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Cold-atom quantum simulator for string and hadron dynamics in non-Abelian lattice gauge theory
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We propose an analog quantum simulator for simulating real-time dynamics of (1 + 1)-dimensional non-
Abelian gauge theory well within the existing capacity of ultracold-atom experiments. The scheme calls for the
realization of a two-state ultracold fermionic system in a one-dimensional bipartite lattice, and the observation of
subsequent tunneling dynamics. Being based on the loop string hadron formalism of SU (2) lattice gauge theory,
this simulation technique is completely SU (2) invariant and simulates accurate dynamics of physical phenomena
such as string breaking and/or pair production. The scheme is scalable and particularly effective in simulating
the theory in the weak-coupling regime, and also a bulk limit of the theory in the strong-coupling regime up to
certain approximations. This paper also presents a numerical benchmark comparison of the exact spectrum and
real-time dynamics of lattice gauge theory to that of the atomic Hamiltonian with an experimentally realizable
range of parameters.
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I. INTRODUCTION

Gauge field theories constitute an exceptionally power-
ful theoretical framework that describes at least three of the
four fundamental interactions of nature. Non-Abelian gauge
symmetry lies at the heart of the standard model of parti-
cle physics. Quantum chromodynamics (QCD), which is an
SU(3) gauge theory, can accurately represent quark-gluon in-
teractions. In 1974, Wilson proposed a regularization of the
gauge theory on space-time lattices [1] that exhibits quark
confinement in the strong-coupling limit. Wilson’s lattice
gauge theory (LGT) has been used extensively over the past
four to five decades because one can perform lattice QCD
calculations by Monte Carlo simulations [2]. The world’s
largest supercomputing resources are now being employed for
the same [3].

Although the lattice QCD numerical scheme is very ef-
ficient, there is the infamous “sign problem” that limits its
applicability [4]. For example, it cannot handle systems with
finite and nonzero density or calculate real-time dynamics
within the Euclidean framework. Following Feynman’s vi-
sionary idea [5], quantum simulation of lattice QCD offers
hope to address these issues. With the recent technological
progresses, there has been a surge of interest towards devel-
oping quantum algorithms to study gauge theories using both
digital and analog approaches [6–13]. However, the progress
in quantum simulation of non-Abelian gauge theories lags far
behind its Abelian counterparts. The present paper outlines a
scheme for simulating real-time dynamics of a non-Abelian
gauge theory in an analog way. In particular, we demonstrate
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the simulation of a manifestly gauge-invariant framework,
namely, a loop-string-hadron (LSH) formalism [14] of SU (2)
gauge theory. This scheme successfully bypasses the nontriv-
ial task of imposing the non-Abelian gauge invariance (local
constraints) additionally.

The concept of analog quantum simulation involves
mimicking a quantum system described by a Hamiltonian
(simulated Hamiltonian) by a different quantum system de-
scribed by some other Hamiltonian (simulating Hamiltonian).
Systems of ultracold atoms [15] or ions [16] trapped in op-
tical lattices serve as excellent quantum simulators, as the
relevant parameters can be precisely measured and controlled.
It can be recalled that though the experimental realization
of Bose-Einstein condensates and trapped ultracold fermions
[17–23] initially inspired studies on the macroscopic quantum
coherent phenomena only [24–26], soon it was discovered that
ultracold atoms can serve as wonderful testing grounds for
other branches of physics as well. The atom-atom scattering
length (and thus, the interaction strength) in ultracold gases
can be varied across a wide range via Feshbach resonances.
The creation of optical lattices [27] by using two counter-
propagating coherent laser beams took this tunability a step
further, as the size, shape, and dimensionality of the lattice
could be easily controlled. In the past, cold-atom systems have
successfully emulated a rich variety of systems and addressed
problems in disordered systems, spin liquids, superconduc-
tivity, nuclear pairing, artificial gauge fields, and topology
[28–30]. Advanced cooling and trapping methods have now
led to quantum engineering at an unparalleled precision level.
This allows for each individual atom to be monitored, and one
can have a perfect quantum simulator.

Over the last few years, there has been a continuous pursuit
of using cold-atom systems for analog quantum simulating
both Abelian and non-Abelian lattice gauge theories. Mostly
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based on the Kogut-Susskind (KS) formalism [31–34] as well
as quantum link model (QLM) formulation [35–37] and also
Abelian Higgs model [38–40], these schemes involved a care-
ful designing of the setup so that the system remains in the
gauge-invariant Hilbert space throughout the dynamics. Quan-
tum simulating non-Abelian gauge theories using Rydberg
atom gates [41] was also proposed.

Following the first experimental demonstration of a dig-
ital quantum simulation of a lattice Schwinger model [42],
a density-dependent quantum gauge field was experimentally
demonstrated [43], which is useful for simulating dynamics
of Z2 gauge theory. The first analog quantum simulation of
Z2 gauge theory on a two staggered site lattice by cold-atom
quantum simulator was reported in [44]. The first experiment
demonstrating a scalable quantum simulation of continuous
gauge theory [45] has also been reported recently.

The major difficulty in any Hamiltonian simulation of
gauge theory is to impose the local constraints (Gauss law)
and to keep the dynamics confined within the physical Hilbert
space that satisfies the constraint. Recently, such a gauge
invariance has been experimentally demonstrated for analog
simulation of U (1) gauge theory on a sufficiently large lat-
tice [46]. The notion of gauge invariance becomes manyfold
complicated for a non-Abelian theory such as SU (2) where
there exists more than one mutually noncommuting constraint
at each lattice site. That might be a reason why a practically
or immediately realizable analog quantum simulation scheme
for simulating dynamics even with the simplest non-Abelian,
continuous gauge group such as SU (2) in (1 + 1) dimensions
is absent in the literature to date.

We aim to quantum simulate the same, i.e., SU (2) lattice
gauge theory on a (1 + 1)-dimensional lattice described by
the KS Hamiltonian [47]. In a recent study [48], it has been
demonstrated that amongst many variants of Hamiltonian for-
mulation of non-Abelian gauge theories [49–54], the LSH
formalism [14] is the most convenient and computationally
least expensive one for (1 + 1) dimensions within the scope
of classical computation. The reason is, being a manifestly
gauge invariant formalism, the LSH Hamiltonian describes
the dynamics of only relevant physical degrees of freedom.
In a one-dimensional (1D) spatial lattice, that is precisely the
dynamics of strings and hadrons. It can be shown [48,55] that
in (1 + 1) dimensions any gauge theory with open boundary
conditions can be mapped to a theory of only fermions, i.e.,
equivalent to the XY Z model and hence much simpler to ana-
lyze. The LSH formalism shares many features of this purely
fermionic formalism but can actually be generalized to peri-
odic boundary conditions as well as to higher dimensions [14].

The present paper exploits this versatility of LSH formal-
ism of SU (2) gauge theory. Here, different parameter regimes
of SU (2) gauge theory are mapped to different parameter
regimes of an atomic Hamiltonian: that of an ionic Hubbard
model. We consider the half-filled Hubbard model to be ex-
actly equivalent to the gauge theory Hilbert space containing
a strong-coupling vacuum (no matter or antimatter state). We
show that the spectrum, obtained with exact diagonalization
of both the simulating and simulated systems, compared re-
markably in the weak-coupling regime. We also provide a
benchmark comparison of the dynamics of the atomic sys-
tem directly mapped to the pair production-string breaking

dynamics of the low-energy sector of SU (2) gauge theory.
The numerical analysis employs parameters and experimen-
tal setups already realized with ultracold-atom systems. We
demonstrate two key points.

(i) The full gauge theory Hamiltonian can be reduced to
an approximated LSH Hamiltonian, which, in turn, can be
perfectly mimicked by the atomic system to the low-energy
dynamics in the weak-coupling limit of gauge theory.

(ii) For the strong- and intermediate-coupling regimes, the
difference between the full gauge theory Hamiltonian and
the approximated Hamiltonian is slightly more prominent,
but it can be compensated by tuning the on-site interaction
parameter of the Hubbard Hamiltonian.

Thus, one can still access the dynamics of strings and
hadrons in presence of a background gauge field in the bulk
limit of the lattice. Further improvements of this scheme to
include dynamical gauge fields in the higher dimensions, and
also generalization to SU (3) gauge theory, will take us close
to quantum simulating the full QCD.

The plan of the paper is as follows: Sec. II contains the
minimal details of the lattice gauge theory Hamiltonian in-
cluding the LSH framework at different coupling regimes that
we aim to quantum simulate. The simulating Hamiltonian is
discussed in Sec. III, including the atomic system to be used
for the quantum simulation scheme, i.e., a fermionic Hubbard
model on a bipartite lattice and specification of the parameters
of the simulating Hamiltonian to simulate the gauge theory
in a wide range of coupling regimes. In Sec. IV the proposed
experimental setup is described. Section V contains numerical
study and comparison of the spectrum and real-time dynam-
ics of both the simulating and simulated systems using the
parameters for the proposed experimental scheme. Finally, in
Sec. VI the results are summarized and future prospects are
discussed.

II. THE THEORY TO BE SIMULATED

In this section, we briefly review the theory we would like
to simulate (Sec. II A), discuss different parameter regimes of
interest (Sec. II B), propose a mean-field ansatz (Sec. II C),
and apply the ansatz to a gauge invariant formalism for the
same theory (Sec. II D). Finally, the Hamiltonian we quantum
simulate is presented (Sec. II E).

A. Kogut-Susskind Hamiltonian

Hamiltonian or canonical formulation of lattice gauge the-
ories was developed by Kogut and Susskind [47] right after
Wilson introduced lattice gauge theory originally in Euclidean
formalism [1]. In the classical computing era, lattice gauge
theory calculations have explored the original Euclidean
formulation extensively, but the Hamiltonian framework re-
mained a relatively uncharted territory. However, the interest
in the Hamiltonian description of lattice gauge theories is
renewed, as it turns out to be the natural framework to work
with in the upcoming quantum simulation and computation
era. The mostly used formalism in this context is the quantum
link model representation of gauge theory as it provides a
finite dimensional representation of the gauge fields. There
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is a drawback though: in smaller dimensions, that are acces-
sible by present-day quantum technology, the quantum link
model does not have the desired spectrum as obtained with the
original Kogut-Susskind Hamiltonian [48,49]. In this paper
we consider the original Kogut-Susskind Hamiltonian for the
simplest non-Abelian gauge group, i.e., SU (2), and proceed
to construct a quantum simulator for the same in (1 + 1)
dimensions.

