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Generalized sixth-order dispersion solitons

Y. Long Qiang,1,* Tristram J. Alexander,1 and C. Martijn de Sterke1,2

1Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, NSW 2006, Australia
2The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia

(Received 8 September 2021; accepted 6 January 2022; published 2 February 2022)

Encouraged by recent experimental breakthroughs, we investigate the types of bright solitons that can exist
in the presence of a Kerr nonlinearity and quadratic, quartic, and sextic dispersion by examining the nature
of the soliton tails. We verify the soliton shape by full numerical calculations and find analytic solutions for
some parameters. We reveal the sensitivity of the interaction dynamics to the particular choice of the dispersion
parameters. These results provide a framework for experiments in this regime and for exploring parameter spaces
with even higher dimensions.
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I. INTRODUCTION

Conventional optical solitons, pulses that retain their shape
through the balance of the Kerr nonlinearity and quadratic
dispersion, have been extensively studied [1–5]. Solitons
have numerous optical applications, including in ultrafast
lasers [6,7], telecommunication systems [8–11], and super-
continuum generation [12–14]. Since quadratic dispersion is
generically the dispersion of lowest order, higher orders of
dispersion have traditionally been considered to be a pertur-
bation. Examples are the work of Karlsson and Höök [15] and
Akhmediev et al., who investigated solitons in the presence of
both quadratic and quartic dispersion [16]. Karlsson and Höök
found a stable analytic solution [15], which was confirmed
by Piché et al. [17], whereas Akhmediev et al., working in a
different parameter regime, reported different stable solitons
with oscillations in the tails. The effects of cubic dispersion
has also been investigated [18–22], but here we focus on even
orders.

The recent discovery of pure quartic solitons, entirely de-
pendent on negative quartic dispersion, rather than quadratic
dispersion, has changed our perception of optical solitons, and
has opened up new areas to explore [23–25]. Pure quartic soli-
tons were discovered in a silicon photonic crystal waveguide
in which the quadratic and cubic dispersion are negligible at
a particular wavelength and the quartic dispersion is nega-
tive [25]. This work was followed by a thorough theoretical
investigation of these solitons [23]. Runge et al. subsequently
reported a fiber laser that contains an adjustable pulse shaper
and that can emit solitons with programmable dispersion [26].
This not only enabled a complete study of pure-quartic soli-
tons, but also opened the way to the investigation of solitons
with other unusual types of dispersion. For example, this
laser was used to demonstrate the experimental observation
of pure higher order solitons with dispersion up to 10th order,
which was accompanied by numerical results up to the 16th

order [27].
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The laser of Runge et al. is not only able to emit solitons
with pure orders of dispersion, but also with mixed orders
of dispersion [28]. It is therefore important to consider how
the interplay of different dispersion orders affects the soliton
characteristics. The parameter space of pulselike solutions
with quadratic and negative quartic dispersion was investi-
gated analytically and numerically by Tam et al. [24]. This
work revealed a large family of soliton solutions with vary-
ing pulse shapes of which the analytic solution of Karlsson
and Höök [15], and the solutions with oscillating tails of
Akhmediev et al. [16] are natural members, putting them in a
wider conceptual framework. This work analytically divided
the parameter space into regions with exponential tails, os-
cillating tails, and a region that does not support pulselike
solutions [24].

Having acquired an understanding of the three-dimensional
parameter space spanned by the nonlinearly induced phase
shift, and the quadratic (second order) and quartic (fourth or-
der) dispersion, it is natural to consider even higher dispersion
orders. Therefore, in this paper we investigate the four-
dimensional parameter space that also includes negative sextic
(sixth order) dispersion. We introduce novel solution regions,
distinct from the results with second-order and fourth-order
dispersion and help to outline approaches for analyzing bright
pulselike soliton solutions at any dispersion order.

The first step in our investigations is an analysis of the tails
of the solutions, where the nonlinear effect can be neglected.
The parameter space we are considering can have solitons
with exponentially decaying tails and solitons with oscillatory
tails, but these behaviors compete, requiring us to identify the
dominant effect. The competition is stronger and more varied
in our four-dimensional parameter space, compared to the
three-dimensional parameter space considered before [24].
We find boundaries demarcating the different behaviors, one
of which is new and has no equivalent in the fourth-order
dispersion case [24].

