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We investigate the zero-temperature quasiparticle properties of a mobile impurity immersed in a strongly
interacting Fermi superfluid at the crossover from a Bose-Einstein condensate (BEC) to a Bardeen-Cooper-
Schrieffer (BCS) superfluid, by using a many-body T -matrix approach that excludes Efimov trimer bound states.
Termed the BEC-BCS crossover polaron, or crossover polaron in short, this quasiparticle couples to elementary
excitations of a many-body background and therefore could provide a useful probe of the underlying strongly
interacting Fermi superfluid. Due to the existence of a significant pairing gap �, we find that the repulsive
polaron branch becomes less well defined. In contrast, the attractive polaron branch is protected by the pairing
gap and becomes more robust at finite momentum. It remains as a delta-function peak in the impurity spectral
function below a threshold 2�. Above the threshold, the attractive polaron enters the particle-hole continuum
and starts to get damped. We predict the polaron energy, residue, and effective mass for realistic Bose-Fermi
mixtures, where the minority bosonic atoms play the role of impurity. These results are practically useful for
future cold-atom experiments on crossover polarons.
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I. INTRODUCTION

Polaron physics—quasiparticles formed by coupling a mo-
bile impurity to elementary excitations of a many-particle
background—have received increasing attention in the field
of ultracold atoms over the last 15 years [1–3]. Owing to
the unprecedented controllability of interparticle interaction
using Feshbach resonances [4,5], Fermi and Bose polarons,
namely, impurities immersed in a noninteracting Fermi gas or
a weakly interacting Bose gas, have now been systematically
explored in the field of cold-atom physics, both experimen-
tally [6–16] and theoretically [17–46]. A unique advantage
of both Fermi and Bose polarons is their simplicity. As the
many-particle background is barely affected by the existence
of a single impurity, we may concentrate on the impurity
only. As a result, it is possible to make a quantitative com-
parison between experimental data and theoretical predictions
[1,3,6,13,37,39,44,45], enabling us to examine in a stringent
way different approximate quantum many-particle theories
[17,19,22,42].

Another advantage of polarons is that they may provide
a sensitive probe of the background many-particle systems.
In this respect, Fermi and Bose polarons are not so useful,
as the background noninteracting Fermi gas or weakly inter-
acting Bose gas is well understood. It would be interesting
to consider the polaron physics with a strongly correlated
background, such as a two-component Fermi superfluid near
a Feshbach resonance, which undergoes the crossover from
a Bose-Einstein condensate (BEC) to a Bardeen-Cooper-
Schrieffer (BCS) superfluid [47–49]. We dub the resulting
quasiparticles as crossover polarons for convenience. The
experimental setup can be easily achieved by utilizing a
superfluid Bose-Fermi mixture, where the concentration of
bosonic atoms can be reduced to reach the polaron limit.

Indeed, motivated by the recent experimental demonstration
of dual 6Li-7Li [50], 6Li-41K [51], and 6Li-174Yb superfluid
mixtures [52], a moving impurity immersed in a Fermi su-
perfluid has been considered by Nishida [53] and Yi and Cui
[54] using Chevy’s variational ansatz, and more recently by
Pierce, Leyronas, and Chevy [55] based on the second-order
perturbation theory. In these pioneering works, the role of
three-body Efimov physics has been highlighted and the un-
known three-body parameter is typically introduced through a
large momentum cutoff [53,54].

The modification of the polaron spectrum due to Efimov
states is definitely of great interest. However, realistically it is
not clear whether the trimer states can be tuned to be resonant
with the polaron state and whether these two kinds of states
can have similar timescales in dynamics so both of them can
be observed simultaneously. In Bose polarons, the influence of
Efimov states on the polaron physics seems to be negligible
for the typical gas parameter of the background BEC (i.e.,
na3

B ∼ 10−5) [11,45]. It only shows up for a highly com-
pressible BEC when the gas parameter becomes sufficiently
small [12,45]. As a Fermi superfluid is less compressible
than a typical BEC, naively one anticipates that the interplay
between Efimov and polaron physics might be difficult to
observe experimentally. In addition, the existence of Efimov
trimers in some realistic experiments might be unfavored: the
impurity might have a much larger mass or only strongly
interact with one component of the superfluid fermions. In
order to understand the polaron physics with a Fermi super-
fluid background in realistic experiments, it would be useful
to focus on the two-body sector and separate out the effects of
Efimov trimers.

