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The controlled creation of dark-bright (DB) soliton trains in multicomponent Bose-Einstein condensates
(BECs) is a topic of ongoing interest. In this work we generalize earlier findings on the creation of dark soliton
trains in single-component BECs [A. Romero-Ros et al., Phys. Rev. A 103, 023329 (2021)] to two-component
BECs. By choosing suitable filled box-type initial configurations (FBTCs) and solving the direct scattering
problem for the defocusing vector nonlinear Schrödinger equation with nonzero boundary conditions we obtain
analytical expressions for the DB soliton solutions produced by a general FBTC. It is found that the size of
the initial box and the amount of filling directly affect the number, size, and velocity of the solitons, while the
initial phase determines the parity (even or odd) of the solutions. Our analytical results are compared to direct
numerical integration of the coupled Gross-Pitaevskii equations, both in the absence and in the presence of a
harmonic trap, and an excellent agreement between the two is demonstrated.
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I. INTRODUCTION

Nonlinear phenomena in Bose-Einstein condensates
(BECs) have become a focus of attention during the last
couple of decades [1,2], and solitary waves stemming from
the balance between dispersion and the nonlinearities of the
system have been a topic of intense investigation [3]. In
single-component BECs, these macroscopic nonlinear excita-
tions can have the form of local density suppressions (dark
solitons [3,4]) or local density humps (bright solitons [5])
depending on whether the nonlinear interaction is repulsive
or attractive, respectively.

The experimental realization of two-component BECs
[6–8] has opened a window towards the study of more com-
plex solitonic structures [9–18]. In repulsive two-component
BECs, a fundamental excitation takes the form of a dark-
bright (DB) soliton [9]. A single DB soliton consists of a
dark soliton that acts as an effective potential in which the
bright soliton is trapped and, consequently, waveguided. Im-
portantly, bright solitons cannot be sustained (unless under
such waveguiding) in self-repulsive BECs. The concept of
waveguiding has its origin in nonlinear optics [19,20] (see also
references therein), where DB solitons have been an active
topic of theoretical and experimental research [21–23]. In this
context, the DB soliton dynamics is described by the defocus-
ing vector nonlinear Schrödinger (VNLS) equation [3], while
in the context of BECs DB solitons similarly obey the so-
called coupled Gross-Pitaevskii equation (CGPE) [1,24,25].

The first experimental realizations of DB solitons in BECs
almost a decade ago [13,26–30], as well as subsequent ex-
perimental realizations of their variants and generalizations

[14,18,31–34], have motivated a significant amount of inter-
est in studying their dynamics and interactions [17,35–47].
In particular, several methods have been proposed to create
DB soliton structures. For instance, the combination of phase
imprinting techniques [48,49], to create the dark soliton, and
a local population transfer by means of a Raman process [50],
to create the bright counterpart, allows the creation of indi-
vidual DB solitons [26]. Other population transfer methods
demonstrated how an alternating spatial distribution of the two
components, via the creation of a winding pattern, can lead to
the formation of DB soliton trains [30]. Additionally, coun-
terflow techniques which involve a dynamical mixing of both
components also give rise to DB soliton trains [13,29]. More
recently, the controllable creation of DB pairs could generate
the conditions for a systematic observation and measurement
of their interactions, including in BECs with a higher (e.g.,
three) number of components [34].

Following the counterflow concept, matter-wave interfer-
ence methods have been highly used in single-component
BECs to generate dark soliton trains [51–55]. This method
is based on the collision of two separated condensates, and
allows for the systematic nucleation of a desired number of
solitonic entities upon tailoring the initial separation of the
colliding condensates and their relative phase. In this coun-
terflow setting, exact results were originally derived for the
defocusing NLS equation in the seminal work of Ref. [56]
for a box-type pulse by means of the inverse scattering trans-
form (IST) [57–61]. More recently, some theoretical works
have exploited the integrable nature of the defocusing VNLS
model and further developed an IST formalism with non-zero-
boundary conditions (NZBC) [41,62,63].
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FIG. 1. Schematic illustration of the box-type configuration uti-
lized herein, for arbitrary L, qo, θ, h, α, and H in the absence
(a) and in (b) the presence of a harmonic trapping potential. Here,
L is the parameter that controls the separation between the two sides
of the box which play the role of the two colliding condensates in
a matter-wave interference process. The matter-wave interference
process is also schematically illustrated through snapshots in (c), (d),
and (e) at times t1 < t2 < t3, respectively. Note that the quantities
shown are measured in transverse oscillator units.

In view of our previous work in single-component BECs
[64] and the analytical tools provided by the direct scattering
method and the IST with NZBC, in this work we exploit the
unprecedented level of control that the ultracold environment
offers [6–8,65,66] to study the response of a two-component,
one-dimensional (1D), harmonically trapped BEC with repul-
sive intracomponent and intercomponent interactions, when
a general filled box-type configuration (FBTC) is considered
as an initial condition. In particular, in our setup the wave
function of the first component is a box-type pulse whose
sides play the role of the two colliding condensates in the
matter-wave interference mechanism. On the other hand, the
wave function of the second component is an inverted box that
fills the space between the two sides of the box of the first
component (see Fig. 1). A somewhat similar configuration
(albeit with differences in the bright component) was con-
sidered in nonlinear optics to study vector soliton interaction
dynamics [22]. First, we consider the integrable version of
the problem, i.e., the defocusing VNLS equation with NZBC.
Here, we solve analytically the direct scattering problem for
the aforementioned box-type configuration and provide the
discrete eigenvalues of the scattering problem for distinct
parametric variations. The latter characterize the amplitudes
and velocities of the ensuing DB solitons, whose exact wave-
form can be then extracted via the IST.

Having at hand the exact analytical expressions for the
DB solitons, we then compare them with direct numerical
simulations of the CGPE with a FBTC in the absence of
confinement, finding remarkable agreement, as should be ex-
pected on the basis of the exact nature of the IST analysis.
Moreover, to showcase the broader, as well as physical rele-
vance of our results, we extend our analytical findings to the

case involving the presence of a harmonic confinement. Using
the expressions for the eigenvalues from the direct scattering
problem, we design analytical estimates to describe the in-trap
oscillation dynamics of the generated DB solitons. Here, we
provide explicit expressions accounting for the oscillating size
of the dark and bright counterparts of a DB soliton in a trap.
The latter is a feature that is absent in the single-component
case, which we attribute to the intercomponent interaction. An
excellent agreement between the analytical estimates and the
numerical simulations confirms the extension of the predicted
solutions of the direct scattering problem from the homoge-
neous setup to the harmonically trapped scenario. This also
justifies the particular relevance and usefulness of the detailed
IST analysis of the integrable case with a view towards the
more physically relevant confined setting.

Our presentation is organized as follows. In Sec. II we in-
troduce the model and solve the direct scattering problem for
the defocusing VNLS equation with a general FBTC. Addi-
tionally, we discuss some analytical considerations regarding
the eigenvalues of the scattering problem and the DB soliton
solution. In Sec. III we present our findings. First, we extract
the eigenvalues of the scattering problem for a wide range
of different initial configurations. Then, we perform a direct
comparison between our analytical findings and the numerical
integration of the CGPE, both in the absence and in the pres-
ence of a harmonic trap. Finally, in Sec. IV we summarize
our results and discuss possible directions for future study.
In Appendix A we provide further details on the DB soliton
solutions. In Appendix B we describe the change of amplitude
of oscillating DB solitons in the presence of a trap.

II. NONLINEAR SCHRÖDINGER EQUATION AND
DARK-BRIGHT SOLITON SOLUTION

We consider a one-dimensional (1D) pseudospinor BEC
consisting of two different spin states, e.g., |F, m〉 = |1,−1〉
and |F, m〉 = |2, 2〉, of the same atomic species of 87Rb [6],
confined in a highly anisotropic trap with longitudinal and
transverse trapping frequencies satisfying the relation ωx �
ω⊥. In such a cigar-shaped geometry, the condensate wave
function along the transverse direction, being the ground state
of the respective harmonic oscillator, can be integrated out.
This, in turn, leads to the following pair of coupled Gross-
Pitaevskii equations (CGPEs) [3]:

ih̄∂t� j = H0� j +
2∑

k=1

g(1D)
jk |�k|2� j, (1)

with j = 1, 2, which, in the mean-field framework, governs
the BEC dynamics for the longitudinal part of the wave
function. In the above expression, H0 = − h̄2

2m ∂2
x + V (x) is

the single-particle Hamiltonian, where m denotes the atomic
mass and V (x) = mω2

x x2/2 denotes the external harmonic po-
tential. Also, g(1D)

jk = 2a jk h̄2/ma2
⊥ accounts for the effective

one-dimensional repulsive interaction strengths, with ajk > 0
denoting the 1D scattering length and a⊥ = √

h̄/mω⊥ being
the transverse harmonic oscillator length. Under the follow-
ing transformations, t̃ = tω⊥, x̃ = xa−1

⊥ , and q̃ j = � j
√

2a⊥,
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Eq. (1) can be rewritten in the dimensionless form

i∂t q j =
[

− 1

2
∂2

x + 1

2
�2x2

]
q j +

2∑
k=1

g(1D)
jk |qk|2q j . (2)

Here, � ≡ ωx/ω⊥ and g(1D)
jk = a jk/a⊥. Note that for conve-

nience we dropped the tildes and that energy, time, and length
are now measured in units of h̄ω⊥, ω−1

⊥ , and a⊥ = √
h̄/mω⊥,

respectively.
In this work, we consider g(1D)

jk = 1, i.e., we work with the
classical Manakov model [67] in the case of the absence of
confinement. Then, Eq. (2), with � = 0, reduces to the vector
nonlinear Schrödinger (VNLS) equation, namely,

iqt + 1
2 qxx − ‖q‖2q = 0, (3)

to which we can further perform the rescaling q̃(x, t ) =
q(

√
2x, t ) exp −2iq2

ot that leads, by dropping the tilde, to

iqt + qxx − 2
(‖q‖2 − q2

o

)
q = 0, (4)

which is subject to the following time-independent NZBC at
infinity:

lim
x→±∞ q(x, t ) = q± = qoeiθ± . (5)

Hereafter, q ≡ q(x, t ) and qo are two-component vectors, ‖ · ‖
is the standard Euclidean norm, qo = ‖qo‖ > 0, θ± are real
numbers, and subscripts x and t denote partial differentiation
with respect to space and time hereafter.

Building on our recent investigation of scalar BECs [64],
here we consider a box-type initial configuration in the first
component whose box is being filled by the second component
(so that the latter can induce the formation of bright solitons)
in the following manner:

q(x, 0) =
⎧⎨
⎩

(
qoe−iθ , 0

)T
, x < −L

(heiα, H )T , |x| < L(
qoeiθ , 0

)T
, x > L.

(6)

A schematic illustration of Eq. (6) is given in Fig. 1(a).
Here, 0 � h � qo refers to the height of the box of the first
component, and 0 � H � qo refers to the height of the filling
box of the second component. qo is the amplitude of the box,
θ± are the phases on each side of the box, and α is the phase
of the first component inside the box. The phase invariance
of the VNLS equation allowed us to define θ+ = −θ− = θ

without loss of generality in Eq. (6). For convenience, we
further introduce the quantities

�θ = 2θ, �θ− = θ + α, �θ+ = θ − α (7)

to denote the distinct phase differences in each of the different
regions of the box. We will refer to the cases �θ = 0 and
�θ = π as in-phase (IP) and out-of-phase (OP) configura-
tions, respectively, and to the special case having h = 0 as
the “zero-box” configuration, which describes the absence of
atoms of the first component inside the box.

Additionally, L corresponds to the half-width of the box
and it is the parameter that controls the distance between the
two sides of the box playing the role of the two colliding
condensates in the matter-wave interference mechanism. A
schematic illustration of the latter is shown through snapshots
in Figs. 1(c)–1(e) at t1 < t2 < t3, respectively. At t1 the two

sides of the box are spreading towards each other and form
an interference pattern inside the box. Then, at t2, some of the
fringes formed due to the interference process stabilize and
start acting as effective potentials for the second component
filling the box. Finally, at t3 the stabilized fringes develop into
dark solitons, while the second component trapped inside the
latter becomes bright solitons, giving rise to a DB soliton train.

A. Direct scattering problem

The defocusing VNLS equation [see Eq. (4)] corresponds
to a coupled system of integrable nonlinear partial differential
equations that can be solved analytically by means of the IST
in terms of a Lax pair. The 3 × 3 Lax pair associated with
Eq. (4) is

φx = Xφ, φt = Tφ, (8)

where φ is a 3 × 3 matrix eigenvector,

X(x, t, k) = ikJ + Q, (9)

T(x, t, k) = 2ik2J − iJ(Qx − Q + q2
o ) − 2kQ, (10)

with

J =
(−1 0T

0 I

)
, Q(x, t ) =

(
0 qT

q∗ 0

)
, (11)

and I and 0 are the appropriately sized identity and zero ma-
trix, respectively. The first equation in Eq. (8) is referred to as
the scattering problem and k ∈ C as the scattering parameter.

Under fairly general conditions on q(x, t ), as x → ±∞ the
solutions of the direct scattering problem are approximated by
those of the asymptotic scattering problems φx = X±φ, where
X± = ikJ + Q± and Q± = limx→±∞ Q(x, t ). The eigenval-
ues of X± are ik and ±iλ, where

λ(k) =
√

k2 − q2
o. (12)

These eigenvalues have branch points, and therefore we intro-
duce the two-sheeted Riemann surface defined by λ(k). As in
Refs. [60–62,68], we take the branch cut along the semilines
(−∞,−qo) and (qo,∞), and we label those sheets such that
Im λ(k) � 0 on sheet I and Im λ(k) � 0 on sheet II.