Since the interaction between solitons is mediated by their
tails [29,30], it is interesting to consider how the oscillations
affect the mutual interaction. To this end we conduct studies
of the dynamics of coupled pulses within different regions of
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parameter space, qualitatively observing the interaction. We
find that solutions from regions with oscillating tails can repel
or attract depending on the initial separation. In contrast, for
solitons with exponential tails the interaction always has the
same sign.

As part of our studies of the large parameter space we also
find an exact analytic solution, analogous to that of Karlsson
and Höök for the pure quartic case [15]. Our results are
numerically confirmed, and promise an avenue into finding
more families of exact analytic solutions within the expanded
parameter space. Numerical evolution studies imply that all of
these solutions are stable.

The outline of this paper is as follows. In Sec. II we outline
our mathematical model. In Sec. III we investigate the possi-
ble pulselike solutions in the parameter space of the nonlinear
phase shift, and the second-order, fourth-order, and (negative)
sixth-order dispersion coefficients. However, we first consider
a special case in Sec. III A, with additional ones discussed in
Secs. A 1 and A 2. Whereas the work in Sec. III is analytic,
in Sec. IV we augment this with fully numerical static soli-
ton solutions and with extension of the Karlsson and Höök
solution [15] to 6th order dispersion. In Sec. V we present
our investigation of the interaction dynamics. In Sec. VI we
discuss our results and conclude.

II. MODEL

We consider the possible solutions for optical solitons
when combining the effects of even order dispersion effects up
to sixth-order dispersion. The evolution of these solitons can
be described by the modified nonlinear Schrödinger equation:

i
∂ψ

∂z
− β2

2

∂2ψ

∂T 2
+ β4

24

∂4ψ

∂T 4
− β6

720

∂6ψ

∂T 6
+ γ |ψ |2ψ = 0, (1)

where ψ (z, T ) is the pulse envelope, z the propagation coor-
dinate, T the local time, and γ the nonlinear parameter, which
we take to be positive. The βn are the nth-order dispersion
coefficients, where βn ≡ ∂nβ/∂ωn = ∂n−1v−1

g /∂ωn−1, with β

the mode propagation constant and vg the group velocity.
We are interested in stationary solutions of the form

ψ (z, T ) = u(T ; μ)eiμz, which satisfy

−μu − β2

2

d2u

dT 2
+ β4

24

d4u

dT 4
+ |β6|

720

d6u

dT 6
+ γ u3 = 0, (2)

and where u can be taken to be real. We have taken β6 < 0
as is necessary for the existence of bright, pulselike solutions.
For the existence of such solutions it is moreover necessary
that μ > 0; if μ < 0, the soliton spectrum intersects the linear
dispersion relation leading to energy exchange between the
soliton and linear waves, so the soliton cannot be stationary.

We can find necessary conditions for soliton existence, and
gain insight into the soliton properties, by examining the lin-
ear wave solutions to Eq. (2), under the linear approximation
(γ = 0), valid when the wave amplitude is small. The solu-
tions to the resulting equation are linear combinations of terms
of the form exp(λτ ). The λ satisfy the algebraic equation,

−μ − β2

2
λ2 + β4

24
λ4 + |β6|

720
λ6 = 0. (3)

FIG. 1. Schematic of the four root configurations of Eq. (3),
indicating the nature of the tail of the soliton solutions. Here
β6 = −1 ps6mm−1, β4 = −2 ps4mm−1, and μ = 1 mm−1. (a) β2 =
2 ps2mm−1 (Configuration A); (b) β2 = 0 ps2mm−1 (Configura-
tion B); (c) β2 = −2 ps2mm−1 (Configuration C); and (d) β2 =
−4 ps2mm−1 (Configuration D). Each is indicated by green dots in
Fig. 3(a). Features of the configurations are summarized in Table I.

