
PHYSICAL REVIEW A 105, 023315 (2022)

Dynamics of large samples of repulsive Fermi gases at nonzero temperatures
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We develop a model of a binary fermionic mixture, consisting of a large number of atoms, applicable at
nonzero temperatures, in the normal phase. We use this approach to study the dynamics of degenerate Fermi
systems under various perturbations. For example, we analyze the spin-dipole oscillations of a two-component
fermionic mixture, demonstrating that the ferromagnetic phase shows up at a stronger repulsion between
components while the temperature rises. We study as well the radial oscillations of weakly interacting repulsive
Fermi gases. We obtain a good agreement with experimental data when available. Otherwise, we compare our
results with the outcome of the Hartree-Fock orbital calculations done for a system with a small number of
fermions.
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I. INTRODUCTION

Systems of ultracold fermionic atoms have been already
studied for years, both experimentally and theoretically. Since
the first experimental achievement of quantum degeneracy in
fermionic potassium gas [1], followed by successful attempts
to cool other elements [2–5], the interest in cold fermionic
gases has quickly increased, covering a broad range of
quantum many-body phenomena including thermodynamic-
and transport-related effects at unitarity [6–8], correlations,
in particular in optical lattices [9–16] or near Feshbach
resonances [17–19], strongly interacting gases in lower di-
mensions [20–25], or dipolar gases [26–29].

In particular, the dynamics of fermionic gases has been
thoroughly investigated. The measurement of collective mode
frequencies and damping rates as a function of temperature
supplied evidence for the superfluid behavior of a Fermi gas
[30], while an observation of a vortex lattice [31] provided
direct verification of superfluidity. By exciting hydrodynamic
modes, such as collective oscillations [30,32,33], sound [34],
or rotational modes [35], the transport properties of a unitary
Fermi gas have been experimentally determined. A careful
analysis of compression, quadrupole, and scissor modes in the
unitarity limit in the range of temperatures above the critical
temperature for superfluidity has been performed in Ref. [36]
and revealed a transition from hydrodynamic to collisionless
behavior with an increase of temperature. Recently, oscilla-
tions of a repulsive binary fermionic mixture [37,38], initially
phase separated by a domain wall, were studied experimen-
tally in connection with the long-standing problem of Stoner
instability [39].

In this paper we investigate the finite-temperature dynam-
ics of Fermi-Fermi mixtures by using a density-functional-like
description. To derive the equations of motion we start by in-
troducing the semiclassical distribution function for fermions.
Then we evoke the Kohn and Sham [40] way of treating a
nonzero temperature case within the density-functional meth-
ods and replace the local kinetic energy expression by the
one corresponding to free energy. Next, we switch to the

quantum hydrodynamic description [41] of the system, apply
the inverse Madelung transformation [42–44], and follow the
Dirac prescription [45] to get the desired equations.

The paper is then organized as follows. First, we present
the model of a two-component Fermi gas in the normal phase
capable of retrieving the dynamics when the number of atoms
is large (Sec. II). To prove the effectiveness of our model we
compare numerical results to experimental data on the dynam-
ics of fermionic systems in the case of spin-dipole modes [38]
(Sec. III) and to the outcome of the Hartree-Fock orbital calcu-
lations in the case of radial oscillations of a weakly interacting
repulsive Fermi gas (Sec. IV). We conclude in Sec. V.

II. EQUATIONS OF MOTION

A simple description of a one-component gas in terms
of a semiclassical distribution function fp(r) assumes that
fp(r)drdp/(2π h̄)3 gives the mean number of particles in the
phase-space volume element drdp. At equilibrium, at a given
temperature T and a chemical potential μ, one has for a
degenerate Fermi gas

fp(r) = 1

e[εp(r)−μ]/kBT + 1
, (1)

with εp(r) being the particle energy at position r. For a single-
component ideal Fermi gas in a trap this energy becomes

εp(r) = p2

2m
+ Vtr(r). (2)