The KS Hamiltonian describing SU (2) Yang-Mills theory
coupled to staggered fermions in (1 + 1) dimensions (1D
spatial lattice and continuous time) [47] can be written as

H (KS) = H (KS)
E + H (KS)

M + H (KS)
I , (1)

where H (KS)
E corresponds to the electric part of the Hamilto-

nian given by

H (KS)
E = g2a

2

N−1∑
j=0

3∑
a=1

Ea( j)Ea( j). (2)

Here,

3∑
a=1

Ea( j)Ea( j) =
3∑

a=1

Ea
L ( j)Ea

L ( j) =
3∑

a=1

Ea
R ( j)Ea

R ( j)

for left and right electric fields EL/R associated with a link
connecting sites j and j + 1.

The staggered fermionic matter ψ in the fundamental

representation of SU (2) consisting of two components
(ψ1

ψ2

)
yields a staggered mass term:

H (KS)
M = m

N∑
j=0

(−1) j[ψ†( j)ψ ( j)]. (3)

H (KS)
I denotes interaction between the fermionic and gauge

fields and is given by

H (KS)
I = 1

2a

N−1∑
j=0

[ψ†( j)U ( j)ψ ( j + 1) + H.c.]. (4)

The gauge link U ( j) is a 2 × 2 unitary matrix defined on the
link connecting sites j and j + 1. A temporal gauge is chosen
to derive the above Hamiltonian which sets the gauge link
along the temporal direction equal to unity.

The color electric fields Ea
L/R are defined at the left L

and right R sides of each link and they satisfy the following
commutation relations [SU (2) algebra] at each end:[

Ea
L ( j), Eb

L ( j′)
] = iεabcδ j j′E

c
L ( j),[

Ea
R ( j), Eb

R( j′)
] = iεabcδ j j′E

c
R( j′),[

Ea
L ( j), Eb

R( j′)
] = 0, (5)

where εabc is the Levi-Civita symbol. The electric fields and
the gauge link satisfy the following quantization conditions at
each site: [

Ea
L ( j),U ( j′)

] = −σ a

2
δ j j′U ( j),

[
Ea

R ( j),U ( j′)
] = U ( j)δ j j′

σ a

2
, (6)

where σ a are the Pauli matrices. The Hamiltonian in (1) is
gauge invariant as it commutes with the Gauss law operator

Ga( j) = Ea
L ( j) + Ea

R ( j − 1) + ψ†( j)
σ a

2
ψ ( j) (7)

at each site j. The physical sector of the Hilbert space cor-
responds to the space consisting of states annihilated by (7).
Solving the non-Abelian Gauss laws at each site j as given
in (7) is nontrivial and engineering the same in an analog
experiment is the most difficult job.

In a very recent work [48], all available formalisms for
non-Abelian gauge theory with gauge group SU (2) in (1 + 1)
dimensions have been analyzed and compared in terms of
their applicability in Hamiltonian simulation. As concluded
in [48], the recently developed LSH formalism [14] enjoys
two unique advantages: (i) it is exactly equivalent to the
original Kogut-Susskind Hamiltonian and (ii) it removes the
nontrivial steps (computational costs) required in the original
Hamiltonian formulation to contain the dynamics in the gauge
invariant sector of LGT Hilbert space. The second advantage
becomes particularly important in designing an analog or
digital quantum simulator [46,56]. That is why we choose
the LSH framework to describe gauge theory and map the
same to an atomic Hamiltonian. It is already established [48]
that the original Kogut-Susskind Hamiltonian and the LSH
Hamiltonian (given in the Appendix A) share identical spectra
and hence generate the same dynamics. At this point we must
mention that all the feasible and implemented past proposals
involve QLM formulation of lattice gauge theory, that in lower
dimension exhibits a completely different spectrum as well
as a different Hilbert space than that of the Kogut-Susskind
Hamiltonian.

B. The two coupling regimes

It is convenient to scale the Hamiltonian H(KS) given in
(1) as per [57], so as to make it dimensionless:

H̃ = 2

g2a
H (KS)

=
∑

j

E2( j)

︸ ︷︷ ︸
H̃E

+μ0

∑
j

(−1) j[ψ†( j)ψ ( j)]

︸ ︷︷ ︸
H̃M

+ x0

∑
j

[ψ†( j)U ( j)ψ ( j + 1) + H.c.]

︸ ︷︷ ︸
H̃I

. (8)

Here, x0 = 1
g2a2 and μ0 = 2

√
x0

m

g
are dimensionless coupling

constants of the theory. Evolving this H̃ with scaled time
(from zero to τ̃ ),

τ̃ = τgauge

x0
(9)

is due to the unitary operator:

U (τ̃ ) = exp (−iH̃ τ̃ )

= exp

(
−i

2

g2a
H (KS)g2a2τgauge

)
= exp

(−i2aH (KS)τgauge
)
. (10)
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Here, 2aH (KS) is another scaled Hamiltonian with dimension-
less parameters given by

2aH (KS) = 1

x0

∑
x

E2(x)

+ 2
m

g

1√
x0

∑
j

(−1) j[ψ†( j)ψ ( j)]

+
∑

j

[ψ†( j)U ( j)ψ ( j + 1) + H.c.]. (11)

The strong-coupling limit is defined for x0 → 0, where the
interaction part of the Hamiltonian becomes less dominant
as evident from both (8) and (11). On the other hand, in
the weak-coupling limit defined at x0 → ∞, the interaction
part of the Hamiltonian becomes the most important term
that cannot be treated perturbatively. These scaling rules work
equivalently on the LSH Hamiltonian defined in (A18)–(A20)
as the LSH Hamiltonian is exactly equivalent to the original
Kogut-Susskind Hamiltonian.

In the strong-coupling regime, lattice gauge theory shows
the desired physics such as quark confinement and finite mass
gap. In this limit, the interaction terms in (4) that involve
transitions between different eigenstates of the electric-field
operator become insignificant, and hence in the Hamiltonian
diagonal terms dominate over the off-diagonal ones in the
strong-coupling basis.1 As x0 → 0, only very small electric
flux configurations on the lattice contribute to the low-energy
sector of the theory. In this regime, lattice Hamiltonian matri-
ces can be analyzed perturbatively with the electric part as the
unperturbed Hamiltonian. Order by order perturbation correc-
tions yield a finite dimensional Hilbert space, within a cutoff
imposed on the bosonic quantum number corresponding to
gauge flux. The computation cost rises exponentially with
increasing Hilbert-space dimension, that grows with system
size as well as cutoff [48]. As a result, calculating Hamiltonian
dynamics for an arbitrary large system even with the largest
possible computer seems impossible. However, the continuum
limit of the LGT lies in the opposite regime, where x0 →
∞ (g → 0, a → 0) together with the bulk limit, i.e., lattice
size N → ∞. In this regime, the dynamics becomes heavily
cutoff sensitive. Here all possible electric flux states contribute
to the low-energy spectrum with major contributions coming
from strong-coupling basis states with electric flux values
to grow larger with x0 → ∞. The Hamiltonian moves away
from diagonal structure as (4) becomes dominant. As a whole,
analyzing the weak-coupling limit of lattice gauge theory is
extremely difficult on a classical computer except for some
extrapolation techniques of strong-coupling analysis.

Now, we propose a mean-field ansatz for the low-energy
sector of the gauge theory Hilbert space in the weak-coupling
regime. In the next section, we propose an analog quantum

1For LGT, the natural and most convenient basis is formed out of
eigenstates of the electric-field operator. The tensor product of the
fermionic occupation number basis and electric-field basis consti-
tutes the full Hilbert space. This particular basis, being the eigenbasis
of the diagonal Hamiltonian (HE + HM ) in the g → ∞ limit, is called
the strong-coupling basis of LGT.

simulator to simulate the dynamics of gauge theory in this
regime. However, this particular proposal accurately simulates
the dynamics of gauge theory beyond this particular regime as
well, within the mean-field ansatz. Quantum simulation of the
intermediate-coupling regime of the full SU (2) gauge theory
involves suitable tuning of atomic interactions as described in
the later part of this paper.

C. Weak-coupling limit: Mean-field ansatz

As stated earlier, we choose the LSH representation of
the Kogut-Susskind Hamiltonian (given in Appendix A) as
it provides the most convenient and economic description of
the physical degrees of freedom and their dynamics. The LSH
basis is characterized by three integer quantum numbers

nl ( j) ∈ (0,∞)&ni( j), no( j) ∈ (0, 1) (12)

for each site j
The strong-coupling vacuum of the theory is defined by

the zero electric flux state. In the LSH formalism, the same
state is given by nl = 0 in (12) at all lattice sites. However,
as one approaches the weak-coupling regime, the low-energy
spectrum of the theory contains states that carry large fluxes.
In [58], a weak-coupling vacuum ansatz was proposed and
justified for the (2 + 1)-dimensional pure SU (2) gauge the-
ory within the prepotential framework. In that proposal, each
lattice site contains a large but mean value for the local loop
quantum numbers. The (1 + 1)-dimensional version of that
ansatz within the LSH framework (i.e., prepotential + stag-
gered matter) would be equivalent to each site containing
more and more gauge fluxes, i.e., nl � 0, for all sites as
one approaches the weak-coupling limit g → 0. As discussed
before, the incoming flux or boundary flux li fixes the bosonic
loop quantum numbers nl at each lattice site for any configu-
rations of ni and no throughout the lattice as per (A30). Hence,
choosing li � 0 for any finite lattice would result in

nl ( j) = li ≡ nl ∀ j. (13)

D. Approximate Hamiltonian

In this section, we present a particular form of LSH Hamil-
tonian that we would like to simulate. This is derived from the
Hamiltonian given in (A18)–(A20), that generates the spec-
trum of the original Kogut-Susskind Hamiltonian discussed
before.