In Sec. III we identify the possible linear wave solutions to
Eq. (3), and infer from these solutions the nature of possible
associated soliton solutions. In Sec. IV we validate our linear
analysis with numerically and analytically calculated soliton
solutions to Eq. (2) and confirm their existence.

III. LINEAR ANALYSIS

In order to identify the properties of soliton solutions in
the sixth-order dispersion case, we employ linear analysis on
Eq. (3), noting first that it has six roots. The positions of these
roots in the complex plane allow us to draw analytic conclu-
sions regarding the tails of the soliton solutions [16,23,27].
Since Eq. (3) is a cubic equation in λ2 with real coefficients,
the possible combinations of the roots is limited. The solutions
consist of pairs of real solutions (±λ), pairs of imaginary
solutions (λ, λ	) or, equivalently (±λ), or a quartet of complex
solutions (±λ, ±λ	). Since the existence of bright, pulselike
solutions requires μ > 0, the product of all six roots needs to
be positive. This implies that the only allowed configurations
of the roots are (i) two pairs of imaginary roots and one pair
of real roots [Configuration A; see Fig. 1(a)]; (ii) a quartet of
complex roots and a pair of real roots [Configurations B and
D; see Figs. 1(b) and 1(d)]; and (iii) three pairs of real roots
[Configuration C; Fig. 1(c)].

Imaginary roots, as in Configuration A [Fig. 1(a)], corre-
spond to harmonically varying solutions that do not decay;
hence such roots preclude pulselike solutions (unless the
associated coefficients vanish). In the coming sections Con-
figuration A is indicated with a black color on the parameter
plane. In contrast, real roots correspond to exponentially
decaying solutions as T → ±∞ whereas complex roots cor-
respond to oscillating tails [16]. For every root λ, the sign of
the real part determines the direction of decay. For Re(λ) > 0,
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TABLE I. Overview of the four distinct root configurations, illustrated in Fig. 1, and their features. The “color” entries refer to the color
coding of the regions in Figs. 2 and 3.

Label Root composition Tail Color Localized solution

A 4 Imaginary, 2 Real Trigonometric Black No
B 2 Real, 4 Complex Exponential, oscillatory Dark gray Yes
C 6 Real Exponential White Yes
D 2 Real, 4 Complex Exponential Light gray Yes

the corresponding roots describe the trailing edge of the pulse
and for Re(λ) < 0, the roots describe the leading edge.

The root Configurations B, C, and D [Figs 1(b), 1(c),
and 1(d)] correspond to pulselike, localized solutions. Since
the tails are a sum of exponentials, we expect the roots that
decay most slowly to dominate [27], i.e., the roots for which
|Re[λ]| is smallest. Thus in Configuration B [Fig. 1(b)], in
which the complex roots dominate, the solutions have os-
cillating tails [16,23,25,27]. Such solutions are indicated by
the dark gray color on the parameter plane. In Configuration
C [Fig. 1(c)] the tails decay exponentially; while in Config-
uration D [Fig. 1(d)] the real roots dominate and the tails
also decay exponentially. These solutions are represented in
white and light gray, respectively, on the parameter plane.
The labels and properties of these four regions are summa-
rized in Table I. We note that configurations B and D, which
combine real roots and a quartet of complex roots require at
least sixth-order dispersion, and hence were absent in previous
studies [24].

We use these distinct regions to define the parameter space
spanned by the parameters β6, β4, β2, and μ in Eq. (2). This
equation shows that there are only three free parameters, since
we can divide through by β6, or, alternatively, fix β6. Based on
the configuration of the roots we can then predict the type of
solution. Note that when μ → ∞, the sixth-order dispersion
dominates and the roots form a perfect hexagon, which is a
special case of Configuration B. We first consider the spe-
cial case, when β4 = 0, before considering the general case.
We consider two additional special cases in Appendices A 1
and A 2.

