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Generation of dissipative solitons in a doped optical fiber modeled by the higher-order
dispersive cubic-quintic-septic complex Ginzburg-Landau equation
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The generation of dissipative optical solitons is explored in doped fibers with correction effects under the
activation of modulational instability (MI). The model, described by the cubic-quintic-septic complex Ginzburg-
Landau equation, includes higher-order dispersion and nonlinear gradient terms. The Lange-Newell’s criterion
for MI of Stokes wave, boundary domains of MI, and integrated gain of MI are obtained via the linear stability
analysis. Particular attention is given to the physical effect on the critical frequency detuning, especially in the
normal regime, when varying the values of odd dispersion coefficients. Numerical simulations are undertaken
and confronted with analytical predictions. Beyond the agreement between the linear stability analysis and trains
of soliton generation, the soliton map induced by MI, along with the subsequent physical effects, is debated via
bifurcation diagrams. This allows accurate prediction of transitions between various types of localized modes
and well-calibrated generation of a wide variety of solitons with different energies. It is argued that knowing the
center of mass and the energy of the generated structures can better characterize the long-time evolution of MI
and, eventually, its nonlinear manifestations.
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I. INTRODUCTION

During the past two centuries, the concept of solitons has
attracted considerable interest in theory and experiment. One
of the main characteristics of solitons is that they propagate
for a long time and over very long distances without visible
changes. This feature makes them suitable vehicles for en-
ergy and information transport [1]. Mathematically, solitons
are solutions to nonlinear partial differential equations and
emerge in nonlinear systems under a balanced interaction
between dispersive and nonlinear effects and additional com-
pensation between loss and gain impacts when the system
is dissipative [2–4]. Over the years, the discovery of soli-
tons has triggered the development of several theories and
applications in many physical systems ranging from hydrody-
namics to optical fibers, through plasma, semiconductors, cold
atoms, electrical transmission lines, and biophysics [1–5],
to name a few. Putting a high point on optical communi-
cations, propagation of light has been the turning point of
several research works that revealed a wide variety of solitons
and their technological implications. In that direction, bright
and dark solitons in Hamiltonian systems governed by the
nonlinear Schrödinger equation were proposed in a seminal
work by Hasegawa and his coworkers [5]. Theoretical and
experimental studies of dissipative solitons dynamics, includ-
ing other subsequent numerical studies, were developed by
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Akhmediev and his coworkers using the cubic-quintic com-
plex Ginzburg-Landau (CQGL) equation. Importance was
given to theoretical and experimental optical solitons, namely
pulsating solitons, chaotic solitons, creeping solitons, ex-
ploding solitons, and, recently, auto solitons with extreme
spikes [6–12]. Along the same line, Carvalho and Faâo proved
the existence of dissipative solitons and further addressed
their stability in the presence of nonlinear gradient and cubic
nonlinearity terms [13–15] gradient and cubic nonlinearity
terms [16,17].

In modern telecommunication systems, the central role of
a dopant is boosting optical wave transmission in the fiber.
Often called rare earths or lanthanide, dopants are found in a
group of 14 similar elements, with atomic numbers ranging
from 58 to 71, whose contributions and specifications have
received increasing attention in the past three decades [17].
For example, ytterbium-doped fiber [18–20], thulium-doped
fiber [21], and erbium-doped fiber [22–26] acquire remarkable
proprieties when they are doped in silica or glass fiber as
commonly exhibited by their susceptibility whose orders
and combinations are of crucial importance. On that note,
competing susceptibility can be noticed when silica is doped
for optical fibers and in the case of semiconductors [27].
In general, beneath the action of the dopant, the order
of susceptibility may increase up to 7, and the material
may exhibit χ3, χ5, and χ7 (cubic, quintic, and septic)
susceptibilities [28,29]. It is essential to point out that such
materials exhibit a saturation of the third-order nonlinear
susceptibility χ3 which is equivalent to the presence of fifth-
and seventh-order nonlinear susceptibilities χ5 and χ7.

Experimental results related to the material sample
As2S3, which enable the measurement of the septic order
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susceptibility, are available. New research directions confirm
the experimental use of the latter in boosting the propagation
of ultrashort femtosecond optical pulses [28,29], which
requires higher-order dispersion and nonlinearities inherent
to dopants [30–39]. Optical solitons through a doped or
undoped fiber find several applications, mainly in optical
atomic clocks, photonic radar, coherent communications,
ultrafast distance measurements, and optical frequency
synthesizer [40]. A key mechanism that leads to the
emergence of localized coherent nonlinear structures and
trains of ultrashort pulses is modulational instability (MI).
The latter occurs in optical fibers because of the interplay
between nonlinear and dispersive effects. In the literature,
there are two distinguishable types of MI, the one due to
quantum noise (spontaneous MI) and the one originating
from the frequency-shifted signal (induced MI). In general,
the common signature of MI is the exponential growth of the
amplitude or phase of a disturbing wave during propagation.
This applies to a broad range of physics areas, including
Bose-Einstein condensate [41–44], plasma physics [45–48],
fluid dynamics [49,50], and biophysics [51,52], to cite a
few. In nonlinear optics, it was found in metamaterials [53],
nonlocal systems [54–56], fiber Bragg gratings [57–60],
twin-core fiber [61], asymmetry dual-core fiber [62],
microcavities [63], and doped resonant fiber [64]. Agrawal
studied the modulational instability in doped optical fiber with
rare earth [65]. Indeed, great interest has recently been given
to higher-order nonlinear optical systems, principally because
they can be used to generate ultrashort optical solitons at
a very high bit rate on the one hand, and for performance
improvement during trans-oceanic and transcontinental
propagations, on the other hand [30–33,63,66]. We should
stress that a wide variety of idealized structures, which
may be either stationary, periodic, or spatiotemporal,
have found their origin in the process of MI, among
which are energy localization, the emergence of rogue
waves, Fermi-Pasta-Ulam recurrence, nonlinear phase
shift, Akhmediev breathers, Kuznetsov-Ma soliton, and
the Peregrine soliton. Indeed, such structures can become
chaotic. Of course, it was established, via bifurcation theory,
that dissipative solitons can behave as strange attractors in
low-dimensional systems [67]. Alternatively, as said so far,
the same entities emerge as the consequence of MI, which
intuitively brings together the two theories and calls for
more investigations to find out the connection between the
two concepts that, unfortunately, have always been treated
separately.

