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Damping transition in an open generalized Aubry-André-Harper model
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We study the damping dynamics of the single-particle correlation for an open system under periodic and
aperiodic order, which is dominated by the Lindblad master equation. In the absence of the aperiodic order,
the Liouvillian superoperator exhibits the non-Hermitian skin effect, which leads to unidirectional damping
dynamics, dubbed as “chiral damping.” Due to the non-Hermitian skin effect, the damping dynamics is boundary
sensitive: The long-time damping of such open systems is algebraic under periodic boundary conditions but
exponential under open boundary conditions. We reveal the phase transition with the inclusion of the hopping
amplitude modulation. By using the spectral topology and a finite-size scaling analysis in the commensurate case,
we show there exists a phase transition of the skin effect with non-Bloch anti-parity-time symmetry breaking.
For the incommensurate case, we find richer phases with the coexistence of the non-Hermitian skin effect and
the Anderson localization, which are separated by a generalized mobility edge. We reveal the transition of the
damping dynamics as a consequence of the phase transition. Furthermore, we propose a possible scheme with
ultracold atoms in a dissipative momentum lattice to realize and detect the damping dynamics.
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I. INTRODUCTION

With advances in manipulating dissipation and quan-
tum coherence in the laboratory, the past years have seen
a revived interest in the theory of open and nonequilib-
rium systems [1,2]. Effective non-Hermitian descriptions have
prominently transpired in a plethora of nonconserved systems,
such as classical waves with gain and loss [3–8], solids with fi-
nite quasiparticle lifetimes [9,10], and open quantum systems
with Markovian reservoirs [11,12] etc. Unique features of
non-Hermitian systems have been recognized in various phys-
ical contexts, especially in the topological bands [13–16]. For
instance, non-Hermitian systems generally possess complex-
valued spectra, classified by the homotopy group of the
general linear group GL(n,C) [15,17]. The non-Hermitian
systems can be gapped in two distinct ways with a line gap or
a point gap. A hallmark of the point-gap topology is failure of
the Bloch theorem and the non-Hermitian skin effect (NHSE),
namely, the anomalous boundary localization for majority of
bulk states [14,18–23].

On the other hand, localization has long time been rec-
ognized as important physical implication of scattering,
transmission, or interference of waves in dissipative me-
dia since the discovery of Anderson localization [24,25].
The Anderson localization can occur for lattice with
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disorder and long-range aperiodic order [24–29]. In recent
years, there is growing attention on the interplay of non-
Hermitian physics and disorder effect [30–43]. One line of
work is the characterization and classification of the matter
phase in terms of disorder [16,44,45]. Other topics concern
cooperation with coherent control techniques [46]. Disor-
der or quasiperiodicity leads to exotic behaviors, including
localization-delocalization transition under the parity-time
(PT ) symmetry breaking [47–49], generalized mobility
edges [36], and anomalous particle transport [34], among
which the non-Hermitian Aubry-André-Harper (AAH) model
provides as a paradigmatic example. However, yet most works
only concentrate on non-Hermitian Hamiltonian problems,
systems resting on Liouvillians are still rarely studied.

In this paper, we consider an open quantum system with pe-
riodic and aperiodic orders, governed by the Lindblad master
equation. The aperiodic order is introduced by the modulation
of lattice hopping amplitude. Following the methods devel-
oped in Refs. [50,51], we study the dynamics of this system
in terms of the damping matrix derived from the Liouvillian.
The damping matrix is mathematically non-Hermitian and can
be seen as a generalized AAH model. For the commensu-
rate case, we show a phase transition of the skin effect with
non-Bloch anti-PT symmetry breaking (reminiscent of the
concept of non-Bloch PT symmetry, see Refs. [52,53]). The
phase transition is characterized by both the spectral topol-
ogy and the mean inverse participation ratio, further revealed
by a finite-size scaling analysis. As a physical consequence,
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we find transition of the damping dynamics across distinct
phases. To characterize the damping transition, we investigate
the longest relaxation time and relaxation velocity, showing
a way to control the relaxation process in the experiment.
As revealed in Ref. [50], in the absence of the modulation,
the system will undergo chiral damping, i.e., the system
starts to damp in an unidirectional way. With the increase
in modulation strength, the chiral damping fades away. For
the incommensurate case, we find richer phases due to the
competition of the non-Hermitian skin effect and the Ander-
son localization. We identify phases with the coexistence of
two types of the states, which are separated by a generalized
mobility edge. Furthermore, we propose a possible scheme
based on the momentum lattice to realize and detect our
model [54–56].

