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We investigate the response to radio-frequency driving of an ultracold gas of attractively interacting fermions
in a one-dimensional optical lattice. We study the system dynamics by monitoring the driving-induced population
transfer to a third state, and the evolution of the momentum density and pair distributions. Depending on the
frequency of the radio-frequency field, two different dynamical regimes emerge when considering the evolution
of the third-level population. One regime exhibits (off-)resonant many-body oscillations reminiscent of Rabi
oscillations in a discrete two-level system, while the other displays a strong linear rise. Within this second
regime, we connect, via linear response theory, the extracted transfer rate to the system single-particle spectral
function and infer the nature of the excitations from Bethe ansatz calculations. In addition, we show that this
radio-frequency technique can be employed to gain insights into this many-body system coupling mechanism
away from equilibrium. This is done by monitoring the momentum density redistributions and the evolution
of the pair correlations during the drive. Capturing such nonequilibrium physics goes beyond a linear response
treatment and is achieved here by conducting time-dependent matrix-product-state simulations.
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I. INTRODUCTION

In recent years, significant experimental efforts have been
devoted to dynamically generate complex states and study
their evolution. Ultrafast optical pulses were used to pho-
toinduce phase transitions in strongly interacting solid-state
materials [1–6] and similar successes were reported for ul-
tracold atoms using time-dependent electromagnetic fields
[7–9]. However, uncovering the mechanisms underlying the
nonequilibrium dynamics of strongly correlated matter is still
a subject of active research.

Radio-frequency (rf) spectroscopy has established itself as
a powerful experimental probe to study the equilibrium prop-
erties of ultracold atomic gases [10,11]. Based on the idea of
coherent transfer between different internal states of the atom
(e.g., different hyperfine levels of the electronic ground-state
manifold), rf spectroscopy has been successfully applied to
measure (unitarity-limited) clock shifts around a Feshbach
resonance [12–14] and study pairing and molecule forma-
tion on the Bose-Einstein condensate side of the Feshbach
resonance [15–18], as well as the excitation spectrum and un-
derlying pairing gap of interacting Fermi gases [19–21]. More
recently, a spatially resolved rf technique has been developed
[22], circumventing complications of density inhomogeneities
in harmonically trapped gases, while the momentum-resolved
rf spectroscopy introduced in [23] gives direct access to the
spectral function.

Commonly, the obtained rf spectra are interpreted within
the framework of linear response. There the rf field is assumed
to only weakly perturb the system, implying that the observed
response is that of the unperturbed equilibrium system. In this

limit, the transfer rate is related to a response function. In the
absence of final-state interactions, the expression simplifies
and the transferred particle rate can be shown to be directly
related to the single-particle spectral function [11,24–26], as
observed in [23].

While final-state interactions can be neglected in certain
systems due to a suitable arrangement of the Feshbach reso-
nance of the Zeeman levels [21], generally this is not the case.
The spectra are changed both quantitatively and qualitatively,
which complicates their interpretation significantly [27–31].

We use a combination of time-dependent matrix-product-
state simulations [32–34] and analytic techniques to study
the rf response of a half-filled attractive Hubbard model. We
investigate the system dynamics by monitoring the driving-
induced population transfer to a third state, and the evolution
of the momentum density and superconducting pair dis-
tributions resulting from this perturbation. Considering the
evolution of the population in the third level, we observe
two distinct dynamical regimes. One is reminiscent of Rabi
oscillations in a driven two-level system, while the other one
displays a resonant behavior, indicating the rf coupling to
a continuous band of excitations. We interpret some of the
features occurring at weak driving by comparing our numeri-
cal results to analytical calculations based on linear response
theory combined with Bethe ansatz calculations. From this
analysis, we find that certain excitations occurring within
the spin-charge continuum of the attractive Hubbard model
strongly couple to the rf drive. These excitations can be ex-
perimentally detected by monitoring the momentum-resolved
density of the final state. Moreover, from the evolution of the
momentum density distribution for all three states and the
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superconducting pair correlations, we can gain insights into
the coupling mechanisms at work within this attractively in-
teracting many-body system. Monitoring the nonequilibrium
behavior for these quantities is only possible within our nu-
merical simulations as a linear response treatment would not
succeed in capturing their full dynamics.

The paper is organized as follows. We begin in Sec. II by
describing the theoretical model and the analytic techniques
used to study the rf response of the interacting Fermi gas. In
Sec. III we introduce the numerical method used to simulate
the many-body problem. Section IV introduces the central
observables and presents the results obtained for a weakly
interacting initial state, while Sec. V contrasts this to the re-
sponse for a strongly interacting system. Finally, we conclude
with a summary in Sec. VI.

II. RADIO-FREQUENCY DRIVING OF ATTRACTIVELY
INTERACTING FERMIONS

We study the dynamic response to an rf field of attractively
interacting fermions prepared in two internal levels and con-
fined to a one-dimensional lattice geometry. In the following
sections we describe how we model the Fermi gas and the rf
drive and briefly discuss the limit of vanishing interactions in
the initial state.

A. Attractive Hubbard model

The Fermi gas is initially prepared in two attractively in-
teracting internal states and is confined to a one-dimensional
optical lattice. For sufficiently deep lattice potentials, the
unperturbed Hamiltonian describing this system can be ap-
proximated by the Hubbard Hamiltonian

H0 = −J
L−1∑
i=1

(ĉ†
i,σ ĉi+1,σ + H.c.) + U

L∑
i=1

n̂i,1n̂i,2, (1)

where ĉi,σ (ĉ†
i,σ ) is the fermionic annihilation (creation) op-

erator of the internal level σ = {1, 2} on site i, n̂i,σ is
the corresponding number operator, J denotes the hopping
amplitude of the fermions, U < 0 is the attractive on-site
interaction, and L is the number of lattice sites. At half filling
the ground state of the Hubbard model undergoes a quantum
phase transition at U = 0, where the system is a Mott insulator
for all U > 0 and metallic for U � 0 [35] (and references
therein). For half filling and U < 0, conformal field theory
and bosonization predict superconducting (SC) and charge-
density wave (CDW) correlations both to decay algebraically
as |d|−ν (ν = 1), where d is the distance between the sites
on which the correlations are taken. In contrast, spin-density
wave correlations are exponentially suppressed with the dis-
tance d (and vice versa for U > 0). Below half filling, SC and
CDW correlations decay algebraically with distance, but the
SC correlations dominate for attractive interactions [35,36].

B. Identifying the excitations above the ground state

The one-dimensional Fermi-Hubbard model H0 [Eq. (1)] is
integrable and exactly solvable using Bethe ansatz techniques
[35,37]. In this section we briefly summarize the derivation
of the Bethe ansatz for the attractive Hubbard model with an

emphasis on its excitation spectrum, as this will be important
in the analysis of the weak rf drive.

Within the Bethe ansatz, the obtained eigenfunctions are
determined by two sets of quantum numbers {q j} and {λm},
known as charge momenta and spin rapidities, respectively.
Using these quantum numbers, the energy E and momenta P
of the elementary excitations can be expressed as

E = −2J
N1+N2∑

j=1

cos(q j ), P =
(

N1+N2∑
j=1

q j

)
mod2π, (2)

where Nσ is the total number of fermions in internal level σ . In
general (particularly in the attractive model), these parameters
are complex and satisfy the Lieb-Wu equations

eiq j L =
N2∏

m=1

λm − sin(q j ) − iU/4

λm − sin(q j ) + iU/4
,

N1+N2∏
j=1

λm − sin(q j ) − iU/4

λm − sin(q j ) + iU/4
=

N2∏
n �=m

λm − λn − iU/2

λm − λn + iU/2
. (3)

At half filling (and zero magnetic field) in the thermodynamic
limit, one obtains decoupled closed-form equations for the
elementary spin- and charge-wave excitations. They are given
for the elementary spin excitations (sw) by

εsw(q) = |U |
2

− 2J cos(q)

+ 2
∫ ∞

0

dω

ω

J1(ω) cos[ω sin(q)]e−ω|U |/4

cosh(ωU/4)
,

psw(q) = q −
∫ ∞

0

dω

ω

J0(ω) cos[ω sin(q)]e−ω|U |/4

cosh(ωU/4)
(4)

and for the elementary charge excitations (cw) by

εcw(λ) = 2
∫ ∞

0

dω

ω

J1(ω) cos(ωλ)

cosh(ωU/4)
,

pp
cw(λ) = π −

∫ ∞

0

dω

ω

J0(ω) sin(ωλ)

cosh(ωU/4)

= π − ph
cw, (5)

where Jn(ω) are Bessel functions and pp (h)
cw denotes the

momentum of a charge-wave excitation of particle (hole) char-
acter, which are also referred to as antiholon and holon [35].