It is the main objective of the present paper to study
the emergence of ultrashort optical solitons in nonlin-
ear doped fibers, which include higher-order dispersions,
higher-order non-Kerr nonlinearities, as well as higher-order
self-steepening and self-shifting terms. The generic model to
be used is an extended CGL. Our contribution goes beyond
direct confirmation of analytical prediction through direct
numerical simulations to involve other useful indicators of
ultrashort optical soliton generation such as the center of
mass, the energy, and bifurcation diagrams. This study paves
a way to studying and characterizing optical solitons that
combine the standard theory of MI and the bifurcation the-
ory, especially in a context where higher-order effects are

included, therefore increasing the number of parameters of the
CGL equation capable of significantly affecting the bifurca-
tion boundaries.

The rest of the paper is therefore outlined as follows. In
Sec. II, we introduce the dissipative model of propagation
of ultrashort pulses, namely the cubic-quintic-septic com-
plex Ginzburg-Landau equation with higher-order dispersion,
self-steeping, and self-shifting effects associated with their
correction terms. Section III is devoted to the linear stability
analysis of the Stokes wave. The stability conditions and the
amplitude threshold are explicitly determined. In Sec. IV,
details on the MI development are given, where one discusses
the variation of the boundary domains of MI frequency along
with the analytical features of the gain. Numerical experi-
ments are also undertaken in order to simulate the soliton
maps induced during the propagation, along with the ap-
propriate bifurcation diagrams and a parametric comparison
between the energy and the center of mass. Section V gives
some concluding remarks.

II. THEORETICAL MODEL

In this section, we consider the higher order CGL equa-
tion with non-Kerr nonlinearities terms, written as [68]

iψξ +
6∑

j=2

d jrsψ jτ + γrsψ

+
3∑

k=1

[(qkrs|ψ |2k + mkr |ψ |2k
τ )ψ + inks(|ψ |2kψ )τ ] = 0,

(1)

where ψ (ξ, τ ) is a paraxial beam. The coordinate ξ is
the propagation distance and τ is the retarded time in
the frame moving with the pulse. All the coefficients
are real constants. The complex coefficient of absorption
γrs = γr + iγs, where γr = gpδ

2n(1+δ2 ) is the linear gain

(if positive) and γs = −α + gp

2n(1+δ2 ) is the frequency
shift coefficient. Parameters gp, δ, α, n, are peak gain,
frequency difference between vibration of electric field
and the vibration frequency of atoms of dopant, fiber
loss coefficient, and nonlinear index, respectively. The

parameter d2r = − β2

2 − gp(−3δ+δ3 )T 2
2

2n(1+δ2 )3 measures the wave

dispersion, while d2s = − gp(1−3δ2 )T 2
2

2n(1+δ2 )3 measures the spectral
filtering. The complex coefficients d3rs = d3r + id3s, d4rs =
d4r + id4s, d5rs = d5r + id5s, and d6rs = d6r + id6s represent
higher-order dispersions [third-order dispersion (TOD),
fourth-order dispersion (FOD), fifth-order dispersion
(FFOD), and sixth-order dispersion (SOD), respectively].
T2 is the dipole relaxation time. The relations defining the

coefficients are given as follows: d3r = −4δ
gp(1−δ2 )T 3

2
2n(1+δ2 )4 , d3s =

− β3

6 − gp(−1−δ4+6δ2 )T 3
2

2n(1+δ2 )4 , d4r = β4

24 − gp(−5δ+10δ3−δ5 )T 4
2

2n(1+δ2 )5 , d4s =
− gp(1−10δ2+5δ4 )T 4

2
2n(1+δ2 )5 , d5r = − 2gpδ(3+3δ4−10δ2 )T 4

2
2n(1+δ2 )6 , d5s = β5

120 +
gp(1−15δ2+15δ4−δ6 )T 5

2
2n(1+δ2 )6 , d6r= − β6

720− gp(7δ−35δ3+21δ5−δ7 )T 6
2

2n(1+δ2 )7 , d6s =
− gp(−1+21δ2−35δ4+7δ6 )

2n(1+δ2 )7 .q1r = ∂β

∂|ψ |2 + ( n2k0
4 )A−1

eff and q1s =
( αn2

4n )A−1
eff represent the Kerr nonlinearity coefficient and the

023502-2



GENERATION OF DISSIPATIVE SOLITONS IN A DOPED … PHYSICAL REVIEW A 105, 023502 (2022)

nonlinear gain (or loss) term, respectively. The parameters

q2r = 1
2 ( ∂β

∂|ψ |4 ) + k0
4 ( n2

2
2n + n4)A−1

eff1 and q2s = ( αn4
4n )A−1

eff1 stand
for first correction of Kerr effect (saturation when it is
negative) and gain absorption, respectively. The parameters
q3r = 1

6 ( ∂β

∂|ψ |6 ) + k0(n6 + n2n4
4n )A−1

eff2 and q3s = ( αn6
4n )A−1

eff2 are
higher-order correction terms of the nonlinear refractive
and nonlinear amplification-absorption gain, respectively.
A−1

eff , A−1
eff1, A−1

eff2, n4, n6, keep the same definition as in
Ref. [30]. It is well known that the inelastic Raman scattering
is due to the delayed response of the medium, which forces
the pulse to undergo a frequency shift, which is known as
self-frequency shift (SFS). The mkr are the intrapulse Raman
scattering where m2r = 1

2
∂β

∂|ψ |4t (quintic) and m3r = 1
6 ( ∂β

∂|ψ |6t )
(septic) are the first- and second-order correction terms of
m1r = ∂β

∂|ψ |2t (cubic). The effect of self-steepening is due to
the intensity-dependent group velocity of the optical pulse,
which gives to the pulse a very narrow width in the course
of propagation. In our model, the parameters nks denote
self-steepening coefficients, n1s = ∂

∂ω
( ∂β

∂|ψ |2 ) is the cubic term,

n2s = 1
2

∂
∂ω

( ∂β

∂|ψ |4 ) is the quintic term, and n3s = 1
6

∂
∂ω

( ∂β

∂|ψ |6 ) is
the septic term.