The rest of this paper is organized as follows. In Sec. II, we
briefly review the general framework on how to cast a Liouvil-
lian with linear jump operators to a non-Hermitian damping
matrix. In Sec. III, we contract a generalized AAH model,
based on a one-dimensional dimerized lattice with modulation
of intracell hopping amplitude, then reveal the phase transition
in terms of the properties of the spectra and the eigenmodes.
In Sec. IV, we numerically calculate the time evolution of our
model and study the dynamical phase transition. In Sec. V, we
consider the incommensurate case, and identify three distinct
phases and the existence of a generalized mobility edge. Then
we present an experimental proposal for realizing and detect-
ing this model in Sec. VI. Finally, a short summary is given in
Sec. VII.

II. GENERAL FORMALISM

We start with outlining the Lindblad damping matrix
framework for open quantum systems, following Ref. [50].
The dynamics of an open system undergoing Markovian
damping is governed by the following Lindblad master equa-
tion,

dρ

dt
= −i[H, ρ] −

∑
μ

(L†
μLμρ + ρL†

μLμ − 2LμρL†
μ)

= −i(Heffρ − ρH†
eff ) + 2

∑
μ

LμρL†
μ, (1)

where ρ is the density matrix, H is the Hamiltonian, and
L′

μs are the Lindblad jump operators describing coupling to
environment. For short-time dynamics before any quantum
jump event, when the last term in Eq. (1) is negligible, the
system is described by an effective non-Hermitian Hamilto-
nian Heff = H − i

∑
μ L†

μLμ.
We consider noninteracting particles in a tight-binding

lattice. The Hamiltonian can be generally written as H =∑
i j hi jc

†
i c j , where c†

i (ci ) is the creation (annihilation) opera-
tor on lattice site i, and hi j = h∗

ji is a time-dependent hopping
amplitude (i �= j) or on-site potential (i = j). To see the full-
time evolution of the density matrix, it is convenient to define
the single-particle correlation �i j = Tr[c†

i c jρ(t )]. The time
evolution then follows d�i j/dt = Tr[c†

i c jdρ/dt]. If only the
single-particle gain and loss with linear gain dissipator Lg

μ =∑
i Dg

μic
†
i and loss dissipator Ll

μ = ∑
i Dl

μici are concerned,

the evolution equation can be recast as

d �(t )

dt
= X �(t ) + �(t )X † + 2Mg, (2)

where X ≡ ihT − (MT
l + Mg) is dubbed the damping matrix

with (Mg)i j ≡ ∑
μ Dg∗

μiD
g
μ j and (Ml )i j ≡ ∑

μ Dl∗
μiD

l
μ j . Deduc-

tion from the single-particle correlation of its steady value
�̃(t ) = �(t ) − �s, homogenizing Eq. (2) gives

�̃(t ) = eXt�̃(0)eX †t . (3)

Here steady-state correlation �s = �(∞) is determined by
d�s/dt = 0, or X�s + �sX † + 2Mg = 0.

III. MODEL

We consider the following dimerized AAH model [57],

H =
N∑

i=1

(t1 + λi )ĉ
†
i,Aĉi,B + t2ĉ†

i,Bĉi+1,A + H.c., (4)

where A and B denote two internal degrees of freedom, λi =
λ cos(2παi + δ) depicts modulation of intracell hopping with
real parameters λ, α, and δ. When α = p/q (with p and q
being relatively prime positive integers), the lattice has an
enlarged periodicity over q cells, whereas the lattice becomes
quasiperiodic with the incommensurate modulation when α is
an irrational number. Each unit cell contains a single loss and
gain dissipator,

Ll
x =

√
γl/2(cxA − icxB), Lg

x = √
γg/2(c†

xA + ic†
xB), (5)

where x denotes the lattice site. For simplicity, we first study
the commensurate case. In the commensurate case, the damp-
ing matrix is translational invariant with respect to q cells
under the periodic boundary condition (PBC). In the basis,

ĉk = (ĉ1ke−ik/qĉ2k · · · e−i(q−1)k/qĉqk )T, (6)

the damping matrix in momentum space can be written as

X (k)mn = i(δm,n−1tm + δm−1,nt ′
n + δm,1δn,2qt2e−ik

+δm,2qδn,1t2eik ) − γ

2
I2q, (7)

where k ∈ [0, 2π ], γ = γl + γg, I2q is a 2q × 2q identity
matrix, t2i−1 = t1 + γ /2 + λ2i−1, t ′

2i−1 = t1 − γ /2 + λ2i−1,
and t2i(t ′

2i ) = t2. Here to shorten notations we define ĉ1k =
(ĉ1Ak ĉ1Bk ).

