 1(b)]. We
observe these effects in our numerical simulations that we
describe next.

III. NUMERICAL SIMULATIONS

As shown in Fig. 1(a), the laser beam of wavelength
671 nm is incident on the 100× oil-immersion objective of
NA 1.4 followed by a stratified medium consisting of (1) an oil
layer of thickness around 5 μm and RI 1.516, (2) a 160-μm-
thick coverslip having refractive indices 1.516, 1.572, 1.695,
and 1.814 (note that the case where the RI equals 1.516 is
henceforth referred to as the matched condition, which is
typically employed in optical tweezers to minimize spherical
aberration effects in the focused beam spot), (3) a water layer
(chosen since probe particles in future experiments will be
immersed in water) having a refractive index of 1.33 with
a depth of 35 μm, and finally (4) a glass slide of refractive
index 1.516 whose thickness we consider to be semi-infinite
(∼1500 μm). In the simulation, the origin of the coordinates is

FIG. 2. Measurement of the rotational spin-Hall effect for
simulated Itrans (blue circles), simulated ISOI (red circles), and exper-
imentally measured ISOI (black circles) as a function of RI of the
coverslip.

taken inside the water layer at an axial distance of 5 μm from
the interface between the water and the coverslip. Thus, the
objective-oil interface is at −170 μm, the oil-coverslip inter-
face is at −165 μm, the coverslip–sample chamber interface
is at −5 μm, and the sample chamber–glass slide interface is
at 30 μm.

In Fig. 1(b) we plot ISOI [Figs. 1(b i)–1(b vi)] as well as Itrans

[Fig. 1(b vii)] and Ilong [Fig. 1(b viii)] separately z = 2 μm
away from the beam focus for both the matched RI for the
coverslip [Figs. 1(b i)–1(b iii)] and a mismatched RI of 1.814
[Figs. 1(b iv)–1(b vi)]. Clearly, the intensity profiles appear
rotated relative to the axis of the input modal distribution (ro-
tational spin-Hall shift) in several cases. However, the rotation
vanishes for input linear polarization [Figs. 1(b i) and 1(b iv)],
since the shifts for the constituent RCP and LCP components
cancel out. However, they are significantly high for both RCP
[Figs. 1(b ii) and 1(b v)] and LCP [Figs. 1(b iii) and 1(b vi)]
components. Note that the nonparaxial propagation of light
also leads to a transverse distribution of the longitudinal field
intensity that also displays a rotation. We compare the rota-
tional effects of the different field intensity components in
Figs. 1(b vii) and 1(b viii), where Fig. 1(b vii) shows the spin
rotational shift due to only Itrans and Fig. 1(b viii) shows the
transverse distribution of Ilong and Fig. 1(b v) ISOI, all for input
RCP light. We measure the rotations with respect to the axis
of the linearly polarized beam mode that does not undergo
rotation after focusing and display the measured angles of
rotation for an input RCP HG10 beam as a function of RI
from simulations in Fig. 2. For an RI of 1.814, we observe
a maximum of 7.4◦ azimuthal rotation for Itrans, 4.5◦ for the
transverse distribution of Ilong, and 4.7◦ for ISOI. Note here that
the presence of fringelike features in Figs. 1(b ii), 1(b iii), and
1(b v)–1(b viii) are due to oscillations in the Bessel functions
involved in both components of ISOI [34] for input circular
polarization. They are almost entirely absent for the total
intensity term [Fig. 1(b i)] and that associated with input linear
polarization [Fig. 1(b iv)]. They are observed with very small
magnitude in the output intensity components with the same
circular polarization as the input [see Fig. 6(a) in Appendix
C], but are possibly of opposite phase with Ilong, so they cancel
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out when we take a sum of the two [see Figs. 6(c) and 6(d) of
Appendix C].