The purpose of this paper is to develop a theoretical frame-
work for the two-body sector of crossover polarons, based on
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a non-self-consistent many-body T -matrix theory [19]. The
use of the T -matrix approach has two obvious advantages. On
the one hand, if we consider the BCS mean-field theory for the
background Fermi superfluid, the T -matrix approach has the
same accuracy of Chevy’s variational ansatz adopted earlier
[53,54], but enables us to concentrate on the two-body sector.
On the other hand, it allows us to go beyond the qualitative
BCS description of the strongly interacting Fermi superfluid
and therefore can predict quasiparticle properties of crossover
polarons in a quantitative manner.

In saying that, it is worth noting that a quantitative de-
scription of the background many-body system of a strongly
interacting Fermi superfluid itself is a notoriously difficult
problem [49]. Therefore, in this paper, as a first attempt we
would rather consider the BCS description for the Fermi su-
perfluid [47] and focus on the nontrivial role played by the
pairing gap on the crossover polaron. We find that the repul-
sive polaron branch is less favored by a significant pairing gap
�. For the attractive polaron branch, the ground-state polaron
energy at zero momentum increases due to the existence of
a threshold 2� for dressing the impurity with particle-hole
excitations. However, the same threshold protects the attrac-
tive polaron and makes it long-lived at larger momentum. We
predict the polaron properties for three Bose-Fermi mixtures
in the polaron limit, which might be readily examined in
current cold-atom laboratories.

II. MANY-BODY T -MATRIX APPROACH

We consider an impurity of mass mI moving in a bath
of spin-1/2 Fermi superfluid of equal mass m↑ = m↓ = m,
described by the Hamiltonian H = HI + Hint + HSF. Here,
HI and HSF are the Hamiltonian of the impurity and of the
background Fermi superfluid, respectively, and Hint describes
the interaction between the impurity and Fermi atoms. In the
absence of the impurity-atom interaction, the impurity has
an energy spectrum of a free particle, i.e., ε (I )

p = h̄2p2/(2mI )
at the momentum p. In general, the model Hamiltonian of a
strongly interacting Fermi superfluid HSF is difficult to solve.
From now on, let us assume that it can be exactly solved
by the single-particle Green’s function Gi j[K ≡ (k, iωm)] at
the momentum k and fermionic Matsubara frequency iωm =
(2m + 1)πkBT , which takes the form of a 2 × 2 matrix (i.e.,
i, j = 1, 2 =↑,↓) in accord with the use of the Nambu spinor
�k = (ψk↑, ψ

†
−k↓)T for the atomic field operators in the

broken-symmetry superfluid state. The impurity-atom inter-
action can be conveniently described using a contact potential
(the system volume V = 1):

Hint =
∑

σ=↑,↓
gσ

∑
q,k,k′

ψ
†
kσ c†

q−kcq−k′ψk′σ , (1)

where ck and c†
k are, respectively, annihilation and creation

field operators for the impurity, and the bare interaction
strength gσ should be regularized by using the s-wave scatter-
ing length aσ via the standard relation, g−1

σ = mr/(2π h̄2aσ ) −∑
p 2mr/(h̄2p2), with the reduced mass mr ≡ mmI/(m + mI ).
In the non-self-consistent T -matrix approach for po-

larons [19], we keep the ladder diagram for the successive

particle-particle scattering between the impurity and back-
ground fermionic atoms. However, the use of the Nambu
spinor mixes the particle-hole channel for atoms [49]. For
example, the hole propagator of the spin-down atoms ac-
tually represents the propagation of particlelike excitations.
This technical difficulty can be cured by taking the Green’s
function −G22(−K) ≡ G11(K) as the particle-propagator for
spin-down atoms. With this consideration, we may directly
write down the two-particle vertex functions 	i j at the mo-
mentum q and Matsubara frequency iνn [collectively denoted
as Q ≡ (q, iνn)]:

	(Q) =
[
χ11(Q) χ12(Q)
χ12(Q) χ22(Q)

]−1

, (2)

where the two-particle propagators χi j (Q) are given by

χ11(Q) = 1

g↑
+

∑
K

G11(K)G0(Q − K), (3)

χ12(Q) =
∑
K

G12(K)G0(Q − K), (4)

χ22(Q) = 1

g↓
+

∑
K

[−G22(−K)]G0(Q − K), (5)

