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Fine structure of the stripe phase in ring-shaped Bose-Einstein condensates with
spin-orbital-angular-momentum coupling
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We report on a theoretical study of a ring-shaped Bose-Einstein condensate with Raman-induced spin-orbital-
angular-momentum coupling. We analyze the structure of the ground state of the system depending on different
physical parameters and reveal a peculiar fine structure within the stripe phase on the phase diagram. We
demonstrate the existence of the predicted stripe subphases within a wide range of physical parameters, and
their traceability through physical observables, and compare the results with several commonly used variational
approximations. We also show that predicted subphases of the stripe phase can be observed within experimentally
realizable conditions.
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I. INTRODUCTION

Realization of synthetic spin-orbit coupling (SOC) for
cold atoms has enabled studies of many exotic quantum
phenomena in a highly controllable environment of atomic
Bose-Einstein condensates (BECs) [1–3]. A peculiar feature
of spin-orbit-coupled systems is their energy-momentum dis-
persion, which contains two minima. The interplay between
collisional interactions and SOC then leads to a formation
of two different phases: the single-momentum phase, when
atoms occupy one of the two minima, and the stripe phase,
when both minima are occupied. In the latter case, inter-
ference of the two momentum states leads to characteristic
spatially periodic density modulations, and thus the name
“stripe phase.” Due to a broken translational symmetry and an
emergent long-range order, this phase is also often associated
with the supersolidity phenomenon [4,5].

The pioneering realizations of synthetic SOC in bosonic
[6] and fermionic [7] quantum gases were based on a two-
photon Raman coupling between atomic hyperfine states. If
the Raman transition is accompanied by a change in the
center-of-mass momentum of the atom, the pseudospin and
momentum degrees of freedom become coupled in the con-
densate. We will refer to such coupling as the linear SOC.
Subsequently a number of other techniques have been de-
veloped to achieve similar effects [8,9]. However, flexibility
of the Raman coupling scheme together with a wide va-
riety of accessible light fields have allowed researchers to
propose and generate many different types of SOC in cold-
atom setups [10–12]. One specific type of Raman-induced
SOC relevant for the present work is the spin-orbital-angular-
momentum coupling (SOAMC), which is achieved when
Raman laser beams carry a nonzero orbital angular momen-
tum, e.g., Laguerre-Gaussian (LG) beams [13–19].

Interestingly, most of the previous studies focus on the
SOAM coupling in harmonically trapped condensates. In this

case, the phase singularity of the LG Raman beam is located
inside the condensate, which makes the system considerably
different from the one with linear SOC. Most notably, such a
singularity may lead to a formation of various vortex states in
the ground state [20–22].

In the present work, we investigate ground-state phases
of a toroidal SOAM-coupled atomic condensate. If the trap
potential has a toroidal shape, then the phase singularity is
excluded from the condensate region. This leads to the ab-
sence of vortices in the ground state and makes analogies
with linear SOC more straightforward [17]. Using an accurate
numerical minimization of the mean-field energy as well as
several simplified variational approximations, we reveal and
analyze a peculiar internal structure of the stripe phase. The
predicted subphases produce distinctive density distributions
of the ground state and can be detected through certain physi-
cal observables, such as the average angular momentum of the
system.

The paper is organized as follows. In Sec. II, we intro-
duce our model physical system and several commonly used
approximations, which are necessary to reduce the Hamilto-
nian to a convenient one-dimensional form. In Sec. III, we
analyze the spectrum of the single-particle Hamiltonian and
establish the phase diagram of the noninteracting system.
In Sec. IV, we present several variational models extending
on the single-particle solutions to account for the effects
of interactions. We derive a number of analytical relations
to estimate the region in parameter space, where the stripe
phase may exist. In Sec. V, we discuss the phase diagram
of the interacting system and structure of the ground state
within different phases. We reveal and analyze the internal
fine structure of the stripe phase and highlight the appar-
ent limitations of the variational approximations. In Sec. VI,
we show example solutions for a realistic three-dimensional
system and confirm that previously identified features of
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the stripe phase can be observed in a realistic scenario. Fi-
nally, Sec. VII contains a short summary and conclusions of
the work.