Figure 1 shows the elementary excitations of the Hub-
bard model at half filling for weak [Fig. 1(a)] and strong
[Fig. 1(b)] attraction. We note that the spin wave is gapped,
while the charge-wave remains gapless. However, it is im-
portant to emphasize that the physical excitations reached by
the rf drive need to be constructed from even combinations
of elementary excitations. The spin-charge continuum, for
instance, is constructed from two elementary excitations as
εsc = εsw(q) + εcw(λ), where k = psw(q) + ph

cw(λ) [38]. The
various excitation continua for weak and strong interaction
are shown in Figs. 2 and 3, respectively. We find the charge
triplet and singlet excitations to be gapless [Figs. 2(a) and
2(b) and Figs. 3(a) and 3(b)], while the spin singlet, triplet,
and spin-charge continua remain gapped [Figs. 2(c) and 2(d)
and Figs. 3(c) and 3(d)]. In the following we will focus on
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(a)

(b)

FIG. 1. Elementary excitations of the attractive Fermi-Hubbard
model from the Bethe ansatz Eqs. (4) and (5) for (a) U = −2J and
(b) U = −8J .

the spin-charge continuum as this is relevant for the rf driving
scheme investigated here.

C. Modeling the radio-frequency driving

The rf field induces transitions between different internal
states of the atoms. Here we assume that the rf field induces
mainly a transition from the internal state σ = 2 to a third state
σ = 3 as sketched in Fig. 4. In this situation the rf coupling

(a) (b)

(c) (d)

FIG. 2. Excitation continua of the attractive Fermi-Hubbard
model for U = −2J , constructed from Fig. 1, where, e.g., k = psw +
ph

cw for the spin-charge continuum (bottom left).

(a) (b)

(c) (d)

FIG. 3. Excitation continua of the attractive Fermi-Hubbard
model for U = −8J , constructed from Fig. 1, where, e.g., k = psw +
ph

cw for the spin-charge continuum (bottom left).

can be modeled by the term

H ′(t ) =
γ (t )︷ ︸︸ ︷

h̄	23 cos(ωrft )
L∑

i=1

(ĉ†
i,3ĉi,2 + H.c.)

= γ (t )
L∑

m=1

(ĉ†
km,3ĉkm,2 + H.c.), (6)

where 	23 is the Rabi frequency of the transition (related to
the dipole matrix element), ωrf the frequency of the rf field,
and kma = mπ

L+1 (m = 1, . . . , L) the momentum of the particle.
In the last line of Eq. (6) we have used the Fourier transform
for open boundary conditions for numerical convenience as
explained in Sec. III. The representation of the coupling in
momentum space makes explicit that the rf field drives the
vertical transition in momentum space, which means that no
momentum change is transferred by the long-wavelength rf
pulse.

FIG. 4. Sketch of the underlying Fermi-Hubbard model with the
rf coupling of the different internal (hyperfine) states σ = {1, 2, 3}
(here depicted in blue, red, and green, respectively). The hopping
amplitude J is taken to be the same in the lower and upper bands,
and the hyperfine splitting to the final state is denoted by V3.
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FIG. 5. The lower and upper bands of the noninteracting system
in the |23〉 manifold. The two free bands are separated by the hyper-
fine splitting V3 � J,U .

Additionally, we also need to consider the Hamiltonian of
the third level, here taken to be free,

H3 = −J
L−1∑
i=1

(ĉ†
i,3ĉi+1,3 + H.c.) + V3

L∑
i=1

n̂i,3. (7)

This neglects the final-state interaction, which in many ex-
periments can be dominant. However, in, for example, 40K,
final-state interactions are small [23,39], and we are mainly
interested in the dynamics induced by the rf driving. The
energetic splitting V3 between the states |2〉 and |3〉 is usually
much larger than the kinetic and interaction energy scales, i.e.,
V3 � J,U .

Finally, the full model is given by H (t ) = H0 + H3 +
H ′(t ). We note that, since [N1, H (t )] = 0, the a priori different
hyperfine levels can be brought on top of each other through a
unitary transformation. This has been used in order to set the
same chemical potential for levels 1 and 2, i.e., V1 = V2 = 0.

D. Noninteracting system

In this section we briefly describe the response of the sys-
tem in the absence of interaction, i.e., U = 0. In this case, the
Hamiltonian is diagonal in momentum space, the individual
momenta km fully decouple, and one can view the system as
a series of three-level quantum systems, subject to a periodic
drive,

H (t ) =
∑

k



†
k

⎛
⎜⎝

εk 0 0

0 εk γ (t )

0 γ (t ) εk + V3

⎞
⎟⎠
k, (8)

where εk = −2J cos(k) and 

†
k = (ĉ†

k,1, ĉ†
k,2, ĉ†

k,3). Level |1〉
is fully decoupled and the nontrivial dynamics takes place in
the two-dimensional {|k, 2〉, |k, 3〉} subspace.

Since the wavelengths of rf fields are very long (λ ∼ 1 m),
there is negligible momentum transfer and the transition is
vertical in momentum space, as depicted in Fig. 5.

The effective Hamiltonian of this two-level system (ne-
glecting constant shifts) takes the form H23 = −V3

2 σz +
γ (t )σx, which we recognize as the Hamiltonian describing a
two-level atom driven by a laser field. Within the rotating-
wave approximation, the dynamics can be solved analytically.
The drive induces (off-)resonant Rabi oscillations given by

〈n̂k,3(t )〉 = 	2
23

	2
eff

sin2

(
1

2
	efft

)
, (9)

where 	eff =
√

	2
23 + δ2 is the generalized effective Rabi

frequency and h̄δ = h̄ωrf − V3 the detuning of the rf field
from the bare 2-3 transition. For finite detunings the Rabi
oscillations become faster, albeit with a reduced amplitude.
The overall amplitude of the oscillations has a Lorentzian
dependence on the detuning, where its width is given by
the bare Rabi frequency 	23 of the problem. Note that here,
due to the assumption that the dispersions in levels 2 and 3
are the same, the oscillation frequency does not depend on the
momentum. This will change if the atoms in level 3 experience
a different optical lattice potential resulting in a dephasing of
the oscillations.

If the interaction is nonzero, this will introduce a coupling
between different momentum sectors and the dynamics will
become much more complex. In the following we will analyze
the ensuing dynamics, for both weak (U = −2J) and strong
(U = −8J) interactions, with a combination of analytical
response calculations (Sec. II E) and numerical simulations
(Sec. III).

E. Linear response theory

In this section we discuss the linear response theory often
employed in order to analyze the response of a system to an
rf drive. The validity of this approach depends on two basic
requirements. First, the external drive must be weak so that
the system is only weakly perturbed. Second, the perturbation
must couple the initial state to a continuous band of final
states. The drive to the individual levels of the final band
quickly dephases; thus one sums over transition probabilities
instead of quantum amplitudes and Rabi oscillations give way
to a linear increase in the upper level’s population.

For a weak probe H ′(t ), the response of an observable
O can often be related to equilibrium expectation values in
the unperturbed model. We concentrate in this section on the
momentum occupation O = n̂k,3. The expectation value can
be computed as a perturbation series in the driving amplitude,
which to first-order reads

〈n̂k,3(t )〉(1) = − i

h̄

∫ t

−∞
dt ′〈[n̂k,3(t ), H ′(t ′)]〉 = 0, (10)

since level |3〉 is initially empty. We obtain the first nonzero
contribution at second order,

〈n̂k,3(t )〉(2) =
(
− i

h̄

)2 ∫ t

−∞
dt1

∫ t1

−∞
dt2

× 〈[[n̂k,3(t ), H ′(t1)], H ′(t2)]〉. (11)

Equivalently, in the following we will look at the first-order
response of the transfer rate. After an initial transient period,
the population of the upper level enters a linear regime for a
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sufficiently weak Rabi frequency 	23 and we extract this slope
for both N3(t ) and n̂k,3(t ). Within linear response theory, the
rate of particles transferred from |2〉 to |3〉 can be related to
the single-particle spectral function A(k, ω) as

〈 ˙̂nk,3〉(1) = − i

h̄

∫ t

−∞
dt ′〈[ ˙̂nk,3(t ), H ′(t ′)]〉

∼ π	2
23

2
[A(k, ωrf ) + A(k,−ωrf )], (12)

where in the last line we have neglected fast oscillating terms
and only retained the constant background contribution to the
slope. Here A(k, ωrf ) = ∑

n |〈n|ĉk,2|gs〉|2δ(ωn + ωk,3 − ω0 −
ωrf ), |gs〉 = |ψ (0)〉 is the initial ground state of the sys-
tem, h̄ω0 is its energy, and |n〉 and h̄ωn are the eigenstates
and eigenenergies of H0, respectively [25]. The upper level
|3〉 is modeled as a free band h̄ωk,3 = εk + V3, with εk =
−2J cos(k). The δ function ensures that excitations are created
resonantly: The photon energy of the rf field, h̄ωrf, has to
match the energy difference between ground state |g〉 and
excited state |n〉. Additionally, a transition can only occur if
there is a finite matrix element of the perturbing operator ĉk,2
between the initial and final states. The required energy for an
excitation is hence comprised of two parts, the energy of a free
particle in the upper band and the energy of an excitation in
the lower band, created by the removal of a fermion of species
|2〉.