The density of particles is obtained by integrating the
distribution function over all momenta n(r) ∼ ∫

fp(r)dp.
Other kinds of energies can be added to Eq. (2), in par-
ticular the one related to the Weizsäcker correction EW =
ξ (T )(h̄2/2m)

∫
[∇√

n(r)]2 dr, with a weakly temperature-
dependent coefficient ξ (T ) [46]. Now, when the other
fermionic component comes to the scene, the interaction en-
ergy has to be included as well. Assuming the intercomponent
interactions only depend on densities Vint(n+, n−) (hereafter
the components are distinguished by the indices “+” and
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“−”), Eq. (2) becomes

εp(r) = p2

2m
+ Vtr(r) + δE+

W

δn+
+ δVint

δn+
. (3)

The density of particles of the + component is calculated
as

n+(r) =
∫

1

e[εp(r)−μ+]/kBT + 1

dp
(2π h̄)3

= 1

λ3
f3/2(z+), (4)

and the energy density related to the local motion as

ε+(r) =
∫

p2/2m

e[εp(r)−μ+]/kBT + 1

dp
(2π h̄)3

= 3

2

kBT

λ3
f5/2(z+), (5)

where kB is the Boltzmann constant, λ =
√

2π h̄2/mkBT is the
thermal wavelength, and f3/2(z) and f5/2(z) are the standard
functions for fermions [47]. The “extended fugacity” equals

z+(r) = e(μ+−Vtr (r)−δE+
W /δn+−δVint/δn+ )/kBT . (6)

The chemical potential μ+ is determined by the normalization
condition N+ = ∫

n+(r)dr.
According to the Kohn and Sham proposition [40] on

a generalization of the density-functional formalism to the
finite-temperature case, for a further analysis the energy of the
system should be replaced by its free energy, whose density is

f+(r) = kBT

λ3
[(ln z+) f3/2(z+) − f5/2(z+)]. (7)

Additionally, in a dynamical case the energy functional has to
be modified by adding the energy of a macroscopic flow. Then
the part of the functional related to the + component, which
is minimized to get the equations underlying the system’s
dynamics, becomes

F+(n+, v+) =
∫

f+(r)dr +
∫

n+
1

2
mv2

+dr

+
∫

Vtr(r)n+ dr + EW + Vint. (8)

Here, v+(r) is the velocity field of a macroscopic flow of the
+ fermionic component and the second term on the right-hand
side represents the energy of such motion.

Now we introduce the pseudowave function ψ+(r) (n+ =
|ψ+|2) for the + component in such a way that

h̄2

2m
(∇ψ∗

+)(∇ψ+) = h̄2

2m
(∇|ψ+|)2 + n+

1

2
m v2

+. (9)

The functional Eq. (8) is then transformed to

F+(ψ+,∇ψ+) =
∫

f+(r)dr +
∫ (

− h̄2

2m
ψ∗

+∇2ψ+

)
dr

− h̄2

2m

∫
(∇|ψ+|)2dr

+
∫

Vtr(r)n+ dr + EW + Vint. (10)

A similar functional applies to the second component. The
equations of motion are

ih̄
∂

∂t
ψ±(r, t ) = δ

δψ∗±
F±[ψ±,∇ψ±]. (11)

Since

δ

δn±

∫
f±(r)dr = kBT ln z±, (12)

the equations of motion become

ih̄
∂ψ±
∂t

=
(

− h̄2

2m
∇2 + h̄2

2m

∇2|ψ±|
|ψ±| + kBT ln z±

+Vtr − ξ (T )
h̄2

2m

∇2√n±√
n±

+ δVint

δn±

)
ψ±. (13)

While solving Eqs. (13), the extended fugacities z±(r) are
found from the self-consistency condition f3/2(z±) = λ3 n±
[Eq. (4)] with n± = |ψ±|2. The Weizsäcker correction (the
one before the last one) becomes less important when the
number of atoms increases.