A. Special case: β2 �= 0 and β4 = 0

When β4 = 0, tail Eq. (3) simplifies to

−μ − β2

2
λ2 + |β6|

720
(λ2)3 = 0, (4)

which is a cubic polynomial in λ2. For β2 > 0, this polynomial
has one positive real root, and either two complex roots or
two negative real roots. Negative real roots of λ2 correspond
to imaginary roots for λ, and consequently solutions with no
localized pulse (Region A). Alternatively, a pair of complex
conjugate roots of λ2 correspond to a quartet of complex roots
for λ, and when these roots dominate [as in Fig. 1(b)] the tails
decay with oscillations (Region B). The boundary between
these regions is given by

μ0 = β2

3

√
120β2

|β6| , (5)

illustrated in Fig. 2, separating Regions A and B.

For β2 < 0, λ2 has a positive real root and a complex
conjugate pair of roots with negative real part. In terms of
λ, therefore, there are always two real roots and a quartet of
complex roots. The only remaining issue is whether the con-
figuration is B or D [Fig. 1(b) or 1(d)]. To determine this we
find the boundary μc between these regions, by considering
a sextic polynomial with real roots ±ar and complex roots
±ar ± iai. The condition for the coefficient of λ4 to vanish
is a2

i = 3a2
r /2, which corresponds to setting β4 = 0 in the

polynomial. Using this result and by matching with Eq. (4),
it is then straightforward to derive the boundary,

μc = 50

147

√
−210

β3
2

|β6| , (6)

separating solutions with dominant real roots (Region D),
from those with dominant complex roots (Region B). The
complete parameter plane for β4 = 0 is in Fig. 2.

The boundary μc requires a quartet of complex roots as
well as a pair of real roots, all with real parts of the same
magnitude. This requires the presence of at least six roots,
and hence dispersion of at least sixth order. In contrast, in the
fourth-order case, there only are boundaries of type such as μ0

[see Eq. (5)], which mark the transition between roots on the
real or imaginary axis, and roots in the complex plane [24].

FIG. 2. Cross section through parameter space for β4 = 0 and
β6 = −1 ps6 mm−1. The colors correspond to root configurations
given in Table I. The boundaries μ0 and μc are given in Eq. (5)
and (6), respectively.
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FIG. 3. Cross sections taken through the general parame-
ter space with β6 = −1 ps6 mm−1. (a) μ = 1 mm−1; (b) β4 =
−1.3 ps4 mm−1. The colors correspond to the regions given in
Table I. (Yellow dotted line) β2 = 0; (purple dotted line) β4 = 0;
(dark blue and orange curves) μ±

0 [Eq. (7)]; (red curve) μc [Eq. (8)];
(dark green dotted line) cross section of β4 = −1.3 ps4 mm−1 in
(a) corresponding to (b); (pink crosses) hyperbolic secant exact so-
lution discussed in Sec. IV B; (light green line) A, B, C, and D
correspond to the root configurations in Fig. 1.

B. General case

We now consider the general case with arbitrary β2,4 and
μ. In contrast to Sec. III A, our parameter space is now four-
dimensional. In order to visualize the general case, we fix β6

and use two two-dimensional cross sections of the resulting
three-dimensional parameter space. These cross sections [see
Figs. 3(a) and 3(b)] exhibit all four of the regions, including
Region C, indicated in white, in which all roots are real.
Though this configuration does not occur in Sec. III A, it does
arise in the special case when μ is small (see Appendix A 2).

We can obtain the boundaries for these generalized regions
analytically, by considering the cubic discriminant 
 [31]
of Eq. (3) in terms of λ2. For a cubic discriminant 
, the
condition 
 = 0 corresponds to the boundary between three

cubic real roots (
 > 0) and one cubic real root and two
cubic complex roots (
 < 0). For Eq. (3) this corresponds
to the boundary between Configurations B and D, and Con-
figurations A and C. We obtain the analytic boundaries μ±

0
separating these regions by rearranging the condition 
 = 0,
leading to

μ±
0 =

25β3
4 + 45β2β4|β6| ± √

5
√(

5β2
4 + 6β2|β6|

)3

9|β6|2 . (7)

The boundaries μ±
0 indicate when the cubic discriminant

changes sign, and as seen in Fig. 3, separate Regions A and
B, B and C, and C and D. We note that Region C, with six
real roots, requires β2,4 < 0, which explains why this region
was not present in the special cases in Secs. III A and A 1. In
the general case, it is bounded by both boundaries μ±

0 . The
boundary μ+

0 , which separates Regions B and C, is analogous
to the boundary in the fourth-order dispersion case between
pulselike solutions with exponential and oscillatory tails [24].

