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Rotating and spiraling spatial dissipative solitons of light and cold atoms

Giuseppe Baio ,* Thorsten Ackemann, Gian-Luca Oppo, Gordon R. M. Robb, and Alison M. Yao
SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom

(Received 5 November 2021; accepted 3 February 2022; published 18 February 2022)

Clouds of cold neutral atoms driven by a coherent light beam in a ring cavity exhibit self-structured states
transversely with respect to the beam axis due to optomechanical forces and the backaction of the atomic
structures on the beam. Below the instability threshold for extended hexagonal structures, localized solitonlike
excitations can be stable. These constitute peaks or holes of atom density, depending on the linear susceptibility
of the cloud. Complex rotating and spiraling motion of coupled atom-light solitons, and, hence, atomic transport,
can be achieved via phase gradients in the input field profile. We also discuss the stability of rotating soliton
chains in view of soliton-soliton interactions. The investigations are performed in a cavity scheme but expected
to apply to other longitudinally pumped schemes with diffractive coupling.
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I. INTRODUCTION

Dissipative solitons are stable localized excitations of non-
linear systems that include drive and dissipation, generalizing
the concept of solitary wavelike solutions (solitons) to the
case of nonintegrable systems [1]. Transverse optical sys-
tems involving diffractive feedback or optical cavities provide
suitable platforms for observing spatial dissipative solitons
within the nonlinear optics domain [2]. A feature that is well
described by mean-field models is that optical dissipative soli-
tons can be switched on and off by means of tightly focused
addressing pulses [3]. Therefore, multiple spatial peaks of
the optical field can be excited locally in the system [4,5],
exhibiting characteristic homoclinic snaking branches [6].

Schemes involving cold atomic gases in longitudinally
pumped cavities or single-mirror systems have been re-
cently investigated theoretically and experimentally [7] and
shown to achieve light-atom self-structuring where the rele-
vant coupling involves optomechanical (dipole) forces [8–11],
electronic [12,13], and magnetic transitions [14–17]. In partic-
ular, the collective nature of optomechanical self-structuring
has provided insight into several aspects of cold and ultracold
atom physics, such as collective atomic recoil lasing in ring
cavities [18–21], crystallization [22–24], supersolidity with
continuous symmetry breaking [25–28], photon-mediated in-
teractions with tunable range [29], and structural transitions
between crystalline configurations [30,31].

Transverse optical pattern forming dynamics involving
orbital angular momentum (OAM) in the input beam was
analyzed for a photorefractive medium [32,33], domain walls
in optical parametric oscillators [34], and dissipative solitons
in semiconductor microcavities [35]. However, a systematic
treatment of such phenomena was developed only recently in
Ref. [36] for a Kerr cavity, including polarization structuring
effects.
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In this paper, we focus on a cold atom optomechanical
cavity scheme as introduced in Ref. [37]. There, it was shown
that the rotational dynamics of self-organized light-atom ring
lattices is capable of sustaining robust atomic transport, in-
duced by the input beam carrying OAM. Cavity solitons (CSs)
of light and atom density were theoretically predicted with
a purely optomechanical nonlinearity in Ref. [38]. Here we
show that a phase structured input can be used to engineer
transport of self-trapped atoms along complex trajectories,
such as rotating or spiraling motion in the transverse plane,
and to probe multisoliton interactions resulting in stable soli-
ton clusters. These considerations are also expected to apply
to the dark and bright solitons in cold atoms predicted in a
single-feedback-mirror (SFM) scheme [31].

The paper is organized as follows. In Sec. II we review
the features of mutually self-focused light-density soliton in
contrast to optomechanical CSs. In Sec. III we discuss the
motional dynamics of CSs induced by the phase gradients
and in Sec. IV the existence of different soliton configurations
depending on the cloud susceptibility. Finally, in Sec. V, we
address the properties of CS interactions in rotating chains.