II. MODEL EQUATIONS

We consider a zero-temperature atomic BEC in a toroidal
trap. Spin-orbit coupling in the condensate is achieved by
applying a continuous coherent Raman coupling between two
different hyperfine substates from the ground-state manifold
[6]. In this case, we can effectively use spin-1/2 algebra and
characterize the condensate by a (pseudo)spinor field,

� =
[
ψa(r)
ψb(r)

]
. (1)

The single-particle Hamiltonian is then represented as a 2 × 2
matrix,

H0 = h̄2∇2

2M
I2 + V (r)I2 + Hc, (2)

consisting of (spin-independent) kinetic energy and trap po-
tential, as well as the spin-coupling term Hc. In cylindrical
coordinates r = (r, ϕ, z), the toroidal trap can be approxi-
mated by harmonic potentials in the radial and longitudinal
directions,

V (r) = M

2

[
ω2

r (r − r0)2 + ω2
z z2

]
, (3)

where ωz and ωr are longitudinal and radial trap frequencies,
respectively. The Raman coupling term has the following form
within the rotating wave approximation:

Hc = h̄

2

[ −δ̃ �̃ f (r)e−2im0ϕ

�̃ f (r)e2im0ϕ δ̃

]
. (4)

Such form of the coupling Hamiltonian arises when the
Raman transition is induced by two copropagating Laguerre-
Gaussian (LG) beams with orbital angular momenta m0 and
−m0, and with their beam axes aligned along the z axis
[14,17]. In this case, the Raman absorption and stimulated
emission sequence transfers 2m0 angular momentum quanta
to the condensate. Previous experiments with SOAM coupling
in BEC were conducted mostly with m0 = 1. However, it is
also possible to generate and manipulate LG laser modes with
much higher OAM [23,24]. Throughout the present work, we
use the value m0 = 10, which is large enough to see a more
general picture, valid for any OAM transfer implemented
within the Raman setup.

Other quantities that enter in the coupling Hamiltonian (4)
are two-photon frequency detuning δ̃ and the Raman coupling
with the amplitude �̃ and the radial distribution f (r) reflecting
the intensity profile of the LG laser beam. If the BEC ring is
thin and its radius r0 coincides with the intensity maximum
of the Raman coupling, then the specific shape of f (r) is of
minor importance [17,25].

In order to make the system accessible for analytical
investigation, we can use several commonly applied transfor-
mations and approximations. First, we consider the parametric
regime when characteristic energy scales for atoms’ move-
ment in r and z dimensions are much higher than those of the

Raman coupling, i.e., ωr, ωz � �̃, δ̃. This means that move-
ment in the r and z directions can be considered frozen and
these dimensions can be factorized in the wave function. We
also introduce a unitary transformation of the wave function
in the angular dimension, such that

ψa(r) → ψa(ϕ)χ (r, z)e−im0ϕ,

ψb(r) → ψb(ϕ)χ (r, z)eim0ϕ,
(5)

with normalization conditions∫
drdz|χ (r, z)|2 = 1,

∫
drdz f (r)|χ (r, z)|2 = 1. (6)

The above transformation removes explicit dependence of the
Hamiltonian on the angular coordinate ϕ and allows one to
integrate out the r and z dimensions, leaving us with the
following one-dimensional Hamiltonian:

H̃ϕ = h̄2

2Mr2
0

(i∂ϕ + m0σz )2 + h̄�̃

2
σx − h̄δ̃

2
σz, (7)

where σz and σx are the standard 2 × 2 Pauli matrices. The
Hamiltonian can be further rewritten in the dimensionless
form using the energy unit ε = h̄2/(Mr2

0 ), which is a charac-
teristic energy scale of rotation in the system [26]. We finally
get the following dimensionless Hamiltonian:

Hϕ = (Lz − m0σz )2

2
+ �

2
σx − δ

2
σz, (8)

where � = h̄�̃/ε, δ = h̄δ̃/ε, and Lz = −i∂ϕ are the dimen-
sionless Raman coupling strength, detuning, and angular mo-
mentum operator, respectively. A single-particle Hamiltonian
of this general form is commonly used to study spin-orbital
coupling in two-component spinor BECs [6,17,27].

The ground state of a weakly interacting spinor conden-
sate is defined through a minimization of the Gross-Pitaevskii
energy functional,

E =
∫ 2π

0
dϕ

[
(ψ∗

a ψ∗
b )Hϕ

(
ψa

ψb

)
+ gaa

2
|ψa|4 + gbb

2
|ψb|4

+ gab|ψa|2|ψb|2
]
, (9)

where gi j are (one-dimensional) nonlinear interaction con-
stants between atoms in states i and j, also expressed in
units of ε. We assume here for simplicity that interactions
are spin symmetric (gaa = gbb = g) and set the normalization
condition as ∫ 2π

0
dϕ(|ψa|2 + |ψb|2) = 1,

so that g and gab are proportional to the total number of atoms
in the condensate. Additionally, we limit the present study to
the situations when interactions are repulsive and two compo-
nents of the condensate are fully miscible, i.e., g > gab > 0.

