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Persistent current by a static non-Hermitian ratchet
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We propose a scheme to generate a persistent current in driven-dissipative systems which can be described by
the generalized Gross-Pitaevskii (GP) equation. Our proposal consists of fabricating a rachet-potential shape of
the loss-rate profile, which simultaneously breaks the time-reversal symmetry and the parity-inversion symmetry.
Unlike existing schemes to generate a current using a rachet potential in Hermitian systems, no dynamic drive
is needed. The basic physics of our scheme is discussed by a simple discrete driven-dissipative GP model, and
the results are also verified by a realistic continuous model. Furthermore, we demonstrate the experimental
feasibility of our scheme to generate the persistent current in exciton-polariton condensates in a semiconductor
microcavity.

DOI: 10.1103/PhysRevA.105.023328

I. INTRODUCTION

Persistent current of particles in superfluids and supercon-
ductors is a paradigm of macroscopic quantum phenomena.
The phenomenon is not only interesting by itself from the
perspective of fundamental physics but also it has many ap-
plications. It is useful for constructing quantum interference
devices [1–4] thanks to its matter-wave properties. Systems
that can generate a current are also used for some information
processing devices [5–14]. Another interesting application of
generating a current can be found in atomtronic circuits on an
atomic chip [2,5,15–18], which is an analog of an electronic
chip using the current of cold atoms.

Using a time-periodically driven ratchet potential [19–23]
is a typical scheme to generate a current which is widely
employed in various systems such as cold atoms [23–26],
Brownian particles [22], superconducting circuits with a
Josephson junction array [27–32], etc. Even if a driving force
is unbiased on average, a nonzero net current can be gener-
ated because the time-reversal (T ) and the parity-inversion
(P ) symmetries of the system are simultaneously broken by
the time-dependent ratchet potential (see, e.g., Refs. [21,23]).
See also Refs. [33,34] for generating a directed current in
nonlinear systems using a drive without shift symmetry. An-
other conventional way to generate a current is using a gauge
potential, for instance, to stir cold atoms [35,36] or exciton-
polariton condensates [37,38] by a laser with orbital angular
momentum. A current of overdamped particles with complex
polarizability can also be generated by a vector potential [39].
Recently, several schemes to generate a persistent current
using nonlocal dissipation have also been discussed [40–42].

In this paper, we propose a scheme to generate a per-
sistent current in driven-dissipative systems described by
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a non-Hermitian Hamiltonian. The exciton-polariton con-
densate system in a semiconductor microcavity [43–47] is
a typical example of the platform for this proposal. An
exciton-polariton, a quasiparticle consisting of a semicon-
ductor exciton coupled with a microcavity photon, can form
Bose-Einstein condensates (BECs) at high temperatures, even
at room temperature [48,49], due to its very small effective
mass. Although the lifetime of an exciton-polariton is finite
(O(102) ps [49,50]) due to the leakage of the microcavity
photons, the condensates can be sustained when the loss is
compensated by the external laser pumping. Such driven-
dissipative systems show many intriguing nonequilibrium
phenomena. Generation of a persistent current in exciton-
polariton condensates has come into view recently [51–55].

Our proposal is to fabricate the loss-rate profile in the form
of the ratchet potential, which breaks the P symmetry of the
system. Since the loss and gain break the T symmetry, such
a ratchet-potential-shaped loss-rate profile, even if it is time
independent, simultaneously breaks the T and P symmetry
of the system, so that it can generate a net current. Unlike
the Hermitian Hamiltonian with a ratchet potential, which is
required to drive the potential in a time-dependent manner
to break the T symmetry of the system, such a dynamical
drive is unnecessary in our scheme. In addition, our scheme
can generate a nonzero net current even in the thermodynamic
limit. This is in contrast to the scheme using a gauge potential
in Hermitian systems and the one using an elliptic pump
together with a finite cylindrical pillar microcavity for the
exciton-polariton condensates [52,53] whose current vanishes
in the limit of the infinite radius of the system. Moreover, the
minimum width of the flow by these schemes is bounded by
the size of the laser spot, which is in the order of micrometers,
while that of our scheme can go down to the nanoscale by
the semiconductor processing technology [10,56]. Compared
to the nonlocal dissipation proposed in Refs. [40–42] which is
not easy to implement in experiments, our scheme employs
only the local dissipation with the position-dependent loss
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rate, which can be realized by tuning the quality factor of the
microcavity by etching the distributed Bragg mirrors [57–59].

In this paper, first we employ a simple model based on the
discrete driven-dissipative Gross-Pitaevskii (GP) Hamiltonian
to discuss the basic physics. The effects of the violation of the
P symmetry of the initial state and that of the effective pump
and loss on the current generation are discussed. The effects of
the gain-saturation and the system size on the steady current
are also clarified. Then, we turn to a more realistic continuous
model (the generalized Gross-Pitaevskii equation [60–64]) to
verify the results obtained by the discrete model. Finally,
we demonstrate the generation of a persistent current of the
exciton-polariton condensates in a semiconductor microcav-
ity, by the widely used coupled GP equations [45,65–67].