III. SPIN-DIPOLE OSCILLATIONS

We first examine our model in the case of an experi-
ment on spin-dipole oscillations of repulsive two-component
fermionic mixtures [38]. This experiment was aimed to prove
the existence of the phase transition from the paramagnetic to
ferromagnetic phase in a system of a two-component short-
range repulsive Fermi gas, i.e., to resolve the long-standing
hypothesis of itinerant ferromagnetism posed by Stoner [39].
It was predicted in Ref. [39] that nonlocalized electrons get
into a ferromagnetic state when short-range repulsion between
opposite spin electrons becomes large enough to beat the
Fermi pressure.

To minimize the effect of the pairing phenomenon [18,19],
in the experiment of Ref. [38] a mixture of 6Li atoms was
prepared in a special state, in which both components were
spatially separated. It was realized in two steps. First, the
components held in a prolate harmonic trap were spatially
separated by using a magnetic field gradient. Next, when the
overlap of two components was small enough, the optical
repulsive barrier separating clouds was switched on and the
magnetic field gradient was turned off. Then the optical barrier
was suddenly removed and the spin dynamics, i.e., oscilla-
tions of centers of mass of each component, was studied.
Both frequencies and damping rates were measured, which
demonstrated the existence of a critical repulsion between
components. For weak repulsion the effect of softening of
the spin-dipole mode was observed, i.e., the frequency of the
oscillations was continuously decreasing with the strength of
a repulsion. Simultaneously, both atomic clouds were passing
through each other. For stronger repulsion, however, qualita-
tively different behavior was found. Two atomic clouds started
to bounce off each other with a frequency higher than the axial
trap frequency.

To model the experiment of Ref. [38] with Eqs. (13), we
first obtain the initial state of a two-component Fermi gas
by solving Eqs. (13) the by imaginary-time technique [48]
in the presence of a cigar-shaped harmonic trap with radial
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FIG. 1. Frequencies of the spin-dipole mode of a repulsive
two-component Fermi gas plotted as a function of kF a for the
temperatures T/TF = 0.12 (upper frame) and T/TF = 0.25 (lower
frame)—a comparison with the experiment of Ref. [38]. Simulations
were performed for a system with the number of atoms equal to
N/2 = 50 000 (as in the experiment), where the Weizsäcker correc-
tion in Eq. (13) can be safely neglected, and N/2 = 1000.

and axial frequencies equal to ω⊥ = 2π × 265 Hz and ωz =
2π × 21 Hz, respectively, and in the presence of a repulsive
optical barrier. Then we remove the barrier and monitor the
dynamics of the system by calculating the relative distance
d (t ) between the centers of two spin clouds. Analyzing d (t )
as a function of time we extract both the frequency and the
damping rate of the mode (see Ref. [49] for details).

To get an agreement with the experimental data we must
include in the model the many-body correlations due to inter-
actions. This can be achieved by renormalizing the coupling
constant in the two-body contact potential [44,49,50]. For a
uniform system, it is done in a way to get a correct low-
density expansion, in the parameter k̃F a, of an energy of a
two-component Fermi gas [see Eq. (3) in Ref. [49]]. Here,
k̃F is the Fermi wave number and a is the s-wave scatter-
ing length. For a trapped gas a local density approximation
is used. In the mean-field approximation the interaction en-
ergy density is gn+n−, with g = 4π h̄2a/m, and the term
δVint/δn± = gn∓ appears in Eqs. (13). After renormaliza-
tion, the gn± term is replaced by gn± + A(4/3 n1/3

∓ n± +
n4/3

± ) + B(5/3 n2/3
∓ n± + n5/3

± ) with A = 3ga(6π2)1/3(11 −
2 ln 2)/35π and B = 3ga2(6π2)2/3π/4 × 0.23 [44].