Before we continue to analyze the spectrum and eigen-
states of the Hamiltonian (8), it is worth briefly discussing
its symmetry properties. The most important is the rotational
symmetry, stemming from commutation of the Hamiltonian
(8) with the angular momentum operator Lz. This symmetry
plays the same role here as the translational symmetry in
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FIG. 1. Single-particle energy spectrum defined by Eq. (11) with
m0 = 10. Left panel corresponds to δ = 0 and various values of �.
Right panel corresponds to � = 100 and various values of δ. Lines
are guides for the eye marking the lower (solid lines) and upper
(dotted lines) branches of the spectrum.

the systems with linear SOC. Spontaneous breaking of ro-
tational symmetry leads to the formation of a stripe phase,
which is one of the most stunning features of the spin-orbit-
coupled systems. One crucial difference between linear SOC
and SOAMC, however, arises from the periodic boundary
conditions producing a quantization of (angular) momentum,
which is absent in systems with linear SOC. As we will see
in the next sections, this difference leads to a considerably
richer phase diagram of the SOAM-coupled ring system in
comparison to a thoroughly studied uniform BEC with linear-
momentum SOC.

Another important symmetry of the Hamiltonian (8),
which exists only with δ = 0, is a Z2 symmetry often asso-
ciated with the time reversal. The corresponding symmetry
transformation combines the complex conjugation of the wave
function and spin inversion:

T
[
ψa

ψb

]
=

[
ψ∗

b
ψ∗

a

]
. (10)

Time-reversal symmetry also can be spontaneously broken in
the ground state, leading to the formation of polarized phases
[22]. Any nonzero detuning δ leads to the absence of such
symmetry in the Hamiltonian. Still, the symmetry transfor-
mation (10) plays an important role for the eigenstates of the
system, as will be seen in the next section.

III. NONINTERACTING SYSTEM

As a result of the rotational symmetry of the Hamiltonian
(8), its eigenstates can be characterized by a well-defined
angular-momentum projection. The corresponding energy
spectrum can then be written in terms of the angular quantum
number m as follows:

E±(m) = 1
2

[
m2

0 + m2 ±
√

�2 + (2m0m + δ)2
]
. (11)

The energy spectrum consists of two branches (see Fig. 1).
The lower branch E− may contain two minima. Depending on
� and δ, these minima may be located at different values of

FIG. 2. Single-particle “phase diagram” for m0 = 10. Blue solid
lines and numbers between −10 and 10 show the regions where the
corresponding value of m represents the ground state of the system.
Red dotted lines show the same for the second minimum. Black
dashed line shows the region where two minima exist in the energy
spectrum and is defined by Eq. (15).

m within the range [−m0, m0], and either one or both of them
correspond to the ground state of the system. Understanding
which value of m represents the ground state will be the main
goal of the present section.

If m was a continuous variable, we would find the ground
state from the extremum condition ∂E−/∂m = 0. This con-
dition, when solved with respect to �, yields the following
expression:

� =
(

2m0 + δ

m

)√
m2

0 − m2. (12)

However, as m is a discrete quantum number, we have to
use a different approach. We can find regions in (�, δ) space
where a specific value m corresponds to the ground state by
solving the equation E−(m) = E−(m + 1). This equation can
be solved for � analytically, providing a critical coupling,
where the ground states switches from m to m + 1:

�m =
√[(

2m0 + δ

m + 1/2

)2

− 1

][
m2

0 −
(

m + 1

2

)2]
.

(13)
This expression allows us to define the regions in (�, δ) space
where angular quantum number m represents the ground state,
effectively providing a single-particle “phase diagram” of the
system, which is shown in Fig. 2. A similar expression can be
found in Ref. [17]. Interestingly, if we consider (2m0)2 � 1,
then Eq. (13) simplifies to

�m ≈
(

2m0 + δ

m + 1/2

)√
m2

0 −
(

m + 1

2

)2

, (14)

which is equivalent to Eq. (12) evaluated at the half-integer
value m + 1/2. Such equivalence between the continuous and

023320-3



BIDASYUK, KOVTUNENKO, AND PRIKHODKO PHYSICAL REVIEW A 105, 023320 (2022)

discrete extremum conditions will be especially useful in the
next section for the analysis of the interacting system.

If the energy E−(m) contains two minima, then the ex-
tremum conditions derived above will be satisfied not only
for the ground state, but also for the second energy minimum
and the maximum in between. Therefore, we can also find
regions in parameter space where a certain quantum number m
corresponds to a metastable excited state as well as the region
where two energy minima exist (see Fig. 2). This region,
where the energy spectrum has two minima, is localized at
small values of � and δ and bounded by the astroid curve

�2/3 + |δ|2/3 = (
2m2

0

)2/3
. (15)

It will be useful for the discussions in the next section to
also introduce the eigenstates corresponding to the energy
spectrum (11). These normalized eigenstates read

�m =
[
ψa(ϕ)
ψb(ϕ)

]
= 1√

2π

[
cos(θ/2)

− sin(θ/2)

]
eimϕ, (16)

with

θ = arctan

(
�

2m0m + δ

)
.