II. THE MODEL

One of the mechanisms allowing the formation of spatial
solitons in light-atom systems relies on a collective self-
focusing effect due to modulations of the atom density. The
concept of mutual self-focusing occurring in coupled light
and atomic beams was introduced first by Klimontovich and
Luzgin in Ref. [39]. The total index of refraction for a
two-level atomic medium is obtained from its nonlinear sus-
ceptibility as follows [9]:

ν(r, s) = 1 − 3λ3

8π2

�

(1 + �2)

n(r, s)

1 + s(r)
, (1)

where n(r, s) is the spatially modulated atom density, s(r) is
the atomic saturation parameter, � = 2δ/� is the light-atom
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FIG. 1. Optomechanical single-mode ring cavity in a bow tie
configuration. The intracavity field (dotted arrow) E (r, t ′) is driven
by a phase structured beam of amplitude Ain (r), where r = (x, y)
is the transverse coordinate. We assume one imperfect mirror with
transmittivity τ and unidirectional propagation (e.g. by adding a
Faraday rotator). An ensemble of overdamped laser-cooled two-level
atoms of temperature T and optical density at resonance b0 is placed
within the cavity, coupled to the optical field via a Smoluchowski
equation for the atom density n(r, t ′). CSs arise from the bistability
of patterned and homogeneous states below threshold [2,38].

detuning in units of half-linewidth, and λ is the light wave-
length. By assuming a Gibbs equilibrium state for n(r, s) on
the integration domain 	 as follows:

neq(r) = exp [−σ s(r)]∫
	

exp [−σ s(r)]dr
, (2)

where σ = h̄δ/2kBT = h̄ ��/4kBT represents an op-
tomechanical coupling constant, one easily derives the
Klimontovich-Luzgin condition for mutual self-focusing with
red atomic detuning � < 0 only, namely [39],

exp [−σ s(r)]

1 + s(r)
> 1 for σ < 1. (3)

Saffman and Wang [40] and Wang [41] showed that the same
condition allows for stable spatial soliton solutions in the
paraxial propagation of an optical field through an atomic
cloud. Assuming instead a unidirectional ring cavity con-
figuration, such as the one sketched in Fig. 1, leads to the
following nonlinear coupled model for the slowly varying
envelope of the optical field E in the mean field and low
saturation approximations [42]:

∂t ′E = −(1 + iθ )E + Ain(r) − 2iC �n E + i∇2
⊥E, (4)

where t ′ = κt is an adimensional time variable (in units of
cavity lifetime κ), θ is the detuning between the pump and the
closest cavity resonance, Ain(r) a spatially dependent pump
rate, and C = b0/2τ (1 + �2) is the cavity cooperativity pa-
rameter, describing the susceptibility strength at fixed �. The
atom density n(r, t ′) obeys the Smoluchowski equation in the
strong friction limit [8,38],

∂t ′n = σDr∇⊥[n∇⊥|E |2] + Dr∇2
⊥n, (5)

where Dr is the spatial diffusion constant [43]. Optomechani-
cal transport is generated by the dipole potential, indicated by
the gradient terms in Eq. (5). Similar to the case of mutual fil-
amentation instabilities of light and matter beams in Ref. [44],

the coupled system of Eqs. (4) and (5) is shown to have
a modulation instability leading to optomechanical structure
formation for a plane-wave pump, namely, Ain(r) = Ain when
the following minimum threshold condition is satisfied [8,38]:

I = |Ain|2 � I0 = 1

2C �σ
. (6)

The optomechanical instability typically results in the
formation of a positive hexagonal phase H+ of the cavity
field E (r, t ) together with correlated (anticorrelated) density
n(r, t ′) in a H+(−) for red- (blue-) detuning � < 0 (� >

0) [8,37]. Deviations from the effective-Kerr approximation
and structural transitions are expected to arise in the strong
detuned regime (at fixed b0), namely, when the cloud sus-
ceptibility C� is lower than a critical value [31]. Finally, as
shown in Ref. [38], the subcritical bistability of hexagonal
phases allows for coupled light-density dissipative solitons
beyond the mutual self-focusing condition. In the rest of the
paper, we focus on parameter regions where the atom density
exhibits a H+ phase since the localized structures correspond
to peaks of self-trapped atoms. As shown later in Sec. IV, this
is also possible for blue-detuned atoms where self-trapping
and cooling conditions in a cavity QED system have been
explored recently in Ref. [45].