We observe that an increase in RI contrast tends to increase
the observed azimuthal rotation. This can be understood from
the fact that both the geometric phase acquired by the cir-
cularly polarized light during propagation and its gradient
are enhanced with increasing RI contrast. Importantly, it is
the geometric phase that is responsible for the SOI during
tight focusing. This is because the k vectors evolve adia-
batically as the waves approach the focus, thus leading to
a spin-redirectional Berry phase. The gradient of this Berry
phase creates an intrinsic OAM [35], which eventually causes
the SOI and is at the heart of the observed spin-dependent
azimuthal rotation of the intensity profile [34]. In addition,
since the contribution of the transverse distribution of Ilong is
90% or even more of ISOI (see Fig. 5 of Appendix B), it is the
rotation of this component that finally dominates in the trans-
verse rotation of the ISOI profile, which we finally measure
experimentally. We now proceed to describe the experiments
we performed to verify these simulations.

IV. EXPERIMENTS

A schematic of our experimental system is provided in
Fig. 3(a). The optical tweezers is developed around an in-
verted microscope that uses a 100X NA 1.4 oil-immersion
objective lens to tightly focus the input beam into the stratified
medium described in Fig. 1(a). Thus, we dropcast around 20
μl of water (RI 1.33) into a sample chamber developed using
a coverslip (RIs of 1.516, 1.572, 1.695, and 1.814, employed
one at a time) and a glass slide (RI 1.516), so the water
layer thickness is around 35 μm. We generate first-order LG
beams by coupling a linear polarized Gaussian beam into
a vortex half-wave retarder of zeroth order (q plate) which
generates both radial and azimuthal polarized vector beams
at mutually perpendicular orientations. Afterward, we use a
linear polarizer to convert the radial (azimuthal) beams into
into HG10 (HG01) modes. We pass the output beam from the
linear polarizer through a quarter waveplate (QWP) centered
at 671 nm and oriented at 45◦ to the input beam axis in order
to circularly polarize the HG10 mode.

For imaging the focused beam in the far field, we collect
the backscattered light from the sample chamber using the
objective lens itself and pass it through another QWP in order
to project out the intensity of the spin state we would like to
detect. Thus, for incident RCP light, the output QWP filters
out the RCP component, so we detect the intensity only of the
LCP component superposed with the longitudinal component
(ISOI) on a CCD that we use to image the intensity profile.
Note that, contrary to what we observed in the simulations, we
do not observe weak interference fringes in our experiments,
possibly due to the presence of an unpolarized component
in the input beam which lowers the contrast of the fringes
considerably. Now the tight focusing of a linearly polarized
HG beam does not show any rotation of the axis of HG10

mode, which we verify first. In order to measure rotation of the
output mode for input circularly polarized HG10 modes, we
perform the experiments first with linear polarized light that
display no rotation and can thus be employed as a reference
to measure the rotation for input spin-polarized states. To

FIG. 3. (a) Schematic diagram of our experimental setup. (b) Ex-
perimental measurements of the rotational spin-Hall shift for RI
matched and mismatched coverslips. Red arrows depict the beam
coupled into the optical tweezers microscope, while the blue arrows
depict the backscattered light used for imaging the output mode.
Matched conditions for RI 1.516 are shown with (i) the CCD im-
age of the output intensity profile for the input linearly polarized
state which we use as a reference to measure rotations for input
spin-polarized states, (ii) the output intensity profile for input RCP
light, and (iii) the output intensity profile for input LCP light. Also
shown are matched conditions for RI 1.814 with (iv) the reference
linearly polarized input state, (v) the output intensity profile for
input RCP, and (vi) the output intensity profile for input LCP. The
white straight lines through the beam axes show the linear fit for
the lowest-intensity pixels along the beam axis, which we determine
from a least-squares fit in MATLAB.