II. DISCRETE MODEL

We consider a one-dimensional (1D) time-independent
driven-dissipative Bose system with the spatially periodic ex-
ternal potential V , the pump P, and the loss γ with period d .
To get a clear understanding of the basic physics, first we em-
ploy a simple model based on the discrete driven-dissipative
GP Hamiltonian, which provides a simplified description of
the system by sampling only a few points (specifically, four
points in our model) per period d of the external parameters
(i.e., V , P, and γ ). Each of the points is called a “site” and
each period d with four sites is a unit “cell.” The Hamiltonian
is given by

H = −J
∑

j

(ψ∗
j ψ j+1 + ψ∗

j+1ψ j ) + U

2

∑
j

|ψ j |4

+
∑

j

Vj |ψ j |2 +
∑

j

i(Pj − γ j )|ψ j |2, (1)

where j labels each site of the system, ψ j is the amplitude of
the wave function at site j with the normalization

∑
j |ψ j |2

being the total number of particles, J represents the hopping
matrix element between the neighboring sites, and U is the
on-site interaction parameter. Here, the interaction parameter
U is complex: its real part describes the interaction between
the particles at the same site, and its imaginary part describes
the gain-saturation effect [60,63]. The gain-saturation term,
which is commonly employed in the effective GP model for
exciton-polariton condensates, is usually needed to have a
steady state. Without this term, the total number of particles
will diverge or decay to zero once the net effects of the pump
Pj and the loss γ j are imbalanced. For convenience, we in-
troduce the effective pump Fj defined as Fj ≡ Pj − γ j , which
can be regarded as an imaginary external potential. Since the
imaginary potential Fj breaks the time-reversal (T ) symmetry,
we can simultaneously break the parity-inversion (P ) sym-
metry and the T symmetry without the time-dependent drive
by introducing the ratchet-potential form of Fj . An arbitrary
function f of x has the P symmetry if and only if there exists
some appropriate spatial shift �x which satisfies the rela-
tion f (x + �x) = f (−x). For the discrete model, this relation
reads f j+� j = f− j , where f j represents f at site j. Here, it is
noted that the spatial shift � j does not have to be an integer.

The equation of motion of this system is given by

ih̄
dψ j

dt
= ∂H

∂ψ∗
j

= −J (ψ j+1 + ψ j−1) + U |ψ j |2ψ j + Vjψ j + iFjψ j .

(2)

This is the generalized discrete nonlinear Schrödinger
equation (gDNLSE). The average current of particles per cell
is defined as

J = iJ

2Ncellh̄

∑
j

(ψ jψ
∗
j+1 − ψ∗

j ψ j+1), (3)

where Ncell is the number of cells of the system. We take J as
the unit of energy and h̄/J as the unit of time in the following
analysis of the discrete model.

Now, we study the effect of violation of the P symmetry
of the initial state ψ

(0)
j and that of the external potential for

both the real (Vj) and the imaginary (Fj) ones. For simplicity,
we consider only a single cell which contains four sites and
the wave function satisfies the periodic boundary condition.
For now, we set U = 0 and Fj is tuned to balance between the
net effects of the pump Pj and the loss γ j (this fine-tuning is
not necessary when we take a nonzero value for the imaginary
U in the later discussion). In our numerical calculation, for a
P -symmetric and a P -asymmetric Fj , we take

Fj =
{

F0 sin
[

π
2 ( j + 2)

]
(P symmetric),

F0[a − mod( j + 2, 4)] (P asymmetric),

(4)

(5)

respectively, with the amplitude factor F0 = J/2 for both cases
and the tuning offset a between the pump and the loss being
a = 1. For the real potential Vj , we use the same functions
as Eqs. (4) and (5) (with the same values of F0 = J/2 and
a = 1) for the P -symmetric and the P -asymmetric cases, re-
spectively.

In the case of a static real potential (Vj �= 0 and Fj = 0),
there is no current at any time if Vj and ψ

(0)
j are P symmetric.

If the P symmetry of the initial state ψ
(0)
j is broken, the system

has a nonzero current even if Vj is P symmetric, but the
long-time averaged net current is still zero. As an example,
we consider the following initial state whose particle number
per cell is normalized to unity:

ψ
(0)
j =

√
Ncell(1 + ξ j )√∑Nsite

j=1 |1 + ξ j |2
, (6)

where Nsite is the total number of sites of the whole sys-
tem and ξ j is the random perturbation. We take the random
perturbation with a uniform distribution in the range of
ξ j ∈ [−0.05, 0.05] for the initial state ψ

(0)
j . Here, we take a

P -symmetric Vj as shown by the green dashed line in
Fig. 1(a). Due to the random perturbation added, the initial
state ψ

(0)
j is no longer P symmetric. The P -symmetry break-

ing of ψ
(0)
j results in a nonzero current as shown in Fig. 1(b).

However, even though the instantaneous current takes nonzero
values, the average current oscillates around zero periodically
in time and its long-time averaged value is zero. On the other
hand, once the P symmetry of Vj is broken (regardless of
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FIG. 1. P symmetry of the external potential and the resulting
current. The real (Vj) and the imaginary (Fj) potentials are shown
by the green and red dashed lines in the left panels, respectively.
The right panels show the current as a function of time t for the
cases corresponding to their respective left panels. The first row
[panels (a) and (b)]: V1∼4/J = {−0.5, 0, 0.5, 0} is P symmetric,
Fj = 0, and ψ

(0)
j (with random perturbation) is P asymmetric. The

second row [panels (c) and (d)]: V1∼4/J = {−1, 0.5, 0, −0.5} is
P asymmetric, Fj = 0, and ψ

(0)
j (without random perturbation) is

P symmetric. The third row [panels (e) and (f)]: Vj = 0, F1∼4/J =
{−0.5, 0, 0.5, 0} is P symmetric, and ψ

(0)
j (with random perturba-

tion) is P asymmetric. The bottom row [panels (g) and (h)]: Vj = 0,
F1∼4/J = {−1, 0.5, 0, −0.5} is P asymmetric, and ψ

(0)
j (without

random perturbation) is P symmetric. Here, we set U = 0.

whether ψ
(0)
j is with or without random perturbation), e.g., by

employing a ratchet-potential form of Vj as shown in Fig. 1(c),
the current J oscillates around zero irregularly [see Fig. 1(d)]
(a long-time averaged value of the current is still zero though).