III. LINEAR STABILITY ANALYSIS

In this section, we investigate the MI, based on Eq. (1). The
general idea of linear stability analysis is to perturb the steady-
state solution and then analyze whether this small perturbation
decays or grows with the propagation. The continuous wave
solution (CW) to Eq. (1) is assumed to be of the form

U (ξ ) = √
P0 exp(iχ (ξ ) − (γs − iγr )ξ ), (2)

where P0 is the input power of CW, and χ (ξ ) is the nonlinear
phase shift given by

χ (ξ ) = iq1r

(∫ ξ

0
P0 exp (−2γsξ )dξ

)

+ iq2r

(∫ ξ

0
P2

0 exp (−4γsξ )dξ

)

+ iq3r

(∫ ξ

0
P3

0 exp (−6γsξ )dξ

)
. (3)

To study the MI phenomena, we add a small perturbation
to the CW solution and explore the growth of the perturbation
as

U (ξ, τ ) = (
√

P0 + u(ξ, τ ) + iv(ξ, τ ))

× exp(iχ (ξ ) − (γs − iγr )ξ ), (4)

where u(ξ, τ ) and v(ξ, τ ) are the real and imaginary parts
of small perturbation, respectively. Substituting Eq. (4) into
Eq. (1), and after some mathematical manipulations, we ob-
tain the following set of linearized equations for disturbance
behaviors:

uξ +
6∑

n=2

(dnsunτ + dnrvnτ )

+ P0(3 n1s + 5 n2sP0A2
ξ + 7 n3sP0

2A4
ξ )A2

ξ uτ

+ 2P0
2
(

q2s + 2 q3sP0A2
ξ

)
A4

ξ u = 0, (5)

vξ +
6∑

n=2

(dnsvnτ − dnrunτ )

+ P0

[
3∑

n=1

( − 2nP(n−1)
0 mrnuτ + nnsvτ

)
A2(n−1)

ξ

]
A2

ξ

− 2P0( q1r + 4 q2rP0A2
ξ + 6 q3rP0

2A4
ξ )A2

ξ u = 0. (6)

We acknowledge the presence of nns in those equations and
Aξ = exp(γrξ ). To solve the set of linear differential equa-
tions above, we assume the following ansatz states [69]:

u(ξ, τ ) = u0 exp

[
i
∫

K (ξ )dξ − i�τ

]
, (7)

v(ξ, τ ) = v0 exp

[
i
∫

K (ξ )dξ − i�τ

]
, (8)

where K and � are the wave vectors and the frequency of
the perturbation amplitude respectively. Here u0 and v0 are
the perturbation amplitude of anti-Stokes or backward (if its
argument is negative) and Stokes sidebands or forward (if
its argument is positive), respectively. Introducing Eqs. (7)
and (8) into Eqs. (5) and (6), we obtain a set of two linearly
coupled equations satisfied by u0 and v0 for nontrivial solu-
tions. The nontrivial solution is such that

(K (ξ,�) + grs)2 = Γ + iΛ, (9)

where the real part of grs is given as

gr = P0A2
ξ

(
2n1s + 3A2

ξ n2sP0 + 4A4
ξ n3sP0

2
)
�

+ d5s�
5 − d3s�

3, (10)

and the imaginary part is defined as

gs = − d6s�
6 + d4s�

4 − d2s�
2

+ P0
2A4

ξ (2q3sP0A2
ξ + q2s). (11)

Γ and Λ are expressed as the sum of the even and odd
orders of �, respectively. Γ = ∑6

n=0 A2n�
2n, and Λ =∑6

n=1 A2n−1�
2n−1, An coefficients are defined in the Ap-

pendix. The roots of Eq. (9) are related to the sign of Λ. We
will obtain two distinguishable cases:

(i) Λ < 0, the expressions of these roots are written as

K1(ξ,�) = gr + h1 + i(gs − h2), (12)

K2(ξ,�) = gr − h1 + i(gs + h2), (13)

where

h1 =
√

1
2 (Γ +

√
Γ 2 + Λ2),

h2 =
√

1
2 (−Γ +

√
Γ 2 + Λ2).

(ii) Λ > 0, we have

K∗
1 (ξ,�) = gr − h1 + i(gs − h2), (14)

K∗
2 (ξ,�) = gr + h1 + i(gs + h2), (15)

leading to solutions with the same asymptotic behavior as
those obtained from K1 and K2. The complex forms of K1
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and K2 make it difficult to predict their signs. Nevertheless,
their imaginary parts contribute to the system. Introducing
Eq. (14) into two ansatzes, Eqs. (7) and (8) provide a good and
clear understanding of the behavior of these wave solitons.
The quantity h2 is always positive, that is, gs − h2 < gs + h2

holds, and this behavior depends on the sign of the quantity
gs − h2 which corresponds to the imaginary part of K1. The
asymptotic behavior of Eqs. (7) and (8) is related to the con-
stant gs − h2. If gs < 0, then h2 − gs is always positive and
the solution of Eqs. (7) and (8) increases exponentially when
ξ goes toward to infinity. The system remains unstable under
modulation. In this case, the boundaries of the domain of the
MI are then given by −�0(ξ ) � �(ξ ) � �0(ξ ), where

�2
0(ξ ) = 3

√
C0 + C1

18
+ 3

√
C0 − C1

18
+ d6s

3d4s
. (16)

If gs > 0, the asymptotic behavior of wave solution will
depend on the sign of h2 − gs.