determine the angle of rotation, we use the CCD image of the
mode to determine the (x, y) coordinates and red, green, and
blue (RGB) values of each pixel in the region around the axis
of singularity [see the dark region in Fig. 3(b)] of the beam
mode. We then proceed to select out the coordinates of the
pixels with the lowest RGB values and fit a straight line to
those pixels. We fit a straight line to the selected coordinates
and determine the slope of the fit along with its standard devi-
ation, which essentially provides the mean position of the zero
line of the focused HG beam as well as its root-mean-square
deviation. We perform this analysis for all output modes for
the input linear and spin-polarized states and measure the
angle of rotation of the axis from the slope with respect to
the vertical axis. We display the results of the rotation of
the beam axes in Figs. 3(b i)–3(b vi). Figures 3(b i)–3(b iii)
display the rotational spin-Hall shift for the matched RI of
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1.516, whereas Figs. 3(b iv)–3(b vi) are for an RI of 1.814.
Also, Figs. 3(b i) and 3(b iv) represent the reference linear
polarization states with respect to which we measure the rota-
tional spin-Hall effect for the matched condition [input RCP
and LCP light in Figs. 3(b ii) and 3(b iii), respectively] and RI
of 1.814 [input RCP and LCP light in Figs. 3(b v) and 3(b vi),
respectively]. Clearly, in the RCP and LCP cases, the zero line
appears to be tilted in opposite directions with respect to the
linearly polarized case, with the tilt higher for the mismatched
condition. The actual measured values of rotation are shown
in Fig. 2 (black circles) and we obtain a very good match with
the values obtained from simulation (red circles). The errors
in determining the rotation angles are between 5% and 20%
for individual cases.

V. CONCLUSION

We have studied the rotational spin-Hall effect in a struc-
tured Gaussian beam (HG01 mode) carrying no intrinsic
OAM, when it is tightly focused through a high NA objec-
tive lens in an optical tweezers configuration with a stratified
medium in the path of the focused light. For input circularly
polarized states, the SOI effects due to tight focusing cause
the generation of opposite circular polarization coupled with
a corresponding OAM state to satisfy conservation of the
total angular momentum. As a result, the intensity profile
corresponding to these states undergoes a rotation with re-
spect to the profile corresponding to the linearly polarized
input state, allowing us to visualize the effects of the SOI in
the output intensity profile itself. In addition, the transverse
distribution of the longitudinal field intensity profile also un-
dergoes a rotation due to coupling with OAM states due to the
SOI. We quantified such rotations using the complete vector
diffraction theory described by Debye and Wolf by numerical
simulations of the output electric field after tight focusing
through a stratified medium and verified our simulations via
careful experiments, where we projected out the opposite
circular polarization state along with the longitudinal com-
ponent for a given input circular polarization. We obtained
excellent matches with simulation and thus clearly demon-
strated an interesting manifestation of the SOI for asymmetric
(Hermite-Gaussian) modes of light. The rotational spin-Hall
shift increases with RI contrast of the stratified medium,
which was expected since the magnitude of the SOI increases
correspondingly due to the enhanced geometric phase gra-
dient in these cases. We would also like to point out that,
while these studies were carried out on the spatial intensity
profiles of a simple structured beam in an optical tweezers
configuration, we would like to extend our study to higher-
order structured beams where the SOI effects due to tight
focusing would be much more intriguing. Experiments on
the observation of rotation of optically trapped birefringent
particles around the beam axis due to the generation of OAM
by the SOI in such beams would thus lead to interesting routes
of complex particle manipulation using optical tweezers.
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APPENDIX A: THEORETICAL CALCULATIONS

The angular spectrum for the focal field can be expressed
as a function of the field at the focus as [30]

�E (ρ,ψ, z) = i
k f e−ik f

2π

∫ θmax

0

∫ 2π

0

�Eres(θ, φ)eikz cos θ

× eikρ sin θ cos(φ−ψ )sin(θ )dθ dφ, (A1)

where f is the focal length of the lens and θmax is because of
the finite size of the aperture which is decided by the NA of the
objective lens. Note that here we cannot use the paraxial ap-
proximation for calculating the electric field at the focal plane,
because we are using a high NA objective lens (NA equal to
1.4) for tight focusing. Thus, we use the angular spectrum
method, which entails the exact solutions for the nonparaxial
regime to determine the nature of electric field distribution of
Hermite-Gaussian modes propagating in a medium or across
a stratified medium. This approach operates in the frequency
domain, calculates the Fourier transform (FT) of the input
field, and multiplies the result with a transfer function so
that the desired output field is obtained by the inverse FT.
The transfer function is given by A = Rz(φ)T Ry(θ )Rz(−φ),
where Rz and Ry are SO(3) rotation matrices [33]. Since the
stratification of any medium makes the field propagating in the
medium dependent on the input polarization, we incorporate
the Fresnel transmission coefficients Ts and Tp as well as
the Fresnel reflection coefficients Rs and Rp, considering the
contributions from both the s and p polarization. The output
and the incident field are related through a transfer function A
as Eres(θ, φ) = AEinc(θ, φ), where the T and R matrices are
given by

