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Chiral superfluid in a one-dimensional bipartite optical lattice
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We study the formation of a chiral mode in a one-dimensional bipartite optical potential with a double-well
dispersion. The geometry of the first excited state is tuned such that two degenerate energy minima are
formed at the quasimomentum q = ±h̄k0/2 of the first Brillouin zone. Based on the coupled-mode theory, an
unconventional superfluid order pq ± ip−q is formed between the interacting condensate components within the
double-well dispersion band under well-defined phase-locked steady states.

DOI: 10.1103/PhysRevA.105.023327

I. INTRODUCTION

Optical lattices with a higher band occupation allow in-
vestigating physics beyond the conventional s-band Hubbard
physics and mimic exotic quantum states such as unconven-
tional Bose-Einstein condensates (UBECs) and topological
superfluids [1–11]. They provide an ideal platform to manip-
ulate and control the orbital degrees of freedom which are
crucial for understanding complex condensed-matter systems
such as transition metal oxides and high-Tc superconductivity
[12,13]. In these configurations, an exotic chiral superfluid
state with unconventional order has been proposed in the high
orbital bands of a bipartite optical lattice potential [1]. The
bipartite square optical potential is a checkerboard lattice,
comprising two sublattices with relatively different lattice
depths. This potential can be realized by crossing two standing
waves with a relative phase θ . By tweaking the relative phase,
the relative depth of the sublattices will change.

In a bipartite lattice, the higher bands can be populated
via a swapping technique [14]. Initially the ground state is
prepared with an s-atomic orbital residing at the shallow sites.
By means of a population swapping technique, a large fraction
of atoms can be transferred to the deeper sites where the p
wave is hosted. In this system orbital hybridization is driven
by an interaction between the local p orbital which plays
a significant role in emulating the spin-orbit coupling and
an artificial gauge field. Therefore, topologically nontrivial
many-body states and superconducting states [3,4] can be
implemented.

For weak interactions, the dynamics of the condensate can
be described by the Gross-Pitaevskii equation (GPE) derived
from mean-field theory under the assumption of a macroscop-
ically populated coherent state,

ih̄
∂ψ
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(
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where ψ (x, t ) is the condensate wave function, V (x) is the
trapping potential, σ is the interparticle interaction strength,
and m is the mass of the bosonic particle. In the noninteracting
limit (σ = 0), Eq. (1) becomes linear in ψ (x). Considering
V (x) as a periodic confinement potential, Eq. (1) exhibits
a linear spectrum with allowed energy bands separated by
a forbidden gap structure. These bands are associated with
linear propagating modes called Bloch states. Here, we con-
sider the solution of the GPE for a one-dimensional (1D)
double-period optical potential. This potential is created by
an interference of two laser beams along the x direction with
a relative phase θ . The relative phase θ is tuned to engineer
the first excited state with doubly degenerate minima where a
cold atomic cloud condenses. An atomic cloud of interacting
bosons loaded into dispersion with multiply degenerate min-
ima will be driven by the mean-field interaction to condense
at a single minimum. This leads to spontaneous time-reversal
symmetry (TRS) breaking and the creation of a chiral atomic
superfluid [15–19]. In this state the atomic orbitals are spon-
taneously arranged into a vortex array with a global orbital
angular momentum across the entire lattice.

Here, we report using the coupled-mode theory [20] to
prove the existence of a chiral atomic superfluid. Such a state
is induced by an umklapp interaction which breaks the spon-
taneous time-reversal symmetry in the second Bloch band
of a double-period optical lattice. Our study reveals that the
chiral superposition of the two Bloch modes within the highly
populated second energy band of a 1D double-period optical
potential represents the steady state of the system. The phase
space portrait shows a fixed-point solution which indicates
that the system is driven into a chiral mode pq ± ip−q under
certain conditions. This system provides a simple model to
create a nontrivial orbital angular momentum (OAM) order in
one dimension. The prediction can be tested using the time-
of-flight (TOF) technique. The same results has been realized
in a 2D bipartite lattice [1].