The final key boundary to be analytically identified is the
boundary μc, separating Regions B and D. Following the same
procedure as in Sec. III A, we determine the boundary to be
given by

μc = |β6|
720

w3 + w2s + wt, (8)

where s = 30β4/|β6|, t = −30β2/|β6|, r = −720μ/|β6|, and
w = (−6s ± √−48s2 + 336t )/42. This boundary is similar
to that given by Eq. (5) in Sec. III A.

We now have obtained an analytic expression for all the
boundaries between each of the regions for Eq. (3) in the
general case. As illustrated in Fig. 3, we have developed the
analytic framework to categorize all pulselike stationary solu-
tions of Eq. (1) in terms of the four distinct regions defined
by our root tail analysis. The purple dotted line represents
the special case β4 = 0 from Sec. III A and is consistent
with Fig. 2. The yellow dotted line represents the special
case β2 = 0 discussed in Appendix A 1 and is consistent with
Fig. 7.

IV. SOLITON SOLUTIONS

A. Numerical solutions

We can solve Eq. (2) numerically using the Newton
conjugate-gradient method [26,32], giving solutions in any re-
gion with decaying tails. In this way we confirm the allocation
of parameter space outlined in Sec. III, and the existence of the
single peak pulselike solutions.

Figures 4(a) and 4(b) show a single peak solution on lin-
ear and logarithmic scales, respectively, with a root structure
from Region C. However, the solutions are also representative
of solutions found in Region D. For both regions, the real
roots dominate and the tails are exponentially decreasing.
Figures 4(c) and 4(d) show a solution from Region B. The
tail oscillations are consistent with our analysis. Both of these
solutions are similar to those found in the presence of mixed
second- and fourth-order dispersion [24].

In contrast, the solution shown in Figs. 4(e) and 4(f), close
to the μc boundary, is novel and requires sixth-order dis-
persion. Note the low-amplitude oscillations, reflecting that
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FIG. 4. Soliton amplitude versus time for β6 = −1 ps6mm−1,
γ = 1 W −1 mm−1 and μ = 1 mm−1 for (a) solution with ex-
ponential tails with β2 = −3 ps2mm−1, β4 = −4 ps4mm−1 on a
linear scale, and (b) on a logarithmic scale. (c) and (d) Same
as (a) and (b) but for a solution with oscillatory tails with β2 =
0.5 ps2mm−1, β4 = −4 ps4mm−1. (e) and (f) Solution close to
boundary μc with β2 = −0.34 ps2mm−1, β4 = −0.1 ps4mm−1. (g)
and (h) Exact analytic solution (purple crosses in Fig. 3) with β2 =
−0.8518 ps2mm−1, β4 = −1.11415 ps4mm−1.

the exponentially decaying tails and the oscillating tails are
approximately equally strong. These features are observed in
both regions close to μc, and confirm the analytic features we
predicted in Sec. III A.

B. Exact analytic solution

The traditional soliton with second-order dispersion is an
exact analytic solution to the nonlinear Schrödinger equa-
tion [33,34]. For higher order dispersion, however, analytic
solutions have been far more difficult to find. Karlsson and
Höök’s solution in the form of the square of a hyperbolic
secant for mixed second-order and fourth-order dispersion
is amongst the few that have been reported [35]. Here, we
expand upon this solution to obtain an analytic solution of
Eq. (2).

For the mixed sixth-order case, we assume an exact ana-
lytic solution of the form,

u = A sech3(ατ ), (9)

where A and α are as yet unknown constants and find the
associated parameters in Eq. (2). To do so, we note that the
second derivative of the power of a hyperbolic secant function
satisfies

d2sechp(τ )

dτ 2
= p2sechp(τ ) − p(p + 1)sechp+2(τ ). (10)

Using this when substituting Eq. (9) into Eq. (2) we find

−μAsech3(ατ )+
9∑

q=3

Aqsechq(ατ ) + γ (Asech3(ατ ))3 = 0,

(11)

where the Aq are constants that can be found from Eq. (10)
and the summation only involves odd powers.