We thus see that, within linear response theory, a linear
rise of the expectation values is expected and the slopes are
related to the single-particle spectral function. This implies
that, within the validity regime of linear response theory, the
rf spectroscopy technique can be used to probe the single-
particle spectral functions [40]. Correspondingly, the total
transfer rate will be the sum over all momenta of Eq. (12),
Ṅ3(t ) ∼ 	2

23

∑
k A(k, ωrf ).

Information about the spectral functions and in particular
about their support can be obtained from the Bethe ansatz.
The energy difference is related to the elementary excitations
in the Bethe ansatz by h̄ωrf = h̄(ωn − ω0) + h̄ωk,3 = εsc(k) +
h̄ωk,3.

Note that the regime of the Rabi oscillations [Eq. (9)]
cannot be described within linear response calculations. Fun-
damentally, it is the coupling to a continuous band of levels
with different frequencies, which makes Rabi oscillations give
way to the linear response regime. We expect stronger inter-
actions to increase the level mixing and thus to make it easier
to reach the linear regime.

III. NUMERICALLY EXACT SOLUTION BY THE
TIME-DEPENDENT MATRIX-PRODUCT-STATE

ALGORITHM

In this section we review the time-dependent matrix-
product-state algorithm which we employ to obtain the
quasiexact solution of the driven interacting many-body prob-
lem. As in experiments, we assume the system to be initially
prepared in the ground state of H0 [Eq. (1)]. The rf field
is applied at t > 0. The ground state is obtained using the
density-matrix renormalization-group method in the formu-
lation of matrix-product states (MPS). Additionally, the time

evolution is performed using the variational time-dependent
MPS approach [32–34]. Both approaches are based on using
a variational ansatz for the many-body wave function of MPS
form, i.e.,

|ψ[A]〉 =
∑
{σi}

tr
(
A[1]σ1

1 A[2]σ2
2 · · · A[L]σL

L

)|σ1σ2 · · · σL〉.

Any state can be represented in this form with suitable ma-
trix dimension, the so-called bond dimension, of the matrices
A[i]σi

ai−1,ai
at chosen i and σi. For an exact representation, the local

matrices have the bond dimension Di−1 × Di and there are
σi = {1, . . . , d} of them, where d is the physical dimension
of the local Hilbert space. For the present three-species Fermi-
Hubbard model, d = 8. At this point, the above representation
is exact; however just like the full Hilbert space of the system
grows exponentially with the system size, so too must the
bond dimension D of the MPS grow.

In order to generate a numerically feasible treatment, the
bond dimensions are cut using a singular-value decomposition
to a treatable value corresponding to an optimal approxima-
tion of the state. The bond dimension is directly related to the
amount of entanglement between bipartitions of the system
along a bond. Fortunately, ground states of one-dimensional
gapped Hamiltonians show an area law entanglement spec-
trum [41], which allows for an efficient truncation of the MPS
bond dimension and a reduction to polynomial complexity.
It is the beneficial entanglement spectrum that allows for
the efficient simulation of low-dimensional quantum systems.
The discarded weight of singular values (known as the trun-
cation error ε) and the bond dimension D together control the
accuracy of the MPS simulation. Finally, we approximate the
time-evolution operator U (t ) = exp(−iHt/h̄) by a second-
order Trotter-Suzuki decomposition [42–45], controlled by
the time step dt . Unless stated otherwise, we have chosen
ε = 10−12, D = 500, and dt = 0.005h̄/J for our simulations,
to ensure convergence of our results.

IV. WEAKLY ATTRACTIVE HUBBARD MODEL:
RESPONSE TO WEAK RF DRIVING

In this section we describe our results on the dynamics
induced by a weak rf driving in the weakly attractive Hubbard
model. As naively expected, atom transfer from level |2〉 to |3〉
is induced by the rf drive. However, the amplitude and form of
this transfer and the subsequent dynamics depend very much
on the rf frequency and on the interaction strength between
the atoms in levels |1〉 and |2〉. We analyze in detail the time
evolution of various quantities shedding light on the intricate
dynamics of this system. We begin in Sec. IV A by consider-
ing the time dependence of the momentum-resolved transfer
to level |3〉, the quantity illustrating most directly the system
dynamics. We discuss in which situations Rabi-like or linear
response behaviors are observed. In Sec. IV B we turn our
attention to the analysis of the momentum-resolved density
distributions for all three levels and in Sec. IV C present the
evolution of the pair momentum distribution associated with
levels |1〉 and |2〉. These quantities provide us with insights
into the dynamics of the interacting state induced by the trans-
fer. We conclude this section by commenting, in Sec. IV D,
on the evolution and spectrum of the total population
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(a)

(b)

(c)

FIG. 6. Time dependence of the upper band population 〈n̂k,3(t )〉
for selected momentum states at various driving frequencies ωrf

across the main resonance for a system of L = 32 sites at half
filling for interaction strength U = −2J: (a) ka = 0.0909π , (b) ka =
0.2424π , and (c) ka = 0.4242π . Level |3〉 is V3 = 50J in energy
above levels |1〉 and |2〉 and the Rabi frequency is h̄	23 = 0.01J .
The time evolution can be separated into two regimes: a Rabi-like
regime, occurring in the far red- and blue-detuned limits and near
the main resonance, and a linear response regime. Gray solid lines
are examples of linear fits; the extracted slopes are then used to
construct the spectrum shown in Fig. 7. Unless stated otherwise,
curves with the same marker and color show the same driving fre-
quency in all three panels. To ensure convergence of our results,
we have separately varied the bond dimension (D = 400), truncation
error (ε = 10−13), and time step (Jdt = 0.002h̄) from the parameters
given in Sec. III. The corresponding curves are overlaid for driving
frequencies (a)–(c) h̄ωrf = 51.1J , (a) h̄ωrf = 52.5J , and (c) h̄ωrf =
54.6J . The simulation error is therefore below the linewidth shown.

transfer to level |3〉, which is the experimentally most acces-
sible quantity.

A. Momentum-resolved transfer to the third level

We first analyze the momentum-resolved atom transfer
from |2〉 to |3〉 with a bare level spacing of V3 = 50J , in-
duced by the rf driving, by considering the time evolution
of 〈n̂k,3(t )〉. We find that the dynamics of 〈n̂k,3(t )〉 depends
strongly on the momentum k and the driving frequency ωrf.
In Fig. 6 we present the time evolution of this observable for
a large window of driving frequencies and three representa-
tive momentum values: a value near zero momentum (ka =
0.0909π ), a value halfway to the Fermi edge (ka = 0.2424π ),
and a value near the Fermi edge (ka = 0.4242π ). For small
frequencies, such as h̄ωrf = 50J (blue curve in all panels), the
transfer is dominated by fast off-resonant Rabi oscillations

with relatively little transfer. Here h̄ωrf = V3 = 50J is the
resonance for the noninteracting system and is now, for U =
−2J , corresponding to a red-detuned driving with respect to
the maximum transfer peak occurring at h̄ωrf = 51J . Increas-
ing the driving frequency, the Rabi oscillations become slower
and are damped, which we attribute to the interaction-induced
level mixing. At frequencies between h̄ωrf = 50.9J and 51.1J
(green and orange curves in all panels), the transfer increases
substantially.

In fact, one can see that the largest transfer shifts to higher
frequencies with increasing momentum, which we attribute
to a resonance. Then, beyond this resonance, the form of the
time evolution changes drastically and is, after an initial slow
rise, almost linear (with superposed modulations) over a sig-
nificant time interval. Increasing the driving frequency even
further, the linear behavior persists, but the slope is in general
a decreasing function of the driving frequency. Unexpectedly,
a second peak occurs at a second set of driving frequencies
whose value depends on the considered momentum. The sub-
tle effect can be made out in Fig. 6(a) at h̄ωrf = 52.5J , in
Fig. 6(b) at h̄ωrf = 53.4J , and in Fig. 6(c) at h̄ωrf = 54.6J
(light purple lines without markers). At these frequencies, the
slope and transfer surpass previous values at lower driving
frequencies. This signals that a second resonance occurs in
the transfer. Finally, once the system is driven very far on the
blue-detuned side, one recovers again a Rabi-dominated fast
oscillating signal with low net transfer.