We can write X in terms of its right and left eigenvectors,

X =
∑

n

λn|uRn〉〈uLn|, (8)

where X †|uLn〉 = λ∗
n|uLn〉 and X |uRn〉 = λn|uRn〉. Then we can

also reexpress Eq. (3) as

�̃(t ) =
∑
n,n′

exp[(λn + λ∗
n′ )t]|uRn〉〈uLn|�̃(0)|uLn′ 〉〈uRn′ |. (9)

The long-time behavior of �̃ is dominated by the sector
n = n′. The Liouvillian spectrum λn always holds negative
real parts due to the dissipative nature Re(λn) � 0. There-
fore, the long-time features of the damping dynamics are
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FIG. 1. The phase diagrams of the the Liouvillian gap 	 (in
units of t1 = 1) depends on the dissipation rates γg(γl ) and (a) the
amplitude of the intracell hopping modulation λ; (b) the ratio of the
hopping amplitudes t2/t1. The system parameters are α = 1/4, δ = 0
and for (a) t2/t1 = 1; for (b) λ = 1. Here we consider balanced loss
and gain dissipation γg = γl . And the calculations are carried out
with a finite chain with L = 60 sites under the OBC.

captured by the Liouvillian gap 	 = min[2 Re(−λn)]. As
long as the spectrum is gapped, the system fulfills expo-
nential dissipation. Only a vanishing gap ensures algebraic
convergence [50]. We numerically calculate the Liouvillian
gap under the open boundary condition (OBC). The results
are presented in Fig. 1. The Liouvillian gap is dominated
by the dissipation rate γ . Other system parameters, such as
the amplitude of the intracell hopping modulation λ and the
ratio of the hopping amplitudes t2/t1 only play diminishing
roles for the long-time exponential damping. However, the
modulation of these parameters is essential for the transition
of ways to enter the exponential stage as we will see in the
next section.

We compare the complete Liouvillian spectra under the
OBC and the PBC in Figs. 2(a)–2(c). The discrepancy
between the periodic- and the open-boundary spectra in
Figs. 2(a) and 2(b) implies the failure of Bloch’s theorem
and the existence of NHSE, i.e., all the eigenstates of X are
exponentially localized at the boundary. Due to the nontriv-
ial boundary effect from the skin modes, the conventional
Fourier-transformed damping matrix X (k) in Eq. (7) does not
reproduce the spectrum structure of an open chain. We use the
non-Bloch theory to describe the system under the OBC via
complex analytical continuation of the Bloch momentum k →
k + iκ (or eik → β). The non-Bloch Hamiltonian is given by

X (β )mn = i(δm,n−1tm + δm−1,nt ′
n + δm,1δn,2qt2β

−1

+δm,2qδn,1t2β ) − γ

2
I2q. (10)

By solving its characteristic equation det[λI2q − X (β )] = 0,
we have a quadratic equation for β with two solutions β1,2

satisfying,

β1β2 = t ′
1t ′

3 · · · t ′
2q−1

t1t3 · · · t2q−1
. (11)

In the continuum limit, |β1| = |β2|, which gives out |β1,2| =
r =

√
| t ′

1t ′
3···t ′

2q−1

t1t3···t2q−1
|. Then the non-Bloch Hamiltonian can be ob-

tained by a simple replacement of k with k + iκ = k + i ln(r)
or eik with reik .

FIG. 2. (a)–(c) The eigenvalues of the damping matrix on the
complex plane under the PBC (red squares) and the OBC (solid
circles) with the color bar indicating the inverse participation ra-
tio (IPR) values of the corresponding eigenvectors for (a) λ = 0.2,
(b) λ = 0.85, and (c) λ = 1.0, respectively. (d) The mean inverse
participation ratio (MIPR) and the real proportion P as the function
of modulation amplitude λ for OBC systems with L = 60 sites. The
dashed line indicates phase transition with the anti-PT symmetry
breaking. The other parameters are as follows: t1 = t2 = 1, α = 1/4,
and δ = 0.