In this paper, we demonstrate the formation of a chiral state
in the dual minima first excited state of a one-dimensional
double-period optically induced potential. We start by solving
the standard eigenvalue problem in the Fourier basis. The
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FIG. 1. (a) Bipartite 1D optical lattice potential in Eq. (2) with
V0 = 5.7Er , θ = 0.43π . The deep and the shallow sites are shown
with dark and light gray stripes, respectively. (b) The linear energy
spectrum of the lowest four energy bands.

linear dispersion and the second band Bloch state of the opti-
cal trap are analyzed. The Bloch state in the second energy
band shows an s-p hybridization nature. The dynamics of
the system is then investigated by solving the time-dependent
GPE numerically within the framework of the coupled-mode
theory. We conclude that a vortexlike state is the energetically
favored state which results from the superposition of two
degenerate condensate components within the second energy
band.

II. THE MODEL

A. Linear spectrum and Bloch modes

We consider cold atoms loaded into the first excited state
of the 1D optical lattice potential V (x), described by

V (x) = −V0[cos2(k0x) + cos(θ ) cos(k0x)], (2)

where V0 is the lattice depth, and k0 = 2π/a is the lattice wave
number with a as the lattice constant. The angle θ is the rela-
tive phase between the two traveling waves along the x and −x
direction. The relative phase θ can tuned such that single- and
double-period potentials are realized. An alternative method
to create a double-period optical potential in one dimension is
by interference of two optical-lattice potentials with different
wavelengths (bichromatic) and different amplitudes [21–24].

For the noninteracting case (σ = 0), the eigenvalue equa-
tion Hφn

q = En
q φn

q can be solved and the band structure of
the periodic potential (2) is derived based on the Bloch the-
orem, where the quasimomentum q is restricted to the first
Brillouin zone: −h̄k0 < q < h̄k0. Using the coupling matrix
H with elements Hll = Er (k/k0 + q), Hl;l±1 = −V0 cos(θ ),
Hl;l±2 = −V0/4, the eigenenergies En

q of the Bloch states
φn

q = ∑
l cn,q

l ei2lk0x are extracted, where the index n is the
band index and l is an integer, and Er = h̄2k0/2m denotes
the recoil energy. The first excited state [dotted red line
in Fig. 1(b)] is characterized by two energetically degener-
ate minima at the q = (h̄k0/2,−h̄k0/2) points where a cold
bosonic system will condense. For a certain quasimomentum
q, the eigenvalues En

q for the nth energy band and the cor-
responding wave vectors cn,q of the coupling Hamiltonian

FIG. 2. The real-space Bloch function of the second energy band
at points q = h̄k0/2 (solid red line), q = −h̄k0/2 (dashed black line)
with V0 = 5.7Er , θ = 0.43π .

matrix are calculated. The spatial lattice potential and the
corresponding band structure for V0 = 5.7Er and θ = 0.43π

are shown in Fig. 1. The real-space distributions of the Bloch
states at the quasimomenta q = ±h̄k0/2 of the second energy
band [dotted red line in Fig. 1(b)] ψ±q manifests the s-p
hybridized nature. Their wave functions are the superposition
of the local s orbitals at the shallow lattice sites and the p
orbitals at the deeper wells, i.e., ψ±q = √

nsφs + √
nqφ±q as

shown in Fig. 2. This hybridization occurs due to tuning the
energy level of the s orbital of the shallow site with that of the
p orbital of the deeper site.

B. Nonlinear dynamics

In what follows, we show the dynamics of an interacting
BEC loaded into the first double-valley energy band of the
potential (2) using the phase-locked superposition of two de-
generate Bloch states. Based on the coupled-mode theory, we
assume that the macroscopic wave function of the BEC in the
first excited state can be represented as a superposition of the
two degenerate Bloch modes ψ±q(x) at q = ±h̄k0/2,

ψ (x, t ) = Cq(t )ψq(x) + C−q(t )ψ−q(x), (3)

with complex time-varying amplitudes C±q(t ) corresponding
to the Bloch states ψ±q(x), respectively. For convenience the
complex amplitudes C±q are separated into real moduli |C±q|
and phase θ±q.

Substituting ansatz (3) into the GP equation (1), we obtain
the system of coupled-mode equations for the time-varying
amplitudes C±q.

i
∂C±q

∂t
= σγ±q±q|C±q|2C±q + σγ−qq(|C∓q|2C±q

+ C2
∓qC∗

±qe2i(θ−q−θq ) ), (4)

where γi j = ∫
ψ2

i (x)ψ2
j (x) is the set of the overlap integrals.

