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Rotating Bose gas dynamically entering the lowest Landau level
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Motivated by recent experiments, we model the dynamics of a condensed Bose gas in a rotating anisotropic
trap, where the equations of motion are analogous to those of charged particles in a magnetic field. As the rotation
rate is ramped from zero to the trapping frequency, the condensate stretches along one direction and is squeezed
along another, becoming long and thin. When the trap anisotropy is slowly switched off on a particular timescale,
the condensate is left in the lowest Landau level. We use a time-dependent variational approach to quantify these
dynamics and give intuitive arguments about the structure of the condensate wave function. This preparation of
a lowest Landau level condensate can be an important first step in realizing bosonic analogs of quantum Hall
states.
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I. INTRODUCTION

For many years the ultracold atom community has been
attempting to use neutral atoms to explore the physics of
two-dimensional (2D) electron gases in magnetic fields. The
most exciting possibility is realizing fractional quantum Hall
physics and observing non-Abelian phases of matter [1]. A
recent experiment at MIT [2] made an important step towards
achieving this goal. They found that when rotating a Bose gas
in an anisotropic trap, the resulting nonequilibrium dynamics
can drive the atoms into the lowest Landau level, a prerequi-
site for observing the quantum Hall effect. Motivated by this
observation, we model the dynamics of a rotating Bose gas in
an anisotropic trap using a time-dependent variational wave
function. We characterize the protocols that drive the atoms
into the lowest Landau level.

There are a number of techniques for using neutral atoms
to emulate the properties of charged particles in a magnetic
field: these include optical dressing [3], shaking [4], and ro-
tating [5]. Here we focus on rotation, where the connection
with electronic systems can be understood classically: In the
rotating frame, the Coriolis force, Fc = 2m �v × �� has the
same form as the Lorentz force FL = q �v × �B on a charged
particle q in a magnetic field �B. Here �� is a vector whose
magnitude is the rotation frequency, and direction is the axis
of rotation (which we take to be ẑ). One can formally identify
q �B = 2m ��. The rotating system also experiences an outward
centrifugal force, which reduces the strength of the in-plane
harmonic trapping potential. If the trapping frequency equals
the rotation frequency, ω = �, the effective trapping fre-
quency vanishes, and in the rotating frame the neutral atoms
have equations of motion, which are identical to electrons
in a uniform magnetic field. The quantum mechanical eigen-
states correspond to highly degenerate Landau levels, whose

*vs492@cornell.edu
†em256@cornell.edu

energies are separated by 2h̄�. The resulting behavior is
quite rich; for example, rotating superfluids display vortex
lattices similar to those of type-2 superconductors in mag-
netic fields [6–8] and also exhibit a rotational Meissner effect
[9].

It is meaningless to talk of the rotation frequency of a
rotationally symmetric potential. Thus, following the exper-
imental approach in Ref. [2], we include a small rotating
elliptical deformation, which stirs the cloud. In the rotating
frame this potential takes the form Vε = −εmω2xy, and can
be described in terms of an electric field q �E = − �∇Vε. In the
steady state, the bosons will experience a Hall drift with a
velocity proportional to �E × �B, like classical charged particles
in crossed electric and magnetic fields. This drift squeezes the
gas into a long thin shape, as shown in Fig. 1. Remarkably, one
can interpret the atomic state as being confined to a distorted
Landau level.

If the trap deformation is turned off at the appropriate time,
the wave function of each atom ends up in the traditional
lowest Landau level. The turn off must occur adiabatically on
a timescale, which is moderately larger than 1/(εω), which is
the characteristic dynamical time. If the turn off is too slow,
however, nonlinear terms drive the system back out of the
lowest Landau level. This can also be interpreted in terms of
transitions between levels, which cross during the dynamics,
and requires that the deformation is turned off on a timescale,
which is small compared to 8/(εω) ln(8/ε).

It is worth noting that the number of single-particle states
in the Landau level is proportional to the area of the system,
and it represents a large phase space. One cannot equate being
in the lowest Landau level with being in a quantum Hall state.
Nonetheless, driving the system into the lowest Landau level
is an important first step in realizing a cold atom quantum
Hall effect. Furthermore, the dynamics in the lowest Landau
level are quite rich, and are a useful area of study on their own
[10,11].