This survey of the time dependence of the momentum-
resolved atom transfer clearly shows, for a large window of
driving frequencies, that 〈n̂k,3(t )〉 rises on average linearly
over a fairly long time interval. We can therefore fit 〈n̂k,3(t )〉
over this interval as

〈n̂k,3(t )〉 = m(k, ωrf ) t + c(k, ωrf ),

where m(k, ωrf ) is the slope and c(k, ωrf ) the intercept. Ex-
amples of these fits are displayed in Fig. 6. We then report
in Fig. 7, as a function of ωrf, the rescaled slopes for various
momenta and two Rabi frequencies h̄	23 = 0.1J and 0.01J .
However, as hinted earlier, close to the strongest resonance,
we cannot identify a linear regime, and instead of reporting
a slope value, we plot the maximum transfer value to level
|3〉 recorded in the time interval 0 � Jt � 15h̄. This region
is denoted by shading in Fig. 7. The obtained figure presents
well-defined features. Even though we cannot identify a linear
response regime close to the lower resonance, most of the fea-
tures can be understood by recalling, from Sec. II E, that linear
response predicts that the rescaled slope m(k, ωrf )/	2

23 is pro-
portional to the single-particle spectral function A(k, ωrf ) [see
Eq. (12)]. Figure 7 can therefore be loosely interpreted as the
single-particle spectral function for the attractively interact-
ing Hubbard model. This realization can be put on firmer
grounds by overlaying excitation lines predicted from the
Bethe ansatz, taking the upper level dispersion into account
such that h̄ωrf = εsc(k) + h̄ωk,3. Here εsc(k) is the energy of
a given excitation inside the spin-charge continuum above
the ground state. The purple lines mark the lower and upper
edge of the spin-charge continuum (bottom right panel of
Fig. 2), while the other two lines correspond to excitations
within the continuum to which the drive strongly couples.
These are mostly of spin-wave (orange and red) character,

023330-6



RADIO-FREQUENCY DRIVING OF AN ATTRACTIVE … PHYSICAL REVIEW A 105, 023330 (2022)

FIG. 7. Rescaled momentum-resolved transfer rate to level |3〉,
m(k, ωrf )/	2

23, for a system of L = 32 sites at half filling for interac-
tion strength U = −2J . Level |3〉 is V3 = 50J in energy above levels
|1〉 and |2〉. The dots represent the rescaled slopes for h̄	23 = 0.01J
and the lines for h̄	23 = 0.1J (left axis; cf. left arrow). These two
data sets are found to be in good agreement. The shaded region cor-
responds to the frequency interval over which the time evolution is
not linear and the fitting procedure is not possible. In this region, we
report the maximum atom transfer in the time interval 0 � Jt � 15h̄
(right axis; cf. right arrow). The momentum values ka = mπ

L+1 are
equally spaced and are shifted vertically by ka(L + 1)/2π = m/2,
where m takes integer values. The bold solid lines are the lower
and upper limits of the spin-charge continuum (purple) and two
spin-wave excitations (orange and red lines) obtained from the Bethe
ansatz.

together with a gapless excitation of the opposite sector, i.e.,
εsw(q) + εcw(λ∗

±), where ph
cw(λ∗

±) = ± π
2a .

Comparing further in Fig. 7 our numerical results with
the Bethe ansatz solutions, we first notice that, for driving
frequencies below the spin-charge continuum, the rf photon
effectively mainly sees the lower edge of the excitation band
(i.e., the bottom of the level |3〉 band) and the evolution is
characterized by off-resonant Rabi oscillations. We also ob-
serve that the frequency marking the onset of the rapid rise of
the maximum atom transfer is in very good agreement with
the lower edge of the spin-charge continuum. Then, when
the drive lies well within the continuum, the transfer rate is
finite. As there the drive couples to a continuous band of
excitations, levels mix sufficiently and a linear net transfer
emerges. The transfer rate is thus very sensitive to some
excitations making up the continuum; as such we observe
a pronounced peak when following the spin-wave charac-
ter lines εsw(q) + εcw(λ∗

±) (red and orange lines in Fig. 7).
For driving frequencies above the upper edge of the con-
tinuum, the slope is reduced and the response goes back to

FIG. 8. Time dependence of 〈n̂k,3(t )〉 at ka = 0.0909π near the
resonance at h̄ωrf = 52.5J for a half-filled system of size L = 32
with interaction strength U = −2J and h̄	23 = 0.01J . The system
coupling to a spin-wave excitation translates into an increase of the
transfer rate near the resonance and in a fanning out of the curves
around Jt ∼ 8h̄. The gray solid line is an example of linear fit; the
extracted slope is reported in the inset, showing a momentum slice
of the single-particle excitation spectrum. To ensure convergence of
our results, we have separately varied the bond dimension (D = 400),
truncation error (ε = 10−13), and time step (Jdt = 0.002h̄) from the
parameters given in Sec. III. The corresponding curves are overlaid
for a driving frequency of h̄ωrf = 52.5J . The convergence for the
time step and truncation error are plotted in the same color (and the
respective error is below the linewidth), while the bond dimension is
explicitly shown as a black dashed line.

a fast-oscillating low-amplitude response, reminiscent of far
blue-detuned Rabi oscillations. In this case, the energy con-
servation condition of Eq. (12) cannot be strictly fulfilled in
this two-particle excitation sector; the rf photon provides too
much energy to resonantly excite spin and charge degrees of
freedom, leading to insufficient coupling and very weak net
transfer rates. With yet higher energies of the rf photon, we
would expect to eventually enter and resonantly couple to the
2n-particle (n > 1) excitation sectors.

Due to the strength of the main resonance occurring around
h̄ωrf = 51.1J , the other resonances highlighted by red and
orange lines in Fig. 7 can be more difficult to identify. To
remedy this, we present in Fig. 8 the evolution of 〈n̂k,3(t )〉
for one particular momentum ka = 0.0909π , around the spin-
wave excitation peaking, in this case, at h̄ωrf = 52.5J . As
the rf driving couples strongly to this excitation, we see that
the character of the dynamics changes as one approaches
this resonance. Sufficiently far on both sides of h̄ωrf = 52.5J ,
the curves collapse onto each other and the transfer is very
similar from one driving frequency to the next. As the driving
frequency gets closer to the resonance, the transfer rate notice-
ably increases: We see in Fig. 8 that the curves fan out around
Jt = 5h̄ as the ones near the resonance have steeper slopes.
We observe this behavior across all momenta, when following
the two excitation lines.
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FIG. 9. (a) Rescaled momentum-dependent transfer rates to level
|3〉, mA and mB, for a system of size L = 20, h̄	23 = 0.01J , and U =
−2.0J for ka = 0.4762π . The upper band population 〈n̂k,3(t )〉 for
the driving frequencies corresponding to the shaded regions (b), (c),
and (d) is shown in the corresponding panels. In (a) the red dashed
vertical line marks the position of the spin-wave excitation and the
purple dashed vertical line marks the upper limit of the spin-charge
continuum. In (b)–(d), the gray solid lines are examples of linear
fits, while the vertical dashed lines mark the boundary between the
two fitting regions A and B. To ensure convergence of our results in
(b)–(d), we have separately varied the bond dimension (D = 600),
truncation error (ε = 10−13), and time step (Jdt = 0.002h̄) from the
parameters given in Sec. III. The maximal and minimal deviations are
plotted as a shaded region around each curve. Where such a region is
not discernible, the numerical error is below the linewidth shown.

Finite-size effects: L = 20

Our results for a half-filled system for system sizes of
L = 32 and L = 20 are in very good agreement. The spec-
tra and excitation peaks we detect show the same features.
However, for the smaller system, we observe further peaks
in the spectra. While for a half-filled L = 32 system this
fanning out occurs only along two well-defined excitation
lines, for smaller systems the situation is different. For L = 20
systems, we find several occurrences of this behavior within
the spin-charge continuum. This situation is illustrated in
Fig. 9 for ka = 0.4762π . For this momentum, we see that
the time evolution of 〈n̂k,3(t )〉 is split into two regimes: For
early times (a time interval denoted by A) the different curves
overlap, whereas for later times (a region denoted by B) the
curves begin to fan out. In Fig. 9(a) we report the slopes mA

and mB for both regions. When considering mB, we find that

the spectrum presents oscillations throughout the spin-charge
continuum. While the peak at h̄ωrf = 54.9J is expected as
a spin-wave excitation occurs at this energy, the reason be-
hind the existence of the other peaks around, for example,
h̄ωrf = 53.3J and 54.2J , is not as obvious. We further notice
that, for these two peaks, the fanning out occurs at a later
time compared to Fig. 9(d). In fact, when comparing to the
evolution for the system of size L = 32, we notice that, for
the spin-wave excitation, the time at which the fanning out
occurs has only slightly decreased for the larger system size,
while similar structures are totally absent at other driving fre-
quencies within the spin-charge continuum. Such fanning out
would probably take place at times larger than Jt = 25h̄. We
therefore associate these oscillations with finite-size effects;
similar behaviors were observed in [46], where the timescale
marking the beginning of the fanning out was shown to be
related to the inverse finite-size gap.