1. Electric Hamiltonian

The electric part of the LSH Hamiltonian as given in (A18)
can be written as

H (LSH)
E = g2a

2

∑
j

hE ( j). (14)

At each site j, depending upon the fermionic quantum num-
bers ni and no, the local contribution to electric energy is given
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by

ni no hE

0 0 nl
2

( nl
2 + 1

)
0 1 nl +1

2

( nl +1
2 + 1

)
1 0 nl

2

( nl
2 + 1

)
1 1 nl

2

( nl
2 + 1

)
. (15)

The site index ( j) is omitted in the above equation as it is
on one particular site. Within the average electric-field ansatz,
i.e., for nl ( j) = nl ⇒ hE ( j) = hE for all sites j, we have

H (approx)
E = g2a

2
Nh0

E (16)

where N is the total number of staggered sites on the lattice
and h0

E = nl
2 ( nl

2 + 1). Note that, for nl � 0, one can actually

consider h0
E = hE ≡ n2

l
4 .

At any site j, the onsite electric energy hE ( j) differs from
h0

E if ni( j) = 0, no( j) = 1, and that difference, that is relevant
in the strong-coupling regime (for nl > 0), is given by

�hE = nl + 1

2

(
nl + 1

2
+ 1

)
− h0

E = nl

2
+ 3

4
. (17)

This correction term to H (approx)
E is particularly important for

the strong- as well as intermediate-coupling regime, where
we consider the mean value of the gauge flux, that is not
very large compared to that considered in the weak-coupling
regime. Within the mean-field ansatz the total electric part of
the LSH Hamiltonian is given by

H (LSH)
E = g2a

2

[
Nh0

E +
∑
{ j′}

(
nl

2
+ 3

4

)]
(18)

where { j′} denotes the sites with fermionic configuration
ni( j′) = 0, no( j′) = 1. In the bulk limit of the lattice, the
occurrence of j′ will be N/4 for the N site lattice. Hence, the
total mean-field electric Hamiltonian in the bulk limit is given
by

H (mLSH)
E = g2a

2

[
N

nl

2

(nl

2
+ 1

)
+ N

4

(
nl

2
+ 3

4

)]
. (19)

2. Mass Hamiltonian

The mass term (A19), being independent of gauge field
configuration, remains the same in the mean-field ansatz, and
for both the strong- and weak-coupling regime:

H (approx)
M = m

∑
j

(−1) j[n̂i( j) + n̂o( j)]. (20)

3. Interaction Hamiltonian

The matter-gauge field interaction term is the most com-
plicated within the LSH framework as detailed in (A20). In
the strong-coupling limit of the theory, this particular term
gives small contribution to the Hamiltonian (see Sec. II B)
and can be treated perturbatively. However, in the weak-
coupling regime, this term becomes significant. The purpose
of the present approximation scheme is to bring the interaction
Hamiltonian into a simple form, yet describing matter gauge
dynamics in the weak-coupling regime.

The approximation scheme that we follow is replacing the
local loop quantum numbers nl ( j) by a constant nl � 0 at all
lattice sites. The interaction Hamiltonian given in (A20) can
be written as

HLSH
I = 1

2a

N−2∑
j=0

hI ( j, j + 1) (21)

where

hI ( j, j + 1) = h1
I ( j, j + 1) + h2

I ( j, j + 1)

+h3
I ( j, j + 1) + h4

I ( j, j + 1). (22)

Each of these terms can be further decoupled into left (L) and
right (R) parts located at site j and site j + 1, respectively:

h[s]
I ( j, j + 1) = h[s]

I (L)h[s]
I (R) , [s] = 1, 2, 3, 4. (23)

Now, considering each term separately, one would obtain the
following:

h[1]
I (L) = 1√

n̂l + n̂o( j)[1 − n̂i( j)] + 1
χ̂+

o (λ+)n̂i ( j)
√

n̂l + 2 − n̂i( j) = χ̂+
o (λ+)n̂i ( j)Ĉ1(L), (24)

h[2]
I (L) = 1√

n̂l + n̂o( j)[1 − n̂i( j)] + 1
χ̂−

o (λ−)n̂i ( j)
√

n̂l + 2[1 − n̂i( j)] = χ̂−
o (λ−)n̂i ( j)Ĉ2(L), (25)

h[3]
I (L) = 1√

n̂l + n̂o( j)[1 − n̂i( j)] + 1
χ̂+

i (λ−)1−n̂o( j)
√

n̂l + 2n̂o( j) = χ̂+
i (λ−)1−n̂o( j)Ĉ3(L), (26)

h[4]
I (L) = 1√

n̂l + n̂o( j)[1 − n̂i( j)] + 1
χ̂−

i (λ+)1−n̂o( j)
√

n̂l + 1 + n̂o( j)) = χ̂−
i (λ+)1−n̂o( j)Ĉ4(L) (27)

and

h[1]
I (R) = χ̂−

o (λ+)1−n̂i ( j+1)

√
n̂l + [1 + n̂i( j + 1)]√

n̂l + n̂i( j + 1)[1 − n̂o( j + 1)] + 1
= χ̂−

o (λ+)1−n̂i ( j+1)Ĉ1(R), (28)
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h[2]
I (R) = χ̂+

o (λ−)1−n̂i ( j+1)

√
n̂l + 2n̂i√

n̂l + n̂i( j + 1)[1 − n̂o( j + 1)] + 1
= χ̂+

o (λ−)1−n̂i ( j+1)Ĉ2(R), (29)

h[3]
I (R) = χ̂−

i (λ−)n̂o( j+1)

√
n̂l + 2[1 − n̂o( j + 1)]√

n̂l + n̂i( j + 1)[1 − n̂o( j + 1)] + 1
= χ̂−

i (λ−)n̂o( j+1)Ĉ3(R), (30)

h[4]
I (R) = χ̂+

i (λ+)n̂o( j+1)

√
n̂l + 2 − n̂o( j + 1)√

n̂l + n̂i( j + 1)[1 − n̂o( j + 1)] + 1
= χ̂+

i (λ+)n̂o( j+1)Ĉ4(R). (31)

The only approximation made in the above set of equations is nl ( j), nl ( j + 1) → nl , where nl is the mean-field value. The
explicit operator forms of the coefficients Ĉ[s](L/R) are the following:

ni no Ĉ1(L) Ĉ2(L) Ĉ3(L) Ĉ4(L) Ĉ1(R) Ĉ2(R) Ĉ3(R) Ĉ4(R)

0 0 1 1 1

√
nl + 1

nl + 2
1

√
nl

nl + 1

√
nl + 2

nl + 1

√
nl + 2

nl + 1

0 1

√
nl + 2

nl + 1

√
nl + 2

nl + 1

√
nl + 2

nl + 1

√
nl + 2

nl + 1
1

√
nl

nl + 1

√
nl

nl + 1
1

1 0

√
nl + 1

nl + 2
1 1

√
nl + 1

nl + 2
1 1 1

√
nl + 1

nl + 2

1 1

√
nl + 1

nl + 2
1 1 1

√
nl + 2

nl + 1

√
nl + 2

nl + 1

√
nl

nl + 1
1

(32)

It is clear from the above set of coefficients that in the limit
nl � 0 all of the coefficients can be approximated to be equal
to identity operators, that is, their leading-order contribution.
One can expand the coefficients and add corrections order by
order. However, for this paper, we confine ourselves to the
leading-order contribution only.

In this regime we also approximate λ± as an identity
operator as per the approximation, nl + 1 ≈ nl . Hence, the
approximated interaction Hamiltonian is given by

H (approx)
I = 1

2a

∑
j

[χ+
o ( j)χ−

o ( j + 1) + χ−
o ( j)χ+

o ( j + 1)

+χ+
i ( j)χ−

i ( j + 1) + χ−
i ( j)χ+

i ( j + 1)]. (33)

E. The simulated Hamiltonian

In summary, we obtain the following approximate Hamil-
tonian that acting on the LSH states on the 1D spatial lattice
with the boundary flux li � 0 would result in the exact dy-
namics of the full gauge theory:2

H (approx)
E = g2a

2

∑
j

[
n̂l

2

n̂l

2

]
, (34)

2In this limit, the Abelian Gauss law constraint (A1) is automati-
cally satisfied as (A15) and (A16) effectively become equal.

H (approx)
M = m

∑
j

(−1) j[n̂i( j) + n̂o( j)], (35)

H (approx)
I = 1

2a

∑
j

[χ̂+
o ( j)χ̂−

o ( j + 1) + χ̂−
o ( j)χ̂+

o ( j + 1)

+χ̂+
i ( j)χ̂−

i ( j + 1) + χ̂−
i ( j)χ̂+

i ( j + 1)]. (36)

We present the details of an atomic quantum simulation
scheme to simulate this mean-field Hamiltonian in the next
section.

III. THE SIMULATING HAMILTONIAN

In this section, we construct an atomic Hamiltonian that
can successfully simulate (34)–(36). We describe the relevant
quantum system (Sec. III A), and its connection with the LSH
Hamiltonian is established (Sec. III B). That the model is well
suited for both the weak-coupling and strong-coupling limits
of gauge theory is demonstrated in Sec. III C.

A. Atomic Hamiltonian: The Hubbard model
on a bipartite lattice

We consider a Fermi-Hubbard model in a one-dimensional
lattice. The optical potential is of the form

V (x) = −VLcos2(kx). (37)
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FIG. 1. Structure of the two-color lattice.

The minimum of each well corresponds to the physical lattice
site with site index j. V (x) can also act as the trapping poten-
tial. Here VL > 0 and k = π/d , d being the lattice periodicity.
Next, energy offsets of V ′ and −V ′ are added to the odd and
even sites, respectively. So, a bipartite lattice is created, and
effectively the lattice spacing is 2d now. The structure of this
two-color lattice is shown in Fig. 1.

The fermionic atoms can belong to either of its two acces-
sible hyperfine states: we denote them by the symbols | ↑〉
and | ↓〉, respectively. Let c↑( j) be the fermionic annihilation
operator for spin index ↑ and let c↓( j) be the fermionic
annihilation operator for spin index ↓, both for site j. The
corresponding number operators are N j↑ and N j↓. The total
number of fermions at site j is given by N ( j) = N↑( j) +
N↓( j).