There have been numerous other works exploring rotating
Bose gases in order to access the quantum Hall regime [1].
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FIG. 1. Condensate density (ρ = |ψ |2) in the x-y plane as a function of time, for a Bose gas in a 2D harmonic potential of frequency
ω in the presence of a rotating quadrupolar deformation of fixed amplitude ε, as defined in Eq. (3). As explained after Eq. (3), x and y are
dimensionless, corresponding to using

√
h̄/(2mω) as the unit length. Brighter colors represent higher normalized density ρ/ρmax. From left to

right, the rotation rate is ramped up. (a) � = 0 at time t = 0, (b) � = ω/
√

2 at time t = τr/2, (c) � = ω at time t = τr, (d) � = ω at time
t = 2τr . The rotation frequency is held fixed for times longer than τr . Here ε = 0.125.

The lowest Landau level was nearly achieved by Schweikhard
et al. [12] by using an evaporation technique. In the few-body
context, Gemelke et al. [13] found a driving protocol, which
not only produced lowest Landau level wave functions, but
even analogs of the Laughlin state. Stirring protocols similar
to Ref. [2] have been previously used, but the lack of in situ
imaging meant they could not study the physics explored here
[14,15].

Our paper is organized as follows. In Sec. II, we introduce
the model. In Sec. III, we write down our time-dependent
wave-function Ansatz to model the dynamics. In Sec. IV,
we use the time-dependent variational principle to derive the
equations of motion for the wave-function parameters. In
Sec. V, we solve for the dynamics of the system and interpret
the results.

II. MODEL

We consider bosons at zero temperature in a harmonic
trap with frequencies (ωx, ωy, ωz ). For ωx, ωy = ω and ωz �
ω, the z motion is frozen and one effectively has a two-
dimensional Bose gas.

We add a rotating deformation potential given by Vr (t ) =
−εmω2X (t )Y (t ) where X (t ) = x cos φ(t ) + y sin φ(t ) and
Y (t ) = −x sin φ(t ) + y cos φ(t ). We assume that the rotation
rate �(t ) = dφ/dt is slowly varying. The strength of the
deformation is given by the dimensionless variable ε. Note,
if φ is phase shifted by π/4, then Vr (t ) → εmω2(X (t )2 −
Y (t )2)/2, which is a form used in other papers [2,10].

In the mean-field regime, the condensate wave function ψ

obeys the 2D Gross-Pitaevskii equation (GPE),

ih̄
dψ

dt
=

(−h̄2∇2

2m
+ Vr (t ) + mω2(x2 + y2)

2
+ g|ψ |2

)
ψ.

(1)
Here ∇2 is the two-dimensional Laplacian and g denotes the
interaction strength. We approximate the interactions as a con-
tact potential, with g = 4π h̄2as/(md⊥). Here as is the s-wave
scattering length and d⊥ ∼ √

h̄/mωz is the size of the wave
function in the z direction [1].

We can transform into the rotating frame by taking ψ →
R(t )ψ where R(t ) = e−iφ(t )Lz/h̄ and the angular momentum
operator along z is given by Lz = ih̄(x∂y − y∂x ). Noting that

R†(t )X (t )R(t ) = x and R†(t )Y (t )R(t ) = y, we see that under
this transformation, the deformation becomes time indepen-
dent and the GPE reads,

ih̄
dψ

dt
=

(−h̄2∇2

2m
+ Veff (x, y) − �(t )Lz + g|ψ |2

)
ψ, (2)

where,

Veff (x, y) = mω2(x2 + y2)

2
− εmω2xy. (3)

We further adimensionalize by scaling all length scales by√
h̄/(2mω) and time by 1/ω. We also scale ψ by 1/

√
N such

that
∫

d2r⊥|ψ |2 = 1, where N is the total number of particles.
The resulting adimensionalized equation is

i
dψ

dt
=

(
−∇2 + x2

4
+ y2

4
− εxy

2
− r(t )Lz + g̃N |ψ |2

)
ψ.