III. SOLITON DYNAMICS WITH STRUCTURED PHASE
PROFILES

Rotational or spiraling motion of localized structures in-
duced by an azimuthal phase twist was predicted for solitons
supported by Bessel lattices in cubic media in Refs. [46,47]
and observed experimentally in Ref. [48]. We start here by
considering the simplest scalar phase structured input profile
carrying OAM, namely,

Ain(r) = Ain(r) exp(ilφ), (7)

where the amplitude Ain(r) is a radial function and r = (r, φ)
represent the transverse position expressed in polar coordi-
nates. Ain(r) is assumed as the following hyperbolic tangent
“tophat:”

Ain(r) =
√

I

2
{1 − tanh[ξ (r − ρ0)]}, (8)

with controllable steepness ξ and size r0 [49]. Note that no
radial modulation is present, in contrast with Refs. [46,47].
As for the well-known cases of Laguerre-Gaussian or Bessel
beams, the purely azimuthal phase factor exp(ilφ) with l ∈ Z
generates a nontrivial vortex structure with phase singularity
at r = 0 [50]. Finally, the CS is seeded as a localized pattern
peak defined on top of Eq. (8).

Numerical simulations of the two-dimensional optome-
chanical CS dynamics in the model described by Eq. (4)
together with the Gibbs distribution for the atom density in
Eq. (2) are performed by means of a split-step method with a
spatial domain size of ten critical wavelengths [51] in a 2562

grid and time-step δt ′ = 10−3. The purely azimuthal rotation
case is shown in Fig. 2 for red-detuning � < 0 where the
bright self-trapped density peak is observed drifting along
perfectly circular trajectories with different rotation speeds at
different radii. As for the case of optical bullet holes in the
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FIG. 2. Rotation of bright density optomechanical CSs at dif-
ferent radii for � < 0, κtmax = 300, and OAM index l = 1. (The
rotation is counterclockwise for l > 0.) The white dots track the peak
position at different times. (a) A localized peak of both the cavity
field and the atom density, initially defined at a position r0 = (0, y0 )
with y0 > yd/4, covers approximately a quarter of its orbit. (b) For
an inner radial initial position y0 < yd/4, the CS achieves a faster
rotation speed [see Eq. (9)], completing a cycle within κtmax. Model
parameters chosen as follows: I/I0 ≈ 0.668, θ = 5.1, C� = −2.25,
and σ = 25.

purely absorptive model, the drift velocity is determined by
the input phase gradient [52] and, thus, the observed rotation
speed scales with the transverse radius r as follows [36,37]:

vdr (r) ∝ 2l∇⊥φ = 2l

r
φ̂, (9)

as visible from the tracked position of the maximum of the
atom density peak neq(r, t ′) in the transverse domain, mea-
sured at regular intervals of κt = 10. Note that, for the cold
atom case, the exact proportionality is determined by the
atomic diffusion timescales, which are shown to drag the
rotation speed when Dr → 0 [37]. Simultaneous control of
angular and radial motion of the optomechanical CS can be
achieved by means of an additional phase factor exp [iαψ (r)],
where ψ (r) is a concave function such that, e.g., when α > 0,
CSs are guided towards the center of the transverse domain
as the phase gradient field points towards the point r = 0. For
convenience, ψ (r) is chosen as in Eq. (8) with the same ρ0

and a slower steepness ξ . The drift velocity in this case reads

vdr (r) = α ∂rψ (r)r̂ + 2l

r
φ̂. (10)