Eigenstates in such a form describe both branches of the
energy spectrum. The values 0 < θ < π correspond to the
lower-energy branch E−, while π < θ < 2π corresponds to
E+. Eigenstates with the opposite angular quantum numbers
m and −m are related through a time-reversal transformation
(10),

�−m = T �m = 1√
2π

[− sin(θ/2)
cos(θ/2)

]
e−imϕ. (17)

If δ = 0, then the states �m and �−m have the same energy
due to a time-reversal symmetry of the Hamiltonian.

On a final note, the energy spectrum (11) is symmetric with
respect to �, and also symmetric with respect to δ with a
replacement m → −m. We can therefore restrict all further
analysis to � > 0 and δ > 0 without a loss of generality.

IV. VARIATIONAL TREATMENT OF THE
INTERACTING SYSTEM

We now extend the above one-dimensional analysis to the
case of an interacting system. In the presence of interac-
tions, minimization of the energy functional (9) cannot be
performed analytically. Nevertheless, some analytical treat-
ment is possible within the variational approach. But first,
for the convenience of further analysis, we introduce, instead
of nonlinear parameters g and gab, the new parameters G1 =
(g + gab)/8π and G2 = (g − gab)/8π . The energy functional
(9) is then rewritten in an equivalent form,

E =
∫ 2π

0
dϕ

[
(ψ∗

a ψ∗
b )Hϕ

(
ψa

ψb

)
+ 2πG1(|ψa|2 + |ψb|2)2

+ 2πG2(|ψa|2 − |ψb|2)2

]
. (18)

It is worth mentioning here that for the most experimental
realizations of spin-orbit-coupled BECs with alkali atoms,

the nonlinear interaction coefficients satisfy the inequality
0 < G2 � G1 [28].

A. Single-mode Ansatz

The simplest, yet quite instructive approach is to take a sin-
gle noninteracting solution �m from Eq. (16) as the variational
trial function and consider m and θ as variational parameters.
After inserting (16) into the energy functional (18), we get

E (m, θ ) = m2
0 + m2

2
−

(
m0m + δ

2

)
cos θ

− �

2
sin θ + G1 + G2 cos2 θ. (19)

This expression can be minimized analytically with respect
to m and θ only if m is considered as a continuous variable.
We therefore follow the analogy with the noninteracting case
and express the critical coupling �m for the transition between
m and m + 1 ground states by inserting m + 1/2 into a solu-
tion of the system of equations ∂E/∂m = 0 and ∂E/∂θ = 0.
We obtain the following expression, which is very similar to
Eq. (14):

�m =
[

2m0 + δ

m + 1/2
− 4G2

m0

]√
m2

0 −
(

m + 1

2

)2

. (20)

We see that within the single-mode Ansatz, interactions lead
only to shifts of boundaries on the single-particle phase dia-
gram. Qualitatively, the picture remains the same as in Fig. 2.
The validity of the above expression will be evaluated numer-
ically in the next section. It is important to note that Eq. (20)
does not depend on G1 and, in the case of spin-independent
collisional interactions, i.e., g = gab and, consequently, G2 =
0, it becomes fully identical to the result of the noninteracting
system (14).

B. Two-mode Ansatz

As already mentioned above, the stripe phase is associated
with the simultaneous occupation of two minima of the energy
spectrum. Therefore, the most commonly used variational
Ansatz that is able to describe the stripe phase is based on
a linear combination of two wave functions with opposite
angular momenta m and −m (see, e.g., [17–19,27]),

� = C+�m + C−�−m. (21)

The functions �m and �−m are defined by Eq. (16) and related
through a time-reversal transformation (17). The coefficients
C+ and C− are constrained by a normalization condition
|C+|2 + |C−|2 = 1. Consequently, we have a variational prob-
lem with three independent variational parameters: m, θ , and
β = |C+|2 − |C−|2. Without a loss of generality, we may con-
sider |C+| � |C−| and restrict β within the range [0,1]. After
inserting (21) into (18), we get the following expression of
energy as a function of variational parameters:

E (m, θ, β ) = m2
0 + m2

2
−

(
m0m + βδ

2

)
cos θ

− �

2
sin θ + G1 + G1

1 − β2

2
sin2 θ

+ G2β
2 cos2 θ. (22)
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Many other useful physical quantities can also be readily ex-
pressed in terms of our variational parameters. These include
spin polarizations,

〈σz〉 = β cos θ, 〈σx〉 = − sin θ, (23)

expectation value of angular momentum,

〈Lz〉 = mβ, (24)

and its standard deviation,

�Lz =
√

〈L2
z 〉 − 〈Lz〉2 = m

√
1 − β2, (25)

as well as the particle density distribution,

|�(ϕ)|2 = |ψa|2 + |ψb|2

= 1

2π
[1 +

√
1 − β2 sin θ cos(2mϕ)]. (26)

The variational parameter β describes the degree of mix-
ing between the two angular-momentum modes. With β =
1, we get a state with well-defined angular momentum and
recover the above single-mode result. It corresponds to the
single-momentum (SM) phase of the system. With β < 1, two
angular momentum components are populated. Such states
contain 2m oscillations in the particle density and represent
the stripe phase of the system.