B. Evolution of the momentum distributions

To gain further insight into the way the rf drive is excit-
ing the system, we turn to the evolution of the momentum
distributions. As explained previously, atoms in level |1〉 are
not directly coupled by the rf drive and so their dynamics
is entirely induced by the interaction with |2〉. Furthermore,
within linear response we expect to see no change in both
the momentum distribution 〈n̂k,1〉 and the rate 〈 ˙̂nk,1〉; thus all
changes we observe in |1〉 are effects beyond linear response.
The situation is different for |2〉. In this case, 〈 ˙̂nk,2〉 is directly
modified within linear response. However, we infer from the
important momentum redistribution observed in 〈n̂k,1〉 that
beyond linear response effects also play a non-negligible role
in the evolution of |2〉.

While the transfer and thus the changes in 〈n̂k,2〉 and
〈n̂k,3〉 depend strongly on the momentum and rf frequency,
the changes in level |1〉 are mostly around the Fermi edge.
For weak Rabi coupling h̄	23 = 0.01J , the net transfer is
very small, so the absolute momentum density distribution
〈n̂k,σ 〉, with σ = {1, 2}, is only slightly altered during the
evolution. For σ = {1, 2}, the initial distributions have a step-
like profile smoothed out by the effect of interaction and
an approximately 80% drop in occupation around the Fermi
edge. Looking therefore at the deviations of the momentum
distribution 〈n̂k,σ (t ) − n̂k,σ (0)〉 reveals the detailed effect of
the dynamics. We will now look at the different cases of driv-
ing frequencies below (red detuned), above (blue detuned),
and on resonance (h̄ωrf = 51.1J) to explain this structure in
detail.

Figure 10 shows the momentum distribution for a red-
detuned drive h̄ωrf = 50J . Level |1〉 is only significantly
affected close to the Fermi edge, where a redistribution of
particles from below to above the Fermi step, accompanied
by oscillations, takes place, as can be seen in Fig. 10(a). In
comparison, Fig. 10(b) shows the response of σ = 2, and we
observe that all momenta below the Fermi edge are depleted.
Finally, Fig. 10(c) shows the distribution for |3〉, as shown in
real time in Fig. 6. The initial transfer is larger (with faster
Rabi oscillations) for smaller momenta. This can be explained
by looking at the excitation spectrum as shown in the inset.
The driving frequency is red detuned from all excitations,
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FIG. 10. Evolution of the differences of the momentum distribu-
tions at times t compared to the initial time, 〈n̂k,σ (t )〉 − 〈n̂k,σ (0)〉, for
U = −2J , h̄	23 = 0.01J , and h̄ωrf = 50.0J for (a) σ = 1, (b) σ =
2, and (c) σ = 3. We show the different times as marked in the legend
in (b). The inset in (c) shows the spin-charge excitation continuum
(purple region bounded by purple lines), along with two particular
excitations of spin-wave character (orange and red lines). The black
vertical line marks the driving frequency ωrf.

with an effective momentum-dependent detuning from the
lower continuum edge (shaded region). The lower edge of the
continuum has a small curvature to higher energies, thereby
effectively increasing the detuning with momentum, leading
to faster oscillations with lower amplitude for momentum
states towards the Fermi edge, consistent with the intuition
gained when considering the driving of a noninteracting sys-
tem in Sec. II D.

For driving frequencies near the main resonance as shown
in Fig. 11, 〈n̂k,2〉 [Fig. 11(b)] is depleted asymmetrically
just below the Fermi edge, while 〈n̂k,1〉 [Fig. 11(a)], purely
an interaction effect, shows an almost symmetric response
around the same momentum value. The Rabi oscillations in
〈n̂k,3〉 [Fig. 11(c)] appear to be largely in phase, but with an
amplitude that is increasing towards larger momenta. Again
referring to the inset in Fig. 11(c), the curvature of the lower
continuum edge means that while we are driving ka ∼ π/2
almost resonantly, the drive is already slightly above the k ∼ 0
resonance, which leads to a reduced but finite transfer rate
for all momenta below the Fermi edge. For momenta above
the Fermi edge as for the σ = 1 level, the occupation mainly
stems from a redistribution induced by the interaction within
level σ = 1, 2. Compared to off-resonant drives as in Fig. 10
or 13, the transfer is greatly enhanced by up to two orders of

(a)

(b)

(c)

FIG. 11. Evolution of the differences of the momentum distribu-
tions at times t compared to the initial time, 〈n̂k,σ (t )〉 − 〈n̂k,σ (0)〉, for
U = −2J , h̄	23 = 0.01J , and h̄ωrf = 51.1J for (a) σ = 1, (b) σ = 2,
and (c) σ = 3. We show the different times as marked in the legend
in (b). The inset in (c) shows the spin-charge excitation continuum
(purple region bounded by purple lines), along with two particular
excitations of spin-wave character (orange and red lines). The black
vertical line marks the driving frequency ωrf (inset), while the orange
vertical lines in (c) mark the momenta at which the driving frequency
ωrf is resonant with the spin-wave excitation (orange line, inset). To
ensure convergence of our results, we have separately varied the bond
dimension (D = 400), truncation error (ε = 10−13), and time step
(Jdt = 0.002h̄) from the parameters given in Sec. III. The maximal
and minimal deviations are shown as a shaded region around the
corresponding curve (same color respectively), and if not discernible,
the numerical error is below the linewidth.

magnitude and the symmetric (asymmetric) depletion of |1〉
(|2〉) is very strongly pronounced and clearly visible.

For Figs. 12 and 13 the driving frequency ωrf lies well
within the continuum. Interestingly, 〈n̂k,3〉 [Figs. 12(c) and
13(c)] reveals a very distinct response not seen before. The
momentum distribution develops a strong two-peak structure
at ka ∼ {0.18π, 0.63π}. From the inset in Figs. 12(c) and
13(c) we see that these peaks correspond to the resonant ex-
citation of particular excitations lines of spin-wave character,
εsw + εcw(λ∗

−) (i.e., a spin wave with a gapless charge wave),
at two distinct momenta. We can thereby identify the peaks
developed in 〈n̂k,3〉 as a signature of the activation of these ex-
citations in the system. The observed peaks are monotonically
growing in time. With increasing ωrf the two-peak structure
shifts to larger momenta, so in Fig. 13 they are both above
the initial Fermi edge. This explains the very small amplitudes
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(a)

(b)

(c)

FIG. 12. Evolution of the differences of the momentum distribu-
tions at times t compared to the initial time, 〈n̂k,σ (t )〉 − 〈n̂k,σ (0)〉, for
U = −2J , h̄	23 = 0.01J , and h̄ωrf = 53.0J for (a) σ = 1, (b) σ =
2, and (c) σ = 3. We show the different times as marked in the legend
in (b). The inset in (c) shows the spin-charge excitation continuum
(purple region bounded by purple lines), along with two particular
excitations of spin-wave character (orange and red lines). The black
vertical line marks the driving frequency ωrf (inset), while the colored
vertical lines in (c) mark the momenta at which the driving frequency
ωrf is resonant with either the spin-wave excitations (red and orange)
or the upper spin-charge continuum edge (purple).

observed for the changes. We note that, while the Bethe ansatz
does not allow easy analytical access to matrix elements, mon-
itoring the dynamics of the density momentum distribution
provides important information about the underlying struc-
ture of the corresponding matrix elements and furthermore
exhibits dynamical effects beyond linear response calculations
as seen in 〈n̂k,1〉.