The lattice depth VL can be written as (V1 − V0). It is to be
noted that V1 and V0 are theoretical parameters only, and will
be used to make a connection between the atomic Hamiltonian
and the LSH Hamiltonian. From an experimental perspective,
it is only VL that is of importance.

The Hamiltonian can be written as

H = Hhopping + Hint + HV0 + HV ′ (38)

where, in terms of the tight-binding parameters,

Hhopping = −
∑

j

t j[c
†
↑( j)c↑( j + 1) + c†

↓( j)c↓( j + 1)]

+H.c., (39)

Hint = u
∑

j

N↑( j)N↓( j), (40)

HV0 =
∑

j

V0N ( j), (41)

and

HV ′ = V ′ ∑
j=odd

N ( j) − V ′ ∑
j=even

N ( j). (42)

Here we have dropped a term HV1 = ∑
j V1N ( j) from the

Hamiltonian, as this provides just a constant energy shift. The
details are given in Appendix B.

If the hopping −t is a constant throughout the lattice, this
model essentially is a 1D Hubbard model with alternating
potential, often termed as the “ionic Hubbard model,” defined
on a bipartite lattice. Here, in addition to a site-independent

hopping −t and the on-site interaction u, there is a difference
in the energy offset 2V ′ between sublattice A and sublattice
B. This model was originally proposed to study transitions in
organic crystals [59], and later found application in the studies
of ferroelectric transitions [60]. In the recent past, this model
has been experimentally realized [61] in a system of ultracold
atoms. So we consider this to be a very suitable candidate to
simulate lattice gauge theories.

At half filling, the ionic Hubbard model is capable of de-
scribing a band insulator [62]. However, this model has a rich
phase diagram, and at higher interatomic interaction strengths
can support transitions to different states, including Mott in-
sulator [62], correlated insulator [63,64], antiferromagnetic
insulator, and half-metal [64] phases; certain combinations of
u and V ′ can even lead to superfluidity [65]. As we will see
in the later part of this paper, we have to carefully choose our
parameters such that the entire dynamics remains confined to
a single paramagnetic phase in order to mimic the dynamics
of gauge theory.

B. Mapping the parameters

We are now in a position to compare the weak-coupling
LSH Hamiltonian and the atomic Hamiltonian. For a particu-
lar site j, we make the following identification:

ni( j) = N↑( j), no( j) = N↓( j), (43)

χ+
i ( j) = c†

↑( j), χ−
i ( j) = c↑( j), (44)

χ+
o ( j) = c†

↓( j), χ−
o ( j) = c↓( j), (45)

m = V ′. (46)

Also, the magnitude of V0 has to be chosen to be mapped to the
electric part of the gauge theory Hamiltonian for a particular
nl , fixed by the open boundary condition.

The electric term of the approximated LSH Hamiltonian is
mapped to

H (approx)
E →

∑
j

V0N ( j). (47)

Similarly, the potential V ′ is fixed by the mapping

H (approx)
M → V ′ ∑

j=odd

N ( j) − V ′ ∑
j=even

N ( j) (48)

and the hopping terms are identically related as

H (approx)
I → −t

∑
j

[c†
↑( j)c↑( j + 1)+ c†

↓( j)c↓( j + 1)] + H.c.

(49)

Note that there is no term in the weak-coupling LSH Hamil-
tonian that corresponds to the on-site interaction term (B6).
So, in the limit u → 0, one would have a complete mapping
between the atomic system and weak-coupling limit of the
gauge theory.

We would like to point out that although the LSH Hamilto-
nian contains explicit bosonic modes nl ( j), these are actually
nondynamical in the weak-coupling approximation as dis-
cussed before, and hence we do not keep actual bosons in

023322-7



RAKA DASGUPTA AND INDRAKSHI RAYCHOWDHURY PHYSICAL REVIEW A 105, 023322 (2022)

the atomic system. Instead, we incorporate the effect of these
bosons in the potential itself, in the form of a constant energy
shift. This enables us to (i) keep nl uniform for each site
and (ii) ensure that the bosonic and the fermionic modes are
completely decoupled, as there remains no chance of any
boson-fermion scattering.

C. Simulating both weak- and strong-coupling regimes
of gauge theory

We now present the features of this proposed scheme that
enable one to simulate accurate dynamics of the gauge theory
beyond the weak-coupling limit emphasized so far.

It is important to note that this particular scheme assumes
mean-field contribution from the loop degrees of freedom,
while the two fermionic degrees of freedom describe the dy-
namics of the theory. The configurations with large incoming
flux li correspond to low-energy states in the weak-coupling
regime. On the other hand, the strong-coupling vacuum is
defined to be the state with zero electric flux. This particular
scheme calls for choosing a nonzero value of the incoming
flux li � N for a N-site staggered lattice, such that all of the
fermionic configurations correspond to physical LSH config-
urations [48]. Physically this amounts to a constant shift in
the vacuum energy level as compared to the strong-coupling
vacuum of the theory. We propose that different sectors of the
gauge theory can be simulated by choosing appropriate values
of li (li � 0 for weak-coupling theory, li ≈ N for strong-
coupling theory).

Moving away from the weak-coupling approximation, the
electric part of the Hamiltonian becomes dominant. This part
(2) measures the electric flux contribution of each individual
link. Within the LSH framework, it has some contribution
from the local loop quantum number nl as well as from the
local string quantum numbers ni and no at the site from where
the link starts as given in (A18). One can also express the
total electric contribution as a function of local nl depending
on the local fermionic configurations as listed in (15). Thus,
the complete on-site contribution to the electric part of the
Hamiltonian can be divided into two categories.

(a) For three of the four allowed fermionic configurations
at any site (15), the approximated contribution is a function of
nl only [see Eq. (16)].

(b) For the other fermionic configuration, the electric con-
tribution to the Hamiltonian has an additional correction term
(17). In our scheme, this correction term (17) is added to
(16) for N/4 sites (as the probability of obtaining one such
particular arrangement of fermions is 1/4). Therefore, the
total correction in the electric Hamiltonian is

�H (LSH)
E = g2a

2

N

4

(
nl

2
+ 3

4

)
. (50)

The on-site interaction in the atomic Hamiltonian, which
does not have an equivalent in the approximate LSH Hamil-
tonian, can be tuned to recover the exact contribution of (50).
For a Hubbard model at half filling, all the four accessible
states |0〉, | ↑〉, | ↓〉, and | ↑↓〉 are equally likely as long as the
system remains in the paramagnetic phase. So,

N|↓〉 ≈ N

4
, N|↑↓〉 ≈ N

4
. (51)

Here N|↓〉 denotes the number of sites belonging to state | ↓〉,
and N|↑↓〉 is the number of sites with doublons. N is the total
number of lattice sites. It is the doublon configurations that
contribute to (B6). Hence, one can utilize the on-site interac-
tion term to recover the exact correction term

u
∑

j

N↑( j)N↓( j) = u
N

4
⇒ u ≡ g2a

2

(
nl

2
+ 3

4

)
(52)

in order to match it with (50).
Hence, for the bulk limit of the lattice (N � 0), we

have the maximum overlap of the (mean-field approximated)
strong-coupling lattice gauge theory to the Fermi-Hubbard
Hamiltonian as

H (mLSH)
E −→ HV0 + Hint, (53)

H (LSH)
M −→ HV ′ , (54)

H (approx)
I −→ Hhopping (55)

provided we fix V0 and u such that the system, staying in the
desired phase, mimics the dynamics of gauge theory as shown
in Fig. 2.

The correction to the approximate interaction Hamiltonian
is negligible in the weak-coupling regime, and also insignif-
icant in the strong-coupling limit. In this paper, we do not
consider any correction to the interaction term.

We now explicitly calculate the parameters of the atomic
Hamiltonian, that has to be tuned in the experiment to simulate
desired gauge theory dynamics in different coupling regimes.

1. Weak-coupling regime of gauge theory: u/t 0

In this particular regime we consider the scaled Hamilto-
nian given in (8). Within the approximation scheme done for
the equivalent LSH Hamiltonian for a finite lattice given in
(34), we consider the bosonic loop quantum number to take
the average value:

nl ≈ O(10p) ⇒ H̃ (approx)
E ≈ O(102p). (56)

For a comparative mass an interaction contribution of the
Hamiltonian, i.e.,

H̃LSH
M ≈ O(102p), (57)

H̃ (approx)
I ≈ O(102(p+p′ ) ), (58)

is obtained for the following scaling of parameters:
m

g
≈ O(10p−p′

)
√

x0 ≈ O(10p+p′
) ,∀p′ ∈ Z+. (59)

The exact values of the dimensionless parameters of gauge
theory can be taken as

nl = ñl × 10p, (60)

μ0 = μ̃0 × 102p, (61)

x0 = x̃0 × 102(p+p′ ), ∀ integer p, p′ (62)

= 102p for the choice, p′ = 0, x̃0 = 1. (63)

Now, the dynamics of this scaled Hamiltonian H̃ in (8) is to
be simulated by the simulating Fermi-Hubbard Hamiltonian
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FIG. 2. Dynamics of the 1D ionic Hubbard model mimicking that of SU (2) lattice gauge theory in one spatial dimension. (a) Initial state:
fully filled odd sites and empty even sites mimicking the strong-coupling vacuum consisting of no particles (ni = 0, no = 0 on even sites) and
no antiparticles (ni = 1, no = 1 on odd sites). Under Hamiltonian evolution, one atom hops from an odd site to a neighboring even site in the
Hubbard model, that mimics creation of a particle antiparticle pair at two neighboring staggered sites of the gauge theory, connected by one
unit of flux to form a gauge singlet string configuration. One further hopping as shown in the figure mimics the dynamics in gauge theory as
elongation of the string and creation of a baryon on one site. In these three states, the total numbers of particles (antiparticles) for the gauge
theory are, respectively, 0, 1, and 2. (b) Ionic Hubbard model dynamics mimicking string breaking dynamics of gauge theory. Starting from a
string of length 3 units, pair production occurs and the initial string breaks into two smaller strings.

given in (38) in the time scale τ̃ as defined in (9), such that

exp(−iH̃ τ̃ ) −→ exp(−iHτ ) (64)

where H is the atomic Hamiltonian given in (38) with the
parameters

V ′ = μ̃0, (65)

V0 = 1

4

(
ñ2

l + 2ñl
)
, (66)

u = 0, (67)

t = −1. (68)

Here, all the parameters are fixed in units of t . The only choice
that we have made in setting the parameters is p′ = 0 in (62).
Gauge theory with a nonzero p′ can be equivalently simulated
by the same atomic system with tuning V ′ to smaller values
μ̃0 × 10−2p′

in an experiment. This will access all mass values
of gauge theory in the quantum simulation protocol.