In the case of the static imaginary potential (Vj = 0 and
Fj �= 0), similarly the current is zero at any time if both Fj

and ψ
(0)
j have the P symmetry. However, if there is random

perturbation ξ j in ψ
(0)
j , which breaks the P symmetry of

ψ
(0)
j , a nonzero net current J is generated. Here, the current

J periodically oscillates on either the positive or the nega-
tive side depending on the initial random perturbation [see
Fig. 1(f) showing a case in which the current oscillates on
the negative side]. Once the P symmetry of Fj is broken, e.g.,
by taking a ratchet-potential form as shown by the red dashed
line in Fig. 1(g), the system has a nonzero steady current [see
Fig. 1(h)] provided the net effects of Pj and γ j are balanced
(otherwise the current will diverge or decay to zero).

We now provide a simple analysis about the generation of
the steady current for the case of Vj = 0 and Fj �= 0 (we still
set U = 0). Here we assume that the steady state is periodic in
space with the period of a unit cell. Thus, we focus on only a
single cell which contains four sites. We have confirmed that

the resulting final state of the numerical time evolution for a
system with multiple cells under the periodic boundary condi-
tion actually satisfies this assumption. Further, in the present
example where the pump and the loss in Fj are balanced by
themselves without introducing the imaginary U , we have
found that the final steady state does not even show the overall
phase rotation (i.e., the eigenvalue of the time-independent
gDNLSE is zero) [68]. Therefore, for such a steady state,
Eq. (2) reads

ih̄
dψ j

dt
= −J (ψ j+1 + ψ j−1) + iFjψ j = 0. (7)

Then we can get the following relation,

ψ j = J

iFj
(ψ j+1 + ψ j−1), (8)

for j = 1 ∼ 4, with the following periodic boundary condi-
tions: ψ0 = ψ4 and ψ5 = ψ1. Substituting Eq. (8) for j = 1
and 3 into Eq. (3), one can obtain the steady current J
given by

J = J2

h̄

(
1

F1
− 1

F3

)
(|ψ2|2 − |ψ4|2). (9)

Similarly, by substituting Eq. (8) for j = 2 and 4 into Eq. (3),
one can obtain another expression of J :

J = J2

h̄

(
1

F2
− 1

F4

)
(|ψ3|2 − |ψ1|2). (10)

Since the number of sites per cell (four sites) is even, it is im-
possible to be P symmetric around the middle of neighboring
sites. Namely, the system can be P symmetric only around
either of sites. When Fj is P symmetric around site j = 1
or 3, Fj satisfies F2 = F4. Therefore, the current J = 0 from
Eq. (10). On the other hand, when Fj is P symmetric around
j = 2 or 4, it satisfies F1 = F3, so that J = 0 according to
Eq. (9). Thus the steady-state current is zero for a parity-
inversion-symmetric Fj . For Fj without the P symmetry, we
have F1 �= F3 and F2 �= F4. Therefore, whether the current J
is zero or nonzero depends on the density distribution |ψ j |2
of the resulting steady state. Furthermore, the direction of
the current also depends on |ψ j |2. Thus, we cannot tell the
direction of the steady current before solving the steady state.

Now, let us turn to discuss the effects of the nonlinear inter-
action. We first focus on the nonlinearity due to the imaginary
part of U and set the real part of U to zero. Note that, due to
the particle-particle interaction, the eigenvalue of the steady
state is no longer zero in general, so that the above analysis is
not applicable. Here, we consider the system with Ncell cells
(each cell still contains four sites) under the periodic boundary
condition. We set Vj = 0 and take Fj in the ratchet-potential
form given by Eq. (5) with F0 = J/2 [see Fig. 2(a)]. Now,
we set the tuning offset a = 1.2 so that the pump and the
loss in Fj are not balanced by themselves unlike the previous
case with a = 1. We initially prepare the state ψ

(0)
j given by

Eq. (6) with the uniformly distributed random perturbation
ξ j ∈ [−0.05, 0.05]. As mentioned before, the imaginary part
of U is a gain-saturation coefficient, which prevents the mag-
nitude of the wave function ψ j from diverging and stabilizes
it to a finite value. On the other hand, nonlinearity due to
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FIG. 2. Current and its steady value in the case of the nonzero
imaginary part of U . (a) Ratchet potential form of the effective pump
given by Fj = F0 × [1.2 − mod( j + 2, 4)], with the amplitude factor
F0/J = 0.5. (b) Current as a function of time for several realizations
with different values of the steady current under a given system
size (Ncell = 9). We initially prepare the state given by Eq. (6) with
random perturbation (ξ j ∈ [−0.05, 0.05]). Examples of a few real-
izations of the time evolution of the system are shown in different
colors. (c) Steady current as a function of the system size Ncell for sev-
eral series of �φ, each of which are connected by a dotted line with a
different color. The current of the series of �φ �= 0 converges to that
of �φ = 0 in the limit of Ncell → ∞. Here we set U/J = −0.01i.

the nonzero U leads to the emergence of multiple steady
states. Figure 2(b) shows the resulting time evolution of the
current for several realizations, each of which is shown in a
different color. Since there exist multiple steady states due to
the nonlinearity caused by the nonzero imaginary part of U ,
realizations with different initial perturbations can end up with
different values of the steady current.