Notably, we find that as λ increases, the OBC system un-
dergoes an emergent non-Bloch anti-PT symmetry breaking,
which is reminiscent of the non-Bloch PT symmetry break-
ing reported in Refs. [52,53]. Without loss of generality, we
consider the lift of the damping matrix X by a constant opera-
tion X̃ = X + γ

2 I, which does not alert the spectral topology.
X̃ possesses an emergent anti-PT symmetry, provided that
PT X̃ (PT )−1 = −X̃ with PT ci,A(B)(PT )−1 = c−i,A(B) and
PT i(PT )−1 = −i. In the anti-PT symmetric phase, the
OBC spectra of X̃ remain purely imaginary [see Fig. 2(a),
but with a uniform shift on the real axis], while it becomes
complex valued in the anti-PT symmetry broken phase [see
Figs. 2(c) and 2(d)]. The phase boundary λc = t1 − γ /2 is
well determined from the numerical analysis (for more details,
see Appendix A). To give a more complete description, we
numerically calculate the real proportion for X̃ , P = Nr/N ,
where Nr and N denote the number of eigenvalues with a
nonzero real part and all eigenvalues, respectively. The nu-
merical results are shown in Fig. 2(d). The phase transition
can be transparently seen at λc: for λ < λc, the real proportion
is almost vanishing P = 0, but acquires large values across λc.

The phase transition signifies the change in the spectral
topology of the periodic-boundary spectrum. The point gap of
the spectrum (from loops to lines) closes across λc, then the
system enters a critical phase with the states being immune
to NHSE. The localization transition is demonstrated via
finite-size scaling analysis as numerically confirmed in Fig. 3.
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(a) (b)

FIG. 3. The MIPR as the function of system length L for (a) λ =
0.2 and (b) λ = 1. Other parameters are the same as that in Fig. 2,
and a is the lattice distance. The dots express the numerical results
for distinct system sizes, and the solid lines express the interpolation.
The scale-free localization in (b) indicates immune of skin effect in
the anti-PT symmetry broken phase.

We calculate the MIPR for a finite open chain,

Im ≡ 1

L

∑
	

I (	), I (	) =
∑

i

|ui(	)|4/
[∑

i

|ui(	)|2
]2

,

(12)

where I (	) is the IPR for the right eigenvector |uR(	)〉 of X
with eigenvalue 	 and ui(	) being the ith entry of |uR(	)〉.
As a general rule of thumb, the IPR for an extended state is
on the order of 1/L, whereas a localized state yields finite IPR
values. The MIPR behaves nonmonotonically and rapidly de-
creases in the symmetry-broken phase as the NHSE vanishing.
Typically, a skin mode ∼eκx, where κ is the generalized quasi-
momentum, and the associated localization length ∼1/|κ| is
independent of the system size [see Fig. 3(a)]. However, in the
anti-PT symmetry-broken phase, the system exhibits quite
different scaling behavior, which obeys a logarithmic rule,
as shown in Fig. 3(b). The numerical interpolation indicates
ln(Im) ≈ −0.22 ln(L) − 1.39. This means a scale-free local-
ization in the symmetry-broken phase where the localization
length is proportional to the system size. The finite-size scal-
ing reveals that localization property is not dominated by the
NHSE in the symmetry-broken phase. Therefore, the phase
transition can be identified both by the properties of spectra
and states.

We note that there are nontrivial in-gap modes in the OBC
spectra [see Figs. 2(a)–2(c)], which is characterized by a
winding number (see Appendix B). In this paper, we focus
on the bulk dynamics, thus, these topological modes do not
play important roles.

IV. DAMPING TRANSITION

As a manifestation of the physical implications relevant
with the underlying anti-PT symmetry breaking, we perform
full-time simulation of the damped system by numerically
solving Eq. (3). In the absence of the modulation or for weak
modulation λ, the damping dynamics exhibits chiral features
under the OBC, dubbed as “chiral damping” as shown in
Fig. 4(a). The system always enters exponential damping for
a long enough evolution time due to the finite Liouvillian gap.