∑
K or

∑
Q stands for the short-hand notation kBT

∑
iωm

∑
k

or kBT
∑

iνn

∑
q, and G0(Q − K) = 1/[iνn − iωm − ε

(I )
q−k] is

the noninteracting Green’s function of the impurity. The self-
energy �(K) = �11 + 2�12 + �22 of the impurity then takes
the form [19]

�11(K) = +
∑
Q

	11(Q)G11(Q − K), (6)

�12(K) = −
∑
Q

	12(Q)G12(Q − K), (7)

�22(K) = +
∑
Q

	22(Q)[−G22(−Q + K)], (8)

where the different sign in �11 (or �22) and �12 is due to the
absence of a Fermi loop in the diagram for �12.

A. BCS Fermi superfluid

The above expressions for the two-particle vertex function
and impurity self-energy are quantitatively useful, provided
that the Green’s functions Gi j (K) of the background Fermi
superfluid are known to a certain accuracy. Here, we are in-
terested in understanding the general picture of the crossover
polaron, with the help of the qualitatively reliable mean-field
theory for Fermi superfluids. The consideration of strong pair
fluctuations to Gi j (K) at the BEC-BCS crossover is postponed
to a future study.

In the mean-field framework, the single-particle Green’s
functions Gi j (K) are well known [47,49]:

G11(K) = u2
k

iωm − Ek
+ v2

k

iωm + Ek
, (9)

G12(K) = ukvk

iωm − Ek
+ ukvk

iωm + Ek
, (10)

where Ek ≡
√

ξ 2
k + �2 with ξk ≡ εk − μ = h̄2k2/(2m) − μ

is the Bogoliubov quasiparticle energy for a Fermi superfluid
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with chemical potential μ and pairing gap �, and u2
k = [1 +

ξk/Ek]/2, v2
k = 1 − u2

k, and ukvk = �/(2Ek ) are the quasi-
particle wave functions. Both μ and � can be calculated
for a given dimensionless interaction parameter 1/(kF a) [47],
where a is the s-wave length between unlike atoms and kF =
(3π2n)1/3 is the Fermi wave vector at the number density
n of the Fermi superfluid. After plugging the above Gi j (K)
and the free impurity Green’s function G0(Q − K) into the
expressions of the two-particle propagators, we find that at
zero temperature

χdd (Q) = −
∑

p

[
u2

p

iνn − Ep − ε
(I )
q−p

+ 2mr

h̄2p2

]
, (11)

χ12(Q) = −
∑

p

upvp

iνn − Ep − ε
(I )
q−p

, (12)

and χ11(Q) = mr/(2π h̄2a↑) + χdd (Q) and χ22(Q) =
mr/(2π h̄2a↓) + χdd (Q). Using the fact that there is no
macroscopic population of the impurity state, we can
analytically perform the Matsubara frequency summation
in the expressions of �i j (K) [19]. Thus, after analytic
continuation (iωm → ω+ ≡ ω + i0+) we obtain the
zero-temperature retarded self-energies:

�11(k, ω) = +
∑

q

v2
q−k	11(q, ω+ − Eq−k ), (13)

�12(k, ω) = −
∑

q

uq−kvq−k	12(q, ω+ − Eq−k ), (14)

�22(k, ω) = +
∑

q

v2
q−k	22(q, ω+ − Eq−k ). (15)

The retarded interacting impurity Green’s function is then
given by G(k, ω) = 1/[ω − ε

(I )
k − �(k, ω)], and its pole po-

sition determines the polaron energy, i.e.,

EP(k) = ε
(I )
k + �[k, EP(k)]. (16)

By expanding the self-energy near the zero momentum
k = 0 and the ground-state polaron energy EP ≡ EP(0),
we can calculate directly the polaron residue Z−1 = 1 −
∂Re�(0, ω)/∂ω and the effective mass m∗/mI = Z−1/[1 +
∂Re�(k, EP )/∂ε

(I )
k ].