Figures 12(a) and 12(b) and Figs. 13(a) and 13(b) show
the population redistribution of 〈n̂k,σ=1,2〉. The density redis-
tribution has two effects. The dominant one stems from the
physical transfer between levels |2〉 and |3〉 and can be clearly
seen in Figs. 12(b) and 13(b) for 〈n̂k,2(t )〉 as the occupation
decreases below the Fermi edge. The redistribution of pop-
ulations due to the interaction and scattering between atoms
is the only channel that affects the density distribution 〈n̂k,1〉.
For these two blue-detuned drivings, the occupation in 〈n̂k,1〉
reveals signatures of the resonant coupling to excitations of
spin-wave character. In Fig. 12(a) we see that a secondary
peak is developing near the momentum value corresponding
to the crossing of the upper (orange) excitation line. This

(a)

(b)

(c)

FIG. 13. Evolution of the differences of the momentum distribu-
tions at times t compared to the initial time, 〈n̂k,σ (t )〉 − 〈n̂k,σ (0)〉, for
U = −2J , h̄	23 = 0.01J , and h̄ωrf = 56.0J for (a) σ = 1, (b) σ =
2, and (c) σ = 3. We show the different times as marked in the legend
in (b). The inset in (c) shows the spin-charge excitation continuum
(purple region bounded by purple lines), along with two particular
excitations of spin-wave character (orange and red lines). The black
vertical line marks the driving frequency ωrf (inset), while the colored
vertical lines in (c) mark the momenta at which the driving frequency
ωrf is resonant with either the spin-wave excitations (red and orange)
or the upper spin-charge continuum edge (purple).

driving noticeably perturbs the system beyond a simple oc-
cupation redistribution around the Fermi edge. The situation
is similar for the driving at h̄ωrf = 56J shown in Fig. 13.
In this case, a secondary peak develops at a momentum ap-
proximately corresponding to the crossing of the lower (red)
excitation line. Revealing this secondary peak at larger mo-
mentum values requires a redistribution that would likely not
be captured within linear response.

C. Evolution of the pair distribution

As already discussed, the ground state of the Fermi-
Hubbard model for attractive interactions presents supercon-
ducting correlations. Therefore, in this section we briefly
comment on how the rf drive influences the superconducting
pairing. We find that, in contrast to the momentum distribution
discussed above, mostly small momenta k ∼ 0 of the pair dis-
tribution are affected and changed by the rf drive. In order to
show this, we investigate the evolution of the superconducting
pair correlations by analyzing the pair structure factor given
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(a)

(b)

FIG. 14. Evolution of (a) the pair distribution Pk (t ) and (b) the
deviation of the pair distribution from its initial value, Pk (t ) − Pk (0),
for the attractive Hubbard model of size L = 32 at half filling for
U = −2J , h̄	23 = 0.01J , and h̄ωrf = 51.1J . To ensure convergence
of our results, we have separately varied the bond dimension (D =
400), truncation error (ε = 10−13), and time step (Jdt = 0.002h̄)
from the parameters given in Sec. III. The corresponding curves are
overlaid in the same colors as the shown data. The numerical error is
therefore below the linewidth.

by

Pk (t ) = 1

L

∑
i, j

eik(ri−r j )〈
(t )|(̂†
i ̂ j + H.c.)|
(t )〉, (13)

where |
(t )〉 is the evolved wave function, ̂i = ĉi,1ĉi,2, the
pair annihilation operator at site i, and we use here the ex-
ponential Fourier transform, i.e., k = 2πn

L with discretization
n = {− L

2 + 1, . . . , L
2 }, because it mimics the time-of-flight

imaging in cold-atom experiments.
Figure 14 shows the pair correlator for different points in

time for resonant driving. Considering first the absolute pair
correlation Pk (t ), we see in Fig. 14(a) that this quantity is only
mildly affected by the driving. Hence, due to the weak driving
amplitude, we monitor instead the deviation to the initial state
[Fig. 14(b)]. We find a weak background depletion for all
momenta, which is however overshadowed by the stronger
reduction at k = 0. This is in stark contrast to the involved
structure of 〈n̂k,σ 〉 of the previous section. Here, during the
evolution, even on resonance, the pair correlation amplitude
is monotonically decreased for all momenta (particularly for
|ka| away from π ). Similarly to previous observations, the
change in the pairing correlations is nearly two orders of mag-
nitude larger on resonance compared to off-resonant driving
frequencies.

The rf drive creates superposition of |2〉 and |3〉 parti-
cles and injects energy into the system. During this process,
pairs making up the superconducting state are altered and
excitations, in the manifold formed from levels |1〉 and |2〉,
are created. Within our model, due to the absence of any
dissipation channels, the system cannot relax back into the
ground state and can be seen as heating up. Moreover, when

FIG. 15. Time dependence of the total transfer to the third state
N3(t ) for the attractive Hubbard model of size L = 32 at half filling
for U = −2J , h̄	23 = 0.01J , and several driving frequencies ωrf.
The main plot focuses on the curves for off-resonance driving, while
the inset puts these in context when compared to resonantly driven
situations. The gray solid line is the linear portion of a fit to the time
dependence for h̄ωrf = 52.5J . To ensure convergence of our results,
we have separately varied the bond dimension (D = 400), truncation
error (ε = 10−13), and time step (Jdt = 0.002h̄) from the parameters
given in Sec. III. The corresponding curves for driving frequencies
h̄ωrf = 51.1J and 52.5J are overlaid in the same colors as the shown
data. The simulation error is therefore below the linewidth.

the atoms are transferred back from |3〉 to |2〉, they are no
longer coherent with the |1〉 atom they originally formed a pair
with, the decoherence accumulating with time. We therefore
conclude that the rf drive induces decoherence and causes
heating, leading to a suppression of the superconducting pair
correlations Pk (t ), as observed in Fig. 14(b).

D. Total transfer to the third state

Experimentally, the simplest observable to detect is the
total transfer to the third state N3(t ). We discuss in this section
which information can already be extracted from this quantity.

The total transfer to the upper level is shown in Fig. 15
for different driving frequencies. Since the total transfer is
comprised of the sum of the momentum-resolved transfers,
we expect to recover the same physics as discussed previously
in Sec. IV A. Indeed, well below the resonance, for h̄ωrf �
50.7J , the total transfer shows Rabi oscillations around a
small value. At resonance, h̄ωrf ∼ 51J , the transfer is maximal
(see the inset), showing a slow and large-amplitude oscil-
lation, while on the blue-detuned side of the resonance the
evolution is characterized by a linear steady increase in the to-
tal population of the upper level (with oscillations superposed
on top). In this situation, we are driving excitations inside the
spin-charge continuum and hence coupling to a band of states.

Figure 16 shows the rescaled slope m/	2
23 extracted from

fits of the form N3(t ) = m t + A cos(ωt )e−γ t + c, where m, A,
ω, γ , and c are all fitting parameters, for two different drivings
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FIG. 16. Radio-frequency transfer rate (scaled by the squared
Rabi frequency) and scaled maximum net transfer within 0 � Jt �
15h̄ for a system of size L = 32, U = −2J , and h̄	23 = 0.01J and
0.1J . The gray solid line indicates the resonance position for a
noninteracting system, the gray dashed line marks the lower edge
of the spin-charge excitation continuum, and the gray dash-dotted
line highlights the minimum energy of the spin-wave-type excitations
εsw(q) + εcw(λ∗

+), where ph
cw(λ∗

+) = π/2a.

h̄	23 = 0.01J and 0.1J . Both driving amplitudes exhibit a
clear resonance at h̄ωrf ∼ 51J . For blue detuning of the rf field
from this resonance, the two curves collapse onto each other,
as already seen in Fig. 7. This indicates that the evolution has
entered the linear regime and confirms the validity of using the
linear response approach for these frequencies. Discrepancies
between the curves arise close to the resonance, where the
transfer is maximal and dominated by slow Rabi oscillations,
not captured by the linear response calculations. Our fits do
not cover this regime for two reasons. First, the transfer is
very large, so the approximation of a weak perturbation no
longer holds stringently. Second, if there is an overall linear
background trend, the dominant slow Rabi dynamics would
require long evolutions for us to see it, which are however
numerically prohibitive.

We see from Eq. (12) that 〈Ṅ3(t )〉 ∼ ∑
k A(k, ωrf ) and

indeed the onset of the spectral response in N3(t ), as ex-
tracted from our fits, agrees well with the lower onset of the
spin-charge excitation continuum (gray dashed line) besides
a broadening. The width of the resonance as observed here
in N3 is however much wider, compared to the momentum-
resolved spectra, due to the interplay of different momenta.
In particular, the strong coupling to the excitations of spin-
wave character (orange and red lines in Fig. 7) gives rise
to the long tail of the N3 spectrum. Finally, we also show
the (scaled) maximal transfer during the interval 0 � Jt �
15h̄ for both driving amplitudes. It is peaked at the reso-
nance, making clear that this is the driving frequency not
only of greatest transfer rate, but also of overall net integrated
transfer.