When ω = ω0, it is easy to distinguish two cases. For
h2 − gs > 0, i.e., gs − h2 < 0 and Im(K1) < 0, where Im(K1)
represents the imaginary part of K1, the solutions Eqs. (7)
and (8) diverge without limitation as ξ increases and the
corresponding solution is said to be modulationally unstable.
The criterion for the modulation instability of Stokes waves is
such that

0 > −
(
2g2

s − h11
)

2P�2
> −Y + d2rq1r − d2sq1s, (17)

where h11 is defined as

h11 = − 18 P6
0 q3s

2 − 24 P5
0 q2sq3s + ( − 8 q2s

2 − 12 q3sq1s
)
P4

0

− 8 P3
0 q2sq1s − 2 P2

0 q1s
2,

where Y = Y11 + Y0 + 2(d4sq2s − d4rq2r )P0�
2 + 3(d6rq3r −

d6sq3s)P2
0 �4, with

Y0 = d6 r
2�12 + d4 r

2�8 + d5s
2�10 + d3s

2�6

+ d2 r
2�4 + (

25 ns3
2P6

0 + 13 ns2
2P4

0

)
�2,

and Y11 is given in the Appendix. From Lange-Newell’s crite-
rion, our system is such that

− Y11 + d2rq1r − d2sq1s + 2(d4sq2s − d4rq2r )P0�
2

+ 3(d6rq3r − d6sq3s)P2
0 �4 < 0. (18)

It is important to recall that Lange-Newell’s criterion
was derived for the first time for the Hamiltonian system
in Ref. [70], and for discrete and continuous dissipative
systems [71–73]. The numerical results from the previous
analytical treatments are presented below.

IV. NUMERICAL SIMULATIONS

Theoretical investigation of MI through the model under
consideration indicates the possibility of observing instability
regions in the frequency spectra. The MI spectra are given by
the negative imaginary part of the dispersion relation. In this
study, we have two possibilities to obtain the MI gain. First,
when ω0 = ωa, the growth rate is defined as

g(�) = 2(gs + h2), (19)

and when ω0 �= ωa, the growth rate is given in the following
integral form [16,69]

g(�) = −2
∫ L

0
(gs + h2)dξ, (20)

which is referred to as the integrated MI. Although this analy-
sis is necessary, it is however limited since it does not describe
the long-time evolution of the MI phenomenon. This requires
results from the linear stability analysis to be confronted with
direct numerical simulations. This is done on Eq. (1) via
the split-step Fourier method with the initial condition being
taken as [69]

ψ (0, τ ) = √
P0[1 + am sin ( fmτ )] exp (iφNL ), (21)

with

φNL = P0

2γs

(
q1r + q2rP0

2
+ q3rP0

2

3

)
,

where P0 is the power, am and fm are, respectively, the
modulation amplitude and frequency of a weak sinusoidal
perturbation imposed on the CW beam. We use sensitivity
analysis (SA) to observe simultaneous physical effects on the
boundary conditions of the domain of the MI [74–77].

A. Cubic-quintic-septic complex Ginzburg-Landau (CQSCGL)
equation

Here, all dispersion coefficients beyond the second order
are set to zero, i.e., d jrs = mkr = nks = 0 for j > 2 and k > 1.

This reduces Eq. (1) to the cubic-quintic-septic CGL equation.
This physical situation corresponds to the cubic-quintic CGL
equation, with the septic nonlinearity being a correction term.
It appears in physical processes of strong focusing nonlinear-
ity. It is also essential to study the impact of q3r and q3s terms
on MI. From the Lange-Newell criterion, the boundary of the
domains of the MI is such that �2 < �2

c, where �2
c is the

critical frequency of the disturbing wave defined as

�2
c = 2d−2

2s (q1sd2s − q1rd2r )P0 + 4d−2
2s (q2sd2s − q2rd2r )P2

0

+ 6d−2
2s (q3sd2s − q3rd2r )P3

0 , (22)

corresponding to ω0 = ωa. In this paper, we will focus
only on the normal regime, i.e., d2r < 0, associated with
the following values of parameters: q1r = 5 × 10−1, q1s =
−48 × 10−2, q2r = −34 × 10−2, q2s = −34 × 10−2, d2r =
−0.5, d2s = 0.1, γs = −3 × 10−3, L = 1500, fm = 95 ×
10−2 and am = 95 × 10−3. Although some values of pa-
rameters have been taken arbitrarily, they remain, nev-
ertheless, closer to experimental values available in the
literature [8,30,35,65,69]. Figure 1 shows the MI spectrum
as a function of second-order correction of Kerr nonlinearity
and nonlinearity gain and loss, respectively. More precisely,
Figs. 1(a) and 1(b) show the MI gain as a monotonously
increasing function septic non-Kerr nonlinearity. We observe
uniform shapes of gain with an increase of septic gain-loss
coefficient. In addition, two regions of instability of MI gain
in the two diagrams above will appear. We also note that q3s

increases the MI more than q3r . This result is confirmed in
Fig. 2, which illustrates the simultaneous physical effect on
the boundary domain of MI. This result is obtained by sensi-
tive analysis, where sampled physical parameter values appear
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FIG. 1. Instability gain spectra [Gain(m−1),�(THz)] of CQSC-
GLE for P0 = 1, γr = −9 × 10−3: (a) q3s = 1, (b) q3r = 5 × 10−1.

in Eq. (22). With this method, we have been able to obtain
well-known results such as the growth of MI with an increase
of the power input P0 and the Kerr nonlinearity q1r . At the
same time, the first-order correction of gain nonlinearity q2s

reduces the critical frequency, consequently reducing MI. We
also observe a moderate influence of spectral filtering d2s,

dispersion d2r, gain-loss q1s, and quintic coefficient q2r . To
understand the physical effects of q3r and q3s, we introduce
Eq. (21) into Eq. (1) and observe the numerical evolution of
the perturbed plane wave. Figure 3 illustrates the propagation
of CW in the CQSCGLE. Figure 3(a) shows the profile of
CW in the plane (ξ, τ ), while in Fig. 3(b), we plotted the
transverse distribution of the wave’s intensity ξ = 1m (dashed
line), ξ = 225m (dotted line), and ξ = 1200m (solid line).
Initially, the plane wave has periodic transverse evolution near
the origin. Then, at ξ = 225m, the intensity decreases, and
subpulses emerge between two pulses. So far, the intensity of
CW increases, and we observe a few generations of subpulses.
The CW presents a chaotic behavior along with the distance
of propagation. This is considered as a numerical property of
MI in a dispersive medium that could not be predicted by the
linear stability analysis [16]. Figure 3(c) shows the evolution
of CW when q3r < 0 (defocusing case), and Fig. 3(d) depicts
the evolution of energy (solid line) and center of mass (dashed
line). These two quantities were already used in the bifur-
cation study of creeping solitons in dissipative systems [6].

d2s d2r q1s q1r q2s q2r q3s q3r P0
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 2. Influence of some physical effects on the frequency of
the disturb wave using the sensitive analysis.