(4)
Here Lz = i(x∂y − y∂x ), r(t ) = �(t )/ω, and g̃ = 8πas/d⊥.
From this point, all equations would be expressed in terms
of these dimensionless space and time variables.

The only free parameters in this model are the interac-
tion strength g̃N , the strength of the deformation ε, and the
function r(t ), which specifies the rotation rate. We choose
g̃N = 1000 and ε = 0.125 in accordance with the experiment
in Ref. [2]. We have studied other values of the interaction
strength, and find that it does not substantially change the
dynamics other than determining the initial size of the con-
densate. The rotation rate, r(t ) is ramped up from 0–1 in a
time τr . For t < τr we take r(t ) = sin πt

2τr
, while for longer

times we take r(t ) = 1.
Note that in the noninteracting limit (g̃N = 0), if ε → 0,

the GPE can be written as,

i
dψ

dt
=

(
(i �∇ − q �A)2 + (1 − r(t )2)(x2 + y2)

4

)
ψ. (5)

This is reminiscent of the Schrödinger equation for a par-
ticle with charge q in the presence of an external vector
potential �A and a residual harmonic trap [16,17]. Here q �A =
r(t )(−y/2, x/2) is the effective vector potential in the sym-
metric gauge. When r(t ) → 1, we recover the dynamics of a
charged particle purely in the presence of a magnetic field.
As discussed in Sec. I, this is the case when the centrifugal
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force vanishes and the coriolis force mimics the Lorentz force.
The eigenstates are Landau level wave functions where the
particles undergo cyclotron orbits. Each Landau level has
a massive degeneracy due to the different possible in-plane
center-of-mass positions.

III. VARIATIONAL WAVE-FUNCTION Ansatz

We use a time-dependent variational wave-function ap-
proach to approximate the solution of Eq. (4). At all times
we use a normalized Gaussian Ansatz for our wave function,

ψ = 1√
π lx(t )ly(t )

exp

(
− (x − α(t )y)2

2lx(t )2
− y2

2ly(t )2

)

× exp (i(φx(t )x2 + φy(t )y2 + φxy(t )xy)). (6)

The dynamics are encoded in six time-dependent parame-
ters: lx(t ), ly(t ) represent the size of the condensate while
φx(t ), φy(t ) quantify particle currents in the x and y directions,
respectively. The φxy(t ) term represents a quadrupolar flow. In
particular, it serves as a vortex-free irrotational approximation
to solid body rotation of the gas [5]. The orientation of the
principle axes of the cloud is determined by α. This form is
convenient because during the dynamics, the principle axes of
the cloud are almost aligned with x and y axes. In that limit,
α corresponds to the slight tilt from the equipotentials of the
deformation term in Eq. (4).

Gaussian Ansätze of this form have been used to obtain
dynamical solutions of the Gross-Pitaevskii equation [18,19].
It should be a good model as long as there are no dynami-
cal instabilities to vortex formation [20]. We compared our
variational calculations to numerical integration of the GPE
using finite differences, and find good agreement. We note
that, with a fixed grid, the finite difference approach is limited
in the length of time it can describe: Eventually the cloud
becomes larger than the simulation volume. Furthermore the
finite difference approach is numerically expensive compared
to the variational approach.

IV. VARIATIONAL WAVE-FUNCTION DYNAMICS

According to the standard formulation of the time-
dependent variational principle [18], we calculate the action

S =
∫

dt
∫

dx dy

(
iψ∗ dψ

dt
− ψ∗H (t )ψ

)
(7)

as a functional of the parameters lx(t ), ly(t ), α(t ), φx(t ), φy(t ),
and φxy(t ). We take

H (t ) = −∇2 + x2

4
+ y2

4
− εxy

2
− r(t )Lz + 1

2
g̃N |ψ |2. (8)

Note the factor of 2 in the interaction term compared to
the right-hand side of Eq. (4). If we extremize Eq. (7) with
respect to ψ∗, we recover the Gross-Pittaevskii equation. As
described in Appendix A, our variational equations of motion
are found by making Eq. (7) stationary with respect to the
variational parameters. We obtain six coupled ordinary differ-
ential equations corresponding to the six parameters.