Next, we discuss the system-size dependence of the steady
current in this case. By looking into the resulting steady states,
we find their wave function has the following two properties
except for the cases of small system size with Ncell = 1 and
3: (i) the magnitude is periodic in space with period d and
(ii) the phase has an alternating ±π jump between each two
adjacent cells on top of a global and monotonic phase change
with an almost constant slope [e.g., the phase profile shown
in Fig. 3(b)]. Figure 2(c) shows the current J of the final

FIG. 3. Snapshots of the phase profile arg(ψ j ) of a steady state
which belongs to the series of steady states characterized by the
overall phase changes �φ = 0 (a) and �φ = π (b). Specifically,
panel (a) is for the case of Ncell = 10 at t = 300τ for one of the
realizations, and panel (b) is for the case of Ncell = 9 at t = 300τ for
one of the realizations. The other parameters are the same as those
in Fig. 2.

steady state as a function of Ncell. At each Ncell, there are a
number of possible values of the steady current J , each of
which corresponds to a different steady state. Each line in this
figure shows a series of the steady current characterized by
an overall phase change �φ throughout the system due to
the component of the constant slope (i.e., the phase change
except for the contribution by the ±π jumps), which is an
integer multiple of π . For instance, Figs. 3(a) and 3(b) show
the phase profile of a steady state which belongs to the series
characterized by the overall phase changes �φ = 0 and π ,
respectively. It is noted that, although there are many possible
values of the steady current with different values of �φ at
each Ncell, the states in the series of larger |�φ| are hard to
realize and practically irrelevant since they are energetically
unfavorable. Figure 2(c) tells that the steady currents of all the
relevant series with small values of |�φ| converge to a single
value given by the series of �φ = 0 in the limit of Ncell → ∞.
In addition, since the steady current of the series of �φ = 0 is
constant with respect to Ncell, the steady current in the infinite
system can be evaluated by the one for �φ = 0 at any even
Ncell (the series of �φ = 0 does not exist for odd Ncell as we
explain below).

The constancy of J of the series of �φ = 0 can readily
be explained from the abovementioned property (ii) on the
phase of the resulting steady states. Since the overall constant
phase gradient of the steady states in the series of �φ = 0
is zero by definition, the change of the phase is only by the
alternating ±π phase jumps between adjacent cells [see, e.g.,
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Fig. 3(a)]. Therefore, Ncell must be even because the overall
phase change has to be an integer multiple of 2π in order to
satisfy the single valuedness of the wave function under the
periodic boundary condition. Since there is no overall constant
phase gradient for the �φ = 0 series, when adding two cells
to the system, the wave function just repeats one more period,
and consequently the average current per cell J is unchanged.

The Ncell dependence of J for the other series of �φ �= 0
can also be explained as follows. First, we note that, for the
series of �φ equal to an even (odd) multiple of π , Ncell must
be even (odd) to satisfy the periodic boundary condition. Due
to the nonzero overall phase gradient of the steady states for
the series of �φ �= 0, the wave function deviates from that of
the series of �φ = 0, so does the average current. When Ncell

is reduced with �φ fixed at a nonzero value, this deviation due
to the nonzero overall phase gradient becomes more notice-
able for smaller system size since the phase gradient increases
as ∼1/Ncell. Conversely, when Ncell is increased, the overall
phase gradient gets smaller and smaller so that the steady state
wave function becomes more similar to the one of �φ = 0
and the current converges to that of �φ = 0 in the limit of
Ncell → ∞.

In addition to the series of steady states, the long-time aver-
aged current for a series of “quasisteady states” is also shown
in Fig. 2(c) (the brown dashed curve). These quasisteady
states, which emerge due to the nonlinearity, are not the true
steady states, but are oscillating in time. Indeed, their current
shown by the brown lines in Fig. 2(b) oscillates in time even
at large t (its amplitude is too small to clearly be discerned in
this figure). However, although the current actually oscillates
even in the limit of large time t , the oscillation is regular
and the oscillation amplitude becomes negligibly small for
sufficiently large Ncell. It is noted that, even for the series
of the quasisteady states, its long-time averaged current also
asymptotically converges to the series of �φ = 0 as shown in
Fig. 2(c) [69].