We also define the Jost solutions φ±(x, t, k) as the simul-
taneous solutions of both parts of the Lax pair satisfying the
boundary conditions

φ±(x, t, k) ≡ Y±(k)ei�(x,t,k) + O(1) (13)

as x → ±∞, where �(x, t, k) = �x − �t with � =
diag(−λ, k, λ), � = diag(2kλ,−(k2 + λ2),−2kλ), and
Y±(k) are the simultaneous eigenvector matrices of X± and
T± = limx→±∞ T(x, t, k). The two sets of Jost solutions are
related to each other through the scattering relation

φ−(x, t, k) = φ+(x, t, k)S(k), (14)

valid for all k ∈ (−∞,−qo)
⋃

(qo,∞). Moreover, the fact
that φ± are simultaneous solutions of both parts of the Lax
pair implies that the scattering coefficients and the discrete
eigenvalues of the scattering operator are time independent.
Therefore, hereafter we will consider the scattering problem
at t = 0 and we will omit the time dependence from the
eigenfunctions.
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At t = 0 the scattering problem in each of the three regions
x < −L, |x| < L, and x > L takes the form φx = (ikJ + Q j )φ
with the index j = c,± and constant potentials Q± and Qc

given by

Q± =
⎛
⎝ 0 qoe±iθ 0

qoe∓iθ 0 0
0 0 0

⎞
⎠, (15a)

Qc =
⎛
⎝ 0 heiα H

he−iα 0 0
H 0 0

⎞
⎠. (15b)

One can then easily find explicit solutions for the scattering
problem in each of the aforementioned regions, namely,

ϕl (x, k) = Y−(k)ei�x, x � −L (16a)

ϕc(x, k) = Yc(k)eiMx, |x| � L (16b)

ϕr (x, k) = Y+(k)ei�x, x � L (16c)

where M = diag(−μ, k, μ), μ =
√

k2 − (h2 + H2), and

Y±(k) =
⎛
⎝ λ + k 0 λ − k

iqoe∓iθ 0 −iqoe∓iθ

0 iqoe±iθ 0

⎞
⎠, (17a)

Yc(k) =
⎛
⎝μ + k 0 μ − k

ihe−iα −iH −ihe−iα

iH iheiα −iH

⎞
⎠. (17b)

Equations (16) yield explicit representations for the
Jost solutions φ±(x, 0, k) in their respective regions,
i.e., φ−(x, 0, k) ≡ ϕl (x, k) for x � −L, and φ+(x, 0, k) ≡
ϕr (x, k) for x � L. At the boundary of each region one can
express the fundamental solution on the left as a linear combi-
nation of the fundamental solution on the right, and vice versa.
In particular, we can introduce scattering matrices S−(k) and
S+(k) such that

ϕ−(−L, k) = ϕc(−L, k)S−(k), (18a)

ϕc(L, k) = ϕ+(L, k)S+(k). (18b)

As a consequence, we can express the scattering matrix S(k)
relating the Jost solutions φ±(x, k) as

S(k) = S+(k)S−(k)

= e−i�LY−1
+ Yce2iMLY−1

c Y−e−i�L. (19)

Computing the right-hand side of Eq. (19), we obtain the
following expression for the first element, s11(k), of the scat-
tering matrix S(k):

4λμqo(h2 + H2)e−2iλLs11(k)

= 4ih(h2 + H2)q2
oeiθ cos α sin(2μL)

+ 2qoh2e2iθ (λ − k)[μ cos(2μL) + ik sin(2μL)]

+ 2qo(h2 + H2)(λ + k)[μ cos(2μL) − ik sin(2μL)]

+ 2qoμH2(λ − k)e2iθ e2ikL. (20)

The discrete eigenvalues of the scattering problem are the
zeros of s11(k) for all k ∈ C with Im λ(k) > 0, where s11(k) is
analytic [62]. It is important to remark that, in general, for the

defocusing VNLS equation the eigenvalues of the scattering
problem are not only single zeros, but double zeros can also
occur [61]. However, for the particular configuration used in
this work [see Eq. (6)] all zeros will turn out to be simple.

B. Dark-bright soliton solution

In view of the inverse problem, it is convenient to introduce
a uniformization variable z defined by

z = k + λ, (21)

which is inverted by

k = 1

2

(
z + q2

o

z

)
, λ = 1

2

(
z − q2

o

z

)
. (22)

Thereby, sheets I and II of the Riemann surface are mapped
onto the upper- and lower-half planes of the complex z
plane, respectively; the continuous spectrum is [i.e., the semi-
lines (−∞,−q0) ∩ (q0,∞) are] mapped onto the real z axis,
while the spectral gaps (−q0, q0) on both sheets are mapped
onto the circle of radius q0 (see Ref. [62] for further de-
tails). The discrete eigenvalues are found as zeros of s11(z) :=
s11(k(z), λ(z)), and in this case a zero of s11(z) on the upper
semicircle of radius qo corresponds to a dark-dark soliton, i.e.,
a dark soliton in each component, while a zero inside the
upper semicircle of radius qo corresponds to a DB soliton.
In the presence of a single such zero, the inverse scattering
problem yields the following DB soliton solution [62]:

qd (x, t ) = {qo cos βo − iqo sin βo

× tanh [νo(x − x0 + 2ξot )]}ei(βo+ϕd +2q2
ot ), (23a)

qb(x, t ) = −i sin βo

√
q2

o − |zo|2

× sech[νo(x − x0 + 2ξot )]ei(ξox−(ξ 2
o −ν2

o )t+ϕb+2q2
ot ),

(23b)

as a solution of Eq. (4). Here, qd is the dark soliton component
and qb is the bright one. Also, x0 is the center of the soliton and
ϕd,b are arbitrary constant phases. The DB solution of Eq. (23)
is expressed in terms of the spectral parameter zo = |zo|eiβo ≡
ξo + iνo, with

ξo = |zo| cos βo, νo = |zo| sin βo. (24)

Therefore, the relevant soliton parameters can be uniquely
specified in terms of zo, i.e.,

Ad = qo sin βo ≡ qo

|zo| Im zo, (25a)

Ab =
√

q2
o − |zo|2 sin βo ≡ Im zo

√
q2

o

|zo|2 − 1, (25b)

v = −2|zo| cos βo ≡ −2 Re zo, (25c)

where Ad and Ab are the dark and bright soliton amplitudes,
respectively, and v denotes the DB soliton velocity.

Equivalently, the soliton parameters can be directly ex-
pressed in terms of ko (see Appendix A). Given a zero ko, one
can substitute zo = ko + λo into Eqs. (25) with the caveat that
λo = √

k2
o − q2

o must be chosen with the appropriate branch

023325-4



ON-DEMAND GENERATION OF DARK-BRIGHT SOLITON … PHYSICAL REVIEW A 105, 023325 (2022)

FIG. 2. γ and the soliton parameter amplitudes Ad , Ab, and ve-
locity v as functions of the scattering parameter k for qo = 1. Note
that the quantities shown are measured in transverse oscillator units.

cut, and on the appropriate branch where Im λo > 0. Then,
Eqs. (25) become

Ad = 2γ Im λo

γ 2 + 1
, (26a)

Ab = − 2 Im ko√
γ 2 − 1

, (26b)

v = −4 Re ko

1 + γ 2
, (26c)

where

γ = qo

|zo| > 1.

To get some physical insight on the DB solutions, we
illustrate in Fig. 2 the dependence parameters γ , Ad , Ab, and
v on the scattering parameter k, for the solutions provided by
Eq. (A5b) and for qo = 1. Here, one can see that indeed γ >

1 ∀ k. Also, Ad � qo ∀ k, as expected, since dark solitons
cannot have amplitudes greater than the background. Simi-
larly, Ab < Ad ∀ k. Obviously, larger (deeper) dark solitons
can host larger bright solitons, but in turn the DB soliton itself
becomes slower. In fact, v has a minimum (v = 0) at Re ko =
0, where Ad has a maximum (Ad = qo). The latter is known as
a black soliton, and it can host a bright soliton of any smaller
size, which explains why v and Ad are independent of Im k at
Re k = 0. On the other hand, v always has its maximum (ab-
solute) value at k = 2qo, coinciding with the speed of sound
of the condensate c = 2qo [note that c = √

gn [69,70], where
n is the peak density of the BEC, in the dimensionless units
adopted herein for the CGPE (2)]. Yet, no soliton solution
exists with v = c. Further details on the soliton parameters
are discussed in Sec. III A.

III. DARK-BRIGHT SOLITON GENERATION AND
DYNAMICS

A. Analytical results for the discrete spectrum

In this section, we aim at finding the zeros of s11(k) [see
Eq. (20)] and analytically characterizing the DB solitons pro-
duced by the FBTC in Eq. (6), upon considering different
variations of the system parameters. In particular, our initial
FBTC is defined by six different parameters: the half-width
L, the amplitude qo, the side phases ±θ , the height h of the
first component in the box, its phase α, and the filling of the
second component in the box H . The corresponding values of
our parameter exploration are the following:

L ∈ [1, 9], θ =
{

0,
π

2

}
,

h ∈ [0, qo], α = {0, π}, H ∈ [0, qo],

together with qo = 1. Furthermore, we introduce the filling
angle σ ∈ [0, π ], which relates the heights h and H with the
amplitude background qo as follows:

h = qo cos σ, (27a)

H = qo sin σ. (27b)

Introducing σ allows us to explore different filling con-
figurations using a single parameter. Notice that h > 0 in the
regime 0 � σ < π/2, while h < 0 in the regime π/2 < σ �
π , which is equivalent to h = |qo cos σ | > 0 with α = π (see
Fig. 1).

Since we are mostly interested in effects driven by the
presence of the second component, we choose σ as our main
parameter. We are also interested in considering the effect of
distinct initial configurations, and we take L as our second
representative parameter since it controls the separation be-
tween the colliding sides of the condensate. Thus, below we
will vary σ for different values of L, denoting such variation
as L[σ ].

To classify all spectra, we choose two different case scenar-
ios. The first one consists of a zero-box configuration (h = 0),
where the second component is the only component present
inside the box. The second case is a full-box configuration,
with the box being fully filled either by a single or by both
components, i.e., q2

o = h2(σ ) + H2(σ ) [see Eqs. (27)]. We
start exploring IP-FBTCs (θ = 0), followed by OP-FBTCs
(θ = π/2).

The corresponding spectra of zeros are presented in Figs. 3,
5, 6, and 8. All these figures share the same arrangement. In
particular, each figure consists of 10 panels, (a)–(j), distributed
along two rows and five columns. The latter correspond to
five different values of L, ranging from L = 1 to 9. The
top row shows the zeros of s11(k) in the Re k-σ plane with
Im k depicted as a color gradient in a logarithmic scale. This
representation provides a clearer disposition of the zeros. Ad-
ditionally, zeros corresponding to α = 0 (α = π ) are shown
on a white (gray) background [see, e.g., Fig. 3 (Fig. 6)]. In
contrast, bottom-row panels depict the zeros in the complex k
plane, which can be directly mapped onto Fig. 2, containing
the relevant physical information of the solitons, such as their
amplitudes and velocities. In this case, σ is illustrated as
a color gradient. Blue tones (0 � σ � π/2) correspond to
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α = 0, while red tones (π/2 � σ � π ) correspond to α = π .
Recall that, in all cases, σ is the main varying parameter and
both rows can be easily compared by following their common
Re k axis. Also, when looking at the zeros, e.g., in Fig. 3, one
should keep in mind that in this system under consideration
the zeros are single valued, i.e., ki �= k j , where i, j denote
different zeros, for any choice of parameters (see Sec. II A).
This means that although some of the zeros appear to be on top
of each other they never intersect, i.e., coincide, which is the
case since our two-dimensional representation of the zeros,
e.g., in Fig. 3, is a projection of a three-dimensional space
(Re k, Im k, σ ). Finally, if both spatial and phase symmetries
of the FBTC are preserved, the zeros appear in pairs k±,
i.e., Re k+ = −Re k− and Im k+ = Im k−. Note that the FBTC
is always spatially symmetric [see Eq. (6)], and thus only
FBTCs with θ �= 0 and h �= 0 can present asymmetric solu-
tions (Fig. 8). In those cases, we say that the phase symmetry
of the system is broken.

Therefore, whenever θ = 0 (Figs. 3 and 6) or both symme-
tries are preserved (Fig. 5), only ko with Re ko � 0 are shown.

1. Zero-box configuration

For the zero-box configuration we set h = 0, so that only
the second component is present inside the box of the FBTC.
At the same time, for our particular choice of parameters,
the FBTC preserves both spatial and phase symmetries, in-
dependently of θ , and thus also do its solutions. In particular,
IP-FBTCs (θ = 0) always present an even number of paired
zeros (k±). On the other hand, for this zero-box configura-
tion, OP-FBTCs (θ = π/2) always possess a particular zero,
k0 ∈ I, which is unpaired, resulting in an odd number of zeros.
More specifically, as we later explain, k0 corresponds to a

static DB soliton, with the dark counterpart being a so-called
black soliton (v = 0 and Ad = qo). Also note the distinct
subscript 0 used when compared to o introduced for a general
solution.

a. In-phase background. We begin by exploring the spec-
tra of an IP zero-box configuration, for which qo = 1, θ = 0,
and h = 0 (α = 0) are held fixed. Additionally, L ∈ [1, 9] and
σ ∈ [0, π/2], and thus H (σ ) ∈ [0, qo]. The corresponding
spectra of zeros are presented in Fig. 3.

From Figs. 3(a)–3(e) (top row), it can be directly in-
ferred that increasing L increases the number of zeros, and
thus the number of solitons, an outcome analogous to the
single-component case [64]. In particular, L = 1 has only
one pair of zeros, k1, while L = 5 has up to four pairs,
k1, . . . , k4, and L = 9 has up to six pairs, k1, . . . , k6. On
the other hand, increasing σ (or equivalently increasing H)
reduces the number of zeros. For example, in Fig. 3(c) the
spectrum of solutions goes from four pairs of zeros at σ = 0
(H = 0) to two at σ = π/2 (H = 1). Here, k4 ceases to exist
right above σ = π/8, and k3 is absent for σ > 3π/8. We
attribute this effect to an increase of the second component in
the box, hindering the emergence of solitonic structures due
to the repulsive intercomponent interaction.

It is also important to understand how these parametric
variations affect the characteristics of the solitonic entities,
in particular their amplitudes and velocities [see Eq. (26)].
In this regard, Figs. 3(f)–3(j) (bottom row) are key towards
easily mapping the zeros onto the relevant physical parameters
of the solitons, shown in Fig. 2. Although in the complex k
plane most of the zeros with a low imaginary contribution fall
on top of each other (without intersecting), we can still use
Figs. 3(a)–3(e) to follow, respectively, the zeros in Figs. 3(f)–
3(j) by means of their common Re k axis. It is clear that Re ko

FIG. 3. Zeros of s11(k) as a function of σ for different values of L in the zero-box IP background configuration. The parameters qo = 1,
θ = 0, h = 0 (α = 0) remain fixed. The upper row shows the location of the zeros in the Re k-σ plane whereas the bottom row shows the
location of the zeros in the complex k plane. The complex k plane can be mapped onto Fig. 2 to retrieve the relevant physical information
about the soliton solutions. The color coding shows the corresponding complementary quantity Im k (upper row) and σ (bottom row). Only
Re ko > 0 are shown due to the symmetry of the zeros. Red circles in (c) and (h) correspond to the zeros shown in Fig. 9. Note that the quantities
shown are measured in transverse oscillator units.
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increases with σ . However, to infer about the behavior of
Im ko it is convenient to distinguish between solutions with
a high imaginary contribution (HIC) and those with a low
imaginary contribution (LIC). We empirically define as HIC
the solutions whose zeros have |Im ko| > 0.1, and LIC the
ones having |Im ko| < 0.01.