B. Link to Chevy’s ansatz

At this stage, it is beneficial to clarify the connection of our
many-body T -matrix formalism to Chevy’s variational ansatz
[17,19]. Let us focus on the simplest case with zero interaction
between the impurity and spin-down atoms (a↓ = 0−), where
χ22 → −∞ so the only remaining two-particle vertex func-
tion is 	11. It is readily seen that the equation for the polaron
energy Eq. (16) can be rewritten as

EP(k) = ε
(I )
k +

∑
q

v2
q

[
mr

2π h̄2a↑
−

∑
p

2mr

h̄2p2

+
∑

p

u2
p

Ep + ε
(I )
k+q−p + Eq − EP(k)

]−1

. (17)

In the case of an ideal Fermi gas background with a van-
ishing pairing gap � = 0, we have v2

q = �(kF − q), u2
p =

�(p − kF ), Ep = εp − μ, and Eq = μ − εq, where �(x) is
the Heaviside step function. Thus, we recover the celebrated
equation for polaron energy from Chevy’s variational ansatz
[see Eq. (2) in the seminal work [19]]. For the alternative
derivation of Eq. (17) by using Chevy’s ansatz with the stan-
dard BCS variational wave function, we refer to the Appendix.

C. Remarks on the BEC limit

The above formalisms are quantitatively applicable to the
BCS limit and are qualitatively applicable in the unitary or
crossover regime. Towards the BEC limit, the fermionic de-
gree of freedom, as characterized by the Green’s functions
Gi j (K), is suppressed. The new bosonic degree of freedom,
represented by the vertex function of the Fermi superfluid
[48,49], becomes dominant. As a result, our formalisms based
on the non-self-consistent T -matrix theory fail. We need to
construct a theory beyond the ladder approximation, by con-
sidering the exact three-body interaction vertex involving a
Cooper pair and the impurity that describes the dressing of
the impurity with the gapless phonon excitations of the Fermi
superfluid [49]. In this way, we anticipate being able to re-
cover Bose polarons occurring in the weakly interacting BEC
limit [30,40].

III. RESULTS AND DISCUSSIONS

Before we present the results, let us briefly discuss how
the paired Fermi superfluid background is affected by the
moving impurity. Dynamically, if we take a snapshot, an
impurity will excite density fluctuations of the total density
(i.e., charge degree of freedom) and of the spin density (i.e.,
spin degree of freedom) at the impurity site, which propagate
over the whole Fermi superfluid. As the impurity moves, the
fluctuations generated at different times interfere and after a
timescale set by the inverse Fermi energy the fluctuations fade
away. In the limit of a single impurity, therefore in equilibrium
the Fermi superfluid is essentially not perturbed, since the
perturbation strength scales like 1/N , where N is the total
number of fermions of the background system.

The situation may dramatically change if the mass of the
impurity is very large. For example, an infinitely heavy im-
purity will create a static scattering potential and therefore
lead to a permanent local distortion of the Fermi superfluid
near the impurity. For a static nonmagnetic impurity scat-
tering (i.e., a↑ = a↓), the single-particle energy spectrum of
the Fermi superfluid is essentially unchanged, according to
Anderson’s theorem [56,57]. For a static magnetic impurity
scattering (a↑ 
= a↓) that lifts the Kramers degeneracy of the
pairing states (or breaks the time-reversal symmetry) and ex-
cites spin-density fluctuations, a nontrivial Yu-Shiba-Rusinov
(YSR) bound state appears within the energy gap 2� [58–62].

The existence of the YSR bound state in the case of a
moving impurity requires further investigation. Naïvely, we
may anticipate the appearance of a subgap band of YSR states,
the number of which is proportional to the number of impu-
rities or impurity density (which scales to zero in the single
impurity limit). In our non-self-consistent T -matrix approach,
we consider the single-impurity limit and hence neglect again
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FIG. 1. The evolution of the zero-momentum impurity spectral function A(k = 0, ω) as a function of the scattering length a↑ between the
impurity and spin-up atoms, with a weakly interacting Fermi gas background, i.e., 1/(kF a) = −3 in panel (a) or with a unitary Fermi superfluid
background, i.e., 1/(kF a) = 0 in panel (b). The interaction parameter between the impurity and spin-down atoms is set to be 1/(kF a↓) = −5.
A small linewidth broadening factor η = 0.05εF has been introduced to better illustrate the δ-function peak of the attractive polaron branch.
The spectral function is in units of ε−1

F , where εF ≡ h̄2k2
F /(2m) is the Fermi energy. We always take the equal mass for the impurity and atoms,

mI = m, except the realistic experimental case in Fig. 6.

the coupling of the YSR bound state to the polaron in the ther-
modynamic limit. Nevertheless, in the static limit the impurity
properties could be profoundly affected by the YSR bound
state, since we probe exactly the neighborhood of the impurity
(instead of the whole system for a moving impurity).