Let us remark on the two isolated points at Ncell = 1 and 3
in Fig. 2(c) which do not belong to any series of steady states.
For steady states of these two isolated points, we cannot dis-
tinguish between the ±π phase jumps and the overall constant
phase gradient due to their short spatial period. Furthermore,
their eigenvalue is zero at any value of the amplitude F0 of
the imaginary ratchet potential (on the other hand, the other
steady states of any series characterized by �φ have a nonzero
real eigenvalue and its value changes by F0). In addition, we
find that, for sufficiently large amplitude F0 of the ratchet
potential given by Eq. (5), there exists a unique steady state
for all Ncell (i.e., the same unique steady state for any Ncell).
It is noted that this unique steady state for large F0 is adia-
batically connected to the steady state of the abovementioned
two isolated points, which appears only at small Ncell when
F0 is small. By directly looking into the phase of the unique
steady state numerically obtained for large F0, we find that the
phase difference between every pair of adjacent sites is either
π/2 or −π/2. This can be understood as follows. For the
steady state with a zero eigenvalue, the equation of motion (2)
reads

0 = −J (ψ j+1 + ψ j−1) + U |ψ j |2ψ j + iFjψ j . (11)

This equation can be rewritten as

0 = −J

( |ψ j+1|
|ψ j | eiθ j+1, j + |ψ j−1|

|ψ j | eiθ j−1, j

)
+ U |ψ j |2 + iFj,

(12)
where θ j±1, j ≡ arg (ψ j±1) − arg (ψ j ) is the phase difference
between ψ j±1 and ψ j . Note that Fj here spatially oscillates
between positive and negative values since we consider a
system where the pump and the loss can be balanced. If Fj

at site j becomes a large negative value (i.e., the loss rate at
site j becomes large), the number of particles |ψ j |2 at this
site gets small, so that the interaction term U |ψ j |2 becomes
negligible. In addition, in the case of our imaginary potential,
if it is negative at site j, it takes a positive value at one of
the neighboring sites, j − 1 or j + 1 [see Fig. 2(a)], where
the number of particles |ψ j−1|2 or |ψ j+1|2 is much larger than
at site j and the other neighboring site (i.e., for site j = 1
with Fj < 0, its neighboring site j + 1 = 2 has the positive
imaginary potential Fj+1 > 0; for site j = 4 with Fj < 0, site
j − 1 = 3 has Fj−1 > 0). Therefore, the real part of Eq. (12)
for j = 1 and 4 approximately reduces to (the upper sign for
j = 1 and the lower one for j = 4)

0 
 −J
|ψ j±1|
|ψ j | cos θ j±1, j, (13)

which can be satisfied if and only if θ2, 1 
 ±π/2 and θ3, 4 

±π/2, respectively, since |ψ j±1| is nonzero. On the other
hand, for sites with a positive imaginary potential (i.e., sites
j = 2 and 3), one of the neighboring sites has the negative
imaginary potential (i.e., site j − 1 = 1 for site j = 2, and
site j + 1 = 4 for site j = 3), where the number of particles
becomes negligible for sufficiently large F0. Therefore, the
real part of Eq. (12) for sites j = 2 (the upper sign) and 3
(the lower sign) approximately reads the same equation as
Eq. (13), and thus we get θ3, 2 
 π/2 or −π/2. Since θ2, 1,
θ3, 2, and θ4, 3 are π/2 or −π/2, the remaining phase differ-
ence θ1, 4 between sites 1 and 4 should also be π/2 or −π/2
due to the periodicity of the wave function. Regarding the
magnitude of the wave function at sites with positive Fj (i.e.,
j = 2 and 3), we get |ψ j | 
 √

Fj/iU since the number of
particles |ψ j |2 at these sites is large and the imaginary part
of Eq. (12) approximately reads

0 
 i−1U |ψ j |2 + Fj . (14)

Lastly, the magnitude |ψ j | at sites with negative Fj (i.e., j = 1
and 4) is |ψ j | 
 0 for sufficiently large F0. Here, we have seen
that the phase structure and the amplitude profile of the wave
function are uniquely determined: this concludes there is only
one final steady current for the imaginary ratchet potential in
the form of Fig. 2(a) with sufficiently large F0.

Finally, we briefly discuss the effect of the nonzero
real part of U . The qualitative results discussed above
do not change when Re(U ) is smaller than or compara-
ble to Im(U ): There are still a number of series of the
steady current characterized by �φ of an integer multiple
of π . The steady current of the �φ = 0 series is constant
with respect to Ncell, and the current of the other series
converges to the value of the �φ = 0 series in the ther-
modynamic limit. An important benefit of introducing the
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nonzero real part of U is that it can stabilize the above-
mentioned quasisteady states when Re(U ) is comparable
with Im(U ).

III. CONTINUOUS MODEL

Next, we are going to verify the results obtained by the
simple discrete model in Sec. II using a more realistic contin-
uous model, a generalized Gross-Pitaevskii equation (gGPE).
The gGPE, which can describe exciton-polariton condensates
in a semiconductor microcavity [60–64], is given by

ih̄
∂�(x, t )

∂t
=

[
− h̄2

2m

∂2

∂x2
+ g|�(x, t )|2 + V (x)

+ ih̄

2

(
P(x) − γ (x) − η|�(x, t )|2

)]
�(x, t ),

(15)

where �(x, t ) is the condensate wave function of polaritons,
m is the effective mass of the polariton, g is the polariton-
polariton interaction strength in the condensate, V is the
external potential, P is the pumping rate of the polariton con-
densate determined by the power of the pumping laser and the
density of the reservoir excitons, and γ is the loss rate of the
polaritons due to the leakage of photons from the microcavity.
Note that the effect of the presence of reservoir excitons on
the polariton condensate is phenomenologically captured by
the η term which introduces the gain-saturation effect of the
polariton condensate [60,63]. This gain-saturation term cor-
responds to the imaginary part of U in the discrete model.
We define F ≡ P − γ as the effective pump which can be
regarded as a single external imaginary potential as a whole.
As in the previous section, we consider P(x) and γ (x) are
periodic in space with period d of a unit cell, and so is F (x).
Here as well, we consider the system with Ncell cells under
the periodic boundary condition. The average current of the
polariton condensate is defined as

J = ih̄

2mNcelld

∫ (
�

∂�∗

∂x
− �∗ ∂�

∂x

)
dx. (16)

In the calculation of the gGPE in this section, we take E0 ≡
h̄2π2/(2md2) as the unit of energy and τ ≡ h̄/E0 as the unit
of time.