First, let us focus on the LIC solutions. In Figs. 3(f)–3(j),
LIC solutions lay on Im ko ≈ 0, indiscernible from one an-
other. All solutions belong to this group when σ ≈ 0 since
Im ko is a quantity directly related to the presence of the
second component. In particular, LIC solutions correspond
to DB solitons with a negligible bright contribution (see
Fig. 2), i.e., they are almost pure dark solitons (see also
Fig. 10 below). However, as σ increases, v increases but Ad

decreases. Similarly, Re ko also increases with σ and some
LIC solutions cease to exist right before reaching Re ko = 1
and Im ko = 0 or, equivalently, before the solitons acquire the
speed of sound. In order to avoid this point, a LIC solution
must transition into a HIC one. In Fig. 3(c), the former zeros
are k3 and k4, and the latter are k1 and k2. Additionally, in the
zero-box configuration, LIC solutions present localized drops
of the imaginary contribution as σ increases. At these drops,
the imaginary contribution drastically decreases to Im ko ≈ 0
to rapidly increase again. The drops are depicted by the loga-
rithmic color scale of Im ko, where Im ko drops from |Im ko| �
10−3 (violet) to |Im ko| � 10−6 (blue), given our numerical
precision [e.g., for L = 3, an increase in the numerical pre-
cision leads to Im k2(σ = 1.483 998 8) = 1.986 48 × 10−18].
For example, in Fig. 3(e), k2 presents three drops (the region
where the drops take place is blue). The first drop takes place
at σ ≈ 0.17π

2 . Note that as σ increases, drops of k3, k4, and k5

follow. The second drop of k2 appears at σ ≈ 0.45π
2 . Again,

drops of k4 and k5 follow. Notice that in this case, k3 has
already transitioned into a HIC solution (yellow tones). The
last drop takes place at σ ≈ 0.72 π

2 . In this case, neither k4 nor
k5 present a drop since the former ceases to exist shortly after
and the latter transitions into a HIC solution. Nevertheless,
these drops do not represent any major additional change
to the solitonic structures since Ad is almost independent of
Im ko when |Re ko| < 1 and Im ko ≈ 0 (see Fig. 2), and Ab is
almost negligible. A visualization of the above discussion is
presented in Fig. 4 for the LIC solution k4. Here, the effect
of the drops is clearly visible on Ab, which decreases (almost)
to zero at each drop. Additionally here, one can appreciate
how k4 becomes sonic, i.e., v ≈ c, at σ ≈ 3π/8 with a fast
decrease of Ad towards Ad = 0, characteristic of the LIC so-
lutions.

Next we focus on HIC solutions and take again as represen-
tative examples Figs. 3(e) and 3(j). Here, the HIC solutions are
k1, k3, and k5, which become more evident after they transition
from LIC to HIC solutions as σ increases. Mapping the zeros
of Fig. 3(j) onto Fig. 2 reveals that HIC solutions are DB
solitons with a higher bright contribution than LIC ones. Re-
call that the bright contribution increases with Im k. As stated
before for LIC solutions, when σ increases, Ad decreases and
v increases, while Ab increases or decreases depending on the
increase or decrease of the imaginary contribution. However,
the behavior of HIC solutions is different. Indeed, by follow-
ing k1, which is a HIC solution already from low values of σ , it
is obvious that this zero highly differs from the LIC solutions

FIG. 4. Amplitudes Ad , Ab, and velocity v of k1, k3, k4, and k5

shown in Figs. 3(e) and 3(j) (see legend) as a function of σ . The local
maximum of v defines the transition point from LIC to HIC solutions
for k1, k3, and k5. Note that v is halved to depict all parameters in
the same scale. Note also that the quantities shown are measured in
transverse oscillator units.

presented before. In particular, it quickly reaches a regime
where the ratio Re ko/Im ko is almost constant independently
of σ . This regime is where we start to consider a zero as a HIC
solution and, when mapped onto Fig. 2, we observe that k1 has
an almost constant Ad . On the other hand, in this regime Ab

always increases while v always decreases. The latter directly
shows that DB solitons with the same dark component but a
bigger bright counterpart are slower than those with a smaller
bright contribution. In the case of k3, it is found that this
solution transitions from a LIC to a HIC one for σ > π/8.
From this point onwards, the ratio Re ko/Im ko also becomes
almost constant, and so does again the Ad related to it. In this
case, Ab increases and v decreases as well. The same holds
true for k5, which transitions from a LIC to a HIC solution
around σ = 3π/8.

Also in this case, Fig. 4 offers a visualization of the HIC
solutions, i.e., k1, k3, and k5. Here, it can be seen that, once all
LIC solutions have transitioned into HIC ones, they present an
Ad plateau. On the other hand, it is also clear that the increase
of Ab directly affects v, which starts decreasing right before
Ad reaches its constant value. Therefore, it is possible to
define the transition point from LIC to HIC solution not only
by the saturation of Ad , but also from the local maximum of v.

b. Out-of-phase background. We next explore the OP
zero-box configuration, again for qo = 1, L ∈ [1, 9], h = 0
(α = 0), and σ ∈ [0, π/2], corresponding to H (σ ) ∈ [0, qo].
However, we now fix θ = π/2, namely, setting the sides of
the box out of phase (�θ = π ). The corresponding spectrum
of zeros is illustrated in Fig. 5. Again, the choice of parameters
presents a symmetric distribution of the zeros and thus only
Re ko > 0 are shown.

In the zero-box configuration, the peculiarity of an OP-
FBTC with θ = π/2 is that it gives rise to an odd number
of solutions due to the presence of an unpaired static DB
soliton, labeled k0. Note that k0 is a HIC solution with Re k0 =
0. Therefore, it is straightforward to map its velocity and
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(a) (b) (c) (d) (e)

Im

Im

ReReReReRe

(f) (g) (h) (i) (j)

FIG. 5. Zeros of s11(k) as a function of σ for different values of L in the zero-box OP background configuration. The parameters qo = 1,
θ = π/2, h = 0 (α = 0) remain fixed. The upper row shows the location of the zeros in the Re k-σ plane whereas the bottom row shows the
location of the zeros in the complex k plane. The complex k plane can be mapped onto Fig. 2 to retrieve the relevant physical information
about the soliton solutions. The color coding shows the corresponding complementary quantity Im k (upper row) and σ (bottom row). Only
Re ko > 0 are shown due to the symmetry of the zeros. k0 is an unpaired solution. Red circles in (c) and (h) correspond to the zeros shown in
Fig. 10. Note that the quantities shown are measured in transverse oscillator units.

amplitudes. Indeed, from Fig. 2 one obtains that v = 0 and
Ad = 1 independently of the value of σ . On the other hand,
Ab increases with σ . Aside from this extra unpaired solution,
OP-FBTCs have an additional difference when compared to
the IP-FBTC case. With the OP-FBTC, as L increases, the
emergence of the paired zeros, k1, . . . , k6, is slightly delayed
(parametrically) when compared to the IP-FBTC case. This
means that for some values of L, there are less paired ze-
ros in the OP case than in the IP case. For example, for
L = 5 [Fig. 5(c)] there exist three paired zeros, i.e., k1, k2,
and k3, contrary to the IP case [Fig. 3(c)] where also a fourth
paired solution, i.e., k4, was identified.

Lastly, before proceeding to the full-box configuration,
it is worth commenting on how the presence of a second
component in the box affects the solutions when compared to
the single-component case. As discussed before, when σ = 0
(H = 0) the single-component case is retrieved and the zeros
identified herein coincide with the ones found in Ref. [64],
for both the IP and the OP cases. However, as σ increases
(H increases) and the box is filled with the second component,
the interaction between the components prevents the emer-
gence of all the single-component solutions, an effect which
is more enhanced for overlapping components, as we will see
in what follows.

2. Full-box configuration

For the full-box configuration we use Eq. (27). This implies
that the box of the FBTC is always fully filled, either with
one or both components, q2

o = h2(σ ) + H2(σ ). By doing so,
we are able to explore several configurations and elucidate the
effect of the second component inside the box. In this regard, it

is important to distinguish the regimes where H > |h| or H <

|h| and h > 0 or h < 0. Besides, for σ = π/2 (H = qo and
h = 0) we recover the zeros from the zero-box configuration.
As before, below we explore both IP-FBTC and OP-FBTC
using the previously introduced notation and labeling. Recall
that in the former case θ = 0 and thus the symmetry of the
system is preserved, leading to a symmetric set of solutions.
On the other hand, θ = π/2 breaks the phase symmetry of the
system, leading in turn to asymmetric solutions.

a. In-phase background. We once more begin our in-
vestigation by exploring the spectra of an IP but full-box
configuration. Also here, qo = 1 and θ = 0 are held fixed,
while σ ∈ [0, π ] and L ∈ [1, 9] are varied. Recall that
now H (σ ) ∈ [0, qo] and h(σ ) ∈ [−qo, qo]. The corresponding
spectrum of zeros is presented in Fig. 6. Since an IP config-
uration preserves symmetry, only the zeros of the pair with
Re ko > 0 are shown.

Let us first discuss the changes in the spectrum under an
L variation. As in the zero-box configuration, increasing L
increases the number of zeros, and thus the soliton solutions.
This is readily seen in Figs. 6(a)–6(e) (top row). In Fig. 6(a),
having L = 1, k1 is the only pair of zeros, while for L = 5
[Fig. 6(c)] already three different pairs of zeros, k1, k2, and
k3, are potentially present. Finally, for L = 9 [Fig. 6(e)], up to
six different pairs of zeros, k1, . . . , k6, occur. Notice though
that, in the latter panel, there is not a single value of σ where
all six solutions coexist at the same time. Moreover, most of
the zeros at large L values, i.e., L = 7 and 9 [see Figs. 6(d)
and 6(e), respectively], remain around Re ko = 1, some of
which having |Im ko| < 0.01. However, and in contrast to the
zero-box configuration, the drops that characterized LIC solu-
tions are absent in this setting.

023325-8



ON-DEMAND GENERATION OF DARK-BRIGHT SOLITON … PHYSICAL REVIEW A 105, 023325 (2022)

FIG. 6. Zeros of s11(k) as a function of σ for different values of L in the full-box IP background configuration, with q2
o = h2(σ ) + H2(σ )

[see Eq. 27]. The parameters qo = 1 and θ = 0 remain fixed. The upper row shows the location of the zeros in the Re k-σ plane whereas the
bottom row shows the location of the zeros in the complex k plane. The complex k plane can be mapped onto Fig. 2 to retrieve the relevant
physical information about the soliton solutions. The color coding shows the corresponding complementary quantity Im k (upper row) and σ

(bottom row). Only Re ko > 0 are shown due to the symmetry of the zeros. The gray background in the top row panels corresponds to the
equivalent case h > 0 and α = π . Red circles in (c) and (h) correspond to the zeros shown in Fig. 11. Note that the quantities shown are
measured in transverse oscillator units.

Now, let us monitor the changes in the spectra as σ in-
creases. Focusing initially on Figs. 6(a)–6(e) (top row) it is
observed that, in contrast to the zero-box configuration, Re ko

does not always increase with σ . This becomes apparent upon
inspecting k1, whose Re k1 always decreases as σ increases.
Other examples are k2 in Fig. 6(d), or k4 in Fig. 6(e), as well
as the bifurcation close to σ = 3π/4, seen in Figs. 6(c)–6(e).
We also need to distinguish between the regimes σ ∈ [0, π/2)
(white background) and σ ∈ (π/2, π ] (gray background). The
former corresponds to h > 0 (and α = 0), while the latter
corresponds to h < 0 or, equivalently, h > 0 and α = π [see
Eq. (6)].

In the first regime (σ < π/2) h decreases from qo to 0,
while H increases from 0 to qo. This implies that the sys-
tem starts as a homogeneous condensate (σ = 0) and, as σ

increases, the presence of the first component in the box
decreases while the presence of the second component in-
creases (see Fig. 1). Therefore, it is expected that no soliton
solution emerges until the FBTC reaches certain conditions.
For example, in Fig. 6(a) (L = 1), k1 is already present at very
small values of σ . This means that a small box is already
enough to produce a soliton solution. However, this soliton
has a really low imaginary contribution, which means that
the presence of the bright component is negligible. Moreover,
it is created at Re k1 ≈ 1, which translates into a shallow
(Ad ≈ 0) fast moving (v ≈ c) soliton (see Fig. 2). Then, as
σ increases further, the box gets more and more filled by
the second component, and thus the bright component of
the ensuing DB soliton becomes dominant. Note also that
as L increases k1 emerges with larger Re k1, reaching almost
Re k1 = 3 at L = 9 [see Fig. 6(e)]. It is also worth noticing

that most of the zeros emerge around σ = π/4. This is an
important point since h(σ = π/4) = H (σ = π/4) = 1/

√
2.

Basically, it shows that the presence of the second component
inside the box hinders the formation of soliton structures. It
is not until h < H that the depth of the box is big enough
to enhance the formation of DB solitons. Additionally, there
exist also cases where zeros occur before σ = π/4. How-
ever, these zeros have a low imaginary contribution and
appear around Re ko = 1 which, as stated above, corresponds
predominantly to small disturbances moving with velocities
proximal to the speed of sound. Nevertheless, at σ = π/2 we
recover the zeros from the zero-box configuration with h = 0
and H = qo.

On the contrary, in the second regime (σ > π/2) |h| in-
creases from 0 to qo and H decreases from qo to 0. Importantly
here, α = π represents a situation where the first component
presents a phase difference between the walls and the inside
of the box [see Eq. (6)]. Although this phase difference does
not break the symmetry of the system, it introduces a constant
perturbation in the system that needs to be taken into account,
as we explain later on. Similarly to the first regime, most of
the zeros are present also here while |h| < H (σ < 3π/4).
Interestingly enough, in this regime k1 exists for all σ , having
Re k1 ≈ 0 for a large range of σ , already from small L. This is
a direct cause of the phase difference α = π , which forces the
existence of at least one pair of solutions (see Ref. [64] and
references therein).

To better understand the existence of all aforementioned
zeros, we inspect Figs. 6(f)–6(j) (bottom row), which can
be directly connected to the soliton characteristics shown in
Fig. 2. In the complex k plane, only the zeros with a high
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FIG. 7. Amplitudes Ad , Ab, and velocity v of k1, k2, k3, and k5

shown in Figs. 6(e) and 6(j) (see legend) as a function of σ . Note that
the quantities shown are measured in transverse oscillator units.

imaginary contribution are easily visible. In this case, the most
important difference with respect to the zero-box configura-
tion is the parabolically shaped trajectory of the zeros.

First, we focus on describing the zeros in Fig. 6(j) with
the aid of Fig. 2. Most of the zeros with a low imaginary
contribution are merely dots around Re ko = 1 and Im ko = 0,
i.e., small-amplitude nearly sonic DB solitons with a neg-
ligible bright contribution. On the other hand, k1, k3, and
k5 possess a higher imaginary contribution. For instance, k3

emerges at Re k3 = 1.2 and Im k3 ≈ 0 already at σ ≈ π/4.
DB solitons with Re ko > 1 and Im ko ≈ 0 are states that have
extremely small amplitudes but large widths. As an example,
here the DB soliton corresponding to k3 has Ad = 0.006 and
Ab = 0.005 at σ = 0.21π (when k3 initially emerges) and
a full width at half-minimum for the dark (FWHMd ) and
maximum for the bright component (FWHMb) that read as
FWHMd = 560 and FWHMb = 837 (in H.O. units presented
in Sec. II). Of course, such structures are practically impossi-
ble to be seen. In addition, k3 moves in this case with v = c/2.
Then, as σ increases |Im k3| rapidly increases and so do Ad

and Ab, which at the same time narrows the DB soliton. Of
course, bigger solitons move slower and k3 is no exception.
Counterintuitively, the maximum bright contribution is found
past σ = π/2, as indicated by the minimum of k3 in Fig. 6(j)
at σ = 0.585π . Past this point, Im k3 starts to rapidly de-
crease, and so do Ad and Ab, reaching Re k3 = 3 and Im k3 ≈ 0
before ceasing to exist at σ = 3π/4. Recall that before dis-
appearing, k3 ends up again being a small wide DB soliton.
Also, note that Re k3 is always an increasing function of σ .
The trajectory of k3 as σ is varied can be better appreciated
by inspecting Fig. 7, where the mapping of k3 onto Fig. 2 is
shown along with further examples, i.e., k1, k2, and k5. Here,
Ad , Ab, and v are plotted against σ . Interestingly, v remains
almost constant for most of the values of σ in the second
regime (σ > π/2), an outcome that is in turn related to the
fact that Ad � Ab in this regime.