The linear terms in Eq. (11) consist of hyperbolic secant
terms of order 3, 5, 7, and 9 whereas the nonlinear term is
of order 9. For the equation to be satisfied, the prefactors
for each order of hyperbolic secant must cancel. Thus the
nonlinear term, which is ninth order, must match the ninth
order originating from the sixth-order derivative. This gives

γ A2 = 8!

6! 2
|β6|α6 = 28|β6|α6. (12)

Repeating this process for the lower orders 3, 5, and 7, all of
which originate from the linear terms, we obtain expressions
for the unknown coefficients,

α2 = −30

83

β4

|β6| , β2 = 1891|β6|
360

α4, μ = 245|β6|
16

α6.

(13)
Figures 4(g) and 4(h) show this solution, which is con-
sistent with the numerical result based on the Newton
conjugate-gradient method [32]. The location of this solution
in parameter space is shown by the purple cross in Fig. 3, and
is always located in Region C. Karlsson and Höök’s solution
in the fourth-order dispersion case is analogous in that it has
solutions that are exclusively located in the region with only
real roots, and thus both have exponential tails.

Equations (12) and (13) show that we can choose β4 β6,
and γ freely, and all other parameters are then given. Thus,
solitons as in Eq. (9) only exist in media with particular dis-
persion relations, and they have a particular amplitude: Given
β4 and β6, then β2 is prescribed, and, given γ , so are A and μ.
This contrasts with conventional nonlinear Schrödinger soli-
tons which exist for any β2 and any amplitude [5], and for the
solutions of Karlsson and Höök [15] for which β2 and β4 can
be chosen freely, but not the amplitude. These differences can
be understood as follows: The solutions have three degrees
of freedom (A, α, and μ), whereas the number of constraints
is given by the number of orders that enter equations of the
type Eq. (11). For conventional solitons q = 1, 3, so there
are two constraints, leaving one degree of freedom. For the
solutions of Karlsson and Höök q = 2, 4, 6, so there is no
freedom left. For solution (9) q = 3, 5, 7, 9 and so there is
one more constraint than degrees of freedom and so one of
the dispersion coefficients is prescribed.
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FIG. 5. Propagation of Gaussian pulses separated by 8 ps for
parameters shown by the green dots in Fig. 3(a), corresponding
to Configurations (a) A, (b) B, (c) C, and (d) D. The dispersion
parameters are given for the corresponding configurations in Fig. 1.

V. DYNAMIC RESULTS

In this section we determine numerically the stability of
our soliton solutions, and qualitatively investigate the role
of the soliton tails in the soliton interaction dynamics. We
solve the model Eq. (1) numerically using a split-step Fourier
method [32]. All simulations are carried out over a propaga-
tion distance of 100LNL, where

LNL = 1/(γ P), (14)

and P is the pulse’s peak power [5]. We take the nonlinear
length since the dispersion length is not uniquely defined in
the presence of mixed dispersion. Since the solutions we are
investigating balance the effects of the dispersion and the
nonlinearity, we use LNL as a proxy for the combined effects
of all dispersion orders. In all cases we found that the sta-
tionary solutions appear to be stable. We do not show results
of these studies, but rather consider the dynamics of coupled
solitons for each region in the parameter plane as they interact
through their low-amplitude tails. Solving Eq. (1) numerically
through the split-step Fourier method, allows us to examine
the dynamics of these interacting pulses.

We take two identical, in-phase Gaussian pulses, separated
in time as the initial condition. All have the full width at half-
maximum of 2.44 ps and peak intensity of 1.94 W, roughly
corresponding to the full solutions indicated by the green dots
for Configurations C and D in Fig. 3(a). By keeping a constant
Gaussian initial condition as the input pulse, we eliminate the
possible effect of the input pulse on the interaction dynamics,
allowing us to concentrate exclusively on the effects of the
dispersion. The initial separations are taken to be 8 ps (Fig. 5)
and 10 ps (Fig. 6), ensuring that the pulses interact weakly.
Taking all input pulses to be identical allows us to observe the
dependence of the interaction on the properties of the soliton

FIG. 6. As Fig. 5, but with the Gaussian pulses separated by 10 ps.

tails for Configurations A–D, and removing the dependence
on the detailed properties of the input pulses.