The dynamics of the system can be studied by solving the
rate equations for the amplitudes C±q. This approach has been
used to investigate the dynamics of the double-well potential
[25–27], where the ground- and higher-order state collective
modes are considered. To understand the system dynamics,
new physical parameters are introduced: the relative popula-
tions of the two modes Z = |Cq|2 − |C−q|2 and the relative
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FIG. 3. The numerical solutions for the system of the coupled-mode equations (5) and (6). (a) Phase-space portrait (Z,	) with red spots
represent the fixed-point solutions at ±π/2. The evolution of phase difference 	 and population imbalance Z are shown in (c) and (d). In
(d) the single fixed point corresponding to (Z,	) = (0, π/2) is shown.

phase 	 = θq − θ−q. In terms of Z (t ) and 	 the coupled-
mode equations (4) become

∂Z (t )

∂t
= σγ−qq(1 − Z2) sin(2	) − ηZ, (5)

∂	(t )

∂t
= σ {(γqq − γ−q−q )Z − 2Zγ−qq[2 + cos(2	)]}. (6)

In this system of coupled equations, a linear damping term
(ηZ) is introduced which represents the finite lifetime due to
two-body collisions [28]. The time derivative of the popula-
tion imbalance and the relative phase between the two points
q,−q are proportional to sin(2	) and cos(2	), respectively.
Such terms are consequences of umklapp scattering which
result in spontaneous time-reversal symmetry breaking. Due
to the degeneracy between the two modes ψ±q, one can safely
assume that the population imbalance is relatively small,
|Z| � 1. The steady states of Eqs. (5) and (6) are found under
conditions of equal mode populations Z = 0 (i.e., |C−q| =
|Cq|) with a locked relative phase 	 = ±π/2. Figure 3 shows
the time evolution of the relative phase 	 and the population
imbalance Z . The population imbalance Z (t ) and the relative
phase 	(t ) reach to their steady values as shown in Figs. 3(b)
and 3(c). The phase-space portrait [Fig. 3(a)] (Z,	) reveals
the existence of a two fixed-point solution at (±π/2) (red
spots). Knowing the steady state solution coordinates (Z,	)
the stable solution for our system can be constructed. The
superposition of the two highly populated Bloch modes with
equal amplitudes and a fixed phase of π/2 results in a se-
quence of vortices such as ψs = (ψq + eiπ/2ψ−q). The density

distribution and the phase structure are shown in Fig. 4. It
shows a dip formed in the central site with phase changes
from π/2 to −π/2. This indicates that an array of vortices is
formed at the center of the deep lattice sites with an alternating
phase. The system is driven to this vortexlike state due to the
nonzero interaction between the two BEC components resid-
ing at the two minima q = ±h̄k0/2. Based on our formalism
the chiral superposition of the two Bloch modes is energeti-
cally favorable, since it represents a steady state of the system.
In the same context, it is argued that the chiral superposition
provides the largest possible mode volume which in turn min-
imizes the local repulsive interaction [10]. Our prediction can

FIG. 4. The density distribution (solid red line) and the phase
structure (dashed blue line) of the steady state formed in the first
excited band.
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be tested experimentally using interference techniques. One
possible strategy is mixing the momentum wave function ψ±q

by a two-photon coupling using a Bragg spectroscopy pulse
[29,30] that can resolve the narrow momentum distribution
with a high precision. A signature for two condensation points
with a fixed relative phase would be observed in the time
evolution.

III. CONCLUSION

In this paper, the standard eigenvalue problem is solved for
the 1D double-period optical potential. By tuning the potential
parameters a double-valley first excited state is formed with
two degenerate energy minima. Cold atoms loaded into this
energy band will fragment into two degenerate components at
q = h̄k0/2. The Bloch state of the second energy band is char-
acterized by s-p hybridization. Based on the coupled-mode
formalism, the steady state of weakly interacting bosons in a
one-dimensional bipartite lattice with a double-valley band is

established. A chiral superfluid phase is energetically favor-
able to minimize the local repulsive interaction. This phase
breaks the time-reversal symmetry. This system can be imple-
mented experimentally to ensure creating and manipulating
vortex chains in a 1D optical lattice. Controlling the spatial
degree of freedom is one of the main features of the quantum
information field. For instance, it may be used to generate
blocks of nontrivial angular momenta carried by the chiral
array to investigate particle entanglement [31]. This model
may also can be used to investigate other interesting physics.
The interaction strengths can be tuned by changing the lattice
depth which may result in a rich phase diagram. The band
diagram in Fig. 1 shows that the fourth band (dashed-dotted
green line) exhibits doubly degenerate minima which suggests
the formation of an F -orbital superfluid.
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