A similar behavior to the k3 one occurs also for k1 within
the first regime (σ < π/2). Obviously, since k1 and k3 are
on top of each other around Re ko = 3 [see Fig. 6(j)], when

k1 emerges for the first time it does so as a small and wide
DB soliton. Recall that different zeros never intersect, i.e.,
ki �= k j . Also note that Re k1 is a decreasing function with
respect to a σ variation. Then, as σ increases, Re k1 decreases
and |Im k1| increases, which translates into larger Ad and Ab,
with Ad � Ab, and v remaining almost constant. Interestingly
here, slightly before σ = π/2, |Im k1| starts to decrease and
both Re k1 and Im k1 rapidly approach 0. However, in this
case only Ab decreases as σ keeps increasing. On the contrary,
Ad ≈ qo and v ≈ 0 independently of σ . In Fig. 7 one can
clearly discern the plateau of almost constant v within the first
regime and the constant values of Ad and v within the second
regime. The latter is a direct consequence of α = π . As dis-
cussed for the OP zero-box configuration, a phase difference
of �θ = π between two regions of a condensate will always
lead to the formation of a static soliton whose dark component
is a black soliton with Ad = qo and v = 0 [64]. Hence, once
σ > π/2, then h > 0 and α = π [see Eqs. (6) and (27)],
which creates a phase jump at the edges that separate the
inside of the box from its walls. What is seen in Fig. 7 for
k1 at large values of σ is a DB soliton formed by a black
soliton and a bright counterpart that decreases as σ increases
(H decreases). Remarkably, it seems that in this case, when
compared to the single-component scenario [64], the presence
of a second component does not affect the emergence of the
black soliton but only that of the bright counterpart and the
remaining soliton solutions.

b. Out-of-phase background. Our last exploration of the
spectra of zeros of s11(k) is performed for an OP full-box
configuration. Here, qo = 1 and θ = π/2 are held fixed, with
the latter setting the two walls of the box out of phase. Ad-
ditionally, L ∈ [1, 9] and σ ∈ [0, π ] are varied. Recall that
H (σ ) ∈ [0, qo] and h(σ ) ∈ [−qo, qo]. In this case the phase
symmetry of the system is broken since h �= 0 and θ �= 0,
and the system yields asymmetric solutions, with none of the
zeros being paired for any value of σ . The only exception here
occurs for σ = π/2 (see below). Therefore, in Fig. 8 we show
the entire spectrum of zeros, i.e., Re ko ∈ R.

It is worth noticing that given our particular choice of θ =
π/2 the zeros present an antisymmetry, evident in Figs. 8(a)–
8(e), where the zeros are shown in the Re k-σ plane. On
the other hand, Figs. 8(f)–8(j) illustrate the zeros shown in
the complex k plane. Here, the zeros are symmetric around
Re k = 0 and the antisymmetry is encoded in the color code
introduced for the σ variation. The symmetry in the complex k
plane can be easily understood when looking back to Eq. (7).
In the first regime σ < π/2, α = 0 and �θ± = ±θ , while in
the second regime, σ > π/2, α = π , and �θ± = ∓θ . This
change of sign in �θ implies a spatial reflection around x = 0
[see Fig. 1(a)] and gives rise to the (anti)symmetry of the
spectra in a system with broken phase symmetry. Therefore,
we use the same line style to identify antisymmetric zeros, i.e.,
Re k+ > 0 and Re k− < 0 (see legend in Fig. 8), and in what
follows we will comment only the zeros with Re ko > 0.

As in the previous cases, increasing L increases the number
of zeros. In Figs. 8(a)–8(e) (top row) the number of zeros
increases from two, in Fig. 8(a), to seven, in Fig. 8(e). Of
course, in this case the number of zeros also depends on σ .
In general, increasing σ while σ < π/2 (increasing H and
decreasing h) also increases the number of zeros. On the other
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FIG. 8. Zeros of s11(k) as a function of σ for different values of L in the full-box OP background configuration, with q2
o = h2(σ ) + H2(σ )

[see Eq. (27)]. The parameters qo = 1 and θ = π/2 remain fixed. The upper row shows the location of the zeros in the Re k-σ plane whereas
the bottom row shows the location of the zeros in the complex k plane. The complex k plane can be mapped onto Fig. 2 to retrieve the relevant
physical information about the soliton solutions. The color coding shows the corresponding complementary quantity Im k (upper row) and σ

(bottom row). k+ (k−) corresponds to zeros with Re ko > 0 (Re ko < 0). k0 is an unpaired solution. The gray background in the top row panels
corresponds to the equivalent case h > 0 and α = π . Red circles in (c) and (h) correspond to the zeros shown in Fig. 12. Note that the quantities
shown are measured in transverse oscillator units.

hand, increasing σ while σ > π/2 (decreasing H and increas-
ing h) decreases the number of zeros. Additionally, one needs
to keep in mind that σ > π/2 also implies that α = π (with
h > 0). It is also worth noticing that in some cases some of the
zeros are present only in the first (σ < π/2) or in the second
(σ > π/2) regime. For instance, in Fig. 8(e) k+5 is found
only for π/4 < σ < π/2 (first regime). Similarly, k+2 and
k+6 are found only in the second regime. The former appears
for π/2 < σ < 7π/8 and the latter right before σ = 3π/4.
Recall that this feature, i.e., all zeros do not coexist at the
same time, was also found in the full-box IP case. Yet another
similarity with the IP case is that as L increases, most of the
zeros appear only between π/4 < σ < 3π/4 and are found
mostly around Re ko ≈ ±1.

There are two peculiarities of the OP case also worth dis-
cussing. The first one is the emergence of a DB soliton with
a black soliton contribution, corresponding to k0 at σ = π/2.
Notice that k0 is the only unpaired zero and also the only zero
bearing both positive and negative Re ko values. The change of
sign, which is directly related to the velocity of the soliton [see
Eq. (26)], happens at σ = π/2 (H = qo and h = 0), which
coincides with the OP zero-box case discussed above (see
Fig. 5). In particular, at σ = π/2 we recover the solutions
of the zero-box OP configuration. The labeling of all ko is
also kept accordingly. The other peculiarity is found by k0

and k+1 in Figs. 8(b) and 8(c), k+1 and k+3 in Fig. 8(d), and
k+1 and k+4 in Fig. 8(e). At low values of H , i.e., σ ≈ 0 (or
σ ≈ π for k−), both zeros are almost on top of each other,
implying that both solutions are almost identical, i.e., similar
shape and velocity. Additionally, locally both edges of the
box (x = ±L) are equivalent, a situation more pronounced as

H → 0 and h → ±q0, which reduces to the single-component
case. Basically, the formation of such similar solutions is a di-
rect consequence of our choice of parameters which define an
equivalent phase jump at both edges of the box, �θ− = �θ+
[see Eq. (7)].

Figures 8(f)–8(j) show the solutions in the complex k
plane. Most of the properties for this representation are al-
ready mentioned in the IP case, whose zeros look alike. Yet,
in this case, we were able to identify the only case where the
maximum bright soliton contribution of a particular soliton
solution coincides with the maximum presence of the second
component in the box. Of course, this zero is k0 and the
maximum contribution of its bright component occurs at σ =
π/2, precisely when the solution is the static DB soliton.

B. Nucleation of DB soliton trains: Without confinement

In this section we intend to verify the analytical results
captured by the discrete eigenvalues identified in Sec. III A.
Initially, we numerically solve the CGPE [Eq. (2)] in the
absence of a trapping potential, i.e., � = 0, by employ-
ing a fourth-order Runge-Kutta integrator accompanied by
a second-order finite-differences method accounting for the
spatial derivatives. The spatial and temporal discretizations
are dx = 0.1 and dt = 0.001, respectively, while the domain
of integration used is located at |x| = 2500 so as to avoid
finite-size effects, for the times of interest herein. In the fol-
lowing, we fix L = 5 and qo = 1, while θ = {0, π/2} for both
the zero- and the full-box configurations.

Below we present our findings regarding the dynamical
nucleation of DB solitons via the matter-wave interference
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method of two condensates in the presence of a second species
in-between, also featuring the counterflow (see Fig. 1). It is
important to note that the various DB solitons nucleated when
utilizing the initial condition ansatz of Eq. (6) have finite
velocities and, in general, interact with each other. Therefore,
the analytical findings can be compared to the numerical ones
only in the asymptotic limit t → ∞. In this limit, each DB
soliton can be considered well separated and independent
from the rest of the solitary waves. In this sense, discrepancies
between the analytical DB soliton solutions of Eq. (23) and the
numerically formed ones are expected to decrease as t → ∞,
as it is found and discussed later on. Finally, in the results to be
presented below, the analytical DB soliton solution is centered
at x0 = 0, unless stated otherwise.

1. Zero-box configuration

a. In-phase background. Our first result is presented in
Fig. 9. It corresponds to the zero-box configuration (h = 0)
with an IP background (θ = 0). Here, we have chosen σ =
π/4 as a representative example. The zeros of this partic-
ular initial configuration are shown in Figs. 3(c) and 3(h),
pinpointed with red circles. In particular, three pairs of DB
solitons are predicted by our analytical method and indeed
found in the dynamical process. For instance, in Fig. 9(a) the
norm of the wave function |q| of each component at t = 250
is shown, and all three pairs of DB solitons are clearly formed.
Note that due to the symmetry of the solutions, only the
left-moving solitons v < 0 are illustrated. The same holds
for their corresponding zeros shown in Fig. 9(b), where only
the pair with Re ko > 0 is depicted. In particular, Fig. 9(b) is
equivalent to Fig. 3(h), as can be inferred from the location of
the zeros in the complex k plane. Notice that for consistency
the notation introduced here follows that of Fig. 3.

A remarkably good agreement between the analytical esti-
mates and the numerically formed DB solitons occurs already
at t = 250 (see Fig. 9). Particularly, both the numerically
found solutions (solid lines) and the analytically obtained
ones (dotted-dashed lines) fall almost perfectly on top of each
other. This also confirms the validity of the numerical scheme,
given the exact nature of the IST analysis at the level of the
integrable Manakov model. The major discrepancy observed
in this case corresponds to the shallower and faster DB soliton
solution k3. There exist mainly three different sources that can
give rise to such a discrepancy: (i) as previously discussed,
one should only expect both solutions to exactly coincide
at t → ∞ or, equivalently, for such traveling solutions to
x → ±∞. Yet, the bright solitons of the k2 and k3 solutions
still bear a finite background reminiscent of the filling of the
box in the initial configuration. We attribute the presence of
this background to the intercomponent interaction, an effect
which is enhanced for initially overlapping components, as
will be shown in the full-box configuration results; (ii) k3

is the fastest DB soliton, which implies that k3 is the wave
that remains for longer times coupled to the emitted radiation,
some of which is still visible around x ≈ 300. This effect is
enhanced the faster the soliton is; (iii) the interaction between
the k2 and k3 DB solitons may play a role since both waves
travel close to each other for a reasonable long amount of time.
Indeed, Fig. 9(c) [9(d)] shows the spatiotemporal evolution of

FIG. 9. Dark-bright soliton solutions stemming from a zero-box
configuration with an in-phase background having L = 5, qo = 1,
θ = 0, σ = π/4, and h = 0 [cf. Figs. 3(c) and 3(h)]. (a) Snapshot of
|q| at t = 250 given by the CGPE (2) (solid lines) and the analytical
solutions (23) (dotted-dashed lines), for both dark (DS) and bright
(BS) soliton counterparts. (b) Contour plot of Re s11 = 0 (solid blue
line) and Im s11 = 0 (dashed yellow line) on the complex k plane.
The zeros, ko, are depicted with red circles and only the zeros of
each pair with Re ko > 0 are shown. The labeling of zeros is that of
Fig. 3, with k1 = 0.4456–i0.5455, k2 = 0.7535–i0.0339, and k3 =
0.8751–i0.0189. (c), (d) Spatiotemporal evolution of the dark |q1|
and bright |q2| soliton components. Temporal evolution of (e) the
instantaneous velocity v, and (f) the dark Ad and (g) bright Ab soliton
amplitudes. The corresponding asymptotic values are depicted with
dotted black lines. Note that the quantities shown are measured in
transverse oscillator units.

the wave function |q1| [|q2|], which hosts the dark [bright]
counterpart of the DB solitons in question. Here, it is clear
that k2 and k3, namely, the outermost traveling DB solitons,
remain close to each other during evolution.