A. Initial conditions

For our initial conditions, we find the variational ground
state in the stationary trap. We set the rotation rate to zero,
r(0) = 0, and minimize

E =
∫

dx dy 〈H (0)〉 =
∫

dx dy ψ∗H (0)ψ (9)

under the constraint that the total number of particles is fixed.
For the bulk of our results, we use the experimentally rele-
vant values g̃N = 1000 and ε = 0.125, in which case lx(0) =
5.02, ly(0) = 5.06, α(0) = 0.125, φx(0) = φy(0) = φxy(0) =
0. Note, the cloud is almost cylindrically symmetric, with lx
and ly differing by less than a percent.

V. DYNAMICS

We use the NDSOLVE package in Mathematica to numeri-
cally evolve the equations of motion from Appendix A. This
uses a robust general purpose algorithm with dynamically
adjusted step size. In the experiment, the anisotropy ε is
time independent, and in Sec. V A we analyze that case. The
anisotropic term mixes Landau levels, and we can only drive
the system into the traditional lowest Landau level by slowly
turning off ε after ramping up r(t ). Thus in Sec. V B, we add
this ramp-down step.

A. Constant ε

Figure 1 shows the spatial evolution of the condensate
density (|ψ |2) as a function of time for the experimental pa-
rameters. The condensate expands along the y direction while
getting squeezed in the x direction.

As illustrated in Fig. 2(a), the dynamics has two regimes:
t < τr , where the rotation rate r(t ) is being swept, and t > τr

where the rotation rate is being held constant. The behavior in
the latter regime is particularly simple: lx falls exponentially
towards 1, ly grows exponentially, and φx, φy, φxy, and α all
approach constants.

This behavior can be understood in terms of an analog
of the Lorentz �E × �B drift of charged particles in electric
and magnetic fields. In this analogy, q �E = �∇(εxy/2), and
�B = r(t )ẑ = ẑ at long times. The �E × �B drift velocities in
the x and y direction are, respectively, given by, vx ∼ −εx/2
and vy ∼ εy/2. These equations are consistent with the expo-
nential squeezing along the x axis and exponential expansion
along the y axis. This classical argument misses the fact that
lx saturates at 1. This feature comes from wave mechanics:
The decreasing x width costs kinetic energy due to the 1/(2l2

x )
term and thus there is a quantum pressure, which halts the
squeezing. An increasing y width does not cost any energy
in the rotating frame due to the cancellation of the external
harmonic trap with the centrifugal force. At long times, as
ly → ∞, the kinetic energy, 1/(2l2

y ) and interaction energy
g̃N/4π lxly tend to zero.

At long times, α(t ) → ε/8 denoting a finite tilt of the
condensate away from the y axis. This wave-function tilt can
be understood from a slightly more elaborate analysis of the
classical equations of motion. For this model, the Lorentz
force equation is linear, md�v/dt = q �E + q�v × �B, and Fourier
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FIG. 2. Model and wave-function Ansatz parameters as a func-
tion of time for constant ε. All parameters are dimensionless. (a) r(t )
(blue, solid) and ε = 0.125 (red, dashed); (b) lx (t ) (blue, solid) satu-
rates at 1 while ly(t ) (red, dashed) grows exponentially at long times;
(c) φxy(t ) (blue, solid) saturates at 0.5 and α(t ) (red, dashed) saturates
at ε/8; (d) φy(t ) (blue, solid) and φx (t ) (red, dashed) saturate at ε/16
at long times.

transforming it in the time domain yields

−ν2

[
x̄(ν)
ȳ(ν)

]
=

[
0 ε + 2iν

ε − 2iν 0

][
x̄(ν)
ȳ(ν)

]
(10)

with x̄(ν) = ∫
dt eiνt x(t ), and a similar expression for ȳ. From

Eq. (10), we find a quartic equation for the allowed fre-
quencies of free oscillation, ν. As ε → 0, the solutions are
ν = ±iε/2,±2. The first solutions are purely imaginary and
represent the squeezing already discussed. The latter describe
cyclotron motion. The eigenvector of the exponentially grow-
ing solution has ȳ/x̄ = ε/8, corresponding to the observed tilt.
This is analogous to inertial drift in plasma physics [21].