In general, the energy functional (22) can be minimized
only numerically. There are, however, several important par-
ticular cases that can be studied analytically in order to
estimate the region in (�, δ) space where the stripe phase may
exist.

First, Eq. (22) can be relatively easily analyzed in the limit
� → 0. In this case, the energy minimum is achieved with

m = m0, θ = 0, β = δ

4G2
, (27)

if δ < δc = 4G2. This region corresponds to the stripe phase.
If δ > δc, then the energy is minimized by

m = m0, θ = 0, β = 1, (28)

representing the SM phase with the momentum m0.
Another important limit case is zero detuning δ = 0. With

δ = 0, the energy (22) becomes a linear function of β2. There-
fore, the energy minimum with respect to β can be achieved
only at one of the limit values. The value β = 1 represents the
SM phase, while β = 0 corresponds to the stripe phase. The
boundary between the two phases can be found by separately
minimizing E (m, θ, 0) and E (m, θ, 1) and finding the cross-
ing between the two. Minimization of the single-momentum
energy E (m, θ, 1) was already discussed above. Minimization
of the stripe-phase energy E (m, θ, 0) is more complicated
since in this case application of the continuous extremum
condition on m is not justified. Relatively simple solutions
are possible to obtain in a strongly interacting regime, when
G1 � �. In this case, the energy minimum is achieved with
the following values of variational parameters:

m = m0, sin θ ≈ �

2
(
G1 + m2

0

) , β = 0. (29)

For the transition between the stripe phase and the SM phase,
there are two possible distinct cases. If

G2 > 1
2

[√
G1

(
m2

0 + G1
) − G1

]
, (30)

then the transition is observed at the critical coupling strength,

�c = 2
[
m2

0 + G1 −
√

G1
(
m2

0 + G1
)]

. (31)

Below this critical coupling (� < �c), the energy minimum
corresponds to the stripe phase and, if � > �c, the energy
is minimized with m = 0 and β = 1 corresponding to a SM
phase with zero angular momentum.

If the condition (30) is not satisfied, then the transition
occurs to the state with nonzero angular momentum. In this
case, analogously to the above single-mode discussion, the
SM energy E (m, θ, 1) needs to be minimized approximating
m as a continuous variable. The resulting critical coupling
reads

�c = 2

√
2G2

(
m2

0 + G1
)(

m2
0 − 2G2

)
G1 + 2G2

. (32)

Equations (30)–(32) allow us to estimate the range of Raman
couplings � where the stripe phase may exist. These results
are consistent with previous findings for systems with linear
SOC [27].

C. Multimode Ansatz

In order to develop a more accurate representation for
possible ground states, which would generalize the above
two-mode Ansatz, we start with writing the wave function as
a following superposition of angular modes:

� =
∞∑

n=−∞

(
An

Bn

)
ei(m−nk)ϕ, (33)

with k > m � 0, so that m represents the lowest non-negative
angular-momentum component and m − k is the lowest nega-
tive one. The idea behind this representation is that two central
components, n = 0 and n = 1, with angular momenta m and
m − k represent the simultaneous population of two minima
in the energy spectrum. All other higher-order components
appear due to nonlinear mixing caused by interactions. Simi-
lar representations were previously used to describe the stripe
phase in a system with linear Raman-induced SOC [29] and
SOAMC [19].

Importantly, the infinite sum (33) is still an exact repre-
sentation of both the stripe and SM states of the system. In
the latter case, the sum contains only one pair of nonzero
coefficients A0 and B0. To use the representation (33) as a
variational trial function, the sum must be truncated to a finite
number of terms. Truncating the sum to only two central com-
ponents n = 0, 1 can be considered as a generalization of the
two-wave Ansatz (21). The variational problem then contains,
in total, five independent variational parameters. Those are m,
k, and three out of the four coefficients A0, B0, A1, and B1,
which are constrained by the normalization condition.

In order to see the role of higher-order angular modes for
the structure of the stripe phase, we will also use four central
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components of Eq. (33) as a trial function, such that

� =
(

A−1

B−1

)
ei(m+k)ϕ +

(
A0

B0

)
eimϕ

+
(

A1

B1

)
ei(m−k)ϕ +

(
A2

B2

)
ei(m−2k)ϕ. (34)

The coefficients An and Bn and characteristic wave numbers
m and k are considered as variational parameters. Accounting
for the normalization condition, we have then, in total, nine
independent variational parameters to be optimized. A similar
variational approximation was previously used in Ref. [19]
showing a considerable improvement over a two-mode Ansatz
for the determination of a stripe contrast.