FIG. 4. Time evolution of relative particle number ñx (t ) =
nx (t ) − nx (∞) of an open chain with L = 60 sites for (a) λ = 0.2,
(b) λ = 0.85, and (c) λ = 1.0, respectively. (d) shows sectors of (a) at
certain lattice sites, compared with the results for a PBC system.
Other parameters are the same as that of Fig. 2. The initial state is
the completely filled state �x,sc†

x,s|0〉, i.e., �(0) is an identity matrix.

However, the rapid exponential stage does not immediately
start but follows an initial algebraic damping. The initial al-
gebraic damping ends up successively from the left sites to
the right sites, forming a sharp “damping wave front” as more
clearly seen in Fig. 4(d). This chiral feature fades away as
λ increases, and eventually the system only fulfills nonchiral
damping across the critical point λc.

The chiral damping is attributed to the NHSE, according
to Ref. [50]. Intuitively, the asymmetric coupling effec-
tively induces a chiral current, which is associated with the
NHSE [58]. To see the role of this current, we decompose the
propagator Jx′x = 〈xs| exp(−iXt )|x′s′〉 in terms of the gener-
alized Brillouin zone (GBZ) modes,

Jx′x ∼ exp(−γ t/2) exp[−κ (x − x′)], (13)

where the term exp(−γ t/2) comes from the background
damping [see the last term of Eq. (7)], and the second term is
associated with modes acquiring complex momentum k + iκ .
When we can find some existent site x′ = x − max(vk )t (> 0)
to compensate for the background damping, we will have
algebraic damping, where vk = Im(∂λβ/∂k ) is the group ve-
locity. This indicates a wave front x = max(vk )t .

The group velocity plays important roles. However, for the
modulated cases, λβ does not have a simple analytic solution.
We can also estimate the group velocity by its Lebesgue
measure on the imaginary axis: vg ∼ �W/2, where �W =∑

l �Wl is the Lebesgue measure with �Wl being the band-
width of the spectrum on the imaginary axis. As we have
discussed in Sec. III, the spectrum properties dramatically
change across the phase transition point. When the NHSE
occurs, the system possesses a continuous spectrum on the
imaginary axis, which gives rise to a finite group velocity and
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FIG. 5. The longest relaxation time τ (solid circles, in units of
1/t1) and relaxation velocity vR (red squares, in units of a/t1) as
the functions of λ. The other parameters are as follows: t1 = t2 = 1,
α = 1/4, δ = 0, and L = 60.

the ballistic current. In contrast, the system possesses discrete
point spectrum across λc as shown in Figs. 2(b) and 2(d). The
corresponding velocity is vanishing vg ∼ �W/2 ∼ 0. Intu-
itively, this leads to dynamical localization, thus, the damping
over the lattice becomes uniform and nonchiral.

To characterize the damping transition, we also calculate
the longest relaxation time and relaxation velocity. The results
are shown in Fig. 5. Equation (3) also describes the relaxation
processes of single-particle correlation. We define the relax-
ation time τ of the most left site as nss,L − nL(τ ) = e−1nss,L ,
where nss,L is the density profile of the steady state [59]. The
relaxation velocity is defined as vR ≡ L/τ . In the nonmod-
ulated limit, the damping wave front can be determined as

x = max(vk )t with vk ≈ 1 for t1 = t2 [50]. Therefore, it is
easy to obtain that τ ∼ L. As λ increases, the chiral damping
fades away, and relaxation time decreases. With λ breaking
the anti-PT symmetry, the relaxation time τ ∼ 1/	. This
relation between the longest relaxation time and the Liouvil-
lian gap is also confirmed in many previous studies for some
quantum dissipative system without NHSE [60–62].

V. INCOMMENSURATE CASE

We now investigate the incommensurate case. Without loss
of generality, we take α = (

√
5 − 1)/2 as a typical example.

The quasiperiodic modulation gives rise to richer phases due
to the competition between the NHSE and Anderson localiza-
tion. In Fig. 6(d), we present the real proportion and MIPR as
functions of λ, which characterize three distinct phases, i.e.,
only NHSE (I with λ < λc1), NHSE dominates (II with λc1 <

λ < λc2), and Anderson localization dominates (III with λ >

λc2). The phase boundary is numerically determined for more
details, see Appendix A.

In phase I, the spectrum obtained under the PBC and the
OBC are not identical: The spectrum under the PBC forms
a loop whereas the spectrum of X̃ under the OBC is purely
imaginary as shown in Fig. 6(a). All the eigenmodes exhibit
NHSE, which is similar to the commensurate case.