Figures 5(a) and 6(a) both correspond to Configuration
A where no pulselike solutions can exist. This initial condi-
tion almost immediately transforms into a purely oscillatory
solution, as expected. This shows that the linear properties
identified in Sec. III establish themselves very quickly. Con-
sidering now Figs. 5(b), 5(c), and 5(d) for the other three
configurations we note that the pulses do not disperse, but in-
teract in different ways. Figure 5(b) shows the coupled pulses
from Configuration B weakly attract each other. In Figs. 5(c)
and 5(d), corresponding to Configurations C and D, respec-
tively, the pulses also attract, but more strongly, and seem to
lead to the formation of a single pulse, which then separates
into two distinct pulses. This process occurs multiple times.
Although it appears to be periodic, particularly in Fig. 5(d), it
cannot be since the process leads to the formation of radiation
and so the pulse energies have to reduce over time. We note
that in further propagation in Fig. 5(b) (not shown) there are
always two distinct objects.

Figures 6(b), 6(c), and 6(d) are similar, except that the
larger initial separation leads to a weaker interaction. This
is most clearly seen in Figs. 6(c) and 6(d). Although the
interaction in Fig. 6(b) is also weaker than in Fig. 5(b), the
pulses now repel. This is consistent with our finding that
the tails in Configuration B oscillate in time. Figures 5(b)
and 6(b) show that this property is intrinsic to the dispersion
and does not depend on the initial condition. The soliton tails
are nonoscillating in Configurations C and D, and therefore
the sign of interaction does not depend on the pulse separation.

VI. DISCUSSION AND CONCLUSIONS

We have successfully formulated an analytic framework
to describe the behavior of bright pulselike solutions in the
presence of even dispersion up to sixth-order dispersion. Tak-
ing methods previously employed for fourth-order dispersion,
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we reduce the generalized nonlinear Schrödinger equation to
Eq. (2), by enforcing that the solution is stationary. By ne-
glecting the nonlinear term we study the low-amplitude tails
of the pulses; we find four solution types and the corre-
sponding boundaries between these solutions. Our results are
confirmed numerically. Our methodology from Secs. II and III
can be applied to any order. This means that we can use our
framework to analytically predict the tail behavior of even dis-
persion solutions at arbitrary order, based on what we discern
to be the dominant tail roots.

We identified two boundary types, μ0 and μc, which sepa-
rate exponential from oscillatory tail solutions. The transition
over the μ0 boundary from Region C to B, keeps the exponen-
tial decay rate (corresponding to the real part of the dominant
root) constant. However, it introduces an oscillating compo-
nent (corresponding to the imaginary part of the dominant
root), the frequency of which increases as the dominant root
becomes complex, while its amplitude remains approximately
constant [24]. In contrast, the newly found transition across
the μc boundary from Region D to B, keeps the frequency of
the oscillating component of the tail approximately constant,
but increases its amplitude as the purely real roots start to
dominate.

As the order of dispersion increases, we expect to see an
increasing variation in tail root configurations. However, the
understanding of the dominant tail root that we have acquired
allows us to predict the behavior as we consider these higher
order dispersion systems. Apart from degenerate cases, we
expect three types of transitions: the μ0 and μc boundaries, as
well as a boundary where the dominant behavior transitions
between two complex quartets. This would lead to a change
in the frequency of the tail oscillation, while the amplitude
is approximately constant. Such a transition requires at least
eighth-order dispersion and does not exist in the system we
are considering here.

We found an exact analytic solution, in Sec. IV B, given
by the cube of a hyperbolic secant, which corresponds to
Configuration C. This family of solutions traces a curve
through parameter space which remains in Region C. We have
not been able to find any other exact analytic solutions in
the parameter space. This exact solution is interesting in its
own right, but also acts as a starting point for the numerical
searches of solutions with different coefficients.