A. Significance of a pairing gap

The Appendix shows that Eq. (17) can be understood as an
extension of Chevy’s ansatz in the case of a Fermi superfluid
background. It describes the virtual process of dressing the
impurity with simultaneous particle- and hole-like excitations,
each of which has the possibility u2

p or v2
q, and energy Ep or Eq.

The appearance of the summation Ep + Eq in the denominator
of Eq. (17) is a direct consequence of breaking a Cooper pair
during the virtual excitation. It naturally leads to a threshold
2� for the one-particle-hole excitation, which may change the
polaron spectrum in a nontrivial way.

To see this, in Fig. 1 we show the impurity spectral func-
tion A(k, ω) ≡ −(1π )ImG(k, ω) at zero momentum k = 0
as a function of the dimensionless impurity-atom interac-
tion 1/(kF a↑). For a negligible pairing gap in panel (a),
we find the typical spectrum for a Fermi polaron with both
attractive branch and repulsive branch [25], and a narrow
molecule-hole continuum in between [25,44]. There are no-
table changes in the spectrum when we take a unitary Fermi
gas as the background with a significant (mean-field) pair-
ing gap � � 0.69εF . The repulsive branch becomes much
blurred, indicating the shorter lifetime of repulsive polarons.
At the same time, the parameter window for their existence
shrinks. The molecule-hole continuum also disappears. In
contrast, the attractive branch remains well defined, but the
ground-state energy of attractive polarons seems to increase
systematically.

As the repulsive polaron can be naïvely viewed as the
excited state of the molecule (with the dressing of particle-
hole excitations), the less well-defined repulsive polaron may

be understood from the fact that the molecule consisting of
the impurity and spin-up atoms becomes more difficult to
form due to the energy cost for Cooper pair breaking. This
idea is consistent with the disappearance of the molecule-hole
continuum.

On the other hand, the upshift of the attractive polaron
energy can be easily understood from the particle-hole exci-
tation threshold 2�, which leads to a larger self-energy for
the impurity, as shown in Fig. 2, where we plot the zero-
momentum self-energy at various superfluid pairing gaps and

FIG. 2. The zero-momentum impurity self-energy at different
background Fermi superfluids characterized by the interaction pa-
rameter, 1/(kF a) = −0.5 (red dashed line), 0 (black solid line), and
+0.5 (blue dot-dashed line). The thin green dashed line shows the
straight line h(ω) = ω. The intersection of the straight line and the
self-energy curve determines the polaron energy at zero momentum.
Here, we take the impurity-atom interactions: 1/(kF a↑) = 0 and
a↓ = 0−. The two times pairing gap for each curve is 2� � 0.804εF

at 1/(kF a) = −0.5, 2� � 1.373εF in the unitary limit, and 2� �
2.033εF at 1/(kF a) = +0.5.
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FIG. 3. Polaron energy (a), residue (b), and effective mass [the
inset in panel (b)] as a function of the dimensionless impurity-atom
interaction parameter 1/(kF a↑) at three different background Fermi
superfluids with 1/(kF a) = −0.5 (red dashed line), 0 (black solid
line), and +0.5 (blue dot-dashed line). The inset in panel (a) shows
the polaron energy as a function of 1/(kF a) at the unitary coupling
1/(kF a↑) = 0. For all the plots in the figure, we consider the non-
interacting limit between the impurity and spin-down atoms (i.e.,
a↓ = 0−).

at the unitary coupling between the impurity and spin-up
atoms, i.e., 1/(kF a↑) = 0. By increasing the background in-
teraction parameter 1/(kF a) and hence the pairing gap, the
impurity self-energy shifts up at the negative frequency. As
a result, the polaron energy of the solution EP = �(0, EP ),
which is given by the intersection of the straight line h(ω) = ω

and the self-energy curve �(0, ω), becomes larger.