With the increasing λ, skin modes and localized modes
coexist in phase II. The open-boundary spectrum of X̃ is still
purely imaginary. Parts of the open-boundary spectrum are

FIG. 6. (a)–6(c) The eigenvalues of the damping matrix on the complex plane under the PBC (red squares) and the OBC (solid circles)
with the color bar indicating the IPR values of the corresponding eigenvectors for the incommensurate cases α = (

√
5 − 1)/2 and (a) λ = 0.2,

(b) λ = 0.85, and (c) λ = 1.0, respectively. (d) The MIPR and the real proportion P as the function of modulation amplitude λ for OBC
systems with L = 60 sites. (e) The local density of eigenmodes for the PBC damping matrix in (b), corresponding to the eigenvalues outside
(i) and inside (ii) the generalized mobility edge. (f) The local density of eigenmodes for the OBC damping matrix in (c), corresponding
to the eigenvalues outside (i) and inside (ii) the generalized mobility edge. (g) and (h) Time evolution of relative particle number ñx (t ) =
nx (t ) − nx (∞) of an open chain with L = 60 sites for the incommensurate cases α = (

√
5 − 1)/2, (g) λ = 0.2, and (h) λ = 1, respectively.

The gray boxes in (b) and (c) indicate a generalized mobility edge. The other parameters are as follows: t1 = t2 = 1, and δ = 0.
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FIG. 7. Schematic of our proposed experimental setup with ul-
tracold atoms in a momentum lattice. The atoms have quadratic
free-particle dispersion and are coupled by two-photon Bragg transi-
tion with resonant condition h̄ωn = (2n + 1)4ER with ER being the
recoil energy. The Rabi coupling of laser fields ω

2(n−1)
− (illustrated by

red arrows) are modulated according to the intracell hopping strength
of Hamiltonian (4). Momentum states of atoms in |g2〉 are utilized
as auxiliary sites to engineer the dissipation. The nearest-neighbor
couplings between the primary sites and the auxiliary sites, indicated
by dashed orange lines, can also be realized with additional Bragg
transitions, which are not explicitly illustrated here.

identical to the corresponding parts of the periodic-boundary
spectrum, and other parts are distinct, which are separated by
a generalized mobility edge. The mobility edge in Hermitian
systems is defined as the energy separating localized and
extended eigenstates. For the non-Hermitian case, the spectra
become complex, in general, thus, we define the generalized
mobility edge as boundaries on the complex plane as shown in
Figs. 6(b) and 6(c). Inside the mobility edge with open bound-
aries, the states are localized at the boundaries as a result of
the NHSE, whereas the corresponding states under the PBC
are extended due to the fact that the NHSE is sensitive to the
boundary condition as presented in Fig. 6(e). On the contrast,
outside the mobility edge, the periodic-boundary spectrum
and the open-boundary spectrum are identical, implying the
absence of the NHSE. The corresponding states are localized
and not sensitive to the boundary condition.

In phase III, a small part of the OBC spectrum becomes
complex with corresponding states exhibiting NHSE [see
Fig. 6(f)]. More states enter the Anderson phase outside the
mobility edge, which leads to the increase in the MIPR. When
λ is large enough, the NHSE will disappear, leaving a few
extended states with complex spectra.

As presented in Figs. 6(g) and 6(h), the damping dynamics
of the system with incommensurate modulation also under-
goes a chiral to nonchiral transition across λc2.

VI. REALIZATION AND DETECTION

We now propose a scheme to realize the generalized AAH
model with ultracold atoms in a momentum lattice [54–56]
as illustrated in Fig. 7. We consider 87Rb the Bose-Einstein
condensate (BEC) in a crossed dipole trap. In the involved

52S1/2 hyperfine ground-state manifold of 87Rb atoms, mo-
mentum states in |g1〉 ≡ |1, 0〉 encode the lattice sites whereas
another ground-state |g2〉 ≡ |2, 0〉 with a certain decay mode
is utilized as auxiliary sites to effectively engineer the desired
open dynamics (here the two quantum numbers denote F and
mF for the levels of 87Rb atom).