2. Strong-coupling regime of gauge theory: |u/t| > 1

We consider the scaled Hamiltonian in (11) in the strong-
coupling regime x0 < 1. As discussed earlier, the bulk limit
of the Fermi-Hubbard Hamiltonian in the paramagnetic phase
will correspond to the exact mean-field electric term (19)
and mass term (A19). Although the interaction term is ap-
proximated, it will not make a major difference in spectrum
and/or dynamics as x0 → 0 as it is less dominant compared
to diagonal terms. Likewise, in the weak-coupling regime, we
fix the boundary condition li to be a fixed integer, but of O(1).
We map the gauge theory Hamiltonian to the Fermi-Hubbard
Hamiltonian with parameters

V ′ = 2
1√
x0

m

g
, (69)

V0 = 1

x0

li
4

(li + 2), (70)

u = 1

x0

1

4
(2li + 3), (71)

t = −1. (72)

Here also, all the parameters are fixed in units of t . It is clear
from the above relations that for a fixed value of li, smaller
values of x0 require larger V0/t and u/t for the atomic system.
However, we will have to be careful to remain in the same
paramagnetic phase such that our analysis of compensating
errors in the electric Hamiltonian from the uniform potential
are well compensated by the self-interaction term. For this
purpose, i.e., in order to keep u/t below the critical point
for paramagnetic-ferromagnetic phase transition, one cannot
really expect to simulate x0 → 0 under the present scheme.
However, one can simulate x0 < 1 as well as x0 = 1 be-
sides accurately simulating intermediate-coupling range x0 ≈
10–100 as will be demonstrated in the numerical analysis.

Likewise in the weak-coupling case, the simulating and
simulated dynamics are comparable up to a factor

τatomic = 2a × τgauge, (73)

where a is small but finite in the strong-coupling limit.
In the next section, we propose the precise experimental

setup that is close to already performed experiments for the
ionic Hubbard model following the above-mentioned scheme,
where the strong-coupling regime of lattice gauge theory dy-
namics is mapped to the ionic Hubbard model with u/t > 1,
whereas the weak-coupling regime is mapped to the same with
u/t ≈ 0.

IV. EXPERIMENTAL REALIZATION

The experimental scheme calls for the realization of the 1D
Fermi-Hubbard model in a bipartite lattice. In the recent past,
the ionic Fermi-Hubbard model was experimentally realized
in a honeycomb lattice [61], and its bosonic counterpart was
implemented on a bipartite checkerboard lattice [66]. Also, a

023322-9



RAKA DASGUPTA AND INDRAKSHI RAYCHOWDHURY PHYSICAL REVIEW A 105, 023322 (2022)

1D Fermi-Hubbard model was implemented in an experiment
by Scherg et al. [67]. Both [61] and [67] used a degenerate
gas of fermionic 40K of numbers ≈105 and 104, respectively.
We propose that a combination of these two methods can
successfully yield a 1D Hubbard model with alternating lattice
potentials. The setup, which is very much realizable with
current experimental techniques, is described in Sec. IV A.
The procedures for preparing the initial states and observ-
ing the final dynamics are outlined in Secs. IV B and IV C,
respectively. We discuss the possible sources of errors (that
can affect the accuracy of the results in this experiment) in
Sec. IV D.

A. Proposed setup

The interference pattern of two counterpropagating lasers
is used to create an optical lattice. The lattice depth is pro-
portional to the intensity of the laser beam and is measured in
units of the recoil energy ER.

In the experiment by Messer et al. [61], first a regular
honeycomb lattice was created, and that fixed the hopping
parameter t on each bond. Next a staggered energy offset
of � was independently applied between sites of A and B
sublattices. In our 1D structure, an equivalent would be to
set up the primary lattice with lattice depth VL. This fixes the
hopping parameter t . Then, on top of it, energy offsets V ′ and
−V ′ can be independently applied on the odd sites and even
sites, respectively, so that the lattice depth is (V0 + V ′) for odd
sites, and (V0 − V ′) for even sites.

Just like the hopping t , the on-site interaction u depends on
the lattice depth. However, u can be independently controlled
as well, by means of Feshbach resonance. As for the two
fermionic states, any two hyperfine states of a particular atom
can be employed. In [67], the hyperfine states

| ↑〉 = |F = −9/2; mF = −9/2〉,
| ↓〉 = |F = −9/2; mF = −7/2〉

of ultracold 40K atoms were used. In [61], in addition to the
above, the combination

| ↑〉 = |F = −9/2; mF = −9/2〉,
| ↓〉 = |F = −9/2; mF = −5/2〉

was also employed in order to obtain the desired range of u.
In [61], the ionic Hubbard model was studied on a

honeycomb lattice. In contrast, our model requires the
implementation of the ionic Hubbard model in a simple one-
dimensional geometry. Regarding the dimensionality of the
system, it may be recalled that in the recent past, ultracold-
atom experiments have successfully confined bosonic and
fermionic atoms to one dimension. The basic idea is to tightly
confine the particles in two transverse directions, and make
them weakly confined in the axial direction. Thus, their mo-
tions in the transverse directions are completely frozen. So,
effectively, these are quasi-1D systems.

For example, in our proposed setup, suppose both Vy and
Vz, the potentials in the transverse directions, are kept fixed
at a large value (like, 33ER as in [68], or 42ER as in [69]).
V (x), the lattice depth in the axial direction, is kept in a range
of 5ER–12ER. We note that in Hubbard model experiments,

the potentials are to be deep enough (V � 5ER) so that the
single-band description of the Hubbard model remains valid.
On the other hand, V (x) cannot be as deep as the potentials
in the transverse direction, so as to restrict the dynamics in
one dimension only. The hopping parameter t is a function
of the lattice depth, and can be estimated using the Wannier
functions [70].

In Sec. III A, the lattice depth VL was written as (V1 − V0),
so different combinations of V1 and V0 can result in the same
lattice depth. This offers a tremendous advantage in the exper-
imental pursuit, as the same optical lattice can be assumed to
be split in different pairs of V1 and V0, allowing one to explore
a wide range of V0 values [that, in turn, enables one to access
a wide range of x0 and/or li as per (70)]. It is to be noted that
both V1 and V0 are theoretical parameters in the model that
leads to constant shifts in the energy only, bearing no effect
on the dynamics of the fermions.

Accordingly, we consider two configurations:
(i) V1 = 6ER and V0 = 0.5ER and
(ii) V1 = 6.5ER and V0 = 1ER.
In both the cases, the resultant uniform lattice depth VL is

5.5ER for all the sites. This results in a hopping t = 0.057ER.
The combinations we have mentioned translate to

(i) V0 ≈ 8.75t and (ii)V0 ≈ 17.5t,

respectively. In addition, an offset of V ′ and −V ′ is indepen-
dently applied on the odd and even sites. In our scheme, we
choose V ′ = 1.6t and stick to this value in all our numerical
simulations. The on-site interaction u can be controlled by
applying a Feshbach field.

To simulate the weak-coupling limit, we restrict ourselves
to the weakly interacting atomic limit, u/t << 1, and choose
u = 0.1t . On the other hand, simulation of the strong-coupling
limit calls for the realization of the strongly interacting atomic
limit, u/t � 1, and we choose u ≈ 5.5t . We note that these
V ′/t and u/t values comfortably fall in the parameter regimes
accessed in recent experiments [61,67,71].

B. Initial-state preparation

The initial state has to be prepared in a charge-density-
wave (CDW) configuration where all the odd sites are
occupied by the fermionic particles and the even sites are com-
pletely empty. This can be done using some sort of filtering
sequence in the experiment. For example, in [71,72], this was
achieved by superposing the primary lattice (with wavelength
λ) with an additional long lattice (with wavelength 2λ) in the
following way:

V (x) = −VL cos2(kx) − Ṽ [cos2(kx/2 + φ)] (74)

with k = 2π/λ.
The lattice depths VL and Ṽ and the relative phase φ can

be adjusted independently. Here VL stands for the depth of the
original (and short) lattice, and Ṽ is the depth of the additional
long lattice. This long lattice is utilized during the preparation
of the initial CDW state. Initially, the long lattice is made quite
deep (like 20ER, as in [71]), and the short lattice is ramped up
to that depth at a nonzero relative phase φ to create a tilted
lattice of double wells. Now it is so arranged that the odd sites
host lower-energy wells than the even sites, and it is possible
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to load all atoms in the odd sites only. The tilt offsets are made
sufficiently large so that the particles cannot escape from
the odd sites and tunnel to the even sites. After loading all
the atoms, the longer lattice is switched off, and the short
lattice is ramped down to its desired final value (in our case,
5.5ER). The offset V ′ and −V ′ is added to the odd sites and
even sites, respectively, to create the bipartite structure. Now
tunneling is possible between adjacent sites, and the dynamics
begins.

Moreover, (52) is only valid if N|↓〉=N|↑↓〉 = N/4 as in
(51). Since here the system is initially prepared in a CDW
state containing doublons only, this will not hold true in a
short initial time span, and the interatomic interaction u will
overcompensate the correction term in the electric Hamilto-
nian. Thus, the dynamics from the atomic Hamiltonian will
have a departure from that of the full gauge theory. However,
with time, more and more atoms would hop to the adjacent
sites and the distribution would get more even across the
sites, resulting in N|↓〉 ≈ N|↑↓〉. So, soon enough, the quantum
simulation becomes more accurate, as demonstrated in the
numerical results in Sec. V.