The modulus and phase of the condensate wave function
can be interpreted in terms of fluid mechanics, ψ = √

ρei�,
where ρ is the density and �v = (h/m) �∇�. Hence, in dimen-
sionless units, our Ansatz corresponds to a flow pattern vx =

2(2φxx + φxyy) and vy = 2(2φyy + φxyx). When φxy = 0.5,
the angular momentum of the condensate resembles that of
solid body rotation of the condensate (see Appendix B). In
Fig. 2(d), one sees that the particle current terms φy and φx

saturate at ε/16 at long times.
Further insight into the structure of the wave function at

long times comes from transforming into a coordinate system,
which is aligned with the principle axes of the condensate. We
define x̃ = (x − αy) and ỹ = (y + αx), and take the parame-
ters to have their long-time values, φx = φy = ε/16, α = ε/8,
and φxy = 1/2, lx = 1. Up to linear order in ε, the variational
wave function is then

ψ ∼ 1√
π�y

exp

(
− x̃2

2
+ i

εỹ2

8
+ i

x̃ỹ

2
− ỹ2

2l2
y

)
. (11)

At long times ly → ∞, and one can ignore the last term
in the exponential. The three remaining terms have physical
meanings. The first limits the spread of the particles in the x̃
axis. The second represents outgoing currents in the ỹ axis,
corresponding to the expansion. The third is an irrotational
flow pattern that approximates solid body rotation. If ε = 0
and ly → ∞, this is in the lowest Landau level, in the symmet-
ric gauge. Transforming to the Landau gauge corresponds to
multiplying by exp(−ix̃ỹ/2), which eliminates the third term.

In our squeezing solution of the classical Lorentz force
equations earlier in the section, the rate of exponential ex-
pansion was ε/2. This is consistent with φy = ε/16 at long
times since the outgoing velocity in the ỹ direction becomes
εỹ/2 by calculating gradient of the phase in Eq. (11). Due to a
finite wave-function tilt and exponential expansion, we expect
φx = φy at long times.

The saturation of lx is consistent with being in the lowest
Landau level. There are some subtleties however, as the eigen-
states of the deformed trap are somewhat different than those
of traditional Landau levels. We can quantify this feature by
calculating the average number of Landau levels, which are
occupied,

NL =
∫

dx dy ψ∗ (HL − 1)

2
ψ (12)

where

HL = −∇2 + x2

4
+ y2

4
− i(x∂y − y∂x ) (13)

is the symmetric gauge Hamiltonian of a charged particle in
a uniform magnetic field: NL = 0 when the wave function is
in the lowest Landau level. We plot ln(NL + 1) as a function
of time in Fig. 3. As the rotation rate increases, NL drops.
However, after the ramp is concluded (tεω/2 = 4), the aver-
age Landau level number grows exponentially. This behavior
is evident from Eq. (11), for which NL ∼ ε2l2

y /16. Since ly
grows exponentially, so does NL.

Following the Supplemental Material of Ref. [2], one can
alternatively use a gauge transformation to define distorted
Landau levels, which take into account the elliptic deforma-
tion of the trap. The gauge transformation is given by ψ ′ =
Gψ where G = exp(iε(x2 − y2)/8). One can then define the
distorted Landau levels and count their average occupation via

N ′
L =

∫
dx dy ψ ′∗ (H ′

L − 1)

2
ψ ′, (14)
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FIG. 3. Logarithm of the average traditional Landau level oc-
cupation, ln(NL + 1) (blue, solid) and logarithm of the average
distorted Landau level occupation, ln(N ′

L + 1) (red, dashed), as a
function of time for the ramp described in Fig. 2(a). At long times,
NL grows exponentially while N ′

L decreases and tends to 0.

where

H ′
L = −∇2

γ
+ γ

(x2 + y2)

4
− i(x∂y − y∂x ), (15)

with γ =
√

1 + ε2/4. We plot ln(N ′
L + 1) as a function of time

in Fig. 3. In terms of these distorted Landau levels, N ′
L drops

as the rotation rate increases and tends to 0 at long times. The
condensate is thus driven into this distorted lowest Landau
level.