FIG. 3. Second-order correction effect of Kerr nonlinearity on
continuous wave propagation [ξ (m), τ (ps)]. Focusing case: (a) Prop-
agation of CW. (b) Distribution of intensity for q3r = 3 × 10−1.

Defocusing case: (c) Propagation of CW. (d) Comparison of energy
and center of mass for q3r = −3 × 10−1.

Here, the position corresponding to the maxima of energy
and dips of center of mass are the positions where the MI
induces the solitons. Note that the energy and center of mass
are defined as

Q =
∫ ∞

−∞
|ψ (ξ, τ )|2dτ,

Xc.m. =
∫ ∞
−∞ τ |ψ (ξ, τ )|2dτ

Q
. (23)

The second order of correction of Kerr nonlinearity
presents excellent advantages in dissipative systems.

B. Effects of higher-order dispersion coefficients

In this section, attention is paid to the effects of higher-
order complex dispersion coefficients on MI. Such physical
situations take place in optical fibers with zero-dispersion
wavelength.

1. Effect of the complex fourth-order dispersion coefficient

We consider the optical fiber with complex third-order
dispersion (TOD) and fourth-order dispersion (FOD) with the
septic nonlinearity. The propagation model is equivalent to
the modified complex Swift-Hohemberg equation (mCSHE),
where (d3r + id3s) will be considered the lower-order correc-
tion of linear terms, γr is the real linear loss, while the septic
term conserves its value used previously.

Figure 4 illustrates the MI gain spectrum as a function of
correction term d3r . It appears that the integrated gain con-
serves its two lobes of instability. As depicted in Fig. 4(a), we
observe an increase of d3r, which causes the gain to increase
up to a maximum value, and thereafter decreases. We note
that this maximum value is obtained near the zero correction
term. For a better explanation of that phenomenon, Fig. 4(b)
shows the variation of the integrated gain as a function of
the perturbation frequency � for different values of d3r . The
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FIG. 4. (a) 3D surface plot showing the integrated gain in the
plane (�, d3r). (b) Integrated gain in the plane (0, �) for the various
values of d3r, for P0 = 5 × 10−3, d3s = 4 × 10−2, d4r = 0, d4s =
−8 × 10−3. The other parameters are the same as in Fig. 1.

integrated gain increases and decreases with the increase of
the lower order correction terms. Figure 5 shows the evolution
of MI beneath the correction effects. The subsequent evolution
of the pulse train along the propagation distance is displayed
in Fig. 5(a). In Fig. 5(b), the energy for two different values
of the correction term is computed, and the dashed curve is
obtained for d3r = −15 × 10−3. Interestingly, the magnitude
of the energy decreases as the wave train propagates, while
the magnitude of energy increases with ξ, and the number
of maxima gets higher. It is also of importance to quantify
the number of solitons induced by MI for two different val-
ues of the physical effect. This is done using the bifurcation
diagram.

Figure 6 depicts the maxima (referred to as Qmax) and
minima (referred to as Qmin) of energy as a function of d3r .

The positions of the generation of solitons induced by the MI
are indicated as the maxima of Qmax. It is also clear from the
diagram that the mCSHE produces many solitons with high
energy for some values of the correction terms. Depending on
the value of d3r, we observe that one, two, three, and four soli-
tons having different energy can be generated simultaneously
within the same propagation distance.

That means that the lower-order correction term must not
be neglected in optical fiber communications.

Along the same line, Fig. 7 depicts the integrated MI gain
against the frequency � and the fourth-order dispersion coef-
ficient d4r . The integrated MI gain is the same for positive and
negative values of the frequency � for some selected values of
the fourth-order dispersion (FOD) d4r, as shown in Fig. 7(b).
Figure 8 shows the evolution of the CW (inducing the MI [see

FIG. 5. (a) Propagation of the perturbed wave. (b) Effect of
dopant through the energy d3r = −25 × 10−3 (solid line), d3r =
−15 × 10−3 (dashed line); the other physical parameters are
[ξ (m), τ (ps)]: P0 = 1, q3r = 3 × 10−1, q3s = 1, d3s = 0.04, d4r =
0, d4s = −8 × 10−3, γr = −99 × 10−4.

FIG. 6. Bifurcation diagram as a function of the dopant effect.
The physical parameters are the same as in Fig. 5.

Fig. 8(a)] and the energy as a function of the higher-order
spectral filtering d4s [see Fig. 8(b)]. It appears that the MI is
the precursor of the propagation of solitons in mCSHE.

2. Effects of higher-order dispersion correction

Taking into account higher-order dispersion terms brings
additional terms to the CSH equation. We note strong de-
pendence of dopant effect through d5r, which requires more
attention to be paid to the fifth-order dispersion. Like the
third-order d3r, the fifth-order d5r produces similar behaviors
on the MI gain spectrum as confirmed by Fig. 9, which shows
the MI spectrum as a function of the high linear dopant effect.
In Fig. 9(a), an increase and a decrease of the integrated
gain, with increasing values of the d5r, is noticed. Figure 9(b)
shows the maximum gain against the fifth-order dispersion.
The pyramidal form of the maximum gain is obtained near
the zero value of d5r . The outcome of the MI excitation is con-
firmed by the generation of train of pulses in the medium [see
Fig. 10(a)], along with the bifurcation diagram as a function
of parameter d5r [see Fig. 10(b)].