C. Observing the dynamics

The observable can be defined as the population imbalance
P between the even sites and odd sites, defined as

P = Ne − No

Ne + No
. (75)

Here Ne is the total number of atoms in the even sites, and No

is the total number of atoms in the odd sites.
The time evolution of the parameter P is to be studied in

order to visualize the particle number dynamics of gauge the-
ory. A site-resolved technique is thus needed to determine the
number of atoms on even and odd lattice sites separately. In
[71,72], a band-mapping scheme was successfully employed
using the long lattice. Once the desired time evolution in the
primary (short) lattice is over, the long lattice is introduced
again to create the tilted lattice, and tunneling stops. The phase
φ is chosen in such a way that the odd sites constitute the
lower wells in the array of double wells. Now the population
distribution across the odd and even sites gets sealed. Next,
the depth of the long lattice is ramped to a much higher value,
and the atoms in the even sites get transferred to the third
Bloch band of the superlattice. Atoms in the odd sites remain
in the first band. The density profile in the different bands
can be obtained using time-of-flight images and absorption
imaging [71].

D. Possible source of experimental errors

The particle-antiparticle pair creation and string breaking
in gauge theory are mimicked by the ionic Hubbard model
dynamics, and the relevant observable at any instant is P, the
averaged population imbalance between even sites and odd
sites. Thus, individual site-resolved occupancy data are not
required. If the lattice is sufficiently long and if the averaging
is done properly (like, in [67], each data point was averaged
over four measurements), it is possible to obtain a very accu-
rate value of P. The lattice potential and the sublattice offset,
too, can be precisely monitored [61,66].

The only major source of possible experimental errors can
be the imperfection in the initial-state preparation. A CDW
state can certainly be realized where only the odd sites are
occupied, but then those sites can host zero, single, or double
occupancy as in [71]. To ensure that all the odd sites have
doublons, one needs to monitor the number of atoms precisely.
As reported in [61], there is always a systematic uncertainty
of 10% in the preparation. However, as demonstrated in the
next section, the dynamics is very little affected even with this
error margin.

V. SIMULATED DYNAMICS AND OBSERVABLES

In this section, we present numerical analysis of our
proposal. The comparison between the spectrum of the simu-
lating and simulated systems is presented in Sec. V A, and the
corresponding dynamics is presented in Sec. V B. In Sec. V C,
we demonstrate that even if there is an initial error in prepar-
ing the system in a perfect CDW state, the dynamics is not
affected much, and the departure from the expected result
remains well within an acceptable window of tolerance.

A. Spectrum comparison

1. In the weak-coupling regime

We aim to quantum simulate the gauge theory Hamilto-
nian, with the values of dimensionless parameters given by

x0 = 10−10, m/g = 1.6 × 10−10

acting on the LSH Hilbert space characterized by

nl = 5 × 105

at all sites and corresponding to p = 5, p′ = 0 in (60)–(62).
The fermionic (string) configurations remain completely dy-
namical as ni and no can take all possible values at sites
0, 1, 2, . . . , 2N . Following (65)–(67) we obtain the parame-
ters of the atomic Hamiltonian to be fixed at

V0 = 8.75t,V ′ = 1.6t, u = 0.1t . (76)

Note that we have chosen a feasible but small value of the
parameter u. Smaller and smaller values of u will enable us
to mimic the dynamics of gauge theory more accurately as
we take p � 1. We perform exact diagonalization for both the
Hamiltonians with a small number of sites, that is doable on a
PC. Our scheme being completely scalable, the agreement in
spectrum as in Fig. 3 holds true for any size of lattice as per
experimental capabilities.

2. In the strong-coupling regime

We aim to quantum simulate gauge theory Hamiltonian
(11), with the values of dimensionless parameters given by

x0 = 0.69, m/g = 1.6.

This Hamiltonian acts on LSH Hilbert space characterized by
li = 6 as in (13), while ni and no can take all possible values
at sites 0, 1, 2, . . . , 2N . Following (69)–(71), the mimicking
atomic system is defined by parameters

V0 = 17.5t,V ′ = 1.6t, u = 5.47t . (77)
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FIG. 3. Spectrum of the ionic Hubbard model, full SU (2) gauge
theory (KS or LSH) Hamiltonian (without any approximation), and
weak-coupling approximated LSH calculated by exact diagonal-
ization for a six site system and scaled to fit between 0 and 1.
(a) The spectrum in the weak-coupling regime of gauge theory with
parameters as per (76) for different values of p as discussed in
Sec. III C 1. (b) The spectrum obtained for the strong-coupling
analysis, for V0 = 17.5, 8.75, and 0.1, respectively. The spectrum
demonstrates that the intermediate-coupling regime is better acces-
sible by strong-coupling analysis if smaller values of V0 become
experimentally feasible. We propose to quantum simulate the strong-
coupling spectrum within a mean-field approximation and at the
bulk limit, whereas the plots are only for small lattices and hence
show magnified deviation of the mean-field spectrum from that of
the full gauge theory. The approximated LSH is only valid in the
weak-coupling regime and matches with full gauge theory for p � 1.

Like the weak-coupling case, we also perform exact diagonal-
ization for this case to compare and obtain the spectrum as in
Fig. 3. Note that from our analysis we only expect an exact
match of spectra in the N → ∞ limit, and that is beyond the
scope of exact diagonalization. However, in Fig. 4, we demon-
strate that if the lattice size keeps increasing, the agreement
between the simulating spectrum and the original spectrum
gradually improves. Thus, it is expected that in the bulk limit
there would be a perfect agreement. Performing numerical
calculations for a longer lattice is beyond the scope of exact
diagonalization, and thus the present paper. In principle, it
can be carried out using state-of-the-art tensor network tech-
niques, and establish a proper benchmark for the scheme in
the strong-coupling regime. However, the tensor network can
only calculate a particular (low-energy) sector of the theory
with the desired accuracy, and quantum simulation is expected
to outperform the same.

However, even with limited computational resources, we
make the following observations.

(1) It appears from (69)–(71) that, by increasing V0/t in
the atomic system, one would be able to access smaller and
smaller values of the gauge theory parameter x0. However, the
consequence is that, in order to mimic exact strong-coupling
dynamics, u/t has to be increased as well.

(2) With an increasing u/t (even for a fixed value of V0/t),
gaps are introduced in the atomic spectrum as the the atomic
system experiences a quantum phase transition (see Fig. 5)
and enters the Mott insulator phase [73]. Then the system
can no longer mimic dynamics of gauge theory as there is no
such quantum phase transition in the gauge theory spectrum.
Hence, this quantum simulation scheme is not suitable for
x0 → 0.

(3) Instead, if one can arrange the experimental setup to
fix V0/t at a smaller value, the atomic system simulates the
intermediate-coupling regime of the full gauge theory reliably.
We illustrate such an agreement for V0/t = 0.1 (x0 = 120) in
Fig. 3.

B. Simulated dynamics

One important dynamical phenomenon to observe in real-
time dynamics in gauge theory is the dynamics of pair
production and string breaking as illustrated in Fig. 2. We
consider preparing the system in a state in which all even
sites are completely empty (no particle) and all odd sites are
completely filled (no antiparticle). The real-time Hamiltonian
evolution of the atomic system involves atoms hopping from
one site to another, simulating the event of pair creation and
particle number dynamics of gauge theory. Within the LSH
framework, for the no particle–no antiparticle state |�0〉 on
a 1D lattice of N staggered sites, we define the following
quantity to describe particle density:

ρ(τ ) = 1 + 1

N
〈�0|Û†(τ )ÔÛ (τ )|�0〉 (78)

where Ô = ∑
j{(−1) j[n̂i( j) + n̂o( j)]} and U (τgauge) is de-

fined in (10).
The simulated dynamics in the Hubbard model is measured

by the observable P, as defined in (75). Its connection with the
particle number dynamics of gauge theory can be obtained by
looking at the parameter 1 + P. In Fig. 6 we plot the quantities
against a scaled time τ = τatomic = 2aτgauge following (9).

As done in the spectrum analysis, we consider the same
parameter values for calculating pair-production and string
breaking dynamics as well. From the simulated dynamics we
can conclude the following.

(1) The proposed simulation scheme simulates the dy-
namics of weak-coupling gauge theory perfectly and that is
evident even from the numerical analysis using a small sys-
tem. Here the particle density dynamics resulting from (i) full
gauge theory, (ii) the approximated LSH theory, and (iii) the
atomic Hamiltonian all agree very well.

(2) The difference between the actual dynamics due to the
original Hamiltonian and the dynamics due to the approxi-
mated Hamiltonian is quite pronounced in the intermediate-
coupling and strong-coupling regimes. However, by adjusting
the on-site interaction parameter, it was possible to recover
the correction in the electric energy term (50) substantially,
and hence the ionic Hubbard dynamics is now closer to the
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FIG. 4. Spectrum of the simulated Hamiltonian compared with the spectrum of the full gauge theory Hamiltonian. In this comparative
study, the incoming flux for the lattice of size N is taken to be li = N , and the experimental parameters are adjusted accordingly to simulate the
gauge theory with the coupling x0 = 1. The deviation of the simulated eigenvalues ranges from (a) 0–17% for N = 2 to (b) 0–14% for N = 4 to
(c, d) 0–12% for N = 6 and 8. This shows that the simulated dynamics becomes more reliable as the lattice size increases. As explained in the
text, in the bulk limit of the lattice, the simulated Hamiltonian would match the original gauge theory Hamiltonian as the natural consequence
of statistical distribution of the fermions on the lattice. However, classical simulation is not the perfect tool to predict that statistical result (with
at least N 100+) via exact diagonalization of the Hamiltonian as the dimension of the Hilbert space is 22N .

dynamics of the full gauge theory, when compared to the same
with the approximated LSH formulation.

(3) The discrepancy that still exists in the intermediate- and
strong-coupling regimes will surely get reduced if one can
simulate using a long enough lattice, such that in the statistical
limit, one can really recover the correction in electric energy
term (50) in full by choosing the atomic self-interaction ac-
cordingly. Considering that we used a small lattice (six site
system) for our numerical simulation and yet managed to
observe a good agreement, it is extremely likely that in an
actual experiment (or tensor network calculation) involving a
large number of lattice sites, the error will be insignificant.