B. Equal mass case

From now on, let us concentrate on well-defined attractive
polarons, which are easier to measure in experiments [6].
In Fig. 3(a), we present the polaron energy as a function
of 1/(kF a↑) at a↓ = 0− and at three different Fermi super-
fluid backgrounds. The increase of the polaron energy as
a function of the background interaction parameter 1/(kF a)
is highlighted in the inset, where we take a unitary cou-
pling (a↑ → ±∞) between the impurity and spin-up atoms.
This is the most interesting case, in which we may define a

universal energy parameter [49] for crossover polarons, i.e.,
EP = ξ (1/kF a)εF . From the inset, we find that towards the
BCS limit of Fermi superfluid the energy parameter ξ quickly
saturates to the well-known result for Fermi polarons, i.e.,
ξ (a = 0−) � −0.607 [17,19]. For a unitary Fermi superfluid
background, it increases to ξ (a = ±∞) � −0.396. Although
the difference between these two values �ξ = ξ (a = ±∞) −
ξ (a = 0−) � 0.211 is not significant, it is slightly larger than
the experimental resolution in determining the polaron energy
via the radio-frequency spectroscopy (i.e., ≈0.1εF ) [6,13,14]
and therefore might be experimentally measured. We note that
the difference �ξ may also quantitatively change, if we go
beyond the mean-field treatment of the strongly interacting
Fermi superfluid background.

In line with the decreasing absolute value of the polaron
energy within a strongly interacting Fermi superfluid, the
residue and effective mass of the polaron increases and de-
creases, respectively, as reported in Fig. 3(b). In particular, at
the unitary impurity-atom coupling (a↑ = ±∞), we obtain a
residue Z � 0.90 and an effective mass m∗/mI � 1.07 with
a unitary Fermi superfluid, in comparison to the predictions
of Z � 0.78 and m∗/mI � 1.17 in the case of Fermi polarons
[19].

We consider so far the ground-state polaron at zero mo-
mentum. At finite momentum, in general the polaron will
have a finite lifetime, once its energy reaches the minimum
energy of the particle-hole continuum. For Fermi polarons,
this occurs at zero energy ω = 0 in the absence of two-
body molecular bound states (i.e., a↑ � 0). For crossover
polarons with a significant background pairing gap � ∼
O(εF ), Eq. (17) indicates that we have a threshold 2� for
particle-hole excitations and therefore the crossover polaron
should remain as a long-lived quasiparticle as long as its
energy is smaller than 2�. This anticipation is examined in
Fig. 4, where we present two-dimensional contour plots of the
finite-momentum impurity spectral function A(k, ω) at three
background Fermi superfluids. The threshold 2� has been
shown in the figures by using black dashed lines. It is readily
seen that the polaron remains as a δ-function peak, provided
that EP + h̄2k2/(2m∗) < 2�. This gives rise to a character-
istic momentum kc = √

2m∗(2� − EP )/h̄, below which the
polaron is long-lived. We find that kc increases with increasing
pairing gap, suggesting the polaron becomes more robust with
a strongly interacting Fermi superfluid background. Finally, if
the impurity spectral function can be experimentally measured
by the momentum-resolved radio-frequency spectroscopy, one
may directly determine the threshold 2�. This provides a pos-
sible way to measure the pairing gap of the Fermi superfluid
background.

C. Role of the interaction with spin-down atoms

In previous calculations, we take a negligible interaction
between the impurity and spin-down atoms. This is the typ-
ical situation in experiments since it is difficult to tune the
two scattering lengths a↑ and a↓ to be large simultaneously.
In Fig. 5, we report the exceptional case that the impurity
interacts strongly with both spins. At the unitary coupling
(a↑ = a↓ = ±∞) with a unitary Fermi superfluid background
(a = ±∞), we find the polaron energy EP � −0.450εF .
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FIG. 4. Two-dimensional contour plot of the impurity spectral
function A(k, ω) at three different background Fermi superfluids with
1/(kF a) = −0.5 (a), 0 (b), and +0.5 (c). We consider the unitary
coupling between the impurity and spin-up atoms (a↑ = ±∞) and
zero coupling between the impurity and spin-down atoms (a↓ = 0−).
The black dashed lines indicate the particle-hole excitation thresh-
olds, 2� � 0.804εF in panel (a), 2� � 1.373εF in panel (b), and
2� � 2.033εF in panel (c). We use a small linewidth broadening
factor η = 0.05εF to better show the δ peak of the attractive polaron
branch. The spectral function is in units of ε−1

F .

D. Experimental relevance

Let us finally explore the possibility of experimentally
observing the predicted crossover polaron. A straightforward
idea is to use the recently realized dual Bose-Fermi superfluid
[50–52]. In the limit of small bosonic density, the bosons
can be treated as independent impurities and their properties
can be directly measured by using Ref. [6] or Raman spec-
troscopy [16]. Fermi-Fermi mixtures involving a (majority)
two-component Fermi superfluid and another (minority) nor-
mal Fermi gas, such as a paired 6Li superfluid with 40K atoms
as impurities, may also be possible candidates.