The effect of the violation of the P symmetry of the real
and the imaginary potentials on the current is qualitatively the
same as in the case of the discrete model discussed in Sec. II.
The imaginary potential F (x) without the P symmetry can
generate a net current. Here we consider an imaginary ratchet
potential in the following form:

F (x) = F0[sin(kx) + α sin(2kx) + β], (17)

where F0 is the amplitude of the effective pump, α is the shape
coefficient of the ratchet, β is the offset to tune the gain and
the loss, and k is set by the spatial period d of the system
as k = 2π/d . Here, we take F0 = 4E0/h̄ = 4τ−1, α = 0.2,
and β = 0.35. The shape of the imaginary ratchet potential
F (x) is shown in Fig. 4(a). For simplicity, we neglect the
interaction term and the external potential, i.e., g = V = 0.
We take the following initial state whose particle number per

FIG. 4. Ratchet-potential form of the effective pump F (x)
and the resulting persistent current with gain-saturation (η �= 0).
(a) Effective pump as a function of x given by F (x)/τ−1 =
4[sin(2πx/d ) + 0.2 sin(4πx/d ) + 0.35]. (b) Steady current as a
function of the system size Ncell. The series of �φ = 0, ±π , ±2π

are shown, and each series of the data points is connected by a dotted
line with a different color. The steady states with larger |�φ| are not
obtained at small Ncell in our simulations since they are energetically
unfavorable. Here we set V = g = 0 and η/τ−1 = 0.05.

cell is normalized to unity:

� (0)(x) =
√

Ncell[1 + ξ (x)]√∫ |1 + ξ (x)|2dx
, (18)

where ξ (x) is the random perturbation. For each realization
of the time evolution, we take the random perturbation ξ (x) ∈
[−0.05, 0.05] with a uniform distribution at each grid point
separated by �x = 0.02d [70] in our simulation.

Simulation results of the continuous model qualitatively
agree with those of the discrete model shown in Sec. II. This
validates the main results obtained by the discrete model.
Resulting from the nonlinearity of the gain-saturation term (η
term), there appear multiple final steady states at each Ncell

as we can see in Fig. 4(b). As in the case of the discrete
model, each steady state can be characterized by the overall
phase change �φ, and here we show the series of �φ = 0,
±π , and ±2π . The series of �φ = 0, which exists at even
Ncell, shows a constant value of the steady current, and the
steady current of the other series of �φ �= 0 converges to
that of �φ = 0 in the limit of Ncell → ∞. It is also noted
that there is an isolated point at Ncell = 1 shown by a black
circle in Fig. 4(b). This isolated point is essentially the same
as the aforementioned two isolated points in Fig. 2(c) obtained
in the discrete model. For sufficiently large amplitude F0 of
the ratchet potential given by Eq. (17), there exists a unique
steady state in common for all Ncell, and this unique steady
state is adiabatically connected to the steady state of this
isolated point.
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IV. DEMONSTRATION BY THE COUPLED
GROSS-PITAEVSKII EQUATION

In this section, we give a demonstration of generating a
persistent current of exciton-polariton condensates in a 2D
semiconductor microcavity with a periodic loss rate with
period d in one direction, which we take to be the x direction.
Although the system is 2D, the structure is 1D along the
x direction and is uniform in the transverse (y) direction.
Assuming the transverse component of the polariton wave
function �2D(x, y, t ) is homogeneous, we have �2D(x, y, t ) =
�(x, t )/

√
Ly, where Ly is the transverse length of the system.

Thus, we can reduce the 2D open-dissipative GP equation, a
standard model widely used to describe the exciton-polaritons
[45,65–67], into a 1D problem:

ih̄
∂�(x, t )

∂t
=

[
− h̄2

2m

∂2

∂x2
+ V + gc|�(x, t )|2

+ ih̄

2
(nR − γc) + ngR

]
�(x, t ), (19)

coupled with the following rate equation describing the popu-
lation dynamics of the reservoir excitons:

∂n

∂t
= P − nγR − nR|�(x, t )|2, (20)

where n is the 1D density of the reservoir excitons; P is the
gain rate of the reservoir excitons from the laser pump; gc

and gR are the two-body interaction strengths of the polaritons
in the condensate and the reservoir excitons, respectively; R
is the scattering rate between the reservoir excitons and the
condensate polaritons; and γc and γR are the loss rates of the
condensate polaritons and the reservoir excitons, respectively.
Note that gc, gR, R, and P in Eqs. (19) and (20) are given
by gc ≡ g2D

c /Ly, gR ≡ g2D
R /Ly, R ≡ R2D/Ly, and P ≡ P2D/Ly,

where the quantities with the superscript “2D” represent the
corresponding quantities in the original 2D model. Since the
wave function in the transverse direction is assumed to be
the homogeneous ground state, the results of the flux (and
intensive properties of the system as well) do not depend on
the system size Ly in the transverse direction. Therefore, for
convenience, we set Ly to be equal to d in our simulations.