T =
⎛
⎝Tp 0 0

0 Ts 0
0 0 Tp

⎞
⎠, R =

⎛
⎝−Rp 0 0

0 Rs 0
0 0 −Rp

⎞
⎠. (A2)

Note that we have T (1, j)
i = E j

i+
E1

i+
and R(1, j)

i = E j
i−

E1
i+

. Here i

specifies the polarization s and p, + and − signify a wave
propagating forward and backward, respectively, and j in
the superscript specifies the layer of the stratified medium in
which the optical tweezers (trapping laser) focus lies. For an
input HG10 beam [30] we have

Einc (θ, φ) = E0

(
2x∞
w0

)
exp

{
−x2

∞ + y2
∞

w2
0

}

=
(

2E0 f

w0

)
sin θ cos φe− f 2 sin2 θ/w2

0 .
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From these equations we can write the output electric field from the input electric field in the form of a matrix equation as⎡
⎣Eo

x
Eo

y
Eo

z

⎤
⎦ =

⎡
⎣ iI11 cos ψ + iI14 cos 3ψ −iI12 sin ψ + iI14 sin 3ψ 2I10 − 2I13 cos 2ψ

−iI12 sin ψ + iI14 sin 3ψ i(I11 + 2I12) cos ψ − iI14 cos 3ψ −2I13 sin 2ψ

−2I10 + 2I13 cos 2ψ 2I13 sin 2ψ i(I11 − I12) cos ψ

⎤
⎦ ×

⎡
⎣Ei

x
E i

y
E i

z

⎤
⎦, (A3)

whereEo and Ei denote the output and input Jones polarization vectors, respectively, and I10, I11, I12, I14, and I13 are the Debye-
Wolf integrals for the transmitted and reflected waves, which are given as [31,32]

It
10(ρ) =

∫ θmax

0
Einc(θ )

√
cos θ sin2 θTp sin θ jJ0(k1ρ sin θ )eik j z cos θ j dθ,

It
11(ρ) =

∫ θmax

0
Einc(θ )

√
cos θ sin2 θ (Ts + 3Tp cos θ j )J1(k1ρ sin θ )eik j z cos θ j dθ,

It
12(ρ) =

∫ θmax

0
Einc(θ )

√
cos θ sin2 θ (Ts − Tp cos θ j )J1(k1ρ sin θ )eik j z cos θ j dθ,

It
13(ρ) =

∫ θmax

0
Einc(θ )

√
cos θ sin2 θTp sin θ jJ2(k1ρ sin θ )eik j z cos θ j dθ,

It
14(ρ) =

∫ θmax

0
Einc(θ )

√
cos θ sin2 θ (Ts − Tp cos θ j )J3(k1ρ sin θ )eik j z cos θ j dθ,

Ir
11(ρ) =

∫ θmax

0
Einc (θ )

√
cos θ sin2 θ (Rs − 3Rp cos θ j )J1(k1ρ sin θ )e−ik j z cos θ j dθ,

Ir
12(ρ) =

∫ θmax

0
Einc (θ )

√
cos θ sin2 θ (Rs − Rp cos θ j )J1(k1ρ sin θ )e−ik j z cos θ j dθ,

Ir
13(ρ) = −

∫ θmax

0
Einc (θ )

√
cos θ sin2 θRp sin θ jJ2(k1ρ sin θ )e−ik j z cos θ j dθ,

Ir
14(ρ) =

∫ θmax

0
Einc (θ )

√
cos θ sin2 θ (Rs + Rp cos θ j )J3(k1ρ sin θ )e−ik j z cos θ j dθ.

Here the superscripts t and r denote the transmitted and reflected components, respectively, and Jn is the Bessel function of the
first kind of order n.