V. PHASE DIAGRAM

We now use the variational Ansätze described above as
well as the full numerical minimization of the energy func-
tional (18) to build and analyze a phase diagram of the system.
We have, in total, four external parameters that can be used
to drive the phase transitions. Those are Raman coupling
strength �, detuning δ, and nonlinear interaction coefficients
G1 and G2. Phase diagrams can be built by fixing two of these
parameters and tracing the ground state of the system through
a range of values for the other two.

Figure 3 shows the calculated phase diagram in the (�, δ)
plane for fixed values of G1 = 500 and G2 = 50. The phase
diagram consists of two large regions representing two phases
of the system. The stripe phase is observed in the region of
small values of � and δ and the single-momentum (SM) phase
covers the rest of the parameter space.

Both phases exhibit certain internal structure. Inside the
SM phase, we observe regions of different well-defined angu-
lar momentum. Boundaries of these regions are similar to the
single-particle phase diagram and can be very accurately ap-
proximated by Eq. (20). The observed internal structure of the
stripe phase is much more peculiar since it does not directly
follow from any of the above analytical predictions and was
not observed in previous studies. The stripe phase consists of
a number of subphases, which we label as Sk . The index k,
introduced here to distinguish these subphases, represents the
number of periodic density modulations (stripes) observed in
the particle density of the ground state. This number is always
an integer due to the periodicity of the wave function. In the
region of small δ and close to the transition to the SM phase,
we observe an increasing number of stripe subphases, which
become difficult to resolve numerically.

Examples of ground states representing two different stripe
subphases are shown in Figs. 4 and 5. The density distribu-
tions show a clear periodic structure with k periods, though
it is clearly different from the cosinelike shape predicted by
Eq. (26). Similar structures were recently predicted theoreti-
cally for ultracold Fermi gases with SOAM coupling [30].

In order to find the mode composition of the ground states
and relate it to Eq. (33), we also show in Figs. 4 and 5
the power spectra, which can be defined for a spinor state
as |�̃(m)|2 = |ψ̃a(m)|2 + |ψ̃b(m)|2, with ψ̃a(m) and ψ̃b(m)
being Fourier transforms of the corresponding wave functions.
By calculating such power spectra for different subphases, we

FIG. 3. Phase diagram of SOAM-coupled ring system with m0 =
10, G1 = 500, and G2 = 50 calculated with the (a) full numerical
minimization, (b) two-mode variational Ansatz, and (c) four-mode
Ansatz. Thick black line shows the boundary between the stripe
phase and the single-momentum phase. Dashed black lines show
boundaries between ground states with different well-defined angular
momentum [marked also with numbers on (b)]. Blue (gray) solid
lines on (a) and (c) mark boundaries between different types of stripe
states. Thin red (gray) lines on (b) represent the result of Eq. (20).

FIG. 4. Numerically calculated particle density (top panel) and
power spectrum (bottom panel) of the ground state at � = 60, δ =
0. The state corresponds to the subphase S20, as marked in Fig. 3,
and contains 20 density modulations. Four central peaks in |�̃|2 are
located at m = {±10,±30}. Note the logarithmic scale of the vertical
axis on the lower panel.
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FIG. 5. Same as Fig. 4, but for � = 118, δ = 40 representing
the subphase S13. Four central peaks in |�̃|2 are located at m =
{7,−6, 20, −19}.

confirm that they always follow Eq. (33), with k having the
same meaning as in the label of our subphases, and m = k/2
for even-k states, and m = (k + 1)/2 for odd-k states. One
may notice from Fig. 3 that with zero detuning, we observe
only even-k states, while odd-k states appear only with finite
δ. This is quite natural since the superposition (33) can fulfill
the time-reversal symmetry only with even values of k and
with m = k/2.

In Figs. 3(b) and 3(c), we also show the phase diagrams
calculated within the variational approximations described in
the previous section. We see that the two-mode variational
Ansatz provides the phase diagram with only one stripe phase
S20 and fails to describe any of the subphases observed in
the full calculation. This effectively means that if we consider
the variational function as a sum of two angular modes, then
these two modes are always identified with m = ±m0 [17].
We should emphasize that the parameter space of the two-
mode Ansatz is not restricted to m = m0. Still, other values
did not appear within the stripe phase during energy mini-
mization.

The four-mode variational Ansatz shows qualitatively
some of the fine structure of the stripe phase. However, it
still deviates from the correct result, especially for low-k sub-
phases. Importantly, the difference in the results obtained with
the two-mode and the four-mode variational approximations
clearly shows that the fine structure of the stripe phase is the
result of admixing of higher-order angular-momentum modes
in the wave function.