In Fig. 1 we show the numerical results for frequencies of
the spin-dipole mode for two temperatures studied experimen-
tally in Ref. [38] (see Fig. 2). In the upper frame an additional
experimental point (most right) is included [see Fig. 3(c)
in Ref. [38]]. Simulations were performed for the system

both with the number of atoms as in the experiment (50 000
atoms in each component) and much smaller (N/2 = 1000).
Figure 1 proves an overall agreement between the numerics
and experimental data. Our calculations reveal a softening of
the spin-dipole mode followed by a transition from the para-
magnetic to ferromagnetic phase. The hydrodynamic model
we developed gives the correct value of kF a [here, kF =
(24N )1/6/(h̄/m ω)1/2, where ω is the geometric mean of trap
frequencies in all directions] at which this transition occurs. It
is already well understood that at zero temperature the soften-
ing phenomenon depends solely on the combination kF a [51].
Our simulations support this observation also for nonzero
temperatures (see Fig. 1). According to Stoner’s model the
transition to the ferromagnetic phase depends on kF a only as
well, which again is exhibited by our simulations.

Above the critical value of kF a both components stop to
penetrate each other and oscillate with frequencies smaller
than twice the axial trap frequency, in agreement with exper-
iment. Numerical results seem to be consistent for the two
considered numbers of atoms. Our observation is, however,
that the size of the intermediate regime (the one between the
paramagnetic and ferromagnetic regimes) differs depending
on the number of atoms in the sample. For larger systems the
large (kF a) value of the oscillation frequency is reached faster,
i.e., for smaller kF a. This can be understood as follows. For
small samples (N = 1000 in our case) even after crossing the
critical value of kF a we can still observe the gas transmission
through the intercomponent interface on the perimeter. Hence,
in the intermediate regime the flow is partially still miscible.
The full transition into the immiscible regime [i.e., when
the oscillation frequency takes its large (kF a) value] is then
shifted to stronger interactions. This transition occurs faster
(in terms of kF a) for larger systems. It happens because, first,
the damping rates for spin-dipole oscillations are high for the
values of repulsion strengths kF a close to the critical one (see
Fig. 3 in Ref. [49]), and, second, these rates are bigger for
systems with a larger number of atoms. Since damping rates
decrease with temperature, the intermediate region broadens
with temperature.

Figure 2 summarizes the hydrodynamic calculations per-
formed for smaller atomic samples (Fig. 1 demonstrates that
the transition to the ferromagnetic phase occurs actually at the
same value of kF a, independently of the number of atoms).
In the upper frame we show the frequencies of the spin-
dipole mode for two additional temperatures, T/TF = 0.4 and
T/TF = 0.53, for a system consisting of 1000 atoms in each
component. These temperatures were studied in Ref. [38],
although in a different way—not by following the spin-dipole
oscillations but by analyzing the stability of the initially
created spin domains. The lower frame is the phase dia-
gram, which gathers the results corresponding to the transition
between the paramagnetic and ferromagnetic phases. This
diagram shows the critical value of kF a as a function of
temperature. The experimental data are marked as red crosses,
taken from Ref. [38] [see Fig. 3(d) therein], while numerical
results are shown as blue bullets. The solid line is a power-law
fit to the numerical points and separates the paramagnetic
and ferromagnetic phases. At a given value of kF a the fer-
romagnetic phase is entered while the system’s temperature
is decreased, in qualitative agreement with Stoner’s model
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FIG. 2. Upper frame: Frequencies of the spin-dipole mode of a
repulsive two-component Fermi gas plotted as a function of kF a for
different temperatures, up to T/TF = 0.53. Lower frame: Phase dia-
gram showing the critical value of the repulsive interaction strength
at a given temperature. The red crosses are the experimental data
taken from Ref. [38] [see Fig. 3(d) therein], while the blue bullets
come from numerics. The solid line, which is a power-law fit to
the numerical points, separates the paramagnetic (white area) from
the ferromagnetic (dark area) phase. Blue squares and red diamonds
are the predictions of static Stoner’s model assuming interactions be-
tween atoms are not normalized and are renormalized, respectively.

of itinerant ferromagnetism—the ferromagnetic phase rises
when interactions are able to overcome the fermionic quantum
pressure, which decreases with decreasing temperature.