3. Sixth-order dispersion effect

We now consider the sixth-order complex dispersion term
(d6r + id6s). The integrated MI gain maintains its shape by
increasing the value of d6r . The results are displayed in
Fig. 11. The peak of integrated gain near zero is shown in
Fig. 11(b), while the bandwidth decreases when the value of
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FIG. 7. (a) 3D surface plot showing the integrated gain in the
plane (�, d4r). (b) Integrated gain as a function of the frequency
� for various values of fourth-order dispersion coefficients for P0 =
5 × 10−2, q3r = 5 × 10−1, q3s = 1, d3s = −1 × 10−2, d3r = −1 ×
10−2, d4s = 2 × 10−3, γr = −9 × 10−3.
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FIG. 8. (a) Evolution [ξ (m), τ (ps)] of the modulational instabil-
ity when (a) d4s = −6 × 10−2, and P0 = 1, q3r = 3 × 10−1, q3s =
1, d3r = d3s = −1 × 10−2, γr = −99 × 10−4. (b) Map soliton in-
duced as a function of higher-order spectral filtering.

d6r increases. The solid line illustrates the growth rate near
zero.

Due to the large space of parameter values, Fig. 12 shows
an example of the stability investigation of the continuous
wave in the (d6r, q3r ) plane [see Fig. 12(a)]. The white area
indicates the domain of stability, and the blue regions cor-
respond to unstable zones. When we consider a point in the
zone of stability, the CW keeps its stability (ξ = 1170m) and
oscillates periodically as it can be seen from Fig. 12(b). When
taking a point in the instability area, the CW disintegrates,
as shown by the dashed line in Fig. 12(b), which is indeed
a signature of its instability. In Fig. 13, we plot the inten-
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FIG. 9. Effect of higher-order dopant on the instability spectrum.
(a) Integrated gain as a function of �. (b) Maximum integrated gain
as a function of d5r, with �max(THz) = 1.6. The parameters used
are P0 = 5 × 10−1, q3r = 5 × 10−1, d3r = d3s = −1 × 10−2, d4r =
−5 × 10−2, d4s = −2 × 10−2, d5s = −1 × 10−3, γr = −9 × 10−3.

FIG. 10. (a) Evolution [ξ (m), τ (ps)] of modulation instability
for d5r = 7 × 10−3, and P0 = 1, q3r = 8 × 10−1, q3s = 1.5, d3r =
d3s = −1 × 10−1, d4r = −2 × 10−2, d4s = −2 × 10−2, d5s =
−1 × 10−3, γr = −99 × 10−4. (b) Map soliton induced as a
function of higher-order dopant effect d5r .

sity distribution as a function of the retarded time τ, at the
propagation distance ξ = 1200m. Only the case with even
dispersion (see solid line in Fig. 13) and the full dispersion
(see dashed line in Fig. 13) are illustrated. As a whole, higher
values of the intensity distribution are obtained when con-
sidering the even dispersions coefficients. We also note the
presence of subpulses. In this case, the amplitude of CW is
high, and the transverse distribution is symmetric. In Fig. 14,
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FIG. 11. (a) 3D surface plot showing the integrated gain,
in the plane (�, d6r); (b) integrated gain as a function of the
frequency �, for the various of sixth-order of dispersion coefficient
for P0 = 2 × 10−1, q3r = 5 × 10−1, q3s = 5 × 10−1, d2r =
−5 × 10−1, d2s = 5 × 10−1, d3r = d3s = −1 × 10−2, d4r =
−1 × 10−2, d4s = −18 × 10−3, d5r = −9 × 10−3, d5s =
−1 × 10−3, d6s = 55 × 10−4, γr = −9 × 10−4.
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FIG. 12. (a) The chart of stability. (b) Transversal distribution
of the modulation instability at ξ = 117 × 101m for modulation
stable (solid line) and modulation unstable (dashed line). The
physical parameters are P0 = 2 × 10−1, q3s = 4 × 10−1, d3s =
d3r = −1 × 10−2, d4r = −2 × 10−2, d4s = −18 × 10−3, d5r =
9 × 10−3, d5s = −4 × 10−3, d6s = −9 × 10−4, γr = −99 × 10−4,

and (b) solid line (d6r = 0; q3r = 0), dashed line (d6r = 4 ×
10−1, q3r = 1).
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FIG. 13. Transversal distribution of the modulation instability at
ξ = 12 × 102m for even dispersion (solid line) and full dispersion
(dashed line). The physical parameters are P0 = 1, q3s = 1, q3r =
4 × 10−3, d3s = d3r = −1 × 10−2, d4r = −2 × 10−2, d4s =
−2 × 10−2, d5r = 89 × 10−4, d5s = −1 × 10−3, d6s =
−9 × 10−4, d6r = −1 × 10−4, γr = −99 × 10−4.

FIG. 14. Comparison of map solitons as a function of higher-
order d6s term through (a) energy and (b) center of mass.

we compare the map of solitons as a function of d6s effect
through energy [see Fig. 3(d)] and the dips of center of mass
[see Fig. 14(b)]. These results are in good agreement with
those from Fig. 3(d).

C. Effect of intrapulse Raman scattering and their correction
terms

Here, we further analyze the influence of self-frequency
shift and their correction terms on the MI using the CQSCGL
equation with higher-order dispersions. The self-frequency
shift effect is generally presented as the gradient of non-
linearity, which brings about additional instability regimes
on MI [78]. Figure 15 shows the integrated MI gain as a
function of the input power P0, taking into account the self-
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FIG. 15. (a) 3D surface plot showing the integrated gain, in
the plane (�, P0). (b) Maximum gain as a function of P0, with
�max(THz) = 3.1, for different physical situations. The parameters
are q3r = 4 × 10−1, q3s = 1, d3r = d3s = −1 × 10−2, d4r =
−1 × 10−2, d4s = −2 × 10−2, d5r = 6 × 10−3, d5s =
−1 × 10−3, d6s = −6 × 10−2, d6r = 6 × 10−3, γr =
−1 × 10−3, m1r = 6 × 10−1, m2r = 8 × 10−2, m3r = 5 × 10−3.
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FIG. 16. Evolution [ξ (m), τ (ps)] of modulational instability in
the presence of self-frequency shift effect and their two correction
terms. (a) Full dispersion. (b) Even dispersions. The other parameters
are: P0 = 1, m1r = 6 × 10−1, m2r = 8 × 10−2, m3r = 5 × 10−3.

frequency shift effect associated with even dispersion effects
(dark dashed line), the full dispersion effects (solid blue line).
Neglecting the self-frequency shift contribution, the result is
displayed by the red dotted lines. The numerical evolution of
the CW inducing the MI in this regime is illustrated in Fig. 15.
Figure 16(a) shows the case of full dispersion coefficient, and
Fig. 16(b) gives results when the dispersion coefficients are
even. For the second case, we observe a pronounced concen-
tration of train of pulses at ξ = 6 × 102m.