The presence of radial correction for α 
= 0 is shown here
in Fig. 3. The choice α > 0 induces inward spiraling motion
of the CS, until effective repulsive interactions close to the
singular point r = 0 take place, forcing the CS into a stable
circular orbit as shown by tracked evolution of the density
peak in Fig. 3(a). The inwards spiraling structure of the drift
velocity vdr (r) is represented graphically in Fig. 3(b) where
the input phase and its gradient field are plotted together.
The case α < 0 is shown in Figs. 3(b) and 3(c) where the
outward spiraling soliton is interacting this time with the outer
boundary of the tophat as shown by a slight change indirection
in Fig. 3(c). Eventually, the soliton is trapped in a circular
trajectory at the maximum radius ρ0 allowed by the tophat
input profile [53].

FIG. 3. Spiraling trajectories of optomechanical CSs for α 
= 0
and κtmax = 750. (a) Atom-density peak undergoing inward spiraling
motion for α = 1.2. (b) Total input phase αψ (r) + φ (OAM index
l = 1), including gradient field, representing the soliton drift veloc-
ity. (c) Outward spiraling trajectory for α = −1.2. (d) Corresponding
phase and velocity field. Model parameters: I/I0 ≈ 0.672, θ = 5.1,
C� = −2.25, and σ = 25.

IV. DARK LIGHT-BRIGHT ATOM DENSITY SOLITONS

As shown in Ref. [31] for a SFM configuration, the op-
tomechanical instability displays structural transitions among
patterned phases and a recovery of the inversion symmetry
in dependence on the cloud susceptibility. The phenomenol-
ogy of this mechanism is similar to cases where an external
parameter is tuned, such as, e.g., external fields [16] or po-
larization balances [54,55]. For the present model, the linear
susceptibility of the atomic cloud is encoded in the cavity
cooperativity C, introduced in Sec. II. Therefore, significant
nonlinear behavior beyond the effective-Kerr medium case
(for fixed values of b0) is expected when C� lies below
a certain value. Assuming C� as a free parameter in our
simulations, we span across the range of C� ∈ [0.25, 2], cor-
responding to variations of b0 ∈ [10, 100] for � ≈ 100 and
τ = 0.2 [56]. Results are shown in Fig. 4 for different cavity
detunings θ where the displacement of the steady-state atom
density pattern neq(r, κtmax) with respect to the homogeneous
value neq = 1 is measured by the quantity:

〈η〉 = 1

2

[
max

	
neq(r) + min

	
neq(r)

]
− 1. (11)

As expected from the general notion of inversion symmetry,
the figure of merit 〈η〉 used here is positive (negative) in
correspondence of an H+(−) atom density phase. Starting from
the H− phase already known from Refs. [8,38], we observe
a clear change in the symmetry of the self-organized light-
atom pattern, roughly around a value of C� = 0.5. Moreover,
stable S phases with possible defects are found in the vicinity
of the point 〈η〉 = 0. For C� < 0.5, one finds H+ states,
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FIG. 4. Average displacement 〈η〉 across the inversion symmetry
point 〈η〉 = 0 of the atom density neq(r) from the homogeneous value
neq = 1 for θ = −1 (triangle down), θ = −0.5 (triangle up), θ = 0
(square), and θ = 0.5 (circle) at fixed σ = 50. Data are measured the
steady-state atom density according to Eq. (11) by spanning values
of C� for a chosen value of θ . The error bars reflect local variations
of the value 〈η〉 across the domain 	.

extending the scenario from the SFM model in Ref. [31] to
the ring cavity model. Interestingly, the critical C� is inde-
pendent from the cavity detuning θ , further confirming the
common origin of the transition as stemming from the trans-
port character of the nonlinearity. A rigorous characterization
of the supercritical stability diagram in the space (C�, θ ) by
means of a weakly nonlinear analysis will be considered in a
further study.