In Fig. 6, we show the polaron energy, residue, and effec-
tive mass in three Bose-Fermi mixtures with different mass
ratio mI/m. For a lighter impurity, quasiparticle properties

FIG. 5. The effect of the interaction between the impurity and
spin-down atoms on the polaron energy. Here, we consider a unitary
Fermi superfluid as the background (a = ±∞) and three cases for the
interaction between the impurity and spin-down atom: 1/(kF a↓) =
−0.5 (red dashed line), 1/(kF a↑) (black solid line), and 0 (blue dot-
dashed line).

FIG. 6. Polaron energy (a), residue (b), and effective mass [the
inset in panel (b)] as a function of the dimensionless impurity-atom
interaction parameter 1/(kF a↑) for the mixtures of 6Li-41K (red
dashed line), 6Li-7Li (black line), and 40K-7Li (blue dot-dashed line).
We consider a unitary Fermi superfluid as the background (a = ±∞)
and take 1/(kF a↓) = −5 for the interaction between the impurity and
spin-down atoms.
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appear to have a more sensitive dependence on the impurity-
atom interaction.

The experimental challenge of realizing a crossover po-
laron lies in the difficulty of independently tuning the
impurity-atom interaction a↑, in addition to the control of the
scattering length a for the background Fermi superfluid. This
would require a significant overlap between two Feshbach
resonances for enlarging a↑ and a, respectively. A careful
search for the best candidate system, through detailed two-
body calculations for various s-wave scattering lengths, will
be addressed in future works.

IV. CONCLUSIONS AND OUTLOOKS

In summary, we have presented a many-body T -matrix
theory for a type of crossover polaron, which can be po-
tentially realized in dual Bose-Fermi superfluids, where the
minority bosonic atoms can be treated as impurities. By using
a mean-field description for the background strongly interact-
ing Fermi superfluid, we have qualitatively clarified the role
played by the pairing gap on polaron physics. We have found
that the repulsive polaron branch ceases to exist. In contrast,
attractive polarons become robust at finite momentum. In the
near future, we will investigate quantitative corrects to the
polaron quasiparticle properties due to strong pair fluctuations
in the background Fermi superfluid. Another interesting pos-
sibility is to consider a topological Fermi superfluid as the
background and to study how the polaron physics changes
near the topological phase transition [63].

In our paper, we do not consider the Efimov trimer bound
states, which may become important under specific conditions
(with fine-tuning interaction parameters). To address these
trimer states and their interplay with polaron states, we need
to go beyond the current non-self-consistent many-body T -
matrix approach as discussed in Sec. II C. A simple way
is to include the nontrivial vertex correction to the vertex

function 	(Q). In other words, we need to consider the con-
tribution of particle-hole diagrams to 	(Q), together with
the particle-particle ladder diagrams as given in Eqs. (3)–(5).
The particle-hole diagrams take into account the multiple
particle-hole excitations near Fermi surfaces and capture the
contribution of Efimov states [23,53–55]. This nontrivial ex-
tension of the many-body T -matrix theory will be considered
in future studies.
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APPENDIX: VARIATIONAL ANSATZ APPROACH

Here we give the details on deriving the polaron energy
relation, i.e., Eq. (17) in the main text, by using an extended
Chevy’s ansatz approach with the standard BCS variational
wave functions for the case of a vanishing interaction g↓ = 0
between the impurity and spin-down fermions.

The Hamiltonian is given by H = HI + Hint + HSF.
The first term is the Hamiltonian for the impurity, HI =∑

k ε
(I )
k c†

kck, with ε
(I )
k = h̄2k2/(2mI ). Here, c†

k and ck are the
annihilation and creation field operators for the impurity, re-
spectively. The impurity-fermion interaction is given by (the
system volume V = 1)

Hint = g↑
∑

q,k,k′
ψ

†
k↑c†

q−kcq−k′ψk′↑ (A1)

for the g↓ = 0 case, and the Hamiltonian for the two-
component Fermi superfluid is given by