It is discussed in Sec. IV how one can measure the dy-
namics in an actual experiment. However, the actual time
measured in ms during the experiment is related to the scaled
times as

τexp = h̄τatomic
t

≡ τatomic
1.5716

ms (79)

⇒ ≡ 2aτgauge
1.5716

ms. (80)

Thus, for different values of lattice spacing, the same ex-
periment would simulate real-time dynamics of gauge theory
happening in a different smaller time scale.

C. Effects of possible experimental errors

As discussed in Sec. IV D, the dominant contribution
to the experimental error would come from an imperfection
in the initial-state preparation. To obtain a rough estimate
of the same, we study the simulated dynamics for a six site
lattice. Ideally, all the odd sites should be doubly occupied.
We choose two other configurations: (i) two odd sites doubly
occupied, a singly occupied odd site, and a singly occupied
even site (an error of ≈17%) and (ii) two odd sites doubly
occupied and a doubly occupied even site (an error of ≈33%).
As shown in Fig. 7, the error is large in a very short time span
only (<0.5 in units of the scaled time τ , while the dynamics
was studied in the range 0 to 10 in the same unit). If we
exclude this region, the percentage error in the first case is
well within the margin of 10% for most of the course of
evolution, and its peak value lies at around 20%. In the second
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FIG. 5. A quantum phase transition observed with the ionic Hub-
bard model at a particular value of u/t , beyond which the spectrum
becomes gapped and hence the Hubbard model can no longer mimic
the dynamics of gauge theory. This particular plot is obtained with
the parameters of the Hubbard model given in (77) except varying
u/t . Choosing a larger value of V0/t corresponds to a smaller value of
x0 via (70), but following (71) it will always be in the Mott insulating
phase.

case, the percentage error lies well within the margin of 20%
for most of the course of evolution, and its peak value lies
slightly above 40%. Thus, one may conclude that as long as
the error in the initial-state preparation is within a reasonable
range (like, in [61], the systematic uncertainty is 10%), the
dynamics is not much affected by it.

VI. DISCUSSIONS AND FUTURE DIRECTIONS

This paper presents the very first practically imple-
mentable quantum simulation proposal for simulating SU (2)
lattice gauge theory in (1 + 1) dimensions, that specifically
simulates the spectrum and dynamics of gauge theory in
the weak-coupling regime as well as intermediate-coupling
regime for a large lattice with good accuracy. Experimental
implementation of this particular scheme will demonstrate
why quantum simulators can be a very effective tool to study
different aspects of gauge theories.

The experimental scheme is remarkably simple. The pa-
rameter regimes that we prescribe are very well accessible
in current experiments with ultracold atoms. Moreover, the
fact that it is only the averaged population imbalance between
the odd and even sites that is to be measured (and not the
single site resolved statistics) makes it easier to implement.
The only possible source of experimental error could be that
in the initial-state preparation where the CDW state might not
be a perfect one. We have shown in our simulation that such an
error affects the dynamics in a very short initial time window
only. The atomic dynamics, as observed in a longer time scale,
can very well simulate the gauge theory dynamics: creation of
particle-antiparticle pairs and breaking of strings.

The proposal is completely scalable and accesses different
regimes of gauge theory (with a varying degree of accuracy)
and quantum simulates different symmetry sectors. A suitable
scaling scheme presented in this paper enables one to model
different regimes of LGT with a single experimental setup,

just by tuning the controllable experimental parameters. For
example, the weak- and strong-coupling limits of gauge the-
ory are accessed by taking u/t to 0 and u < uc, respectively, in
the atomic system, where uc is a quantum critical point beyond
which the atomic system enters into a Mott insulating phase as
observed in this particular study with small lattice (see Fig. 5).
The only requirement here is that the system is required to
remain in the same paramagnetic phase throughout the course
of its dynamics, so that in a bulk limit, all the allowed states
are equally probable at half filling.

The scheme we present here has a wider applicability com-
pared to its past counterparts, due to the following reasons.

(a) Any formalism that deals with the purely fermionic
degrees of freedom of gauge theory (involving a complete
gauge fixing) is dimension specific, whereas, in the LSH
framework, the treatment remains valid for all dimensions.
Here the coupling of matter to the gauge field remains the
same as in the 1D lattice for any higher dimension. Hence,
construction of any building block, as done in one dimension,
will remain useful for higher-dimensional models as well.

(b) Replacing gauge fields by fermions as a solution of
Gauss law constraint introduces long-range fermionic interac-
tions in the Hamiltonian. However, in the present paper, with
the mean-field approximation of the loop degrees of freedom
of the gauge theory, the Hamiltonian contains only on-site
interactions for the fermions that characterize the combined
boson-fermion (ends of string) excitations. Inclusion of the
dynamical loop degrees of freedom as in (13), along with
Abelian Gauss law constraint (A14), gives the complete and
most general description of the theory. Then it becomes ex-
actly equivalent to the purely fermionic formulation [6,13] in
one spatial dimension [48].

Future works will address the issue of going beyond mean-
field approximation, as well as going beyond one spatial
dimension. The LSH formalism for gauge theories in higher
dimensions should be equally useful in constructing atomic
quantum simulators for the same. Specifically, within the LSH
framework, the matter gauge coupling remains the same as
in one dimension in any higher dimension, including the fea-
ture of nondynamic loop degrees of freedom at matter sites
[14,56,58]. Hence we expect the present proposal to remain
as a useful building block for higher-dimensional quantum
simulators as well. Work is in progress in these directions and
will be reported elsewhere. The present scheme can also be
generalized for gauge group SU (3) upon generalization of the
LSH formalism for SU (3) gauge theory and that will build a
concrete step towards quantum simulating QCD.
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FIG. 6. Simulated particle density dynamics, corresponding to Fig. 2(a), plotted against a scaled time τ . The parameters are identical to
that used for spectrum analysis in Fig. 3 for the (a) weak-coupling regime and (b) strong-coupling regime. The simulated dynamics is almost
exactly identical to that of the full gauge theory for the weak-coupling limit. The mismatch between full gauge theory dynamics and Hubbard
model dynamics in the strong-coupling regime is expected to get minimized at the bulk limit. The approximated LSH is only valid in the
weak-coupling regime and matches with full gauge theory for p � 1 as demonstrated in spectrum analysis as well. The simulated dynamics is
matching better with the full gauge theory dynamics than that of the approximated Hamiltonian. This is because the tuned self-interaction of
the atomic Hamiltonian takes care of a significant error that exists in the approximated Hamiltonian.

Research Quantum Computing Application Teams program,
under fieldwork Proposal No. ERKJ347.

APPENDIX A: LOOP-STRING-HADRON HAMILTONIAN

LSH formalism of lattice gauge theory is based on the
prepotential framework, where the original canonical con-
jugate variables of the theory, i.e., color electric field and
link operators, are replaced by a set of harmonic oscillator
doublets, defined at each end of a link [58,74–81]. In the
prepotential framework, the SU (2) gauge group is confined
to each lattice site allowing one to have local gauge invariant
operators and states at each site. For pure gauge theory, these
local gauge invariant operators and states can be interpreted
as local snapshots of Wilson loop operators of original gauge
theory. One can now construct local loop Hilbert space by
action of local loop operators on strong-coupling vacuum of
the theory (no flux state) defined locally at each site. At this

point, we must mention that mapping the local loop picture
to the original loop description of gauge theory requires one
extra constraint on each link, that states

NL( j) = NR( j) (A1)

where NL(R) is the occupation number of prepotentials or
Schwinger bosons at the left (right) end of a link connecting
sites j and j + 1. This constraint is actually a consequence of
the constraint E2

L = E2
R mentioned in Sec. II.

Inclusion of staggered fermionic matter fields for SU (2)
gauge theory at each lattice site combines smoothly with the
local loop description obtained in the prepotential framework
as both the prepotential Schwinger bosons and matter fields
transform as fundamental representations of the local SU (2)
at that site. In addition to local gauge invariant loop operators,
one can now combine matter and prepotentials to construct
local string operators, that denote the start of a string from a
particle and/or end of a string at an antiparticle. Matter fields
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FIG. 7. (a) The particle number dynamics of the original theory compared against the simulated dynamics for different values of the
coupling x0. (b) Percentage deviation from the dynamics of the original theory for the perfectly prepared initial state as well as imperfect
initial-state preparation compared. A lattice of six sites is being considered. The initial state of the system is chosen to be the strong-coupling
vacuum, where the alternate sites (odd sites) are fully filled by fermions and other sites (even sites are empty). We consider imperfect initial
states with (i) one fermion at one of its even sites and one odd site half filled that corresponds to almost 17% error in the initial-state preparation
and (ii) one fully filled even site and one fully vacant odd site, representing almost 33% error in the initial-state preparation.

combine into local gauge invariant configurations represent-
ing hadrons likewise in the original formalism. This complete
description is named as the LSH formalism as in [14]. We
are not going into the details of the full LSH formalism here.
Instead, we will focus on the application of LSH formulation
to one spatial dimension only, and describe the appropriate
framework.

Within the LSH framework, the gauge invariant and or-
thonormal LSH basis is characterized by a set of three integers
nl ( j), ni( j), and no( j) that satisfies Gauss’s law constraint:

Ga( j)|nl ( j), ni( j), no( j)〉 = 0, ∀ j, a. (A2)

These three quantum numbers signify the loop, incoming
string, and outgoing string at each site. The allowed values

of these integers are given by

0 � nl ( j) � ∞, (A3)

0 � ni( j) � 1, (A4)

0 � nO( j) � 1. (A5)

Pictorially, the LSH quantum numbers are illustrated in Fig. 8.
It is clear from the range of the quantum numbers that nl is
bosonic excitation, whereas ni and no are fermionic in nature.
However, it is important to note that, unlike the fermionic mat-
ter field in the original theory, the fermionic operators building
the “local string” Hilbert space are SU (2) invariant bilinears
of one bosonic prepotential operator and one fermionic matter
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FIG. 8. Two staggered sites in the LSH formulation on a 1D
spatial lattice. Each site carries three types of operators, namely,
incoming string, outgoing string, and flux. The Hilbert space is
characterized by the corresponding quantum numbers nl , ni, and no,
respectively, for each and every site of the lattice.

field, yielding overall fermionic statistics. Hence, the string
states contain the information of both gauge field and matter
content.