When ly → ∞, the difference between Eq. (11) and an
undistorted lowest Landau level wave function is the phase
factor exp(iεỹ2/8), which, as already explained, quantifies the
outward expansion of the condensate. This expansion is driven
by the Lorentz E × B drift, which occurs as long as ε �= 0.
Thus if we wish to end up in the undistorted lowest Landau
level, we must ramp ε to zero. In the next section we include
such a ramp, and analyze the resulting dynamics.

B. Varying ε

We adiabatically turn off the anisotropy ε after the rotation
rate r(t ) has been ramped up to 1. For t < τr , ε(t ) = ε0 =
0.125. For τr < t < τr + τε, ε(t ) = ε0

τr+τε−t
τε

. It is held at zero
for all later times. Thus ε(t ) reaches zero at time t = τr + τε.

For adiabaticity, we need τε > 1/ω. In order to enter the
lowest Landau level, we want the squeezing dynamics to con-
tinue until ly � 1 and lx ∼ 1. Thus τε needs to be moderately
larger than 1/(ε0ω). In Figs. 4 and 5, we consider the case
where τε = 8/(ε0ω). We only show data up to t = τr + τε as
all parameters are time independent once ε = 0. Remarkably,
as shown in Fig. 4, this ramp results in a final NL ≈ 0.03,
which means that the probability of a particle being in the
lowest Landau level exceeds 97%.

For these parameters, NL in Fig. 4 is a nonmonotonic func-
tion of time. The exponential growth, seen in Fig. 3 competes
with the expected drop due to reducing ε. As described below,
this competition also results in a nonmonotonic dependence
of the final value of NL on τε .

The system and wave-function parameters as a function of
time are shown in Fig. 5. Similar to the constant ε case in

FIG. 4. Average Landau level occupation, NL , as a function of
time, when the trap asymmetry is ramped to zero. Parameters are
shown in Fig. 5. NL = 0.03 at the end, implying particles having high
probability of being in the lowest Landau level.

Fig. 2(b), lx falls exponentially towards 1, and ly grows. For
moderate times, the growth is roughly exponential, but it flat-
tens out and saturates as t → τr + τε. As before, φxy → 0.5.
The wave-function tilt, parameterized by α, switches direc-
tions during the ε ramp. Unlike the findings in Fig. 2(c), the
final tilt depends on details of the ramp.

The particle current terms, φx and φy take values −α/2
and α/2, respectively. Transforming into the tilted coordi-
nates again (treating α as small) gives the wave function in
Eq. (11), but this time with ε = 0. This is a lowest Landau
level wave function. There is, however, a correction term
of higher order in α in the wave function. It is given by
exp(iα3(x̃2 − ỹ2)/2). Due to this correction, the leading-order
correction to NL from Eq. (12) is given by α4l2

y . Thus as
long as α4l2

y � 1, NL ∼ 0. Since α ∼ ε0/8 and ly ∼ eε0ωt/2,
this condition limits the length of the ramp-down period of
ε to about 8/(ε0ω) ln(8/ε0). When ε is switched off on this
timescale, the condensate is left in the undistorted lowest
Landau level at the end.

VI. SUMMARY AND OUTLOOK

We modeled the dynamics of a condensed Bose gas in a ro-
tating anisotropic trap. We used a time-dependent variational
wave function to calculate the time evolution of the system.
We find that the behavior at long times is well described by the
classical equations of motion of a charged particle in crossed
electric and magnetic fields. We calculate the average Landau
level occupation as a function of time. We find that when
the trap anisotropy is constant in time, the condensate gets
squeezed into a long thin shape, which occupies a deformed
lowest Landau level. If the trap anisotropy is switched off
at the appropriate time, the condensate enters the traditional
lowest Landau level.