The stability of H+ atom densities for blue detuning im-
plies the existence of CSs characterized by atomic bunches
self-trapped in a dark region of the optical field. This is
shown in Figs. 5(a) and 5(b) with the characteristic diffrac-
tion rings [31]. Such solitons are similar to the optical and
matter-wave counterparts obtained with radially symmetric
potentials [57–59]. Interestingly, we observe here regimes of
weakly damped temporal oscillations, dependent on the input
pump and shown in Fig. 5(c), by tracking the time evolution
of the atom density peak max	 n(r, t ′). The presence of such
an oscillatory mode, excited by perturbations to the stationary
soliton profile, reveals that optomechanical CSs may also dis-
play a Hopf instability in the vicinity of the current parameter
regime [60,61].

In the rest of this section, we address rotation of such soli-
tons on a phase profile carrying OAM. First, a characteristic
of the strong blue-detuning regime considered here is that
with a finite-size pump the atom density becomes negligible in
the interaction region [62]. Thus, we introduce an additional
radial confinement in the atom density, achievable by further
external trapping beams. Due to the higher-order rings visible
from Figs. 5(a) and 5(b), CSs in this regime interact strongly
with the diffractive modulations of the homogeneous state
below threshold. Such an effect is controlled by enlarging
the domain size (≈35 critical wavelengths) and smoothening
the input field close to the singular point r = 0 [36]. This is
shown in Figs. 6(a) and 6(b) where the rotation velocity of the
soliton is, once again, in agreement with the predicted value in

FIG. 5. Dark light optomechanical CSs for blue light-atom de-
tuning with plane-wave pumping. (a) and (b) Soliton spatial profiles
with model parameters I/I0 = 0.968, θ = −0.85, C� = 0.2, and
σ = 100. (c) Oscillating soliton behavior obtained by tracking max-
imum density peak over time for pump values: I/I0 = 0.964 blue
(lower) line, I/I0 = 0.966 yellow (middle) line, and I/I0 = 0.964
green (upper) line. Each curve is vertically shifted for ease of un-
derstanding. The profiles in (a) and (b) are plotted in correspondence
of an atom density peak maximum at κt ≈ 40 for the corresponding
green curve.

Eq. (9). In Sec. IV, we focus on interacting CSs and dynamical
phenomena deriving from such interactions.

V. MULTISOLITON INTERACTIONS

A general treatment of interacting CSs was derived in
Refs. [4,5] for the purely absorptive two-level case, based on
neutral modes corresponding to translational invariance of the
localized state [63,64]. Such an approach yields a hierarchy

FIG. 6. Counterclockwise rotation of a dark-light optomechani-
cal CS and its trajectory measured within a period of κtmax = 103

and higher OAM index l = 5. Parameters chosen as follows: I/I0 ≈
0.495, θ = −0.43, C� = 0.16, and σ = 100. An additional radial
trap prevents atoms from accumulating in the dark regions of optical
intensity.
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of equations of motion in gradient form, including the effect
of many-body interactions [65]. Those works predict stable
bound states of two CSs at a set of preferred distances, me-
diated by their oscillatory tails. Those were experimentally
observed for a sodium vapor in a SFM configuration [66]
where each pinning distance corresponds to an interaction
potential minimum [4,5]. Phase-structured input field can be
used to induce soliton-soliton collisions, resulting into the
formation of localized pattern spots or bound states of the
light-atom CSs. This depends strongly on the input pump,
which can inhibit the self-replication induced by the over-
lapping rings [67]. In the rest of this section we show that
OAM-induced rotation can be used to probe multisoliton in-
teractions in a linear chain of CSs.