(a)

(b)

FIG. 17. Time dependence of the upper band population 〈n̂k,3(t )〉
for selected momentum states at various driving frequencies ωrf

across the main resonance for a system of L = 32 sites at half filling
for interaction strength U = −8J: (a) ka = 0.1818π and (b) ka =
0.4242π . Level |3〉 is V3 = 50J in energy above levels |1〉 and |2〉,
and the Rabi frequency is h̄	23 = 0.01J . The time evolution can
be separated into two regimes: a Rabi-like and a linear response
regime. Gray solid lines are examples of linear fits, the extracted
slopes are then used to construct the spectrum shown in Fig. 18.
To ensure convergence of our results, we have separately varied the
bond dimension (D = 400), truncation error (ε = 10−13), and time
step (Jdt = 0.002h̄) from the parameters given in Sec. III. In (a) we
show the convergence for h̄ωrf = 54.0J, 56.0J , with the time step
shown explicitly as a black dashed line and the remaining curves in
the same color as the data. In (b) h̄ωrf = 56.0J, 60.0J convergence
curves are overlaid in the same colors as the shown data. Only very
small deviations are found.

V. STRONGLY ATTRACTIVE HUBBARD MODEL:
RESPONSE TO WEAK DRIVING

A. Momentum-resolved transfer to the third state

We now turn to the case of strong interactions. We will
perform the same detailed analysis of the upper state |3〉
populations for weak transfer h̄	23 = 0.01J and compare the
extracted transfer rates to exact calculations from the Bethe
ansatz.

Examples of the evolution are shown in Fig. 17 for
two momenta ka = 0.1818π [Fig. 17(a)] and ka = 0.4242π

[Fig. 17(b)]. For low ωrf < 55J we see the dominant Rabi
character in the evolution (fast oscillations with low transfer
amplitude); however, there is no consistent frequency beyond
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FIG. 18. Rescaled momentum-resolved transfer rate to level |3〉,
m(k, ωrf )/	2

23, for a system of L = 32 sites at half filling for interac-
tion strength U = −8J . Level |3〉 is V3 = 50J in energy above levels
|1〉 and |2〉. The dots represent the rescaled slopes for h̄	23 = 0.01J
and the lines for h̄	23 = 0.1J (left axis; cf. left arrow). These two
data sets are found to be in good agreement. The shaded region
corresponds to the frequency interval over which the time evolution
is Rabi-like. In this region, we report the maximum atom transfer
in the time interval 0 � Jt � 15h̄ (right axis; cf. right arrow). The
momentum values ka = mπ

L+1 are equally spaced and are shifted ver-
tically by ka(L + 1)/2π = m/2, where m takes integer values. The
bold solid lines are the lower and upper limits of the spin-charge
continuum (purple) and two spin-wave excitations (orange and red
lines) obtained from Bethe ansatz.

which we enter the linear region. This is a first indication that
the spin-charge excitation continuum is strongly dispersive
for large interactions. Indeed, the curve of largest transfer is
found for increasing momentum at higher energies. For the
presented momenta it is at h̄ωrf ∼ 55.25J and h̄ωrf ∼ 56.0J ,
respectively [orange line in Figs. 17(a) and 17(b), respec-
tively]. Driving the system close to maximal transfer, we see
slow large-amplitude oscillations in its response. At nearby
frequencies the evolution is strongly damped, while on res-
onance the frequency of oscillation is too slow for us to
comment on the dephasing in this case. Once the frequency
of the rf field can cause resonant excitations, the response is
dominated by a net linear trend underlying the whole dynam-
ics, with oscillations largely diminished. The transition into
this linear regime occurs rather quickly. This is however not
surprising, since we expect that a stronger interaction induces
level mixing and thereby a stronger coupling to a continuum.

As in the preceding section, we analyze the curves in more
detail by fitting a linear slope to the initial transient response
(m), shown in Fig. 18. The general picture that emerged for
U = −2J holds here as well. The transfer is Rabi dominated
when driving below or above the spin-charge continuum.

FIG. 19. (a) Ground-state distribution of 〈n̂k,2(0)〉 for U =
−2J, −8J . Also shown is the time dependence of 〈n̂k,3(t )〉 at (b) ka =
0.3333π and (c) ka = 0.6364π near their respective resonances for
a half-filled system of size L = 32 and h̄	23 = 0.01J .

The shaded region close to some resonant excitations denotes
evolutions we cannot fit linearly due to their slow frequency
oscillations. We find that also for strong interactions the exci-
tation lines are very clearly defined and in good agreement
with the exact calculations from the Bethe ansatz. We can
clearly see the dispersive spin-wave band joining the lower
continuum edge at large momenta, which also coincides with
the maximal momentum-resolved transfer in the upper level
population. As for the response in general, the regime of
nonzero effective transfer is given by the upper and lower
edges of the excitation continuum.

It is worth pointing out some differences in the spectral
lines compared to the weakly interacting case. First, we have
fitted the 〈n̂k,3〉 curves up to the other edge of the first Brillouin
zone at ka = π . The reason lies in the broader momentum dis-
tribution of the ground state which leads to enhanced transfer
also above the noninteracting Fermi momentum. This will be
discussed in more detail in the following paragraph. Second,
the curvature of the lower edge of the spin-charge continuum
is much more pronounced, which explains the widely differ-
ing resonance onsets in the momentum-resolved curves for
〈n̂k,3(t )〉 as we will detail below. Let us note that this also im-
plies a very broad resonance peak in the N3 spectrum (Fig. 24).
In agreement with our findings for weak interactions, we can
confirm that this driving scheme strongly couples to the spin-
wave degrees of freedom (red and orange line) in the system.
Beyond the upper edge, we recover weak oscillatory transfer,
reminiscent of far-detuned Rabi oscillations.

As we hinted above, the reason that we are able to extract a
meaningful slope from the momentum-resolved evolution of
the population of |3〉 for momenta above the Fermi momen-
tum ka � π/2 lies in its larger initial occupation, shown in
Fig. 19(a). Here we compare the initial ground-state momen-
tum distribution for the two interaction strengths considered.
While the U = −2J distribution already shows a softening
around the Fermi edge at ka ∼ π/2 compared to the nonin-
teracting Fermi-Dirac distribution, for strong interactions this
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(a)

(b)

(c)

FIG. 20. Evolution of the differences of the momentum distribu-
tions at times t compared to the initial time, 〈n̂k,σ (t )〉 − 〈n̂k,σ (0)〉, for
U = −8J , h̄	23 = 0.01J , and h̄ωrf = 56.0J for (a) σ = 1, (b) σ = 2,
and (c) σ = 3. We show the different times as marked in the legend
in (b). The inset in (c) shows the spin-charge excitation continuum
(purple region bounded by purple lines), along with two particular
excitations of spin-wave character (orange and red lines). The black
vertical line marks the driving frequency ωrf (inset), while the vertical
orange lines in (c) mark the momenta at which the driving frequency
ωrf is resonant with the spin-wave excitation (orange line, inset). The
shown data were obtained for a bond dimension D = 500, truncation
error ε = 10−12, and time step Jdt = 0.001h̄. To ensure convergence
of our results, we have separately varied the bond dimension (D =
600), truncation error (ε = 10−13), and time step (Jdt = 0.0005h̄).
The maximal and minimal deviation is shown as a shaded region
around the corresponding curve (same color, respectively).

edge is completely smeared out and rather resembles a slowly
decaying function of momentum. For the marked momenta
below (ka = 0.333π ) and above (ka = 0.6364π ) the Fermi
surface, we plot the full time evolution in Figs. 19(b) and
19(c), respectively. While for states below the Fermi edge
the transfer is larger for U = −2J [Fig. 19(b)], the situation
is reversed above the Fermi edge [Fig. 19(c)]. This corrobo-
rates our assertion that it is the very different occupation of
〈n̂k,2(t = 0)〉 in the different regions of the Brillouin zone that
affects the observed transfer to the upper level.