Confinement to the lowest Landau level is a necessary pre-
requisite for studying analogs of quantum Hall physics with
cold atoms. We emphasize, however, that the states produced
by this protocol are rather different from the homogeneous
liquids, which lead to the quantum Hall effect. Nonetheless,
this is an important first step. Moreover there are a number
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FIG. 5. Model and wave-function Ansatz parameters as a func-
tion of time in the protocol where ε is ramped to zero. All parameters
are dimensionless. (a) r(t ) (blue, solid) and ε (red, dashed). (b) lx (t )
(blue, solid) and ln(ly(t )) (red, dashed); ramping ε → 0 cuts off the
exponential growth of ly that was seen in Fig. 2. (c) φxy(t ) (blue,
solid) again saturates at 0.5 and α(t ) (red, dashed) saturates at a
negative value, which depends on the ramp. (d) φy(t ) (blue, solid) and
φx (t ) (red, dashed) saturate at ±α/2. All parameters are subsequently
time independent.

of interesting purely interactions-driven phenomena, which
can be explored starting from these highly anisotropic lowest
Landau level states. For example, the longer-time dynamics
are described by correlated hopping models with unique sets
of conserved quantities that lead to unusual transport [22].
Variants of this protocol can also lead to interesting pattern
formation [23].
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APPENDIX A: VARIATIONAL EQUATIONS OF MOTION

Using time-dependent variational principle, we first calcu-
late the action given by,

S =
∫

dt
∫

dx dy

(
iψ∗ dψ

dt
− ψ∗H (t )ψ

)

=
∫

dt F (lx(t ), ly(t ), α(t ), φx(t ), φy(t ), φxy(t )), (A1)

where the variational wave-function Ansatz ψ is given by
Eq. (6),

ψ = 1√
π lx(t )ly(t )

exp

(
− (x − α(t )y)2

2lx(t )2
− y2

2ly(t )2

)

× exp (i(φx(t )x2 + φy(t )y2 + φxy(t )xy)). (A2)

The spatial integrals in the action are Gaussian and can
be done analytically, yielding F = Ft + Fp + Ftrap + Frot +
Fint,

Ft = − dφx

dt

(
l2
x

2
+ α2l2

y

2

)
− dφy

dt

l2
y

2
− dφxy

dt

αl2
y

2

Fp = 1 + α2

2l2
x

+ 1

2l2
y

+ l2
x

(
2φ2

x + φ2
xy

2

)

+ l2
y

(
2α2φ2

x +2φ2
y +2αφxy(φx + φy) + φ2

xy

1 + α2

2

)

Frot = r

(
α(φx + φy)l2

y + φxy

l2
x + (α2 − 1)l2

y

2

)

Ftrap = − εαl2
y /4 + l2

x

8
+ α2l2

y

8
+ l2

y

8
Fint = g̃N

2π lxly
.

We extremize the action using the Euler-Lagrange equa-
tions,

∂F
∂�

− d

dt

∂F
∂�̇

= 0, (A3)

where � = {lx, ly, α, φx, φy, φxy} and �̇ denotes a time deriva-
tive. We thus get six coupled nonlinear ordinary differential
equations. We numerically solve these equations.

APPENDIX B: PARAMETER φxy APPROXIMATING SOLID
BODY ROTATION

The term exp(iφxyxy) in Eq. (A2) represents an irrotational
quadrupolar flow. This term contributes to a nonzero angular
momentum, Lc

z given by,

Lc
z = 〈ψ |Lz|ψ〉 = φxy

(
l2
y − l2

x

)
2

. (B1)

If the condensate were rotating as a solid body with angular
velocity �, condensate velocity profile is �v = �r × �� and the
solid body angular momentum Lsb

z is mr2�. In dimensionless
units, Lsb

z is,

Lsb
z = 〈ψ | r2

2
|ψ〉 =

(
l2
y + l2

x

)
4

. (B2)

The condensate approximates solid body rotation when ly �
lx and φxy = 0.5, making Lc

z /Lsb
z → 1.
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