As discussed in Sec. III, in the presence of a phase gradient,
a CS moves away from its initial position with a drift veloc-
ity dictated by the gradient itself. Thus, rotating or spiraling
chains with two or more peaks can be generated by excit-
ing traveling CSs periodically with a purely azimuthal or a
combined radial + azimuthal phase, such as in Eq. (10). In
particular, after the first CS excitation by means of a localized
perturbation in both the cavity field and the atom density, the
same perturbation is imposed at a rate such that the peaks
are roughly separated by a pinning distance. At each step,
the pump intensity is slightly decreased in order to avoid
self-replication of secondary peaks. Chains of CSs orient
themselves along the trajectories shown in Figs. 3(a)–3(c).
However, rotating chains are observed to be unstable in the
long-term dynamics due to the local radial variation of the
drift velocity and the system tendency to favor the H lattice
[5] as seen in Fig. 7(a)–7(d). The transient during which linear
CS chains are observed is found to strongly depend on the sus-
ceptibility C�, meaning that soliton-soliton interactions also
influence the stability of such states. A detailed investigation
of this aspect for a 3-CS chain in the rotating case for different
values of C� is shown in Fig. 7(e). We choose the 3-CS
chain where effects induced by the local phase gradient are
enhanced. To evaluate the stability of the chain, we estimate
the κtmax before it collapses into a triangle (see Fig. 7). Note
that the triangular CS cluster continues to rotate at constant
speed around the beam center. The lifetime increases with C�

and it is practically infinite for C� > −0.75, meaning that the
chains are stable.

The origin of such a behavior can be traced back to the
overlap between rings of interacting CSs. As visible from the
insets in Fig. 7(e) for C� > −1 the peaks corresponding to
higher-order rings of a single CS are smaller with respect
to the central peak. Therefore, one expects CSs interactions
to lose relevance in the overall dynamics, partially explaining
the results in Fig. 7. This can be investigated quantitatively
by means of effective Hamiltonian approaches, such as in
Ref. [68]. Similar variational methods could unveil the pres-
ence of configurational minima besides the triangular cell.

VI. CONCLUDING REMARKS

We demonstrated controllable motional states of trans-
verse optomechanical localized structures in a longitudinally
pumped unidirectional ring cavity where the nonlinear

FIG. 7. A 3-CS chain rotational dynamics with OAM index l =
1. Rotating CSs initially excited in a bound state evolve into a
triangle. Snapshots of atom density neq(r) at (a) κt = 103, (b) κt =
3 × 103, (c) κt = 3.75 × 103, (d) κt = 4.25 × 103 for C� = −2.5,
σ = 25, I/I0 ≈ 0.66, and θ = 5.1. (e) Stability of the rotating
3-soliton chain together with corresponding single CSs profiles for
different values of the susceptibility C�. Model parameters chosen
as above except for the pump intensity I which is slightly adjusted
when varying C�. This result suggests that the stability of CS chains
increases with decreasing susceptibility |C�|. The error bars measure
the observed duration of the chain collapse in units of κt .

medium is given by a cloud of laser-cooled atoms. This mo-
tion arises from phase structured input fields carrying OAM,
generating atomic transport via an optomechanical instabil-
ity [37]. In particular, by means of numerical studies, we
addressed complex rotational and spiraling trajectories of
optomechanical CSs by tuning the radial and azimuthal de-
pendencies of the input profile. We also reported structural
transitions among patterned phases with different symmetry
and rotational motion of corresponding dark-light CSs. Fi-
nally, we explored CSs interactions in rotating 3-CS linear
chains, providing evidence that they play a crucial role in the
stability of such bound states.

A direct extension of interest for the present paper is the
study of two or more optomechanical CS collisions beyond
the overdamped regime, unveiling potential effects of the tran-
sient dynamics in the momentum distribution or connections
to supersolid droplets in the ultracold limit [69]. Similar trans-
verse localized states are also found in the optomechanical
coupling of discrete arrays of oscillating mirrors [70,71].

Finally, our results suggest the possibility of transport-
ing self-trapped atoms by means of CS motion in arbitrary
time-dependent phase profiles [72,73]. All such studies are
of potential relevance for the realization of novel atomtronic
devices [74,75].
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[15] G. Labeyrie, I. Krešić, G. R. M. Robb, G.-L. Oppo, R. Kaiser,
and T. Ackemann, Magnetic phase diagram of light-mediated
spin structuring in cold atoms, Optica 5, 1322 (2018).
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