Two-photon Bragg transitions are utilized to achieve the
hopping terms involved in Eq. (4). The simulated two-photon
Bragg transitions are driven by pairs of counterpropagating
interfering laser fields,

E+(x, t ) = E+ cos(k+ · x − ω+t + φ+), (14)

E−(x, t ) =
∑

n

E−
n cos(k−

n · x − ω−
n t + φ−

n ), (15)

where k+ = kx̂ and k−
j = −kx̂ ∀ j with k = 2π/λ. Each pair

of the Raman beams {ω+ ⊕ ωn
−} couples momentum states

|np0〉 and |(n + 1)p0〉, where p0 = 2h̄k is the total two-photon
recoil momentum transferred from the light fields to the atom.
Excited state |e〉 can be adiabatically eliminated from the Ra-
man transition for a large detuning δ, then the corresponding
two-photon Rabi coupling is given by

tn = �̃neiφ̃n = �∗−
n �+

2�
ei(φ+−φ−

n ). (16)

The hopping rate can be independently modulated to realize
the inhomogeneous landscape in Hamiltonian Eq. (4) by tun-
ing the Raman coupling strength �−

n and the phase φ−
n .

With coupling to dissipative auxiliary sites, we can effec-
tively induce the gain and loss process in Eq. (5). Each two
nearest-neighbor primary sites are coupled with one auxiliary
site (see Fig. 7). The atom loss in the auxiliary sites could be
generated by applying a radio frequency pulse to resonantly
transfer the atoms in |g2〉 to an irrelevant excited state. For
a large on-site decay rate κ � �, the decay modes in the
auxiliary lattice can be adiabatically eliminated. Thus, the
effective dynamics is well described by

ρ̇ = −i[H̃, ρ] + D[L]ρ, (17)

L =
∑
〈i, j〉

√
γ̃ (ci + ic j ), (18)

where γ̃ = �2/κ and 〈i, j〉 runs over all nearest-neighbor
sites. We note that Eq. (18) only contains loss dissipators,
which are uniformly distributed on the lattice sites, thus, dif-
ferent from the staggered loss dissipators in Eq. (5). However,
the proposed experimental setup can still capture the main
physics discussed in previous sections.

The observation of the damping dynamics revealed in
Sec. IV requires fully filled initial state, which corresponds to
a superposition of all target momentum states and is challeng-
ing to be prepared in experiments. To escape this problem, we
can initialize the system in the zero momentum state, which
gives a single occupation at the center site. We numerically
calculate the relative particle number ñx(t ) and illustrate the
maximal value at each site (in the regime of full evolution
time) in Fig. 8. As shown in Fig. 8(a), the damping dynamics
still exhibits chiral features for weak modulation due to the
preserved NHSE. The signal strength decreases exponentially
in the left segment, whereas it only fulfills a power-law decay
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FIG. 8. The maximal value of ln |ñx| versus lattice site x in terms
of the evolution time for (a) λ = 0.2 and (b) λ = 1.0. Other parame-
ters are t1/t2 = 1, γ̃ = 0.15, α = 1/4, and and δ = 0.

in the right segment. This asymmetric decay rate in the oppo-
site direction, is dubbed as the “information constraint” [63].
As the modulation strength increases, the phenomenon of
information restrain fades away, and the signal strength be-
comes more symmetric in the left and right segmentsas shown
in Fig. 8(b).

We can also extract the Liouvillian gap from the damping
dynamics. We decompose the relative particle number in the
biorthogonal eigenbasis,

ñx(t ) =
∑
i, j,s

e(λi+λ∗
j )t 〈x, s|uRi〉〈uLi|uR j〉〈uL j |x, s〉. (19)

For the long-time evolution, the modes with −Re(λi + λ∗
j ) >

	g can be omitted, thus, we can estimate ñx(t ) ≈ ce−	gt .
Therefore, we can extract the Liouvillian gap from the slope
of ln[ñx(t )] = αt + β in the exponential damping stage by
α ≈ −	g. For the parameters in Fig. 8(a), we numerically fit
the slope and obtain α ≈ −1.08, which agrees well with the
Liouvillian gap 	g ≈ 1.00. In experiments, the local density
of state can be detected by the quasimomentum distribution
ρ(k) on each spin state from the time-of-flight measurement
after abruptly turning off the lattice potential. The atoms in
different momentum states evolve to different positions, thus,
the time-of-flight measurement allows the site-resolved detec-
tion.