Next, in order to extract the DB soliton characteristics, we
numerically follow the center of mass (c.m.) of each DB soli-
ton, i.e., xc.m. = (

∫ xr

xl
x|q|2dx)/(

∫ xr

xl
|q|2dx) with xl,r defining

the integration limits around each dark soliton core. This also
provides access to their instantaneous velocity, v = dxc.m./dt .
To obtain the c.m., we trace the dark soliton minima. From
the position of the latter, we consecutively extract the dark Ad

and bright Ab soliton amplitudes, and compare them with their
corresponding asymptotic analytical values [Eq. (25)]. v, Ad ,
and Ab are depicted in Figs. 9(e)–9(g), respectively, for t > 10
since at the very beginning of the dynamics it is not possible
to identify any individual solitonic structure. In all cases, it
becomes apparent that the numerical predictions approach the
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FIG. 10. Same as Fig. 9 but for L = 5, qo = 1, θ = π/2, σ =
π/4, and h = 0. This initial configuration corresponds to a zero-box
configuration with an out-of-phase background [cf. Figs. 5(c) and
5(h)]. The labeling of zeros is that of Fig. 5 with k0 = −i0.6590, k1 =
0.7287–i0.2744, k2 = 0.7726–i2.5 × 10−5, and k3 = 0.9622–i8.8 ×
10−4. Note that the quantities shown are measured in transverse
oscillator units.

analytical estimates (dotted black lines) as t → ∞. Notice
also the small-amplitude oscillations performed by v, Ad , and
Ab around their asymptotic value, attributed to the counterflow
process that leads to the soliton formation.

b. Out-of-phase background. Now, we present the results
for a zero-box configuration (h = 0) but with an OP back-
ground (θ = π/2). The zeros of this initial configuration were
presented in Figs. 5(c) and 5(h), and we have chosen σ = π/4
as the most relevant case for this particular set of parameters.
Our analytics predict, in this case, four zeros: a static unpaired
DB soliton and three pairs of DB solitons. Such solutions
are marked with red dots in Figs. 5(c) and 5(h), and are also
shown in Fig. 10(b). Note that once more, the solutions are
symmetric with respect to the origin (x = 0) and for clarity we
only show those with Re ko > 0. Each of the zeros illustrated
in Fig. 10(b) corresponds to a particular DB soliton solution,
shown in Fig. 10(a). Again, the numerically observed wave-
forms (solid lines), obtained upon solving the CGPE with
this particular OP zero-box configuration, fall on top of the
analytical solutions (dotted-dashed lines) given by the zeros
shown in Fig. 10(b). As in the IP zero-box configuration, we
find also here that k3 is again the DB soliton that presents the
larger deviation from its analytical state. Nevertheless, this OP
case features two interesting structures not seen in the IP case.
The first one is the occurence of a static DB soliton k0, located
at x = 0. As we discussed in Sec. III A, an OP configuration

allows the formation of static DB solitons consisting of a
black soliton (v = 0) and its symbiotic bright counterpart. The
second one is related to the soliton k2 = 0.7726–i2.5 × 10−5,
which possesses an almost negligible imaginary contribution.
Recalling our discussion of Sec. III A, the bright counterpart
of a DB soliton solution is mostly defined by the imaginary
contribution of its corresponding zero. Therefore, since in this
case Im k2 ∼ 10−5 we expect and indeed confirm the forma-
tion solely of a dark soliton. Notice, however, the minuscule
second component contribution that is in turn related, as in the
IP case, to a small background reminiscent of the interaction
between the two components during the dynamics. Similarly,
k3 with Im k3 ∼ 10−4 can also be practically treated as a dark
soliton.

In Figs. 10(c) and 10(d), the spatiotemporal evolution of
|q1| and |q2|, respectively, clearly shows a static DB soliton
at x = 0 and the three pairs of DB solitons moving out-
wards. Note that, in Fig. 10(d), the bright component of k2

is not seen and the bright component of k3 is barely vis-
ible. Figures 10(e)–10(g) demonstrate the evolution of the
numerically obtained v, Ad , and Ab, respectively, together with
their asymptotic analytical values (dotted black lines). Yet,
again, the numerical quantities asymptotically approach their
corresponding analytical values. In this case, small-amplitude
oscillations in v, Ad , and Ab, caused by the dynamical for-
mation of the solitonic entities are also found [cf. k1 in
Figs. 10(e)–10(g)]. In contrast, the velocity of k3, the fastest
DB soliton, features abrupt and irregular oscillations. This is
due to the fact that we are computing the instantaneous ve-
locity, v = dxc.m./dt , by integrating around each dark soliton
core. A closer inspection of Fig. 10(a) reveals that some noise
is still present around the DB structure at t = 250. Since this
noise is not constant, when calculating xc.m. small irregular
changes lead to the irregular oscillations observed in v.

2. Full-box configuration

a. In-phase background. In the full-box configuration, the
center of the box is fully filled, i.e., q2

o = h2(σ ) + H2(σ )
for all values of σ [see Eq. (27)]. Initially, we explore the
IP background (θ = 0) upon choosing σ = 6π/8. This in
turn implies that the first component inside the box is OP
with respect to the two sides of the box [see Eq. (7)]. The
analytical solutions for this particular choice of parameters
were presented in Figs. 6(c) and 6(h), with the relevant zeros
being marked by red dots. In total, three pairs of DB soliton
solutions are found. However, in what follows we only discuss
the pair k±1. The other two pairs of solutions correspond to
DB solitons with FWHM �102 and amplitudes Ad,b � 10−3

(see also the discussion in Sec. III A), and thus we omit them.
Illustrated in Fig. 11(b) are the zeros k±1 =

±0.0098–i0.1737, which lie almost on top of each other
since Re k±1 ≈ 0. In Fig. 11(a) we compare the numerically
found DB solitons (solid lines), stemming from the CGPE,
with the analytical ones (dotted-dashed lines), obtained using
our analytical tools presented in Sec. II. Although, in this
case, we show the DB soliton profiles at later evolution
times (t = 2000), the numerical solutions do not completely
coincide yet with the analytical ones. The reason why this
happens is not only that our analytical method provides
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FIG. 11. Same as Fig. 9 but for L = 5, qo = 1, θ = 0, σ = 6π/8.
This initial configuration corresponds to a full-box configuration
with an in-phase background [cf. Figs. 6(c) and 6(h) ]. In this case
the only relevant solutions are k±1 = ±0.0098–i0.1737. We omit-
ted k±2 = ±1.6237–i0.0060 and k±3 = ±1.8440–i0.0080 (see text).
Note the long-time dynamics in (a). Note also that the quantities
shown are measured in transverse oscillator units.

solutions at x → ±∞ or, equivalently, at t → ∞, but also
the interaction between the pair of DB solitons at early
times. Additionally, note that at these earlier times, shown in
Figs. 11(c) and 11(d), the pair of DB solitons does not emerge
at xo = 0 but at xo = ±5 [see Eqs. (23)]. As discussed in
Sec. III A 2, the phase jump �θ± = π in the first component
between the inner and the outer sides of the box leads to the
formation of a pair of (almost) black-bright solitons where
the phase jump takes place. Moreover, the latter implies
v ∼ 0, which enhances the interaction between the pair of
DB solitons for longer times than in the previously discussed
cases, as mentioned before.

However, despite the fact that we cannot properly cap-
ture the early stages of the dynamics for these pairs of DB
solitons, an interesting observation, absent in the previous
explorations, can be made. For instance, during the early
dynamics, the presence of a non-negligible background in the
minority species radically changes the behavior of a typical
DB soliton, and our numerically identified waveforms morph
into beating DB solitons [13,71]. Indeed, the spatiotemporal
evolution of both the dark and the bright soliton components
[see Figs. 11(c) and 11(d), respectively] reveal the charac-
teristic beating of such solitonic entities. Importantly, these
beating solitons, however, are not “discernible” at the level of
the eigenvalues of the IST analysis. Here, we want to point

out that the bright solitons of the DB entity k±1 are in phase
and therefore the DB solitons interaction is repulsive [72], an
effect that can be discerned by closely inspecting Figs. 11(c)
and 11(d) at later times.

Now, let us discuss Fig. 11(e) showcasing v. Since �θ± =
π , and thus Re k±1 ≈ 0 (see Sec. III A 2), the analytic veloc-
ities of such solitons are close to zero. Also, since k±1 are a
pair, their velocities have opposite signs. However, the inter-
esting phenomenon found here is the beating performed by the
DB soliton pair due to the presence of the finite background
in the second component. Indeed, here we can clearly see
how v oscillates while asymptotically approaching its ana-
lytical value, and that v undergoes damped oscillations while
approaching its asymptotic value. The damping behavior is
inherently related to a progressive decrease of the finite back-
ground over time. In order to reach their asymptotic velocities,
one should wait for the finite background of the second com-
ponent to vanish and for the solitons to be well separated
from each other to avoid interacting. The same applies to the
dark and bright amplitudes, shown in Figs. 11(f) and 11(g),
respectively. Nonetheless, Figs. 11(f) and 11(g) provide a
visual confirmation of the symmetry of the solutions, where
solitons undergo the same amplitude oscillations, the latter
being also a characteristic of beating DB solitons [71] [see
the discussion around Eq. (33)].

b. Out-of-phase background. The last parametric selection
consists on a full-box configuration, i.e., q2

o = h2(σ ) + H2(σ )
[see Eq. (27)], with an OP background (θ = π/2). The ana-
lytical solutions for such an initial configuration were shown
in Figs. 8(c) and 8(h). Here, we choose as a case example
σ = 5π/8, with the relevant zeros pinpointed with red dots.

In Fig. 12(b) the five zeros corresponding to this partic-
ular initial configuration are depicted with a red circle. In
Fig. 12(a), the analytical solutions obtained using these zeros
(dotted-dashed lines) are compared to the numerical solutions
(solid lines), obtained by solving the CGPE. Both solutions
almost fall on top of each other. Most of the discrepancies
found here can be attributed as in the preceding sections to
the presence of a finite background, as well as DB-DB soliton
interactions. In Fig. 12(a), the most extreme case is that of
k2 = 1.0381–i0.0127, where the dark component of the DB
soliton cannot be identified. This is a direct consequence of
the fact that Re k2 ≈ 1, as discussed in Sec. III A 2. Addition-
ally, the corresponding bright part of k2 is disturbed by the
spreading of the finite background.

The spatiotemporal evolution of the dark and bright soliton
components [see Figs. 12(c) and 12(d), respectively] demon-
strates the asymmetric nature of the ensuing DB waves for
this parametric selection. Of course, k2 is not discernible in
Fig. 12(c), while in Fig. 12(d) the finite background on top of
which the bright solitons are formed is clearly visible. Among
them, k0 and k−1 are seen to undergo small-amplitude oscil-
lations, resembling beating DB solitons. Unfortunately, the
oscillations around their c.m. are not pronounced enough so as
to be captured by the temporal evolution of the instantaneous
velocity in Fig. 12(e). Nevertheless, we are still able to follow
the c.m. of most of the evolved solitonic entities, showcasing
this way that they approach their asymptotic analytical values
(dotted black lines) as t → ∞. The only exception here is the
nearly sonic k2 soliton, whose c.m. cannot be separated from
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FIG. 12. Same as Fig. 9 but for L = 5, qo = 1, θ = π/2, σ =
5/π8. This initial configuration corresponds to a full-box con-
figuration with an out-of-phase background [cf. Figs. 8(c) and
8(h)]. In this case the zeros are not symmetric. The labeling
of zeros is that of Fig. 8 with k−2 = −1.0858–i0.2038, k−1 =
−0.7285–i0.29769, k0 = −0.8843–i0.6277, k1 = 1.5701–i0.5708,
and k2 = 1.0381–i0.0127. Note that the quantities shown are mea-
sured in transverse oscillator units.

the surrounding radiation. Yet, we left its analytical value as
a reference. Figures 12(f) and 12(g) illustrate the evolution of
Ad and Ab for each DB soliton formed. Noteworthy here is the
damping behavior of Ad and Ab associated with the beating
solitons k0 and k−1. Finally, it is worth commenting k−2 is still
far below its asymptotic value, while k1 closely approaches its
asymptotic value from above around t = 250.

C. Nucleation of DB soliton trains: With confinement

In BEC experiments, harmonic confinement is naturally in-
troduced. For this reason, in this section we aim to generalize
our findings in the presence of a harmonic trapping potential
and, for the numerical considerations to be presented below,
we turn on the trapping potential in Eq. (2). Hereafter, we fix
� = 0.011. As in Sec. III B, we will first present the results
for the zero-box configuration, and the results for the full-box
configuration will follow.

Before proceeding to the results, first we want to remark
that in the presence of a harmonic confinement our analytical
estimates, obtained by solving the direct scattering problem
(see Sec. II), are not expected to provide valid solutions. For
example, we assumed NZBC which in turn define the asymp-
totic behavior of the solitons formed in terms of velocity and
amplitude. It is clear that in the presence of the harmonic

potential such NZBC cannot be fulfilled. However, with an ap-
propriate choice of parameters, the analytical solutions of the
untrapped scenario (see Sec. III B) can be used as approximate
solutions for the trapped scenario as we shall later show. For
instance, our choice of a wide trapping potential (� = 0.011)
provides a ground state of the first component flatter around
the center of the trap, which can at least locally resemble a
constant background like that of the homogeneous case.

To induce the dynamics in our system, we first find
the ground state of a single-component BEC by means of
imaginary-time propagation. Then, we embed on top of
the ground state our initial configuration [see Eq. (6)]. A
schematic illustration of the aforementioned initial state is
provided in Fig. 1(b). Moreover, to offer a direct comparison
between the untrapped and the trapped scenarios, our choice
of parameters is the same as in Sec. III B, i.e., L = 5, qo = 1,
σ = π/4 with θ = {0, π/2}, and σ = {6π/8, 5π/8} with θ =
{0, π/2}, respectively (see also the relevant discussion around
Figs. 9–12).

In order to characterize the solutions, we compute in each
case the oscillation frequency of the DB solitons using the fol-
lowing, well-established expressions [9] (see also, e.g., [16]):

ω2
o = �2

(
1

2
− χ

χo

)
, (28a)

χo = 8

√
1 +

(
χ

4

)2

, χ ≡ Nb

qo
, (28b)

Nb ≡
∫ ∞

−∞
|qb(x, t )|2dx = 2

(
q2

o

|zo|2 − 1

)
Im zo, (28c)

and describe the motion of the center of the DB solitons as

xc(t ) = vo

ωo
sin(ωot + φo) + xo. (29)

Here, the amplitude of the oscillation is related to the velocity
of the DB solitons [see Eq. (25c)] and the frequency of the trap
[see Eq. (28a)]. Additionally, xo is the equilibrium position,
and φo is an additional phase factor. Both xo and φo are fixed
to zero unless stated otherwise.

It is important to remark here that, contrary to the single-
component dynamics of dark and bright solitons in the
presence of a harmonic potential, the amplitudes of each
dark and bright counterpart of a DB soliton are not constant
over time, but oscillate. Hence, we propose the following DB
soliton estimate accounting for the amplitudes’ dynamics (see
Appendix B):

q(n)
d (x, t ) = qo cos βn(t ) − iqo sin βn(t ) tanh {ν(t )[x − xc(t )]},

(30a)

q(n)
b (x, t ) = −i sin βn(t )

√
q2

o − |zn|2sech{ν(t )[x − xc(t )]},
(30b)

where we found that the angle parameter is now time depen-
dent with the form

cos2 βn(t ) = cos2 βn cos2(ωot ) + 1

2q2
o

�2

(
vn

ωo

)2

sin2(ωot ).

(31)
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FIG. 13. Dark-bright solitons generated in the presence of a harmonic trap with a characteristic frequency � = 0.011 for distinct choices
of the involved parameters L, qo, θ, σ (see legends). Each row, from top to bottom, has an initial configuration analogous to the FBTC from
Figs. 9–12, respectively (see Sec. III B). Left (middle) column: Spatiotemporal evolution of |q1| (|q2|) hosting the dark (bright) solitons. Red
dashed lines correspond to the analytical trajectories [see Eq. (29)] using the eigenvalues from the untrapped scenario. Right column: Snapshots
of |q1| and |q2| at t = 201 given by the CGPE (solid lines) and the analytic in-trap estimates of Eq. (32a) (dashed-dotted lines), for both dark
(DS) and bright (BS) soliton counterparts. Note that the quantities shown are measured in transverse oscillator units.

From here, the uniformization variable can be expressed as
z(t ) = |zo|eiβ(t ). The other time-dependent parameters can be
obtained by substituting Eq. (31) in (24). Of course, if we turn
off the trap (� = 0 and ωo = 0) we recover β(t ) = βo.