HSF =
∑

σ=↑,↓

∑
k

(εk − μ)ψ†
kσψkσ + g

∑
k,k′,q

ψ
†
k↑ψ

†
q−k↓ψq−k′↓ψk′↑, (A2)

where εk = h̄2k2/(2m) is the dispersion relation for a free fermion; μ is the chemical potential; ψ†
σ and ψσ are the annihilation

and creation field operators for the σ -component (σ =↑,↓) fermion, respectively. The bare interaction strength g↑ (or g) should
be regularized by using the s-wave scattering length a↑ (or a) via the standard regularization relation. For example, g−1

↑ =
mr/(2π h̄2a↑) − ∑

p 2mr/(h̄2p2), with the reduced mass mr ≡ mmI/(m + mI ).
In a standard mean-field approach of studying the BCS-BEC crossover, the superfluid Hamiltonian can be approximated by

HSF ≈ 〈HSF〉MF +
∑

σ=↑,↓

∑
k

Ekα
†
kσαkσ , (A3)

where the mean-field ground-state energy

〈HSF〉MF = −�2

g
+

∑
k

(εk − μ − Ek ) = − m�2

4π h̄2a
+

∑
k

(
εk − μ − Ek + �2

2εk

)
(A4)

is a constant and will be neglected hereafter. Here, � = g
∑

k〈ψ−k↓ψk↑〉 is the mean-field pairing gap. The quasiparticle

excitation spectrum Ek =
√

ξ 2
k + �2 ≡

√
(εk − μ)2 + �2 and the corresponding creation (annihilation) operators α

†
kσ (αkσ )

can be obtained by a Bogoliubov transformation(
αk↑
α

†
−k↓

)
=

(
uk −vk
vk uk

)(
ψk↑
ψ

†
−k↓

)
, (A5)
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where u2
k = [1 + ξk/Ek]/2, v2

k = 1 − u2
k, and ukvk = �/(2Ek ) are the quasiparticle wave functions. With the quasiparticle

operators, the impurity-fermion interaction can be written as

Hint = g↑
∑

k,k′,q

(
ukα

†
k↑ + vkα−k↓

)
c†

q−kcq−k′
(
uk′αk′↑ + vk′α

†
−k′↓

)
. (A6)

To find the polaron energy at momentum k, i.e., EP(k), we adopt an extended Chevy’s ansatz [17]

|�P(k)〉 =
(

φ0ψ̂
†
k +

∑
q,p

φq,pψ̂
†
k+q−pα

†
p↑α

†
−q↓

)
|0〉I |BCS〉↑↓, (A7)

which was suggested by Yi and Cui in an investigation of the g↑ = g↓ case [54]. Minimizing 〈�P(k)|H|�P(k)〉 with respect to
the coefficients φ0, φq,p yields the following equations:[

EP(k) − ε
(I )
k

]
φ0 = g↑

∑
q

v2
qφ0 + g↑

∑
q,p

vqupφq,p, (A8)

[
EP(k) − (

ε
(I )
p+q−p + Ep + Eq

)]
φq,p = g↑vqupφ0 + g↑up

∑
p′

up′φq,p′ − g↑vq

∑
q′

vq′φq′,p + g↑
∑

q′
v2

q′φq,p, (A9)

which can be solved self-consistently by introducing an auxiliary function

χq = g↑

(
vqφ0 +

∑
p

upφq,p

)
. (A10)

Recall that renormalization would make g↑ and terms including g↑
∑

q′ vq′ ... vanishingly small (since vq′ ∼ 1/q′2); we can
express φ0 and φq,k as

φ0 = 1

EP(k) − ε
(I )
k

∑
q

vqχq, (A11)

φq,p = 1

EP(k) − ε
(I )
p+q−p − Ep − Eq

χqup (A12)

and insert them back into Eq. (A10). Finally, we arrive at the equation(
1

g↑
−

∑
p

u2
p

EP(k) − ε
(I )
p+q−p − Ep − Eq

)
χq = vq

EP(k) − ε
(I )
k

∑
q′

vq′χq′ , (A13)

which gives Eq. (17) in the main text,

EP(k) = ε
(I )
k +

∑
q

v2
q

[
1

g↑
−

∑
p

u2
p

EP(k) − ε
(I )
p+q−p − Ep − Eq

]−1

= ε
(I )
k +

∑
q

v2
q

[
mr

2π h̄2a↑
−

∑
p

2mr

h̄2 p2
+

∑
p

u2
p

ε
(I )
p+q−p + Ep + Eq − EP(k)

]−1

, (A14)

after some manipulation of algebra.
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