To check on a quantitative level our numerical (dynamic)
results versus predictions of the original (static) Stoner’s
model we compare the kinetic energy of the gas to its in-
teraction energy at equilibrium [52]. In the simplest case,
i.e., in the mean-field approximation, the interaction energy
is g

∫
n+n− dr and the above-mentioned comparison reads

3

2

kBT

λ3

∫
f5/2(z+)dr = 4π h̄2

m kF

(∫
n+n− dr

)
(kF a)cr. (14)

The critical value of the repulsive interactions (kF a)cr

is found assuming equal component densities n+ = n− =
f3/2(z+)/λ3 normalized to N+ = N− = 1000 with z+ =
exp [(μ+ − Vtr )/kBT ]. The critical values (kF a)cr as a function
of T/TF are plotted in Fig. 2 (lower frame) as blue squares.
At zero temperature (kF a)cr ≈ 1.7, in agreement with our
earlier calculations [44] [see Fig. 1(d) therein]. When the in-
teractions between atoms become renormalized, the condition
(14) changes into a third degree polynomial equation for the

critical interactions (kF a)cr. The solutions as a function of
T/TF are shown in Fig. 2 (lower frame) as red diamonds.
Now, at zero temperature (kF a)cr ≈ 0.9, in agreement with
the experimental data of Ref. [38] at the lowest temperature.
The overall behavior of (kF a)cr resembles the one determined
experimentally and obtained in numerical simulations (both
representing the dynamical Stoner effect), especially for lower
temperatures.

A note regarding the consistency of presented results with
those reported already in Refs. [44,49] is now in order. First,
the frequency of the spin-dipole mode in a ferromagnetic
phase strongly depends on the geometry of the trapping poten-
tial, while a density-functional method is used. In an elongated
trap, as in the experiment of Ref. [38], it is about 1.7 (see
Fig. 2, upper frame). At zero temperature and in a spherically
symmetric trap this frequency approaches a value of twice
the trap frequency [44], with a recognizable admixture of the
other frequency (ωSD/ωz = √

2). On the other hand, within
the Hartree-Fock approach the spin-dipole mode frequency
in a ferromagnetic phase remains twice the axial frequency,
independently of temperature [49]. This probably happens be-
cause our treatment of the Hartree-Fock dynamics at nonzero
temperatures does not allow for atoms to change between
single-particle orbitals during the evolution. In our case only
one-particle orbitals change in time during the dynamics, not
the populations—populations are chosen by using a Monte
Carlo sampling technique, before the barrier separating com-
ponents is removed (for an approach in which populations are
treated on the same way as orbitals, although at equilibrium
only, see Ref. [53]).

IV. OSCILLATIONS OF WEAKLY INTERACTING
REPULSIVE FERMIONIC MIXTURES

In this section we carry out simulations of the dynamics of
a two-component weakly interacting Fermi gas, initially con-
fined in a spherically symmetric trap, after a weak disturbance
of the trapping potential. Within a weak-driving regime the
system’s response can be treated analytically in the range of
high temperatures and in the limit of an ideal gas. Here, we are
verifying our description of large Fermi systems by studying
the monopole oscillations of a Fermi gas for weak repulsive
interactions. As in Sec. III, we use a renormalized interaction
to describe the two-component weakly interacting Fermi gas.

Both gases are perturbed in phase, i.e., two atomic clouds
are first simultaneously being squeezed as an effect of in-
creasing trap frequencies and next the trapping potential is
slightly attenuated (by decreasing trap frequencies) to allow
the gas to expand. Such a cycle is repeated a few times after
which the system starts to oscillate in a trap. In this way
the spherically symmetric oscillations are excited. We find
the frequencies of such excitations by calculating the width
of an atomic cloud