At this point, we define a set of LSH operators consisting
of both diagonal and ladder operators locally at each site as
follows:

n̂l |nl , ni, no〉 = nl |nl , ni, no〉, (A6)

n̂i|nl , ni, no〉 = ni|nl , ni, no〉, (A7)

n̂o|nl , ni, no〉 = no|nl , ni, no〉, (A8)

λ̂±|nl , ni, no〉 = |nl ± 1, ni, no〉, (A9)

χ̂+
i |nl , ni, no〉 = (1 − δni,1)|nl , ni + 1, no〉, (A10)

χ̂−
i |nl , ni, no〉 = (1 − δni,0)|nl , ni − 1, no〉, (A11)

χ̂+
o |nl , ni, no〉 = (1 − δno,1)|nl , ni, no + 1〉, (A12)

χ̂−
o |nl , ni, no〉 = (1 − δno,0)|nl , ni, no − 1〉. (A13)

In the above set of equations, we have not mentioned the
explicit site index as these are considered to be defined at a
particular site.

One major benefit of using the LSH formalism is that one
no longer needs to solve or satisfy the SU (2) Gauss law (7)
at each site as the basis states are SU (2) gauge invariant
by construction. Note that, for non-Abelian gauge theories,
imposing Gauss’s law is a nontrivial task and that gives rise to
a whole range of complications as discussed in [48]. However,
the LSH formalism still carries the constraint (A1) that is nec-
essary to glue SU (2) invariant states residing at neighboring
sites to yield original nonlocal gauge invariant Hilbert space
of the theory. In terms of LSH operators, this constraint (A1)
reads as

n̂l ( j) + n̂o( j)[1 − n̂i( j)]

= n̂l ( j + 1) + n̂i( j + 1)[1 − n̂o( j + 1)]. (A14)

Comparing each side of (A14) to that of (A1) upon acting on
LSH basis states, we get

NL( j) = nl ( j) + no( j)[1 − ni( j)], (A15)

NR( j) = nl ( j + 1) + ni( j + 1)[1 − no( j + 1)] (A16)

where NL( j) and NR( j) count bosonic occupation numbers at
each end of the link connecting site j and j + 1. As mentioned
earlier, the bosonic occupation number at each end of a link
has contribution coming from fermionic excitation ni and no as
well. Pictorially, the left and right side of (A14) and/or (A1)
is represented by the number of thick solid lines at the left and
right end of a link connecting sites j and j + 1 in Fig. 8. As
in [14,48], the definition of a hadronic state in the LSH basis
is given by |nl = 0, ni = 1, no = 1〉 at one particular site.

The Hamiltonian of the theory, exactly equivalent to the
original Hamiltonian (1) in terms of LSH operators, is given
by

H (LSH) = H (LSH)
E + H (LSH)

M + H (LSH)
I (A17)

where H (LSH)
E is the electric energy term, H (LSH)

M is the mass
term, and H (LSH)

I is the matter-gauge interaction term of the
Hamiltonian. Explicitly, in terms of LSH operators defined in
(A6)–(A13), each part of the Hamiltonian is as below:

H (LSH)
E = g2a

2

∑
n

[
n̂l ( j) + n̂o( j)[1 − n̂i( j)]

2

×
(

n̂l ( j) + n̂o( j)[1 − n̂i( j)]

2
+ 1

)]
(A18)

H (LSH)
M = m

∑
n

(−1) j[n̂i( j) + n̂o( j)], (A19)

H (LSH)
I = 1

2a

∑
n

1√
n̂l ( j) + n̂o( j)[1 − n̂i( j)] + 1

×[S++
o ( j)S+−

i ( j + 1) + S−−
o ( j)S−+

i ( j + 1)

+S+−
o ( j)S−−

i ( j + 1) + S−+
o ( j)S++

i ( j + 1)]

× 1√
n̂l ( j + 1) + n̂i( j + 1)[1 − n̂o( j + 1)] + 1

.

(A20)

Here (A20) contains LSH ladder operators in the following
combinations (suppressing the explicit site index):

S++
o = χ̂+

o (λ+)n̂i
√

n̂l + 2 − n̂i, (A21)

S−−
o = χ̂−

o (λ−)n̂i
√

n̂l + 2(1 − n̂i ), (A22)

S+−
o = χ̂+

i (λ−)1−n̂o
√

n̂l + 2n̂o, (A23)

S−+
o = χ̂−

i (λ+)1−n̂o
√

n̂l + 1 + n̂o) (A24)

and

S+−
i = χ̂−

o (λ+)1−n̂i
√

n̂l + 1 + n̂i ), (A25)

S−+
i = χ̂+

o (λ−)1−n̂i
√

n̂l + 2n̂i, (A26)

S−−
i = χ̂−

i (λ−)n̂o
√

n̂l + 2(1 − n̂o), (A27)

S++
i = χ̂+

i (λ+)n̂o
√

n̂l + 2 − n̂o. (A28)

023322-17



RAKA DASGUPTA AND INDRAKSHI RAYCHOWDHURY PHYSICAL REVIEW A 105, 023322 (2022)

The strong-coupling (ga � 1, ma =fixed) vacuum of the LSH
Hamiltonian is given by

nl ( j) = 0 ∀ j,

ni( j) = 1, no( j) = 1 for j odd, (A29)

ni( j) = 0, no( j) = 0 for j even.

It is easy to check that (A29) satisfies Abelian Gauss law
(A14). One should also consider a suitable boundary con-
dition for the one-dimensional spatial lattice as discussed in
detail in [48] as

open boundary condition (OBC),

NR(0) = lOBC
i ;

periodic boundary condition (PBC),

NR(0) = NL(N − 1) ≡ lPBC
i

where NL, NR are defined in (A15) and (A16) for the first (0)
and last (N − 1) site of a N site lattice. li can be any positive
semidefinite integer. Now, one can easily check that, for any
gauge invariant state

∏N−1
j=0 |nl ( j), ni( j), no( j)〉, the bosonic

quantum numbers nl ( j) for all values of j are completely de-
termined by the boundary flux li and constraint (A14) imposed
on each and every link of the lattice starting from one end as

nl ( j) = li +
j−1∑
y=0

[no(y) − ni(y)] − ni( j)[1 − no( j)]. (A30)

For OBC, any physical state in the LSH formalism is com-
pletely determined by (ni, no) quantum numbers at each side.
For PBC, the gauge invariant or LSH Hilbert space is char-
acterized by many copies of the same fermionic (ni, no)
configurations with different winding number of closed loops,
that plays the exact role as the li and fixes the nl ’s throughout
the lattice. We exploit this particular feature in the analog
quantum simulation proposal outlined in the present paper.3

Note that nl being determined does not mean that we describe
a static gauge field theory; rather, truly relevant or physical
gauge degrees of freedom are contained in the (ni, no) excita-
tion of any physical state.

APPENDIX B: FERMI-HUBBARD MODEL AND
TIGHT-BINDING PARAMETERS

Let ψ↑(x) and ψ↓(x) be the field operators corresponding
to the two hyperfine states of the fermionic atom. Now, if the
lattice potentials are sufficiently deep, the field operators can
be expanded in terms of single-particle Wannier functions,
localized to each lattice site:

ψσ (x) =
∑

j

cσ ( j)W (x − x j ), σ =↑,↓, (B1)

where cσ ( j) is the fermionic annihilation operator for spin
index σ and site j. The corresponding number operators are
N jσ = c†

σ ( j)cσ ( j).

3The numerical analysis performed in this paper is for OBC in
gauge theory as simulating the same in an experiment is easier than
that for PBC.

The Hamiltonian can be written as

H = Hhopping + Hint + H0. (B2)

Here Hhopping denotes the hopping of a fermion from one
site to another, Hint represents the interaction when one up-
spin fermion shares the same site with a down-spin fermion,
and H0 is the energy offset, arising out of the single-particle
Hamiltonian.

Let

H0(x) = −h̄2

2m

∂2

∂x2
+ V (x). (B3)

In our construction, V (x) = −VL cos x2. So, effectively,
V (x) = −VL for each site.

1. Hopping

The hopping term, which represents the tunneling between
sites, is given by

Hhopping = −
∑

i j

ti, j[c
†
↑( j)c↑(i) + c†

↓( j)c↓(i)]. (B4)

Tunneling to next-nearest neighbors is usually suppressed
by one order of magnitude, in comparison with the nearest-
neighbor tunneling. So we consider hopping between adjacent
sites only. The tunneling rate from site j to ( j + 1) is given by
the matrix element

t j,( j+1) = −
∫

W (x − x j )H0W (x − x j+1)dx. (B5)

2. On-site interaction term

In the low-energy scattering regime, the atoms usually
interact via s-wave scattering. The corresponding coupling
constant is given by

g0 = 4π h̄2as

m
,

as being the scattering length. The interacting part of the
Hamiltonian (between up-spin and down-spin fermions shar-
ing the same site) is given by

Hint = u
∑

j

N↑( j)N↓( j). (B6)

Here the on-site interaction matrix element is given by

u = g0

∫
|W (x − x j )|4dx. (B7)

3. Energy offset

The energy offset can be expressed as

H0 =
∑

j

ε jN ( j), (B8)

where

ε j =
∫

W (x − x j )H0W (x − x j )dx. (B9)

In our construction, the lattice potential V (x) =
−VL cos kx2, and in Sec. III A we split this potential as

023322-18



COLD-ATOM QUANTUM SIMULATOR FOR STRING AND … PHYSICAL REVIEW A 105, 023322 (2022)

VL = V1 − V0. At this point, we drop the contribution from
the kinetic term and also V1, because these simply add
a constant energy shift throughout the lattice. HV0 , the
contribution from V0, is a constant, too, but we keep this, in
order to make a direct correspondence with the reduced LSH
Hamiltonian:

HV0 =
∑

j

V0N ( j). (B10)

Next, alternating potentials V ′ and −V ′ are added to the
odd and even sites, respectively. Thus the relevant part of the

energy offset becomes

H0 = HV0 + HV ′ (B11)

with

HV ′ = V ′ ∑
j=odd

N ( j) − V ′ ∑
j=even

N ( j). (B12)
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