We use the parameter values from the experiment by
Roumpos et al. [71]: g2D

c = 6 × 10−3 meV μm2, g2D
R = 2g2D

c ,
and R2D = 0.01 ps−1 μm2. Besides, we take the pumping
strength P2D = 50 ps−1 μm−2, which is also comparable
to the value in the above experiment. Here, we consider
the loss rate γc(x) of the polariton condensate to have a
ratchet-potential shape (i.e., an imaginary ratchet potential)
with period d of a unit cell as shown in Fig. 5(a), and the
loss rate γR of reservoir excitons is given by γR(x) = 1.5γc(x).
One can obtain the ratchet-potential form of γc(x) and γR(x)
by tuning the quality factor of the microcavity by etching the
distributed Bragg mirrors [57–59]. Such a ratchet-potential
form of γc(x) and γR(x) breaks the P symmetry and the T
symmetry of the Hamiltonian simultaneously, so that a persis-
tent current can be generated.

In the simulation, we consider the system under the peri-
odic boundary condition. To show the steady current in the
thermodynamic limit, we show the results whose steady state
is the one with �φ = 0 in the following. Thus, while we set

(
)

FIG. 5. Ratchet-potential form of the loss rate γc(x) and the
resulting persistent current of the exciton-polariton condensate in
a semiconductor microcavity. (a) The loss-rate profile γc(x) =
0.6[sin(2πx/d ) + 0.2 sin(4πx/d ) + 1.3] ps−1. In the simulation, we
set d = 2.8 μm. (b) Current as a function of time for a few realiza-
tions (shown in different colors) with the same value of the steady
current. Here we set Ncell = 10. The initial state is given by Eq. (18)
with random perturbation (ξ j ∈ [−0.05, 0.05]).

Ncell = 10 in the particular simulation shown below, the result-
ing steady current is independent of the choice of Ncell. We
take E0 = h̄2π2/(2md2) as the unit of energy and τ = h̄/E0

as the unit of time. For the effective mass of the polariton
m ≈ 9 × 10−5me and the lattice constant d = 2.8 μm as in
the experiment [72], we get E0 ≈ 0.533 meV and τ ≈ 1.24 ps.
We prepare the initial state in the form of Eq. (18) with uni-
formly distributed random perturbation ξ (x) ∈ [−0.05, 0.05]
at each grid point whose interval is �x = 0.02d . The average
current during the time evolution of the system is shown in
Fig. 5(b), which shows a stable current of ≈ −9.67τ−1(=
−7.80 ps−1) after t � 85τ . This amount of the current can
be compared with the critical current. The critical velocity of
the polariton condensate can be estimated by the sound veloc-
ity cs = √

gcnc/m of the corresponding homogeneous system
with the same average density [62], where nc is the average
density of the polariton condensate. Since nc ≈ 64.6d−1 in
the resulting steady state of the present example, the critical
current is estimated as ∼nccs ≈ 33.6 ps−1. Therefore, the ob-
tained steady current amounts to ∼23% of the critical current.

V. SUMMARY AND CONCLUSION

We have proposed a scheme to generate a persistent
current in driven-dissipative nonequilibrium systems. The
time-reversal (T ) symmetry is intrinsically broken due to the
dissipation (loss) in these systems. We consider the static,
position-dependent loss rate in the ratchet-potential form to
break the parity-inversion (P ) symmetry of the systems. Such
a loss-rate profile which simultaneously breaks the T sym-
metry and the P symmetry of the Hamiltonian can generate
a net current. Our scheme neither requires any dynamic drive
nor nonlocal dissipation, and it can generate a nonzero current
even in the thermodynamic limit. Furthermore, by introducing
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a quantum wire structure, the minimum width of the flow can
be reduced to the nanometer scale, which is crucial to make
a high-density integrated circuit. These points are advantages
of our scheme over the other existing ones.

First, we have discussed the basic physics of our scheme
using the simple discrete driven-dissipative Gross-Pitaevskii
model. We have found that the gain-saturation term can stabi-
lize the system into a steady state. Although multiple steady
states with different amounts of current emerge due to the
nonlinearity of the gain-saturation term, their current asymp-
totically approaches the same value in the limit of infinite
system size. Qualitative results obtained in the discrete model
have been verified by the more realistic continuous model.
Finally, we have demonstrated the experimental feasibility
of our scheme to generate a persistent current in exciton-
polariton condensates in a semiconductor microcavity.

For future prospects, it would be interesting to manipu-
late the polariton current in a semiconductor microcavity by
designing a nontrivial 2D pattern of the imaginary potential.
Quantum interferometers [4] and “polariton circuits” [73–76]
can be implemented in this 2D platform. In addition, degrees
of freedom of the exciton-spin can be taken into consideration
[77–83]. The transport of spinor exciton-polariton conden-
sates [78,84,85] might also be an interesting problem with rich
applications.
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A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart,
Phys. Rev. Lett. 101, 267404 (2008).

[58] D. Tanese, H. Flayac, D. Solnyshkov, A. Amo, A. Lemaître,
E. Galopin, R. Braive, P. Senellart, I. Sagnes, G. Malpuech, and
J. Bloch, Nat. Commun. 4, 1749 (2013).

[59] R. Jayaprakash, C. E. Whittaker, K. Georgiou, O. S. Game,
K. E. McGhee, D. M. Coles, and D. G. Lidzey, ACS Photonics
7, 2273 (2020).