All the phases and phase transitions, including the internal
structure of the SM and stripe phases, can be identified from
the behavior of physical observables, such as the previously
introduced expectation value of angular momentum 〈Lz〉 and
its standard deviation �Lz. In Fig. 6, we show these quantities
calculated within the same parametric region as Fig. 3. The
well-defined angular momentum in the SM phase produces
a characteristic staircaselike pattern in 〈Lz〉 with zero values
of �Lz. Within the stripe phase, we observe mostly linear
growth of the angular momentum with the detuning δ. In
the limit of small Raman coupling �, this behavior can be
deduced from Eqs. (24) and (27), giving the expression 〈Lz〉 =
m0δ/4G2, which correlates nicely with our numerical results.

FIG. 6. Expectation value of the angular momentum 〈Lz〉 and its
standard deviation �Lz (shown with color) as functions of Raman
coupling � and detuning δ. All parameters are the same as in Fig. 3.

Interestingly, while the angular momentum is not a well-
defined quantity in the stripe phase, it still shows a discontinu-
ous behavior, indicating first-order phase transitions between
the stripe subphases Sk .

Next, we analyze the dependencies of the phase bound-
aries on the nonlinear parameters G1 and G2. To this end,
Fig. 7 shows phase diagrams calculated within the (�, G2)
and (�, G1) planes. We restrict these phase diagrams to the
region G1 � G2. Comparing the obtained results with the
two-mode variational Ansatz, we see that the phase boundary
of the stripe phase can be only qualitatively reproduced by
Eqs. (30)–(32). The quantitative agreement is, however, rather
poor. Throughout the whole parametric range shown in the
figure, the stripe phase exists in a considerably wider region
than predicted by the two-mode variational approximation.

The most important observation from Fig. 7 is that different
subphases Sk persist within the stripe phase through a wide
range of parameters G1 and G2. One may also notice that
the boundaries of different stripe subphases Sk are completely
independent of G2. This behavior is understandable since with
zero detuning δ = 0 the stripe states possess a time-reversal
symmetry, implying the relation between the wave-function
components |ψa| = |ψb| and, consequently, the energy func-
tional (18) becomes independent on G2. A somewhat more
surprising observation is that the boundaries of the stripe
subphases also become almost independent of G1 in the region
of large values of this interaction parameter. It is therefore
expected that the internal fine structure of the stripe phase
is quite robust with respect to the nonlinear coupling param-
eters and should be manifested in experimentally accessible
scenarios.

VI. APPLICATION TO A REALISTIC RING SYSTEM

So far, we have analyzed the internal structure of the stripe
phase and have shown that this structure persists within a wide
range of parameters of the system. In this section, we test
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FIG. 7. Top panel shows the phase diagram on the (�, G1) plane
with other parameters fixed as δ = 0 and G2 = 20. Lower panel
shows the phase diagram on the (�, G2) plane with δ = 0 and G1 =
1000. On both panels, thick black line shows the boundary between
the stripe phase and the single-momentum (SM) phase, blue (gray)
solid lines represent boundaries of different stripe states Sk (only
first two are labeled), and dashed black line shows the analytical
prediction of the two-mode Ansatz [Eqs. (30)–(32)]. Red (gray)
dashed lines on the lower panel correspond to transitions between
different single-momentum states.

these predictions for a realistic system with experimentally
realizable parameters. As an example, we consider a BEC
of 23Na atoms in two hyperfine substates |F = 1, mF = ±1〉
from the ground-state manifold. The total number of atoms in
the condensate is N = 5 × 105 and the ring trap is defined by
the potential (3) with ωr = 2π × 400 Hz, ωz = 2π × 542 Hz,
and r0 = 22 μm, which is close to the existing experiments
with sodium condensates [31]. We now minimize a full three-
dimensional Gross-Pitaevskii energy functional,

E =
∫

dr
[

(ψ∗
a ψ∗

b )H0

(
ψa

ψb

)
+ g(3D)

2
|ψa|4

+g(3D)

2
|ψb|4 + g(3D)

ab |ψa|2|ψb|2
]
,

(35)

with the single-particle Hamiltonian from Eq. (2) and the
nonlinear interaction constants defined as

g(3D) = 4Nπ h̄2

M
a, g(3D)

ab = 4Nπ h̄2

M
aab,

where M is the atom mass, and a = 54.54aB and aab =
50.78aB are s-wave scattering lengths between the same and
different spin states of 23Na, with aB being the Bohr radius
[32,33]. The Raman coupling is considered here with its radial
distribution f (r), which is of a Laguerre-Gaussian shape with

FIG. 8. Results of the ground-state calculations for the example
three-dimensional system with δ̃ = 0 and (a),(d) �̃ = 2π × 54 Hz,
(b),(e) �̃ = 2π × 93 Hz, and (c),(f) �̃ = 2π × 112 Hz. (a)–(c) Two-
dimensional column density (in arb. units); (d)–(f) one-dimensional
angular density (dimensionless). (d)–(f) Blue (gray) solid lines are
obtained from three-dimensional ground states by integrating out the
longitudinal and radial dimensions; black dashed lines are the results
of one-dimensional model.

an intensity maximum at r0, so that

f (r) = A(r/r0)2m0 e−m0(r/r0 )2
,

where A is a normalization coefficient, defined according to
Eq. (6).