Last, we design in-trap analytical estimates of the dark and
bright soliton solutions as follows:

|q1(x, t )|2 =
∣∣∣∣∣q2

o

∣∣∣∣∣
∏

n

q(n)
d (x, t )

qo

∣∣∣∣∣
2

− [
q2

o − |qgs(x)|2]
∣∣∣∣∣, (32a)

|q2(x, t )|2 =
∣∣∣∣∣
∑

n

q(n)
b (x, t )

∣∣∣∣∣
2

. (32b)

In Eq. (32a), the first term on the right-hand side corresponds
to a dark soliton train solution in the absence of a trapping
potential having a background amplitude qo, where the prod-
uct is performed over all the different solutions of a set of
zeros ko = {k−n, . . . , kn}. The second term properly shapes
the former onto the trapped ground state qgs(x). Lastly, the
absolute value on the right-hand side is introduced so as to
ensure the positivity required by the left-hand side.

Our results are summarized in Fig. 13 and Table I. In
Fig. 13 we show the spatiotemporal evolution of |q1| (left

column) and |q2| (middle column), each of which hosts, re-
spectively, the dark and bright soliton counterparts of the
dynamically generated DB solitons. Additionally, together
with |q1| are depicted the DB soliton trajectories provided by
Eq. (29) using the eigenvalues of the homogeneous solutions
presented in Sec. III B (dashed red lines). Note here that each
row corresponds to a different set of parameters, but with
L = 5 and qo = 1 fixed. For clarity, the dynamical evolution
of the DB solitons formed is monitored up to times t = 1000
but the solitons remain intact while oscillating for times up to
t = 3000. To offer a head-on comparison between the numer-
ical results and the analytical in-trap estimates of Eq. (32) we
also show a snapshot of |q1| and |q2| at t = 201 (right column)
where both the numerical and the analytical results are placed
on top of each other.

In Table I the analytically obtained oscillation frequency
ωo of each DB soliton illustrated in Fig. 13 is compared with
the corresponding numerically identified frequency ωnum. The
latter is measured by following the c.m. of each DB soliton
and performing a fast Fourier transform on each obtained
trajectory. In some cases, however, the presence of radiation
hindered tracing the DB soliton c.m. and a manual fitting of
ωnum was required. Since ωo mostly depends on the number
of particles hosted in the bright soliton Nb [see Eq. (28)],
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TABLE I. Comparison between the analytically and numerically obtained oscillation frequencies ωo and ωnum and the number of particles
of a bright soliton Nb and Nnum

b , respectively, for each identified DB soliton solution shown in Fig. 13. From left to right, each column set
corresponds, from top to bottom, to each row in Fig. 13. Each soliton pair k±i, with i = 1, 2, . . . , is identified using the notation introduced in
Sec. III B. The relative error is defined as εω = |ωo − ωnum|/ωo (idem for εNb ). The frequencies ωo and ωnum have an additional ×103 factor.
Other parameters used are L = 5, qo = 1, and � = 0.011. Note that the quantities shown are measured in transverse oscillator units (see text).

h = 0, σ = π/4, θ = 0 h = 0, σ = π/4, θ = π/2 σ = 6π/8, θ = 0 a σ = 5π/8, θ = π/2

ko ωo ωnum εw ko ωo ωnum εw k±1 ωo ωnum εw ko ωo ωnum εw

k0 0 0 0 ωβ 0.3539 0.3537 0.0006 k−2 6.958 6 0.14
k±1 5.615 5.548 0.025 k±1 6.670 6.35 0.048 ωOP 0.0188 0.0195 0.032 k−1 6.578 4.575 0.30
k±2 7.645 7.745 0.013 k±2 7.778 7.989 0.027 k0 5.323 6.283 0.18
k±3 7.704 7.813 0.014 k±3 7.775 8.015 0.031 k1 5.523 3.725 0.33

ko Nb Nnum
b εNb ko Nb Nnum

b εNb k±1 Nb Nnum
b εNb ko Nb Nnum

b εNb

k0 2.636 2.648 0.005 0.695 0.790 0.14 k−2 0.815 0.887 0.088
k±1 2.182 2.201 0.008 k±1 1.098 1.120 0.020 k−1 1.188 1.277 0.075
k±2 0.135 0.137 0.009 k±2 0.0001 0.0003 2 k0 2.511 2.524 0.005
k±3 0.0756 0.0831 0.099 k±3 0.0035 0.0034 0.034 k1 2.283 2.601 0.13

aSee the discussion around Eqs. (34).

we also compare Nb to Nnum
b . In order to obtain the number

of particles of each bright soliton Nnum
b from the numerical

solution, a numerical integration with the integration limits
properly taken around the bright soliton maxima is carried
out [see Eq. (28c)]. Yet, in the full-box case scenarios, the
presence of a nonzero background makes the choice of the
integration limits difficult, which adds a slight error to our
calculation. Overall, in most of the cases the relative error
εω = |ωo − ωnum|/ωo (idem for Nb) is pretty low, suggesting
that our analytical solutions, obtained by solving the direct
scattering problem in the homogeneous setting, are a good
approximation to characterize the solutions in the trapped
scenario. Some exceptions are also discussed below.

1. Zero-box configuration

The first case example, shown in Figs. 13(a)–13(c), corre-
sponds to an initial IP (θ = 0) zero-box configuration (h = 0)
with σ = π/4, analogous to the homogeneous case shown
in Fig. 9. Here, three pairs of DB solitons are generated, as
expected. Moreover, the motion of each DB soliton is near
perfectly captured by Eq. (29), as depicted by the dashed red
lines in Fig. 13(a). Also, in Fig. 13(c) we find a very good
match between the numeric and analytic DB solitons, bearing
our in-trap estimate solution (30).

The second case corresponds to an initial OP (θ = π/2)
zero-box configuration (h = 0) with σ = π/4. The latter is
almost analogous to the homogeneous case shown in Fig. 10,
featuring a static DB soliton formed at the center of the trap,
surrounded by a pair of DB solitons and two pairs of (al-
most) pure dark solitons. The resulting dynamics are shown
in Figs. 13(d)–13(f). In Fig. 13(d), the analytic trajectories
capture pretty well the dynamics of the two most external pairs
of dark solitons. Recall that in the homogeneous scenario
the fastest DB soliton pair (k3) presented a nonzero bright
counterpart, almost nonexistent in Fig. 13(e). Additionally, the
in-trap estimates present a very good agreement with the nu-
merical results. A noticeable discrepancy concerns the central
pair of DB solitons. The comparison between ωo and ωnum

o for
this pair is shown in the second column set of Table I (see

k±1). Despite the relative error being not greater than 5%, the
long-time dynamics clearly captures its effect.

Also, although we use analytical estimates to describe
the in-trap dynamics, a possible source of error is Nb [see
Eq. (28)]. However, for the same DB soliton solution (k±1), in
Table I it is shown that the relative error between Nb and Nnum

b
is of about 2%. The latter suggests that additional sources
of error might be present. For instance, the emitted radiation
produced during the interference process might be taken into
account. In this sense, some approximations to Eq. (6), e.g.,
the sigmoid function, have been used to smoothen the steplike
shape of the box, decreasing the amount of emitted radiation
and showing a small improvement towards the analytical so-
lution (dynamics not shown for brevity).

2. Full-box configuration

In Sec. III B, we found how a homogeneous setup with
an initial full-box configuration, where the two components
overlap inside the box, leads to the presence of a nonzero
background in the component hosting bright solitons (see
Figs. 11 and 12).

In Figs. 13(g)–13(i) we present the dynamics resulting
from an initial IP (θ = 0) full-box configuration with σ =
6π/8, which is the in-trap analog of the homogeneous case ex-
ample shown in Fig. 11. The homogeneous case resulted into
a pair of almost static DB solitons (v ∼ 0) traveling nearly
parallel to each other and performing oscillations around their
own c.m., i.e., beating. Here, we identified the same pair of
beating DB solitons. Moreover, their beating behavior can be
characterized by the following expression [71]:

ωβ = 1
2 (κ2 + D2), (33)

with κ2 = v2 and D2 = μ cos2 φ − η2 = A2
d − A2

b. Using the
expressions from Eq. (25) we can rewrite Eq. (33) in terms of
zo,

ωβ = 2(Re zo)2 + 1
2 (Im zo)2, (34)
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yielding ωβ = 0.3539. On the other hand, we numerically
followed the c.m. of our DB soliton pair during the dy-
namics using the previous procedure described and obtained
ωnum

β = 0.3537. Comparing ωβ with ωnum
β , we find an ex-

tremely good agreement.
Furthermore, in the presence of a harmonic confinement

an additional oscillation mode is present in the dynamics,
driving both DB solitons to perform out-of-phase oscillations
around the center of the trap. In particular, the out-of-phase
mode of the oscillations stems from the presence of the trap
and the DB-DB soliton repulsive interaction, characteristic of
DB soliton pairs with in-phase bright counterparts [72]. Of
course, Eq. (29) assumes an oscillation frequency for single
DB solitons, and thus it cannot provide a valid description of
the motion of this DB soliton pair because it is coupled.

Nonetheless, in Ref. [43] explicit expressions of the energy
of the interactions of a pair of DB solitons are provided. This
allows us to derive the expression of the forces involving the
dark-dark, bright-bright, and dark-bright interactions Fjk (x) =
−∂xE jk (x) where j, k = {D, B} and numerically solve the
equations of motion for our particular DB soliton pair, i.e.,
ẍ = −ω2

ox − FDD(x) − FBB(x) − 2FDB(x). By doing so, we
obtain the trajectory of the DB soliton pair and find the out-
of-phase oscillation frequency ωOP = 0.0188, which nicely
captures the numerically identified one ωnum

OP = 0.0195. The
latter presents only a relative error εOP = 3%. Therefore, we
can fully characterize the trajectories of the beating pair of DB
solitons by the following expression:

x±(t ) = ∓Aβ cos(ωβt + ϕβ ) ± AOP cos(ωOPt + ϕOP) ± xo,

(35)

where Aβ,OP denote the amplitude of the beating and out-
of-phase oscillations, respectively, and ϕβ,OP are additional
phases. Although the expressions provided in Ref. [43] were
derived by means of perturbation theory and predict the os-
cillation frequency and amplitude of small perturbations, they
still provide a good approximation for ωOP in this case. On
the contrary, since perturbation theory cannot provide the
amplitude of oscillation, we fitted Aβ,OP in Eq. (35) to obtain
the trajectories in Fig. 13(g). We also set ϕβ,OP = 0.

It is worth noticing in Fig. 13(i), also in this case, the good
performance of our analytic in-trap estimates at capturing
both the DB soliton profiles, regardless of the presence of the
background.

Lastly, we comment on the dynamics of an initial OP
(θ = π/2) full-box configuration with σ = 5π/8. The result-
ing spatiotemporal evolutions of |q1| and |q2| are shown in
Figs. 13(j) and 13(k), respectively, and snapshots of |q1| and
|q2| at t = 201 are depicted in Fig. 13(l). First, one can notice
that, in Fig. 13(j), the analytic solutions (red dashed lines)
fail to appropriately capture the dynamics of the DB solitons.
By inspecting once more the analogous homogeneous case
shown in Fig. 12, it is observed that the main quantities, i.e., v,
Ad , and Ab [see Figs. 12(e)–12(g), respectively], are still way
off from their asymptotic values at t = 250. Consequently,
the generated DB solitons monitored in the dynamics do not
correspond to the analytically expected ones since the for-
mer started the in-trap oscillations at earlier times than t =
250, which interrupted their natural approach to the expected
asymptotic solutions. For instance, from the expected five DB

soliton solutions only four are dynamically generated and, as
mentioned above, ωo and ωnum differ significantly, with errors
well above 14%.

Nevertheless, with an appropriate fit of the parameters to
Eq. (29), it can be shown that despite not having the predicted
DB solitons, the dynamically formed structures perfectly fol-
low the DB soliton trajectories (fitting not shown for brevity).
Additionally, the fitted parameters applied to our analytical
estimates provide a very accurate description of the DB soli-
ton profiles. However, for consistency, in Figs. 13(j)–13(l) we
compare the numerically obtained results with the analytical
ones, rather than with the fitted estimates.

For completeness, we also considered in-trap dynamics be-
yond the Manakov limit, i.e., gjk �= 1 (results not shown here
for brevity). In particular, and motivated by relevant studies
such as those of Refs. [73,74], we first used for the intracom-
ponent and intercomponent interaction strengths g11 = 1.004,
g22 = 0.95, and g12 = g21 = 0.98, respectively, correspond-
ing to a system of 87Rb atoms in the |1,−1〉 and |2, 1〉
hyperfine states. This choice of parameters corresponds to a
weakly immiscible mixture, i.e., g11g22 < g12g21. Addition-
ally, we also considered a weakly miscible regime g11g22 >

g12g21 by tuning g12 = 0.95. Experimentally, this could be
achieved by means of a Feshbach resonance [66].

In both cases, the results are qualitatively similar to the
ones presented in the Manakov limit (see Fig. 13), and the
dark-bright soliton structures emerging in these more realistic
setups survive even for long times. Not only that, but the
overall picture is well preserved and the analytical estimates
presented in the paper describe with great fidelity most of
the cases, at least during the early-time dynamics. Some of
the major differences when comparing these results with the
dynamics in the Manakov limit are (i) the presence of a non-
negligible amount of noise in the condensates, mostly caused
by the overlap of the two components, and (ii) slightly faster
dynamics than those in the Manakov limit.

IV. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work, we have investigated the on-demand genera-
tion of DB soliton trains arising in a 1D two-component BEC
both in the absence and in the presence of a harmonic trap.
We have shown that it is possible to fully characterize a DB
soliton array dynamically generated from a box-type initial
configuration when a second component is present inside the
box. In particular, we have analytically solved the direct scat-
tering problem for the defocusing VNLS equation utilizing
the aforementioned ansatz and obtained expressions for the
discrete eigenvalues of the scattering problem. The latter are
directly related to the amplitudes and velocities of the con-
forming DB solitons and allowed us to construct the exact DB
soliton waveforms making use of the IST.

In order to better understand the role of the geometry of the
initial box-type configuration in the generation of DB solitons,
we explored a wide range of parametric selections. In general,
a wider box generates a higher number of DB soliton struc-
tures. However, the presence of the second component inside
the box hinders the appearance of such entities, compared
to the single-component case. If instead both components
are present inside the box, the intercomponent interactions
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practically prevent the emergence of soliton structures unless
the presence of the second component overcomes the presence
of the first one. Moreover, we also investigated the effect of
a possible phase difference between the distinct regions of
the box. If all regions are in phase, the number of solitons
formed is even, and all of them are paired. Specifically, each
pair consists of DB solitons that share the same characteristics
but travel with opposite velocities. On the contrary, when the
sides of the box are out of phase, the number of DB solitons
is odd and at least one DB soliton appears to be unpaired. In
particular, if the second component is the only one present
in the inner box region, the unpaired DB soliton is static.
However, if the majority component is also inside the box,
there exists an extra phase jump at the interphase separating
the inner and the outer regions of the box, breaking the phase
symmetry of the system and leading to the creation of asym-
metric DB soliton arrays. In such a situation, all solutions are
unpaired and the number of solitons formed depends on the
presence of the components inside the box.