We make some remarks on relevant experimental progress.
The Aubry-André model with incommensurate modulation of
the on-site potential has been experimentally demonstrated
with cold atoms in an optical lattice [64] and coupled single-
mode waveguides [65]. For the experiment with a momentum
lattice, the topological Anderson insulator has been observed
in disordered atomic wires [66]. More recently, a gener-
alized Su-Schrieffer—Heeger model and a one-dimensional
quasiperiodic lattice have been realized [67,68]. The nonre-
ciprocal quantum transport has been successfully observed in
a dissipative momentum lattice, which makes it possible to
engineer an open quantum system with atoms in a momentum
lattice [69].

VII. CONCLUSIONS

To summarize, we have investigated the dynamical prop-
erties of an open generalized AAH model in terms of the
damping matrix derived from the Liouvillian superoperator.
We consider both the commensurate and the incommensurate
cases. When we tune strength of the modulation of hopping,

FIG. 9. (a) The critical point of the anti-PT symmetry breaking
versus γ /2 for the commensurate case (α = 1/4). Here the dots show
the numerical results. (b) The critical point λc1 breaking versus γ /2
for the incommensurate case (α = (

√
5 − 1)/2). The other parame-

ters are as follows: t1 = t2 = 1, δ = 0, and L = 60.

the damping matrix exhibits a phase transition with anti-
PT symmetry breaking. As the phase transition happens, the
spectral topology and the localization properties dramatically
change. The imaginary-to-complex transition of the spectrum
only occurs when the open boundary condition is imposed due
to the NHSE. We have uncovered the physical consequence
by calculating the damping dynamics of the single-particle
correlation function. The system undergoes a chiral to nonchi-
ral transition as the modulation strength increases. For the
incommensurate case, we identify richer phases and the exis-
tence of a generalized mobility edge. We have also proposed a
possible scheme to observe these results based on the BEC in
a momentum lattice. Our paper uncovers a new physical con-
sequence of the anti-PT symmetry in non-Hermitian systems
and has potential implications for the experimental prepara-
tion of steady states and controlling the relaxation process
without engineering the boundary conditions.
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APPENDIX A: CRITICAL POINT

The critical point λc of the anti-PT symmetry breaking
is numerically confirmed in Fig. 9(a). The critical point is
extracted from the sharp change in the real proportion. After
comparing different values of λc by varying γ , we find a
simple relation λc = t1 − γ /2 well approximately determines
the phase boundary (for the case of t1 = t2). And we find this
relation also holds for the critical point λc2 of the incom-
mensurate case. Furthermore, we numerically determine the
critical point λc1 from the criticality of MIPR. We find that
the critical point λc1 also has a simple linear dependence on γ

as shown in Fig. 9(b).

APPENDIX B: WINDING NUMBER

Without loss of generality, we consider the topological
characterization of the compensated damping matrix X̃ . X̃
has a sublattice symmetry (AIII class) S−1X̃ S = −X̃ with
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S = diag(1,−1, 1,−1, . . . , 1,−1), thus, we can transform it
into an off-diagonal form X̃ = [0 X̃1; X̃2 0], where

X̃1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t1 0 0 · · · t ′
q/β

t ′
2 t2 0 · · · 0

0 t ′
4 t5 · · · 0

...
...

...
. . .

...

0 0 0 · · · t q−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

X̃2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t ′
1 t2 0 · · · 0

0 t ′
3 t4 · · · 0

0 0 t ′
5 · · · 0

...
...

...
. . .

...

t qβ 0 0 · · · t ′
q−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

with β ∈ CGBZ; specifically, when β = k, it returns to the
conventional Brillouin zone. We can define a winding number
for each block [16,37] (see Fig. 10),

w1,2 =
∮
C

dk

2π i
∂k ln det X̃1,2, (B2)

FIG. 10. The winding number versus λ for (a) X̃ (k) and (b) X̃ (β ),
respectively. Other parameters are same as that in Fig. 2.

then we can define a wingding number for the system as
W = (w1 − w2)/2. We calculate the winding number for both
X̃ (k) and X̃ (β ), and the results are presented in Fig. 10. Due
to the NHSE, conventional bulk-boundary correspondence
breaks down, thus, the winding number calculated from X̃k

cannot correctly characterize the topology of an open chain.
As shown in Fig. 10(b), the system always has a winding
number W = −1, which implies that the damping transition
is not topological (in terms of the band topology).
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