∫
d3r r2n±(r, t ) and analyzing its time

dependence. We show the frequencies of in-phase monopole
modes as a function of temperature in Fig. 3, limiting our-
selves only to the paramagnetic range of parameters [54–56].
At zero temperature (open circle data) our results perfectly
match those obtained within the time-dependent Hartree-Fock
method (see Ref. [54]). In the limit of no interaction between
components, the spherically symmetric mode oscillates with
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FIG. 3. Upper frame: Frequencies of in-phase monopole modes
as a function of temperature. The critical interaction for which the
phase separation occurs depends on temperature. Only frequencies
of modes excited in the paramagnetic phase are shown. Both com-
ponents consist of 1000 atoms. Lower frame: The monopole mode
frequency as a function of temperature in the limit of no inter-
action between components, clearly approaching

√
2 ω0 for high

temperatures.

frequency 2ω0, where ω0 is the trap frequency. While moving
towards the paramagnetic-ferromagnetic phase, crossing this
frequency increases to about 2.2ω0. For higher temperatures
all mode frequencies are shifted down and in the limit of
T � TF can be studied analytically.

To analyze small in-phase oscillations of a two-component
interacting Fermi gas at the high-temperature limit we utilize
the Madelung representation [41] of Eqs. (13). For the + com-
ponent this representation is expressed as a set of equations for
the density and the velocity fields:

∂n+
∂t

+ ∇ · (n+v+) = 0,

m
∂v+
∂t

+ ∇
(

kBT ln z+ + Vtr + δVint

δn+
+ 1

2
mv2

+

)
= 0.

(15)

At the high-temperature limit one has n+λ3 = f3/2(z+) ≈
z+. Small oscillations are investigated by assuming small

deviations of the state from the equilibrium and by look-
ing for periodic solutions for deviations. We write the
density as n+ = n+

eq + δn+, where δn+ is the departure
from the equilibrium density and assume that both the
velocity and δn+ are small quantities. Since n+

eq = exp
[(μ+ − Vtr − (δVint/δn+)eq)/kBT ]/λ3 and δn+ = δn− (in-
phase oscillations), Eqs. (15) are transformed to

∂

∂t
δn+ = −∇ · (n+

eq v+),

m
∂v+
∂t

= −∇
[

kBT
δn+
n+

eq
+ G(n+

eq)δn+

]
, (16)

where

G(n+
eq) =

[(
∂

∂n+
+ ∂

∂n−

)
δVint

δn+

]
n+=n−=n+

eq

, (17)

and can be combined into a single equation for the density
deviation

m
∂2

∂t2
δn+ = ∇ ·

[
n+

eq ∇
(

kBT
δn+
n+

eq
+ G(n+

eq)δn+

)]
. (18)

Now, the limit of small interactions can be analyzed.
For weak interspecies interactions the second term on
the right-hand side of Eq. (18) is neglected and n+

eq =
exp [(μ+ − Vtr )/kBT ]/λ3. Equation (18) can be rewritten as

m
∂2

∂t2

(
δn+
n+

eq

)
= kBT ∇2

(
δn+
n+

eq

)
− (∇Vtr )∇

(
δn+
n+

eq

)
. (19)

The trapping potential is spherically symmetric, Vtr =
m ω2

0 r2/2, and we search for periodic solutions δn+/n+
eq ∼

e−iωt of Eq. (19) which are spherically symmetric as well. The
solutions can be found by using the power series method. The
lowest-energy mode has a frequency ω = √

2 ω0, marked by
a horizontal solid line in Fig. 3 (lower frame). The mode itself
is δn+ ∼ [1 − mω2r2/(6kBT )]n+

eq.

V. CONCLUSIONS

In summary, we have studied the dynamics of mixtures of
repulsive Fermi gases consisting of a large number of atoms
at nonzero temperatures. We find quantitative agreement with
the experimental results of Ref. [38] on the spin-dipole oscil-
lations. The calculations show the dependence of the critical
repulsion kF a on the temperature. The transition to the ferro-
magnetic phase requires a larger value of kF a with increasing
temperature, in agreement with Stoner’s picture of itinerant
ferromagnetism. We also model breathing modes of weakly
interacting repulsive fermionic mixtures, getting agreement
with the low-temperature results of Ref. [54] and showing
a decrease of oscillation frequencies with an increase of
temperature.
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