To test our analytical findings, we performed direct nu-
merical integration of the multicomponent system at hand. In
all the cases in the absence of confinement, we have found that
the dynamically produced solitons approach asymptotically
the analytically predicted DB amplitudes and velocities. In
those cases where the initial configuration mixes both com-
ponents inside the box, we found that the intercomponent
interaction stimulates the presence of a finite background
surrounding the bright solitons, which leads to the emergence
of other exotic structures such as beating DB solitons. More-
over, we also designed approximate expressions using the
analytical solutions of the homogeneous setup to describe
the dynamics of DB solitons in the presence of a harmonic
trap. Also, we provided expressions for the oscillations of
the amplitudes of the dark and bright solitons. Our estimates
showed in most cases a remarkably good agreement with the
observed dynamics, with deviations not larger than 5%.

An immediate extension of this work points towards richer
systems, e.g., spinor BECs [75–77]. These systems are al-
ready experimentally realizable [78–80], and several works
have already exposed the existence of stable solitonic struc-
tures both experimentally [31] and theoretically [81–85]. Yet,
another possibility for future study is the construction of
more complex initial configurations, consisting, for example,
of multiple boxes in order to mimic phase structures such
as the dark-antidark solitons realized in the experiments of
Refs. [18,30]. The latter case, however, requires the scenario
of miscibility between the two components. Finally, the gen-
eralization of considerations to higher dimensions and, e.g.,
vortex-bright solitons therein [16], could be another fruitful
direction for future exploration.
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APPENDIX A: FURTHER INSIGHTS OF THE DB SOLITON
SOLUTIONS

Since we are finding the eigenvalues as zeros of s11(k), it is
important to relate Re ko and Im ko to zo. From the definition
of the uniformization variable one has zo = ko + λ(ko), but
this relationship requires dealing with the branches of λ(k0).
However, this can be bypassed as follows. From Eqs. (22) we
have

Re k = 1

2

(
1 + q2

o

|z|2
)

Re z, (A1a)

Im k = 1

2

(
1 − q2

o

|z|2
)

Im z, (A1b)

and

Re λ = 1

2

(
1 − q2

o

|z|2
)

Re z, (A2a)

Im λ = 1

2

(
1 + q2

o

|z|2
)

Im z. (A2b)

The second relation shows that Im λ > 0 ⇐⇒ Im z > 0,
which restricts the eigenvalues as zeros of s11(z) in the upper-
half plane of z, and β ∈ (0, π ]. Additionally, when Im z > 0,
|z| < qo ⇐⇒ Im k < 0. Thus, given that the upper half of
the circle of radius qo in the z plane is in one-to-one cor-
respondence with the lower-half plane of the upper sheet of
the Riemann surface, ko eigenvalues can have any Re k and
Im k < 0, provided that Im λ(k) > 0. Note that the latter dif-
fers from the scalar case of Ref. [64] where −qo < k < qo.

In Eq. (26) it remains to express γ in terms of ko,
which can be done as follows. Let us for brevity intro-
duce x = Re ko and y = Im ko. Then, from Eqs. (A1) one
has Re zo = 2x/(1 + γ 2), Im zo = 2y/(1 − γ 2), and |zo|2 =
q2

o/γ
2 = (Re zo)2 + (Im zo)2 which upon substitution yields

4
x2

(1 + γ 2)2
+ 4

y2

(1 − γ 2)2
= q2

o

γ 2
, (A3)

namely, a (simplified) quartic equation for � ≡ γ 2:

�4 − 4

q2
o

(x2 + y2)�3 − 2

(
1 − 4

q2
o

x2 + 4

q2
o

y2

)
�2

− 4

q2
o

(x2 + y2)� + 1 = 0. (A4)

The solutions of Eq. (A4) are

q2
oγ

2
± = |ko|2 − β ±

√
2

×
√

|ko|4 − 2q2
o(Re ko)2 + |ko|2

(
q2

o − β
)
, (A5a)

q2
oγ

2
± = |ko|2 + β ±

√
2

×
√

|ko|4 − 2q2
o(Re ko)2 + |ko|2

(
q2

o + β
)
, (A5b)
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with

β =
√(

q2
o + |ko|2

)2 − 4q2
oRe 2ko. (A6)

The pair of solutions in Eq. (A5a) are complex conjugate,
while those in Eq. (A5b) are real. We are interested in real so-
lutions with γ > 1, which are then given by γ+ in Eq. (A5b).
Notice that γ+ involves only real square roots, thus avoiding
complex branches. Hence, using γ+ in Eq. (26) provides all
the soliton parameters in terms of ko = Re ko + i Im ko for
arbitrary Re ko ∈ R and Im ko < 0.

At this point, it is also possible to retrieve the soliton
parameters for the single-component case. Recall that, for
the scalar defocusing NLS equation, the zeros are real and
simple, belonging to the spectral gap k ∈ (−qo, qo) [57,64].
This directly implies that |zo| = qo ∀ ko. Therefore, Eqs. (25)
read as

Ad = qo sin βo ≡
√

q2
o − k2

o , (A7a)

Ab = 0, (A7b)

v = −2qo cos βo ≡ −2ko. (A7c)

For completeness, we note here that it is also possible to
obtain the zeros ko given the soliton parameters Ad , Ab, and
v. In particular, using Eqs. (25) we obtain

A2
b = A2

d

(
1 − |zo|2

q2
o

)
, (A8a)

cos βo = ±
√

1 − A2
d

q2
o

, (A8b)

sin βo = Ad

qo
. (A8c)

Recalling now that

zo± ≡ |zo|(cos βo + i sin βo)

= qo

√
1 − A2

b

A2
d

(
±

√
1 − A2

d

q2
o

+ i
Ad

qo

)
, (A9)

|zo| < qo is automatically satisfied and the sign of cos βo is
determined by Eq. (25c). If v > 0, then cos βo > 0, while if
v < 0, then cos βo < 0. Now, substituting Eq. (A9) into (A1)
yields

Re ko = sgn(v)
qo

2

√
1 − A2

d

q2
o

×
[(

1 − A2
b

A2
d

)− 1
2

+
(

1 − A2
b

A2
d

) 1
2
]
, (A10a)

Im ko = −Ad

2

[(
1 − A2

b

A2
d

)− 1
2

−
(

1 − A2
b

A2
d

) 1
2
]
. (A10b)

It is clear from the above expression that Im ko < 0, and
since Im zo > 0 it follows that Im λ(ko) > 0.

FIG. 14. Trajectory x and dark Ad and bright Ab amplitudes of the
DB soliton solution k1 shown in Fig. 9. The numerical magnitudes,
obtained by following the c.m. (solid blue line), are compared to the
analytical estimates in Eq. (29) and in Eqs. (25) [with βo → β(t )]
given by the analytical in-trap oscillation frequency ωo [see Eq. (28)]
(dashed-dotted red lines), and the numerically obtained one ωnum

(dashed yellow lines). Note that the quantities shown are measured
in transverse oscillator units.

APPENDIX B: DARK-BRIGHT SOLITON AMPLITUDES IN
THE PRESENCE OF A HARMONIC TRAPPING

POTENTIAL

One important characteristic of solitons is that they pre-
serve their shape. Also, it is well known that, in the presence
of a harmonic trapping potential, DB solitons can undergo
oscillations of frequency ωo [see Eq. (28)]. However, here
we found that DB solitons change size as they perform such
oscillations in the trap. This particular feature is attributed
to the intercomponent interaction g12 coupling the dark and
bright counterparts, and to their constraints with the DB soli-
ton velocity. Below we derive the expressions to describe such
amplitude oscillations, but the role of g12 = 1 will be hidden
in the equations.

At the turning points of their oscillatory trajectories (xt =
±Re zo/ωo) the DB soliton velocity must be 0, which implies
that its amplitudes are maximal [see Eqs. (25)]. In particular,
for the dark counterpart that resides on top of the density back-
ground of the condensate A2

d(max) = |qgs(xt )|2. Following the
same lines, at the center of the trap (x = 0) the velocity of the
DB soliton is maximal, and thus its amplitudes are minimal
and, more precisely, coincide with those of the homogeneous
setup, i.e., A2

d(min) = q2
o sin2 βo.

Having now at hand the extremes of Ad , only the frequency
of such oscillations is missing. In this case, it is enough to no-
tice that in half of a trap oscillation period the dark amplitude
would perform a full cycle. Therefore, it is straightforward to
express the amplitude of the dark counterpart as

A2
d (t ) = 1

2

(
A2

d(max) + A2
d(min)

)
− 1

2

(
A2

d(max) − A2
d(min)

)
cos (2ωot ), (B1)

which after some algebra yields

A2
d (t ) = q2

o sin2 βo cos2(ωot ) + |qgs(xt )|2 sin2(ωot ). (B2)
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Now, comparing Eq. (25a) to (B2), we obtain

sin2 β(t ) = sin2 βo cos2(ωot ) + |qgs(xt )|2
q2

o

sin2(ωot ), (B3)

which is equivalent to Eq. (31), as shown below. From
here, by replacing βo → β(t ) in Eqs. (23), (24), and (25),
the DB soliton solution for in-trap oscillations follows
[see Eq. (30)].

It is also important to notice that |z(t )| = |zo| does not
change over time since the uniformization parameter z is
unique to each DB soliton. Additionally, β(t ) satisfies the
condition required by 0 < βo � π which restricts the eigen-
values in the upper-half plane of z. For instance, β(t ) =
arcsin Ad (t )

qo
and, since 0 < Ad (t ) � qo ∀ t , then 0 < β(t ) �

π/2 ∀ t . Note that the values π/2 < β(t ) � π , which are
missing due to the arcsin(. . . ), only affect the sign of the
velocity of the soliton (25c). However, Eq. (25c) is not valid to
define the DB soliton velocity in the presence of a trap, which
instead is derived from Eq. (29).

One could also try to derive Ad (t ) from the velocity of the
in-trap oscillations of the DB soliton provided by Eq. (29). It
reads as

v(t ) ≡ dxc

dt
= vo cos(ωot ). (B4)

Then, by comparing Eq. (B4) to (25c) we obtain

cos β(t ) = cos βo cos(ωot ), (B5)

and, therefore,

A2
d (t ) = q2

o sin2 β(t ) = q2
o − q2

o cos2 βo cos2(ωot ). (B6)

In this case, we see that A2
d(min) � A2

d (t ) � q2
o, with A2

d(min) =
q2

o sin βo. Obviously, A2
d (t ) cannot be equal to q2

o since
|qgs(x)|2 � q2

o and the only case with A2
d (t ) = q2

o corresponds
to a static dark soliton centered at x = 0. Consequently, deriv-
ing Ad (t ) from Eq. (29) is clearly missing information about
the trap geometry.

In particular, it would be enough to add the term
−V (xt ) sin2(ωot ) into Eq. (B6), where xt = ±vo/ωo is
the turning point of the in-trap oscillations of the
DB soliton. After some trivial calculations we recover

Eq. (B2):

A2
d (t ) = q2

o sin2 βo cos2(ωot )

+ [
q2

o − V (xt )
]

sin2(ωot ), (B7)

where [q2
o − V (xt )] = |qgs(xt )|2 is the well-known Thomas-

Fermi approximation [86,87].
To adequately approach this problem, we can define a

complex trajectory

x̃(t ) = vo

ωo

(
sin(ωot ) + i√

2γ

�

ωo
cos(ωot )

)
, (B8)

where the soliton trajectory is xc(t ) = Re x̃(t ), and the trap
geometry is taken into account by the imaginary term. From
here, we derive x̃(t ) over time to obtain the (complex) velocity,

ṽ(t ) = vo

(
cos(ωot ) − i√

2γ

�

ωo
sin(ωot )

)
. (B9)

Then, comparing (B9) to Eq. (25c) we obtain our final expres-
sion (31),

cos2 β(t ) = cos2 βo cos2(ωot ) + 1

2q2
o

�2

(
vo

ωo

)2

sin2(ωot ),

(B10)

containing the information of the trap geometry. Again,
Eq. (B3) can be retrieved by performing an appropriate ma-
nipulation of Eq. (B10).

In order to compare the analytical estimate of Eq. (B10)
with numerical DB soliton dynamics, the DB soliton k1 from
Fig. 9 is placed alone at the center of a BEC trapped in
the harmonic confinement used in this work (see Sec. III C).
Since vk1 (t = 0) �= 0 it undergoes oscillations. By following
its c.m., we monitor its position x and its dark Ad and bright
Ab amplitudes over time.

In Fig. 14, the trajectory and amplitudes of k1 obtained
from following its c.m. (solid blue lines) are compared to the
analytical estimates in Eq. (29) and in Eq. (25) [with βo →
β(t )] given by the analytical in-trap oscillation frequency ωo

[see Eq. (28)] (dashed-dotted red lines), and the numerically
obtained one ωnum (dashed yellow lines). Here, the oscilla-
tions of Ad and Ab are clearly identified. Also, our analytical
estimates are in good agreement with the numerical findings,
with relative errors not larger than 1% at the instant of max-
imum discrepancy. In this case we define the relative error
as ε(A) = |Ac.m. − Aωnum |/Ac.m., which yields ε(Ad ) = 0.0015
and ε(Ab) = 0.0079.

[1] C. J. Pethick and H. Smith, Bose-Einstein Condensation in
Dilute Gases, 2nd ed. (Cambridge University Press, Cambridge,
2008).

[2] L. Pitaevskii and S. Stringari, Bose-Einstein Condensa-
tion and Superfluidity, International Series of Monographs
on Physics, Vol. 164 (Oxford University Press, New York,
2016).

[3] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-
González, The Defocusing Nonlinear Schrödinger Equation:
From Dark Soliton to Vortices and Vortex Rings, Other Titles

in Applied Mathematics (Society for Industrial and Applied
Mathematics, Philadelphia, 2015).

[4] D. J. Frantzeskakis, J. Phys. A: Math. Theor. 43, 213001
(2010).

[5] F. K. Abdullaev, A. Gammal, A. M. Kamchatnov, and L. Tomio,
Int. J. Mod. Phys. B 19, 3415 (2005).

[6] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E.
Wieman, Phys. Rev. Lett. 78, 586 (1997).

[7] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and
E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).

023325-21

https://doi.org/10.1088/1751-8113/43/21/213001
https://doi.org/10.1142/S0217979205032279
https://doi.org/10.1103/PhysRevLett.78.586
https://doi.org/10.1103/PhysRevLett.81.1539


A. ROMERO-ROS et al. PHYSICAL REVIEW A 105, 023325 (2022)

[8] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S.
Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev.
Lett. 80, 2027 (1998).

[9] T. Busch and J. R. Anglin, Phys. Rev. Lett. 87, 010401
(2001).

[10] P. Öhberg and L. Santos, Phys. Rev. Lett. 86, 2918 (2001).
[11] P. G. Kevrekidis, H. E. Nistazakis, D. J. Frantzeskakis, B. A.

Malomed, and R. Carretero-González, Eur. Phys. J. D 28, 181
(2004).