[60] J. Keeling and N. G. Berloff, Phys. Rev. Lett. 100, 250401
(2008).

[61] P. R. Eastham, Phys. Rev. B 78, 035319 (2008).
[62] M. Wouters and I. Carusotto, Phys. Rev. Lett. 105, 020602

(2010).
[63] J. Keeling and N. G. Berloff, Contemp. Phys. 52, 131 (2011).
[64] F. I. Moxley, J. P. Dowling, W. Dai, and T. Byrnes, Phys. Rev.

A 93, 053603 (2016).
[65] M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402

(2007).
[66] X. Ma, I. Yu. Chestnov, M. V. Charukhchyan, A. P. Alodjants,

and O. A. Egorov, Phys. Rev. B 91, 214301 (2015).

[67] I. Yu. Chestnov, A. V. Yulin, A. P. Alodjants, and O. A. Egorov,
Phys. Rev. B 94, 094306 (2016).

[68] When U = 0 and Fj �= 0, and the pump and loss are in balance
to have a steady state, our discrete model with four sites per unit
cell has only one steady state and its eigenvalue is always zero.

[69] More precisely, due to the small oscillation of the quasisteady
states, their long-time averaged current in the limit of Ncell →
∞ slightly deviates from the steady current of the series of
�φ = 0. Depending on the series of the quasisteady states, the
asymptotic value in the limit of Ncell → ∞ can be either larger
or smaller than the steady current of �φ = 0 series.

[70] For small Ncell (<10), we take a smaller �x. We have confirmed
that all the results shown in this paper converge with respect
to �x.

[71] G. Roumpos, M. D. Fraser, A. Löffler, S. Höfling, A. Forchel,
and Y. Yamamoto, Nat. Phys. 7, 129 (2011).

[72] C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng,
M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa,
and Y. Yamamoto, Nature (London) 450, 529 (2007).

[73] T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, Phys. Rev.
Lett. 101, 016402 (2008).

[74] T. C. H. Liew, A. V. Kavokin, T. Ostatnický, M. Kaliteevski,
I. A. Shelykh, and R. A. Abram, Phys. Rev. B 82, 033302
(2010).

[75] H. Xu, S. Ghosh, M. Matuszewski, and T. C. H. Liew, Phys.
Rev. Appl. 13, 064074 (2020).

[76] R. Mirek, A. Opala, P. Comaron, M. Furman, M. Król, K.
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H. Suchomel, T. H. Harder, S. Betzold, E. A. Ostrovskaya, A.
Kavokin, S. Klembt, S. Höfling, and C. Schneider, Phys. Rev. B
99, 115303 (2019).

[84] F. Pinsker and H. Flayac, Phys. Rev. Lett. 112, 140405 (2014).
[85] D. Caputo, E. S. Sedov, D. Ballarini, M. M. Glazov, A. V.

Kavokin, and D. Sanvitto, Commun. Phys. 2, 165 (2019).

023328-9

https://doi.org/10.1103/PhysRevLett.103.130601
https://doi.org/10.1103/PhysRevX.5.021025
https://doi.org/10.1103/PhysRevA.98.053812
https://doi.org/10.1103/PhysRevResearch.2.043343
https://doi.org/10.1088/0268-1242/22/5/R01
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1038/nphys3143
https://doi.org/10.1146/annurev-conmatphys-031214-014542
https://doi.org/10.1038/nmat3825
https://doi.org/10.1103/PhysRevX.4.031025
https://doi.org/10.1103/PhysRevX.3.041015
https://doi.org/10.1103/PhysRevB.94.165306
https://doi.org/10.1103/PhysRevB.97.195149
https://doi.org/10.1103/PhysRevResearch.3.013072
https://doi.org/10.1103/PhysRevB.98.104502
https://doi.org/10.1103/PhysRevB.102.201114
https://doi.org/10.1103/PhysRevLett.107.066405
https://doi.org/10.1103/PhysRevLett.101.267404
https://doi.org/10.1038/ncomms2760
https://doi.org/10.1021/acsphotonics.0c00867
https://doi.org/10.1103/PhysRevLett.100.250401
https://doi.org/10.1103/PhysRevB.78.035319
https://doi.org/10.1103/PhysRevLett.105.020602
https://doi.org/10.1080/00107514.2010.550120
https://doi.org/10.1103/PhysRevA.93.053603
https://doi.org/10.1103/PhysRevLett.99.140402
https://doi.org/10.1103/PhysRevB.91.214301
https://doi.org/10.1103/PhysRevB.94.094306
https://doi.org/10.1038/nphys1841
https://doi.org/10.1038/nature06334
https://doi.org/10.1103/PhysRevLett.101.016402
https://doi.org/10.1103/PhysRevB.82.033302
https://doi.org/10.1103/PhysRevApplied.13.064074
https://doi.org/10.1021/acs.nanolett.0c04696
https://doi.org/10.1002/pssb.200560965
https://doi.org/10.1038/nphys676
https://doi.org/10.1103/PhysRevLett.105.256401
https://doi.org/10.1103/PhysRevB.92.155308
https://doi.org/10.1103/PhysRevB.93.205307
https://doi.org/10.1103/PhysRevB.96.144511
https://doi.org/10.1103/PhysRevB.99.115303
https://doi.org/10.1103/PhysRevLett.112.140405
https://doi.org/10.1038/s42005-019-0261-2