The radial intensity distribution of the output electric field with an input RCP or LCP HG beam is given by

IRCP,LCP(ρ,ψ ) = 2(|I12|2 + |I14|2) + 2(|I11|2 + |I12|2) cos2 ψ + 2(I11I∗
12 + I∗

11I12) cos2 ψ

− 2(I12I∗
14 + I∗

12I14) cos 2ψ ± 2i(I12I∗
14 − I∗

12I14) sin 2ψ. (A4)

The equations for the intensity profile are different for input RCP and LCP HG10 beams. Therefore, the rotation of the intensity
profile for input RCP and LCP beams are in the clockwise and counterclockwise directions, respectively. The total intensity ISOI

profile is a linear combination of Itrans (orthogonal helicity components to the input helicity) and Ilong of the HG10 beam,

ISOI(ρ,ψ ) = Itrans + Ilong. (A5)

The transverse intensity profile of orthogonal helicity components to the input helicity components of the HG10 beam is

Itrans(ρ,ψ ) = 2(|I12|2 + |I14|2) − 2(I12I∗
14 + I14I∗

12) cos 2ψ ± 2i(I12I∗
14 − I14I∗

12) sin 2ψ.

The intensity due to longitudinal components of the RCP and LCP light of the HG10 beam is

Ilong(ρ,ψ ) = 4(|I10|2 + |I13|2) − 4(I10I∗
13 + I13I∗

10) cos 2ψ ± 4i(I10I∗
13 − I13I∗

10) sin 2ψ.

The intensity of the lineally polarized HG10 beam is

I (ρ,ψ ) = |I14|2 + 4|I10|2 + |I11|2 cos2 ψ + |I12|2 sin2 ψ + 4|I13|2 cos2 2ψ

+
(

I11I∗
14

2
+ I14I∗

11

2
− I12I∗

14

2
− I14I∗

12

2
− 4I10I∗

13 − 4I13I∗
10

)
cos 2ψ

+
(

I11I∗
14

2
+ I14I∗

11

2
+ I12I∗

14

2
+ I14I∗

12

2

)
cos 4ψ. (A6)
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FIG. 4. Simulation of rotation of the total intensity profile z =
2 μm away from the focus of the high NA objective (trap focus)
for an input HG10 beam mode for mismatched RIs (a)–(c) 1.572 and
(d)–(f) 1.695 for (a) and (d) input x-polarized light, (b) and (e) input
RCP light, and (c) and (f) input LCP light.

APPENDIX B: NUMERICAL SIMULATIONS

We now run simulations on our experimental system (strat-
ified medium in the path of the optical tweezers light beam)
as described in the main text. According to Eq. (A5), the
intensities corresponding to ISOI of RCP and LCP components
are different; therefore, the intensity profiles for the RCP and
LCP input HG10 mode show clockwise and counterclockwise
rotations with respect to the x axis in the transverse plane.
We have provided results for the azimuthal rotation for RIs of
1.516 and 1.814 [Fig. 1(b)]; here we provide those for RIs of
1.572 and 1.659. Once again, we plot ISOI as given in Eq. (A5).
The simulation results are displayed in Figs. 4(a)–4(f). We
also provide the values of rotation calculated from simulations
and measured for experiments for all RI values in Table I. The
measurement of the rotation angles are performed using the
method described in the main text.

Another useful exercise is to compare the transverse distri-
bution of the longitudinal intensity profile (Ilong) to that of the
transverse intensity component (Itrans) of the SOI-generated
circular polarization that is opposite to the input polariza-
tion. This is displayed in Fig. 5. We observe that the field
corresponding to Ilong (normalized) dominates over the trans-
verse component Itrans of the radial intensity (ISOI), with the
former being almost 90% of the sum of these two intensity
components [refer to the ISOI defined in the main text and
in Fig. 1(b v)] in the radial direction. We also observe the
contribution of the intensity profile of Ilong to be increasing
with increasing RI contrast of the stratified medium. However,
when we consider the total intensity in the radial direction,

FIG. 5. Percentage of the longitudinal component of light com-
pared to the spin-polarized transverse component induced by SOI
(red circles) and total transverse intensity (blue circles).

which also contains the intensity for the circular polarization
in the direction of the input polarization, the Ilong field inten-
sity is only 20%–30% of the total radial intensity. We also
observe that this ratio reduces with increasing RI contrast,
since the spread in the k vector is reduced correspondingly,
resulting in a lower z component of the field compared to the
total transverse component.