[12] B. J. Dabrowska-Wüster, E. A. Ostrovskaya, T. J. Alexander,
and Y. S. Kivshar, Phys. Rev. A 75, 023617 (2007).

[13] M. A. Hoefer, J. J. Chang, C. Hamner, and P. Engels, Phys. Rev.
A 84, 041605(R) (2011).

[14] I. Danaila, M. A. Khamehchi, V. Gokhroo, P. Engels, and P. G.
Kevrekidis, Phys. Rev. A 94, 053617 (2016).

[15] C. Qu, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 116,
160402 (2016).

[16] P. G. Kevrekidis and D. J. Frantzeskakis, Rev. Phys. 1, 140
(2016).

[17] I. Morera, A. Muñoz Mateo, A. Polls, and B. Juliá-Díaz, Phys.
Rev. A 97, 043621 (2018).

[18] G. C. Katsimiga, S. I. Mistakidis, T. M. Bersano, M. K. H. Ome,
S. M. Mossman, K. Mukherjee, P. Schmelcher, P. Engels, and
P. G. Kevrekidis, Phys. Rev. A 102, 023301 (2020).

[19] A. P. Sheppard and Y. S. Kivshar, Phys. Rev. E 55, 4773 (1997).
[20] E. A. Ostrovskaya and Y. S. Kivshar, Opt. Lett. 23, 1268 (1998).
[21] Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81 (1998).
[22] E. A. Ostrovskaya, Y. S. Kivshar, Z. Chen, and M. Segev, Opt.

Lett. 24, 327 (1999).
[23] J. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers

to Photonic Crystals (Academic, San Diego, 2003).
[24] E. P. Gross, Nuovo Cimento 20, 454 (1961).
[25] L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys.–

JETP 13, 451 (1961)].
[26] C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M.

Baumert, E.-M. Richter, J. Kronjäger, K. Bongs, and K.
Sengstock, Nat. Phys. 4, 496 (2008).

[27] S. Middelkamp, J. Chang, C. Hamner, R. Carretero-González,
P. Kevrekidis, V. Achilleos, D. Frantzeskakis, P. Schmelcher,
and P. Engels, Phys. Lett. A 375, 642 (2011).

[28] D. Yan, J. J. Chang, C. Hamner, P. G. Kevrekidis, P. Engels,
V. Achilleos, D. J. Frantzeskakis, R. Carretero-González, and P.
Schmelcher, Phys. Rev. A 84, 053630 (2011).

[29] C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer, Phys. Rev.
Lett. 106, 065302 (2011).

[30] C. Hamner, Y. Zhang, J. J. Chang, C. Zhang, and P. Engels,
Phys. Rev. Lett. 111, 264101 (2013).

[31] T. M. Bersano, V. Gokhroo, M. A. Khamehchi, J. D’Ambroise,
D. J. Frantzeskakis, P. Engels, and P. G. Kevrekidis, Phys. Rev.
Lett. 120, 063202 (2018).

[32] A. Farolfi, D. Trypogeorgos, C. Mordini, G. Lamporesi, and G.
Ferrari, Phys. Rev. Lett. 125, 030401 (2020).

[33] X. Chai, D. Lao, K. Fujimoto, and C. Raman, Phys. Rev.
Research 3, L012003 (2021).

[34] S. Lannig, C.-M. Schmied, M. Prüfer, P. Kunkel, R. Strohmaier,
H. Strobel, T. Gasenzer, P. G. Kevrekidis, and M. K. Oberthaler,
Phys. Rev. Lett. 125, 170401 (2020).

[35] S. Rajendran, P. Muruganandam, and M. Lakshmanan, J. Phys.
B: At., Mol. Opt. Phys. 42, 145307 (2009).

[36] C. Yin, N. G. Berloff, V. M. Pérez-García, D. Novoa, A. V.
Carpentier, and H. Michinel, Phys. Rev. A 83, 051605(R)
(2011).

[37] V. Achilleos, P. G. Kevrekidis, V. M. Rothos, and D. J.
Frantzeskakis, Phys. Rev. A 84, 053626 (2011).

[38] A. Álvarez, J. Cuevas, F. R. Romero, and P. G. Kevrekidis, Phys.
D (Amsterdam) 240, 767 (2011).

[39] A. Álvarez, J. Cuevas, F. R. Romero, C. Hamner, J. J. Chang,
P. Engels, P. G. Kevrekidis, and D. J. Frantzeskakis, J. Phys. B:
At., Mol. Opt. Phys. 46, 065302 (2013).

[40] W. Wang and P. G. Kevrekidis, Phys. Rev. E 91, 032905 (2015).
[41] G. Biondini, D. K. Kraus, B. Prinari, and F. Vitale, J. Phys. A:

Math. Theor. 48, 395202 (2015).
[42] G. C. Katsimiga, G. M. Koutentakis, S. I. Mistakidis, P. G.

Kevrekidis, and P. Schmelcher, New J. Phys. 19, 073004 (2017).
[43] G. C. Katsimiga, J. Stockhofe, P. G. Kevrekidis, and P.

Schmelcher, Phys. Rev. A 95, 013621 (2017).
[44] G. C. Katsimiga, S. I. Mistakidis, G. M. Koutentakis, P. G.

Kevrekidis, and P. Schmelcher, Phys. Rev. A 98, 013632
(2018).

[45] M. O. D. Alotaibi and L. D. Carr, J. Phys. B: At., Mol. Opt.
Phys. 51, 205004 (2018).

[46] M. O. D. Alotaibi and L. D. Carr, J. Phys. B: At., Mol. Opt.
Phys. 52, 165301 (2019).

[47] M. Arazo, M. Guilleumas, R. Mayol, and M. Modugno, Phys.
Rev. A 104, 043312 (2021).

[48] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A.
Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev.
Lett. 83, 5198 (1999).

[49] J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark, L. A.
Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson,
W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D.
Phillips, Science 287, 97 (2000).

[50] R. Dum, J. I. Cirac, M. Lewenstein, and P. Zoller, Phys. Rev.
Lett. 80, 2972 (1998).

[51] A. Weller, J. P. Ronzheimer, C. Gross, J. Esteve, M. K.
Oberthaler, D. J. Frantzeskakis, G. Theocharis, and P. G.
Kevrekidis, Phys. Rev. Lett. 101, 130401 (2008).

[52] M. Hoefer, P. Engels, and J. Chang, Phys. D (Amsterdam) 238,
1311 (2009).

[53] W. P. Reinhardt and C. W. Clark, J. Phys. B: At., Mol. Opt.
Phys. 30, 785 (1997).

[54] T. F. Scott, R. J. Ballagh, and K. Burnett, J. Phys. B: At., Mol.
Opt. Phys. 31, 329 (1998).

[55] G. Theocharis, A. Weller, J. P. Ronzheimer, C. Gross, M. K.
Oberthaler, P. G. Kevrekidis, and D. J. Frantzeskakis, Phys. Rev.
A 81, 063604 (2010).

[56] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 64, 1627
(1973) [Sov. Phys.–JETP 37, 823 (1973)].

[57] L. Faddeev and L. Takhtajan, Hamiltonian Methods in the The-
ory of Solitons (Springer, New York, 2007).

[58] J. A. Espínola-Rocha and P. Kevrekidis, Math. Comput. Simul.
80, 693 (2009).

[59] F. Demontis, B. Prinari, C. van der Mee, and F. Vitale, Stud.
Appl. Math. 131, 1 (2013).

[60] G. Biondini and B. Prinari, Stud. Appl. Math. 132, 138 (2014).
[61] G. Biondini and D. Kraus, SIAM J. Math. Anal. 47, 706 (2015).
[62] B. Prinari, M. J. Ablowitz, and G. Biondini, J. Math. Phys. 47,

063508 (2006).

023325-22

https://doi.org/10.1103/PhysRevLett.80.2027
https://doi.org/10.1103/PhysRevLett.87.010401
https://doi.org/10.1103/PhysRevLett.86.2918
https://doi.org/10.1140/epjd/e2003-00311-6
https://doi.org/10.1103/PhysRevA.75.023617
https://doi.org/10.1103/PhysRevA.84.041605
https://doi.org/10.1103/PhysRevA.94.053617
https://doi.org/10.1103/PhysRevLett.116.160402
https://doi.org/10.1016/j.revip.2016.07.002
https://doi.org/10.1103/PhysRevA.97.043621
https://doi.org/10.1103/PhysRevA.102.023301
https://doi.org/10.1103/PhysRevE.55.4773
https://doi.org/10.1364/OL.23.001268
https://doi.org/10.1016/S0370-1573(97)00073-2
https://doi.org/10.1364/OL.24.000327
https://doi.org/10.1007/BF02731494
https://doi.org/10.1038/nphys962
https://doi.org/10.1016/j.physleta.2010.11.025
https://doi.org/10.1103/PhysRevA.84.053630
https://doi.org/10.1103/PhysRevLett.106.065302
https://doi.org/10.1103/PhysRevLett.111.264101
https://doi.org/10.1103/PhysRevLett.120.063202
https://doi.org/10.1103/PhysRevLett.125.030401
https://doi.org/10.1103/PhysRevResearch.3.L012003
https://doi.org/10.1103/PhysRevLett.125.170401
https://doi.org/10.1088/0953-4075/42/14/145307
https://doi.org/10.1103/PhysRevA.83.051605
https://doi.org/10.1103/PhysRevA.84.053626
https://doi.org/10.1016/j.physd.2010.12.006
https://doi.org/10.1088/0953-4075/46/6/065302
https://doi.org/10.1103/PhysRevE.91.032905
https://doi.org/10.1088/1751-8113/48/39/395202
https://doi.org/10.1088/1367-2630/aa766b
https://doi.org/10.1103/PhysRevA.95.013621
https://doi.org/10.1103/PhysRevA.98.013632
https://doi.org/10.1088/1361-6455/aadfb2
https://doi.org/10.1088/1361-6455/ab2cfb
https://doi.org/10.1103/PhysRevA.104.043312
https://doi.org/10.1103/PhysRevLett.83.5198
https://doi.org/10.1126/science.287.5450.97
https://doi.org/10.1103/PhysRevLett.80.2972
https://doi.org/10.1103/PhysRevLett.101.130401
https://doi.org/10.1016/j.physd.2008.08.021
https://doi.org/10.1088/0953-4075/30/22/001
https://doi.org/10.1088/0953-4075/31/8/001
https://doi.org/10.1103/PhysRevA.81.063604
https://doi.org/10.1016/j.matcom.2009.08.022
https://doi.org/10.1111/j.1467-9590.2012.00572.x
https://doi.org/10.1111/sapm.12024
https://doi.org/10.1137/130943479
https://doi.org/10.1063/1.2209169


ON-DEMAND GENERATION OF DARK-BRIGHT SOLITON … PHYSICAL REVIEW A 105, 023325 (2022)

[63] B. Prinari, G. Biondini, and A. D. Trubatch, Stud. Appl. Math.
126, 245 (2011).

[64] A. Romero-Ros, G. C. Katsimiga, P. G. Kevrekidis, B. Prinari,
G. Biondini, and P. Schmelcher, Phys. Rev. A 103, 023329
(2021).

[65] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M.
Stamper-Kurn, and W. Ketterle, Nature (London) 392, 151
(1998).

[66] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.
Phys. 82, 1225 (2010).

[67] S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Sov. Phys.–
JETP 38, 693 (1974)].

[68] G. Biondini and E. Fagerstrom, SIAM J. Appl. Math. 75, 136
(2015).

[69] N. Bogoliubov, J. Phys. 11, 23 (1947).
[70] T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135

(1957).
[71] D. Yan, J. J. Chang, C. Hamner, M. Hoefer, P. G. Kevrekidis,

P. Engels, V. Achilleos, D. J. Frantzeskakis, and J. Cuevas, J.
Phys. B: At., Mol. Opt. Phys. 45, 115301 (2012).

[72] M. Segev and G. Stegeman, Phys. Today 51(8), 42 (1998).
[73] K. M. Mertes, J. W. Merrill, R. Carretero-González, D. J.

Frantzeskakis, P. G. Kevrekidis, and D. S. Hall, Phys. Rev. Lett.
99, 190402 (2007).

[74] M. Egorov, B. Opanchuk, P. Drummond, B. V. Hall, P.
Hannaford, and A. I. Sidorov, Phys. Rev. A 87, 053614 (2013).

[75] Y. Kawaguchi and M. Ueda, Phys. Rep. 520, 253 (2012).

[76] D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191
(2013).

[77] G. C. Katsimiga, S. I. Mistakidis, P. Schmelcher, and P. G.
Kevrekidis, New J. Phys. 23, 013015 (2021).

[78] D. M. Stamper-Kurn and W. Ketterle, in Coherent Atomic Mat-
ter Waves, Les Houches–Ecole d’Ete de Physique Theorique,
edited by R. Kaiser, C. Westbrook, and F. David (Springer,
Berlin, 2001), pp. 139–217.

[79] M.-S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M.
Fortier, W. Zhang, L. You, and M. S. Chapman, Phys. Rev. Lett.
92, 140403 (2004).

[80] M.-S. Chang, Q. Qin, W. Zhang, L. You, and M. S. Chapman,
Nat. Phys. 1, 111 (2005).

[81] H. E. Nistazakis, D. J. Frantzeskakis, P. G. Kevrekidis, B. A.
Malomed, and R. Carretero-González, Phys. Rev. A 77, 033612
(2008).

[82] B. Xiong and J. Gong, Phys. Rev. A 81, 033618
(2010).

[83] A. Romero-Ros, G. C. Katsimiga, P. G. Kevrekidis, and P.
Schmelcher, Phys. Rev. A 100, 013626 (2019).

[84] C.-M. Schmied and P. G. Kevrekidis, Phys. Rev. A 102, 053323
(2020).

[85] A. Abeya, B. Prinari, G. Biondini, and P. G. Kevrekidis, Eur.
Phys. J. Plus 136, 1126 (2021).

[86] L. H. Thomas, Math. Proc. Cambridge Philos. Soc. 23, 542
(1927).

[87] E. Fermi, Rend. Accad. Naz. Lincei 6, 602 (1927).

023325-23

https://doi.org/10.1111/j.1467-9590.2010.00504.x
https://doi.org/10.1103/PhysRevA.103.023329
https://doi.org/10.1038/32354
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1137/140965089
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1088/0953-4075/45/11/115301
https://doi.org/10.1063/1.882370
https://doi.org/10.1103/PhysRevLett.99.190402
https://doi.org/10.1103/PhysRevA.87.053614
https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1103/RevModPhys.85.1191
https://doi.org/10.1088/1367-2630/abd27c
https://doi.org/10.1103/PhysRevLett.92.140403
https://doi.org/10.1038/nphys153
https://doi.org/10.1103/PhysRevA.77.033612
https://doi.org/10.1103/PhysRevA.81.033618
https://doi.org/10.1103/PhysRevA.100.013626
https://doi.org/10.1103/PhysRevA.102.053323
https://doi.org/10.1140/epjp/s13360-021-02050-2
https://doi.org/10.1017/S0305004100011683