From the above, it is evident that the self-frequency shift
and their correction terms increase the gain of instability, and
this is higher when including the even complex dispersions.

D. Effect of higher-order term of self-steepening

Here, we study in detail the effect of self-steepening with
correction terms on the MI using the CQSCGLE with higher-
order complex dispersion coefficients. Neglecting the impact
of the self-frequency and their correction terms, Fig. 17 shows
the maximum gain as a function of the input power P0, where
solid line represents the maximum gain with full complex dis-
persion coefficients and dotted lines represent the case when
even dispersion is considered.

Figure 18 illustrates the propagation of the CW in the pres-
ence of self-steepening in two dispersion cases. In Fig. 18(a),
we investigated the case of full dispersion, where it appears
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FIG. 17. The maximum gain as a function of power P0 with
�max(THz) = 3.1, for different physical situations. The physical pa-
rameters are n1s = 4 × 10−1, n2s = 8 × 10−2, n3s = 8 × 10−3.

FIG. 18. (a) Evolution [ξ (m), τ (ps)] of modulational instabilty
in the presence of self-steepening effect and their two correction
terms. (a) Full dispersion. (b) Even dispersions. The other parameters
are P0 = 1, n1s = 2 × 10−1, n2s = 1 × 10−2, n3s = 1 × 10−3.

that more trains of optical pulses are generated from the early
stage of MI propagation.

The map of the soliton obtained through the center of mass
versus the self-steepening n1s is shown in Fig. 19. Based on
the corresponding bifurcation diagram, several solitons are
induced for different values of n1s.

E. Full model

In this section, the emergence of wave patterns under the
activation of MI is studied in the full model equation (1). Note
that the critical frequency boundary of the MI has been deter-
mined analytically in Eq. (21), which does not depend on the
real parts of dispersion and nonlinearity gradient coefficients.
Figure 20 presents the statistical diagram showing the degree
of influence of the different physical parameters that come
into consideration on the boundaries of the frequency domain
of the MI. Note that taking the horizontal line corresponding
to the critical perturbation frequency at zero, the boundary
domains of the MI decrease due to physical effects related
to the presence of some points under this horizontal line,
whereas the points above the line increase the MI frequency
domain.

We also note that the higher-order of spectral filtering in-
creases the boundaries of the MI more than any other physical
effect. The boundary domain of the MI is more sensitive to
d4s, d6s and the propagation distance ξ . To investigate the
MI, we show in Fig. 21(a) the dependence of the MI gain
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FIG. 19. Map soliton through the dips of the center-of-mass as a
function of the self-steepening n1s.
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FIG. 20. Influence of the physical parameters on the critical fre-
quency using sensitive analyses.

against P0 and temporal detuning frequency �. In Fig. 21(b),
we observe the influence of the input power in the MI gain
spectrum. For small values of the input power, the instability
gain does not exist at �. An increase of the input power leads
to an increase of the instability gain associated with two sym-
metrical side lobes that maintain their shapes. In Fig. 21(c), we
observe the profile of the integrated MI gain as a function of
�, and d4r . In Fig. 21(d), we have three regions of instability
(the first is located around the zero frequency �(THz) = 0,

and the two others are symmetric from the zero frequency) for
a value of d4r = −3. The region of instability associated with
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FIG. 21. (a) 2D surface plot showing the integrated gain, in
the plane (�, P0.) (b) 2D plot for various values of P0. when
d4r = −2 × 10−2. (c) 3D surface plot showing the integrated gain, in
the plane (�, d4r), when P0 = 1. (d) 2D a plot as a function of � for
various values of d4r . Parameters are q3s = 1, q3r = 4 × 10−1, d3r =
−34 × 10−3, d3s = −1 × 10−2, d4s = −48 × 10−3, d5r =
8 × 10−3, d5s = −1 × 10−3, d6s = −3 × 10−3, d6r = 6 ×
10−3, γr = −99 × 10−4, n1s = 2 × 10−1, n2s = 5 × 10−3, n3s =
2 × 10−3, m1r = 6 × 10−1, m2r = 8 × 10−2, m3r = 1 × 10−3.

-2 -1 0 1 2
-0.2

-0.1

0

0.1

0.2

-2 -1 0 1 2
0

1000

2000

3000

4000

5000

6000

7000

-4 -2 0 2 4
-3

-2

-1

0

1

2

3

-4 -2 0 2 4
0

2

4

6 104

(a)

(c)

(d)

(b)

FIG. 22. (a) 2D surface plot showing the integrated gain, in the
plane (�, d5r) when d6r = 6 × 10−3. (b) 2D plot for the various
value of d5r . (c) 2D surface plot showing the integrated gain, in
the plane (�, d6r), when d5r = 8 × 10−3. (d) 2D plot as a func-
tion of � for various values d6r Parameters are as follows: P0 =
5 × 10−1, d4r = −2 × 10−2, and the other parameters are the same
as in Fig. 21.

the gain is highly affected by the values of d4r as it is obvious
in Fig. 22(d) for d4r = −3 × 10−1 and d4r = 1 × 10−1.

Figure 22 shows the plot of the integrated MI gain as a
function of the higher-order dispersion coefficients d5r and
the frequency of the perturbation amplitude �. In Figs. 22(a)
and 22(b), an instability gain is developed, induced by two
higher-order dispersion coefficients, d5r .