Finally, we comment on the fringelike structures visible
in the intensity profiles of ISOI, Itrans, and Ilong, shown in
Figs. 1(b ii), 1(b iii), and 1(b v)–1(b viii). These appear due
to oscillations in the Bessel functions involved in both com-
ponents of ISOI for input circular polarization. They are almost
entirely absent for the total intensity term [Fig. 1(b i)] and that
associated with input linear polarization [Fig. 1(b iv)]. Also,
they are observed with very small magnitude in the output
intensity components with the same circular polarization as
the input (RCP and RCP), which we observe in Fig. 6(a), as
well as in the sum of the intensity profiles of the output RCP
and LCP components [Fig. 6(b)]. However, the oscillations
in the profile for the output RCP component is possibly of
opposite phase to Ilong, so they cancel out when we take a
sum of the two [Fig. 6(c)], as well as for the total intensity
[Fig. 6(d)]. Note that similar fringelike oscillations have been
reported in Fig. 1(b) in [34] in a plot of terms containing
Bessel functions different from J0.

APPENDIX C: EXPERIMENTS

We use a conventional optical tweezers configuration con-
sisting of an inverted microscope (Carl Zeiss Axioert.A1) with
an oil-immersion 100× objective (Zeiss, NA 1.4) and a He-Ne
laser (Laserver, 671 nm, 200 mW) coupled into the back port

TABLE I. Values of rotation calculated from simulations and measured for experiments for all RI values.

Simulation Experiment

RI �	 (input RPC) �	 (input LPC) �	 (input RPC) �	 (input LPC)

1.516 3.7 −3.7 3.3 ± 1.2 −3.9 ± 1.1
1.572 3.0 −3.0 3.2 ± 1.0 −3.1 ± 1.3
1.695 3.9 −3.9 4.4 ± 1.1 −3.5 ± 2.0
1.814 4.7 −4.7 5.3 ± 0.9 −5.2 ± 1.5
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FIG. 6. Simulation of transverse intensity profile z = 2 μm away
from the focus of the high NA objective (trap focus) for an input RCP
HG10 beam mode for mismatched RI 1.814 intensity due to (a) the
RCP component of SOI, (b) the RCP and LCP components of SOI,
(c) the RCP and longitudinal components of SOI, and (d) the RCP,
LCP, and longitudinal components of SOI.

of the microscope. The sample chamber is prepared using a
coverslip (RIs 1.516, 1.572, 1.695, and 1.814, employed one
at a time) and a glass slide (RI 1.516), between which we
dropcast around 20 μl of water (RI 1.33), so the water layer
thickness is around 35 μm. We generate first-order LG beams
by coupling a linear polarized Gaussian beam into a vortex
half-wave retarder of zeroth order (q plate, Thorlabs) which
generates both radial and azimuthal polarized vector beams at
different orientations, after which we use a linear polarizer to
convert these into HG10 (HG01) modes. We pass the output
beam from the linear polarizer through a QWP centered at

FIG. 7. Experimental measurements of the rotational spin-Hall
shift for RI mismatched coverslips for (a)–(c) RI 1.572 with (a) the
CCD image of the output intensity profile for the input linearly
polarized state which we use as a reference to measure rotations for
input spin-polarized states, (b) the output intensity profile for input
RCP light, and (c) the output intensity profile for input LCP light and
for (d)–(f) RI 1.695 with (d) the reference linearly polarized input
state, (e) the output intensity profile for input RCP light, and (f) the
output intensity profile for input LCP light. The white straight lines
through the beam axes show the linear fit for the lowest-intensity
pixels along the beam axis.

671 nm and oriented at 45◦ to the input beam axis in order to
circularly polarize the HG10 mode.

Other than the experiments described in the main text, we
have also performed experiments to determine the azimuthal
rotation for an input RCP or LCP HG10 beam for RIs 1.572
and 1.695 of the coverslip in the stratified medium. The beam
profiles are displayed in Figs. 7(a)–7(c) for RI 1.572 and 7(d)–
7(f) for RI 1.695. The measured rotations agree well with the
theoretically simulated values as shown in Fig. 2 and Table I.
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