B. Evolution of the momentum distribution

We now turn to the discussion of the evolution of the
momentum distributions 〈n̂k,σ 〉 and will focus on two driving
frequencies, close to the resonance of maximal integrated
transfer at ωrf = 56J (Fig. 20) and resonant driving in the

(a)

(b)

(c)

FIG. 21. Evolution of the differences of the momentum distribu-
tions at times t compared to the initial time, 〈n̂k,σ (t )〉 − 〈n̂k,σ (0)〉, for
U = −8J , h̄	23 = 0.01J , and h̄ωrf = 60.0J for (a) σ = 1, (b) σ =
2, and (c) σ = 3. We show the different times as marked in the legend
in (b). The inset in (c) shows the spin-charge excitation continuum
(purple region bounded by purple lines), along with two particular
excitations of spin-wave character (orange and red lines). The black
vertical line marks the driving frequency ωrf (inset), while the col-
ored vertical lines in (c) mark the momenta at which the driving
frequency ωrf is resonant with either the spin-wave excitations (red
and orange) or the upper spin-charge continuum edge (purple). The
shown data were obtained for a bond dimension D = 500, truncation
error ε = 10−12, and time step Jdt = 0.001h̄. To ensure convergence
of our results, we have separately varied the bond dimension (D =
600), truncation error (ε = 10−13), and time step (Jdt = 0.0005h̄).
The maximal and minimal deviations are shown as a shaded region
around the corresponding curve (same color, respectively).

upper half of the Brillouin zone, above the resonance in N3

(Fig. 21).
Following on from our discussion of the weakly interacting

system, we observe the appearance of the characteristic two-
peak structure in Fig. 20(c) for state |3〉. The vertical lines
mark the momenta to which the rf drive is coupling resonantly
and we find them to be in very good agreement with the
enhanced transfer. Initially, the rf drive depletes |2〉 for a
broad range of momenta, but eventually the resonant coupling
to momentum states ka ∼ 0.2π and ka ∼ 0.4π becomes the
dominant transfer mechanism. This can be seen in the arising
dip structure, for example, at long times Jt � 10h̄. The oppo-
site in turn holds for the population gain in level |3〉. Contrary
to weak interactions however, the larger momenta also get
significantly depleted (σ = 2), but are not in the same way
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FIG. 22. Evolution of the pair distribution Pk (t ) for the attractive
Hubbard model of size L = 32 at half filling for U = −8J , h̄	23 =
0.01J , and h̄ωrf = 56.0J . To ensure convergence of our results, we
have separately varied the bond dimension (D = 400), truncation
error (ε = 10−13), and time step (Jdt = 0.002h̄) from the parameters
given in Sec. III. These are shown in the same color as the data; the
numerical error is therefore below the linewidth.

populated into the corresponding momentum states for σ = 3.
This strongly supports our interpretation that the transfer to
the upper level is largely going through the resonant mo-
mentum channels arising from the coupling to the spin-wave
excitations [orange and red lines in the inset of Fig. 20(c)].
Meanwhile, the population of |1〉 shows population redistribu-
tion across all momenta. Since the dynamics in |1〉 is purely
induced by the interaction U , it is not surprising that the effect
is seen more strongly here. Finally, it is important to point out
that the overall transfer in all levels is significantly reduced
compared to the weaker interaction, by nearly an order of
magnitude. We argue that the strong interaction leads to an
increased rate of dephasing and thus reduces coherent transfer.

For large driving frequencies (Fig. 21), the two peaks
move into the upper half of the Brillouin zone, where states
ka ∼ 0.4π and ka ∼ 0.9π are driven resonantly. The 〈nk,3〉
evolution [Fig. 21(c)] monotonically increases with time, pre-
dominantly at the resonant momentum states (marked by the
vertical lines), oscillations are damped out, and the strong
interactions place the drive inside the linear regime. While
〈n̂k,3〉 increases strongly at the zone center and upper edge
[Fig. 21(c)], 〈n̂k,2〉 does not show the complimentary deple-
tion. Instead it is mainly emptied for all momenta k � kF

[Fig. 21(b)]. This points to a strong redistribution of the par-
ticles, as confirmed by Fig. 21(a). Particles are moved from
below to above the Fermi surface and the system is heated in
the process.

C. Evolution of the pair distribution

Here we briefly comment on the evolution of the pair
distribution of Eq. (13) for strong interactions and maximal
net transfer h̄ωrf = 56.0J . The large transfer is reflected in
the pair correlation as a monotonic depletion of the pairs
close to ka ∼ 0 (Fig. 22). In contrast to the weaker interaction

FIG. 23. Time dependence of the total transfer to the third state
N3(t ) for the attractive Hubbard model of size L = 32 at half filling
for U = −8J , h̄	23 = 0.01J , and several driving frequencies ωrf.
The main plot focuses on the curves for off-resonance driving, while
the inset puts these in context when compared to resonantly driven
situations. The gray solid line is the linear portion of a fit to the time
dependence for h̄ωrf = 60.0J . To ensure convergence of our results,
we have separately varied the bond dimension (D = 400), truncation
error (ε = 10−13), and time step (Jdt = 0.002h̄) from the parameters
given in Sec. III. These are shown in the same color as the data; the
simulation error is therefore below the linewidth.

(Fig. 14), here pairs are tightly bound together on a site.
This seems to lead to a greater stability of short-range pair
coherence, compared to the case of U = −2J .

D. Total transfer to the third state

We conclude our discussion of the influence of strong
interactions on the rf drive by looking at the experimentally
most accessible quantity, the total upper level population
N3(t ), shown in Fig. 23 for various driving frequencies. For
red-detuned driving frequencies below the continuum edge,
h̄ωrf � 55J , the integrated transfer oscillates around a small
long-time value. Beyond this driving frequency, the oscilla-
tory behavior gradually goes over into a linear rise. We do
not observe a relatively sharp onset of the linear regime as
was the case for weak interactions, since the lower edge of
the excitation continuum is curved more strongly as we men-
tioned above (cf. Fig. 18). For h̄ωrf ∼ 56J the net transfer is
maximal. Strong interactions lead to an enhanced dephasing
and as a result the oscillations on top of the linear increase are
strongly damped out, or not observable at all. To access the
spectrum of N3, we fit this region with a linear function, as
exemplified by the gray solid line in Fig. 23.

The spectrum, shown in Fig. 24, is peaked around h̄ωrf =
56.0J and is much wider than in the attractive case. As
detailed when discussing the momentum-resolved spectra,
the width originates from the strong curvature of the lower
excitation band as seen in the single-particle spectral func-
tion [Fig. 18 (orange line)]. For clarity we have marked the
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FIG. 24. Radio-frequency transfer rate (scaled by the squared
Rabi frequency) and scaled maximum net transfer during the in-
terval 0 � Jt � 15h̄ for a system of size L = 32, U = −8J , and
h̄	23 = 0.01J and 0.1J . The gray dashed line marks the lower edge
of the spin-charge excitation continuum, while the gray dash-dotted
line highlights the minimum energy of the spin-wave-type excitations
εsw(q) + εcw(λ∗

+), where ph
cw(λ∗

+) = π/2a.

lower onset of the spin-charge continuum (gray dashed line)
as well as the minimum energy of this particular excitation
with spin-wave character (gray dash-dotted line). While the
former sets the onset of the spectral response of N3, the latter
dictates its resonance position, i.e., the frequency where the
integrated transfer is maximal. We report overall very good
agreement with the spectral features obtained from our fitting
procedure. The resonance position is shifted from the nonin-
teracting result of h̄ωrf = 50J to significantly higher energies
due to the interaction. It is important to note that here we
are able to perform our fitting analysis throughout and across
the resonance region because the strong interaction allows for
sufficient mixing of the levels already at the lower edge of
the excitation continuum. For far red-detuned drivings, the
response is still oscillatory and Rabi-like (very weak transfer),
but closer to the resonance, scattering and interactions obscure
this picture and give rise to saturation (maximal transfers of up
to 60%) and nonoscillatory behavior, which gradually gives
way to the linear response regime as shown in Fig. 23.

VI. CONCLUSION

We studied in this work the response to rf driving
of a system described by the half-filled attractively in-
teracting one-dimensional Fermi-Hubbard model using the
time-dependent matrix-product-state algorithm. The rf field

drives the system away from equilibrium by inducing particle
transfer to a free upper band whose population is monitored in
time. The evolution explores two different dynamical regimes,
one with a strong Rabi character and another in the linear
regime. While the former exhibits (off-)resonant many-body
oscillations in the upper level population, the latter emerges
when the drive couples to a continuum of states. Interestingly,
even though the driven system is not always in the linear
response regime, we were still able to extract the underlying
spectra to a reasonable accuracy.

Our numerical simulations allowed us to access the com-
plete time evolution of the system throughout the drive, where
we observed complex dynamics. Many features of the ex-
tracted spectra were in good agreement with exact Bethe
ansatz calculations, and particularly the momentum-resolved
upper level population 〈n̂k,3(t )〉 provided great insight into
the underlying excitation structure of the system and the way
the rf drive couples to these excitations. As such, rf spec-
troscopy is an invaluable tool to probe the system as it offers
direct access to the single-particle spectral function in the
weak-coupling regime. In addition, we showed that this rf
technique can be employed to investigate many-body coupling
mechanisms away from equilibrium. This was done by moni-
toring the momentum density redistributions and the evolution
of the pair correlations during the drive. Considering such
nonequilibrium physics goes beyond a linear response treat-
ment and was achieved here by conducting time-dependent
matrix-product-state simulations.

Our present work has explored the intricate nature of the
rf transfer and given a detailed account of its potential to
study atomic gases in experimentally realistic settings. Due
to the generality of our model, these discussions not only are
relevant to rf spectroscopy studies, but are also amenable to
investigations of multiorbital, interacting quantum many-body
systems [47,48]. As a future direction, our results could be
analyzed from another angle by focusing on the motion of
defects created by the rf transfer.
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