The solutions we found appear to be stable, persisting in
propagation over 100 nonlinear lengths. Having established
this we investigated the nature of soliton interactions. We
found that in Configurations C and D, for which the tails
exponentially decay, the sign of the interaction is independent
of the mutual soliton distance. However, for Configuration
B, for which the tails have additional oscillations, the sign
of the interaction does depend on the mutual distance. We
found that this is a property of the dispersion, independent
of the initial condition which we kept as a constant Gaus-
sian input. Although our analysis was qualitative and more
sophisticated ODE-based models can be used to analyze these
interactions [29], this is outside the scope of this work. Re-
search involving soliton interactions to this point has largely
been in the conventional soliton regime [29,30], or dealing
with kink and antikink interactions [36,37]. The most recent
studies involving interacting solitons including fourth-order

dispersion, have studied the stability of multipulse systems,
without rigorously examining the dynamics of these coupled
soliton systems [38,39]. Thus, coupled soliton systems, in
particular the unique behavior exhibited by solutions with
oscillatory tails, have largely remained unexplored. Although
our analysis has been qualitative, it suggests a rich area for
future research.
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APPENDIX: FOUR-DIMENSIONAL PARAMETER
SPACE—SPECIAL CASES

In this Appendix we consider two more special cases in
addition to that in Sec. III A, namely β2 = 0 (Sec. A 1) and μ

is small and positive (Sec. A 2).

1. Nonzero β4 and β2 = 0

Setting β2 = 0 we find the tail equation is

−μ + β4

24
(λ2)2 + |β6|

720
(λ2)3 = 0, (A1)

which, as in Sec. III A, we treat as a cubic equation in λ2.
For β4 > 0 it may have one positive and two negative real
roots (no pulselike solutions), or one positive root and a pair
of complex roots (pulselike solutions). The boundary between
these regions is given by

μ0 = 50

9

β3
4

|β6|2 , (A2)

illustrated in Fig. 7 separating Regions A and B.

FIG. 7. Cross section through parameter space for β6 =
−1 ps6mm−1 and β2 = 0. The colors correspond to regions given in
Table I (Regions A and B).
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In contrast to the β4 = 0 case (Sec. III A), roots for λ of the
type ±ar and ±ar ± iai are inconsistent with the requirement
β2 = 0, except for the trivial case ar = ai = 0, therefore there
is no equivalent of the μc boundary. In fact it is straight-
forward to see that the complex roots always dominate for
β2 = 0. The corresponding parameter plane is shown in Fig. 7,
with only the boundary μ0.

2. Small, positive μ

We first consider μ = 0, so that Eq. (3) reduces to

−β2

2
λ2 + β4

24
λ4 + |β6|

720
λ6 = 0, (A3)

which has the cubic roots,

λ2 = 0, or λ2 = 15β4

|β6|

(
−1 ±

√
1 + 5

8

β2|β6|
β2

4

)
. (A4)

When μ becomes small and positive the root at the origin
shifts to the positive real axis when β2 < 0 whereas it shifts to
the negative real axis when β2 > 0. From this we immediately
see that there are no pulselike solutions when β2 > 0. For
β2 < 0, the result depends on the sign of β4 and the sign of
the discriminant in Eq. (A4). When pulselike solutions do
exist then the root near the origin dominates—therefore, all
such solutions have exponential tails. With this information
we construct Fig. 8.

FIG. 8. Cross section through the parameter space for small,
positive μ and β6 = −1 ps6 mm−1. The colors correspond to regions
given in Table I (Regions A, C, and D). The blue curve bounding
Region D is given analytically by β2 = −8β2

4 /5β6.

The results in the specific cases discussed in Secs. III A,
A 1, and A 2 give an indication of what may be expected in
the general case. Although Fig. 8 does not show regions with
oscillating tails we would expect these to become increasingly
prominent as μ increases based on Figs. 2 and 7, particularly
for small β2 and β4 < 0.
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