The above physical parameters correspond to the reduced
one-dimensional model described in Sec. II, with the energy
scale ε = 2π/h̄ × 0.91 Hz and the dimensionless nonlin-
ear interaction coefficients G1 = 1053 and G2 = 37.6. From
these values, we can estimate the stripe phase region using the
approximate expressions derived above using the two-mode
variational model. We find that the stripe phase should be
expected for δ̃ < 2π × 136.6 Hz and �̃ < 2π × 93 Hz.

The ground state of the three-dimensional system is ob-
tained by direct numerical minimization of Eq. (35) using the
gradient flow method with discrete normalization and with the
backward Euler pseudospectral discretization scheme [34]. In
Fig. 8, we show three examples of ground states obtained
with δ̃ = 0 and varying �̃. The values of the Raman coupling
�̃ are chosen such that the ground state represents different
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FIG. 9. Results of the ground-state calculations for the second
example three-dimensional system. (a) The radial profile of the Ra-
man coupling (blue solid line and left axis) and of the condensate
particle density (red dashed line and right axis). Lower panels show
calculated ground-state column densities (in arb. units) for δ̃ = 0 and
(b) �̃ = 2π × 114 Hz, (c) �̃ = 2π × 185 Hz, and (d) �̃ = 2π ×
242 Hz.

stripe subphases S20, S16, and S12. It is worth noticing that
the value �̃ = 2π × 112 Hz already lies beyond the region
of the stripe phase predicted by the two-mode model. This is
in line with the results shown in Figs. 3 and 7 and confirms
that the two-mode prediction is only a rough estimate of the
phase boundary. By integrating the particle density distribu-
tion over the radial and longitudinal directions, we obtain a
one-dimensional angular density, which show a nearly perfect
agreement with the results of the one-dimensional model [see
Figs. 8(d)–8(f)]. The shown examples confirm the validity of
the approximations used for the one-dimensional model in
Sec. II and also confirm the general claim about multiple types
of stripe states in the system.

Next, we consider a slightly different example with the
ring radius reduced to r0 = 10 μm, the total number of atoms
increased to N = 2 × 106, and the other physical parameter
the same as above. In this case, the one-dimensional model
is no longer justified. Additionally, the LG profile of the
Raman coupling, which we also change to have a maximum
at the new r0, is now considerably inhomogeneous within the
condensate [see Fig. 9(a)]. By calculating the ground states of
this system with different values of �̃, we can again identify
stripe states with different number of density modulations [see
Figs. 9(b)–9(d)], which shows that such features can also be

observed beyond purely one-dimensional regimes. A more de-
tailed analysis of stripe subphases in realistic scenarios and the
effects of the trap potential will be presented in a forthcoming
paper.

VII. CONCLUSIONS

In the present work, we have analyzed the structure of
the ground-state phases in a toroidal two-component Bose-
Einstein condensate with a spin-orbital-angular-momentum
coupling between the components. In particular, a series of
subphases is revealed inside the stripe phase of the system.
These subphases are distinguished by the number of spatial
density modulations and their characteristic power spectra.
The existence of such fine structure of the stripe phase is
a natural result of the wave-function periodicity. It is worth
noticing that all observed phase transitions are of the first
order, which is due to quantization of the angular momen-
tum. While this result seems natural within the SM phase,
which obeys the rotational symmetry, it is somewhat surpris-
ing within the stripe phase, where the rotational symmetry is
spontaneously broken.

The obtained results are analyzed and verified through a
comparison with several well-established variational Ansätze.
We observe that within a wide region of physical param-
eters, the commonly used two-mode approximation gives
only a rough description of the stripe phase of the SOAM-
coupled system. Predictions of this approximation for the
phase boundaries show only limited qualitative agreement
with the full numerical calculations. The two-mode model
also completely fails to predict the internal fine structure of
the stripe phase. These problems can be partially rectified
by extending the variational model to four angular modes.
Therefore, while the two-mode approximation can provide
useful analytical estimates for a SOAM-coupled condensate,
one should be careful with drawing physical conclusions from
this approximation.

Finally, we have demonstrated that the predicted fine
structure of the stripe phase can be observed within experi-
mentally accessible parametric regimes. To this end, we have
performed a full three-dimensional modeling of a realistic
two-component condensate of 23Na atoms. We were able to
observe different types of stripe states and their spatial struc-
ture agrees with predictions of the one-dimensional model.
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