Figure 22(c) depicts the variation of the instability region.
As we can see, reversed phenomena from Fig. 22(d) are ob-
served. Results from numerical simulations of the full model
equation of the CW are shown in Fig. 23. Figure 23(b) gives
the profile of CW for P0 = 1. Also shown is the distribution
of instability at ξ = 1222m.

V. CONCLUSION

We have exclusively reported the relationship between
the theory of MI and the bifurcation theory of solitons in
doped optical fibers through indicators like the bifurcation
diagram and the energy. From a cubic-quintic-septic complex
Ginzburg-Landau equation with higher-order dispersion and
gradient terms, the linear stability analysis has been used
to find the expression of the MI gain, along with bound-
ary domains of MI. Moreover, an extended Lange-Newell
criterion for the stability and/or instability of Stokes waves
has been obtained. In a comprehensive parametric analysis,
dopant effects have been regarded analytically and numeri-
cally. Principally, through the integrated MI gain, two side
bands of MI were detected, and one debated on their relation-
ship with the pyramidal form of the maximum gain for the
odd order dispersion coefficients. Coupled to the bifurcation
theory, numerical investigations of our analytical predictions
have led to their satisfactory confirmation, via the generation
of several solitons with different energies at the same distance.
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FIG. 23. Numerical evolution [ξ (m), τ (ps)] of the modulational
instability in the full model: (a) Propagation of the CW when P0 = 1.

(b) Transverse distributions of the intensity at position ξ = 1222m,

considering full dispersion (solid line) and even dispersion (dashed
line). (c) Propagation when P0 = 1.5. (d) Energy with full dispersion
(solid line) and even dispersion (dashed line). Parameters are the
same as in Fig. 21.

While the odd dispersion coefficients were found to reduce
the intensity of the continuous wave, the even dispersion co-
efficients, for their part, supported the appearance of several
regions of instability through the integrated MI gain, the main
consequence being an increase of the maximum gain due
to nonlinearity gradients and their corresponding correction
terms. Other indicators like the center of mass also opened a
new route to some excellent physical features of MI that will
be useful in future studies devoted to the nonlinear manifes-
tation of MI. To conclude, the procedure adopted here can
be employed to investigate other signatures of MI such as
chaotic dynamics of solitons, which reinforces the universality
of bifurcation theory and makes it more effective and very
attractive, especially in dissipative systems.
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APPENDIX

Here, we have the coefficients An of the solution Eq. (9)

A12 = d6r
2, (A1)

A11 = 2d5rd6r, (A2)

A10 = −(
2d4rd6 r + d5r

2
)
, (A3)

A9 = −2(d4rd5r + d3rd6r ), (A4)

A8 = 2(d5rd3r + d2rd6r ) + d4r
2, (A5)

A7 = 2(d4rd3r + d5rd2r ) + 2d6rm1rP0A2
ξ

+ 4d6rm2rP0
2A4

ξ + 6d6rm3rP0
3A6

ξ , (A6)

A6 = − 2d2rd4r − d3r
2 − 2P0(d6rd2r + d5rm1r )A2

ξ

− 4P0
2(d5rm2r + d6rq2r )A4

ξ −6P0
3(d6rq3r + d5rm3r )A6

ξ ,

(A7)

A5 = − 2d2rd3r − 2P0( d4rm1r + d5rq1r )A2
ξ

− 4P0
2(d4rm2r + d5rq2r )A2

ξ , (A8)

A4 = d2r
2 + 2P0(d4rq1r + d3 rm1r )A2

ξ

+ 4P0
2(d4rq1r + d3rm2r )A4

ξ

+ 6P0
3(d4rq3r + d3rm3r )A6

ξ , (A9)

A3 = 2 P0(d3rq1r + d2rm1r )A2
ξ + 4P0

2(d3rd4r + d2rm2r )A4
ξ

+ 6P0
3(d2rm3r + d3rq3r )A6

ξ , (A10)

A2 = 9P0
6n3s

2A12
ξ +12P0

5n3sn2sA
10
ξ +2P0

4
(
2n2s

2+3n1sn3s
)
A8

ξ

+ 2P0
3(2n1sn2s − 3q3rq3r )A6

ξ

+ P0
2
(
n1s

2 − 4d2rq2r
)
A4

ξ − 2A2
ξ d2rq1rP0, (A11)

A1 = 2P0
3q2sn1sA

6
ξ + 4 P0

4(n2sq3s + 2q3sn1s)A8
ξ

+ 2P0
5(3q2sn3s + 4q3sn2s)A10

ξ + 12P0
6q3sn3sA

12
ξ ,

(A12)

A0 = −P0
4
(
q2s

2A8
ξ + 4q3sP0A10

ξ q2s + 4q3s
2P0

2A12
ξ

)
. (A13)

The coefficients of the frequency detuning in the full model
defined in Eq. (16) are

C0 = d4s
3

27d6s
3 − d2sd4s

6d6s
2 + P0

2A4
ξ (2q3sP0A2

ξ + q3s)

2d6s
, (A14)

C1 =
(

81(�)2 + 12

(
d2s

d6s
− d4s

2

3d6s
2

)3
)1/2

, (A15)

where

� = − 2d4s
3

27d6s
3 + d2sd4s

3d6s
2 − P0

2A4
ξ (2 q3sP0A2

ξ + q2s)

d6s
. (A16)

The correction term of the Lange-Newell criterion defined in
Eq. (18) is

Y11 = − d6s
2�10

2P0
+ (2d6sd4s − 2d4rd6r )�8

2P0

+
( − 2d2sd6s + 2d2rd6r − 2d3sd5s − d4s

2
)
�6

2P0

+
(
2P0q1sd6s + 4P2

0 q2sd6s − 4d6rP2
0 q2r

)
�4

2P0

+
(
6ns2P2

0 d5s + 4n1sP0d5s + 8d5sn3sP3
0

)
�

4

2P0

+
( − 2d6rP0q1r − 2d4 rd2r + 2d2sd4s

)
�

4

2P0
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+
( − 8d3sn3sP3

0 + 2d4 rP0q1r − 4d3sn1s
)
�2

2P0

+
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6 d4 rP3
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