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Infinite dipolar droplet: A simple theory for the macrodroplet regime
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In this paper we develop a theory for an infinitely long droplet state of a zero-temperature dipolar bosonic gas.
The infinite droplet theory yields simpler equations to solve for the droplet state and its collective excitations.
We explore the behavior of infinite droplets using numerical and variational solutions, and we demonstrate that
it can provide a quantitative description of large finite droplets of the type produced in experiments. We also
consider the axial speed of sound and the thermodynamic limit of a dipolar droplet.
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I. INTRODUCTION

Dipolar bosonic gases of magnetic atoms interact with a
long-ranged and anisotropic dipole-dipole interaction (DDI).
Experiments using the highly magnetic atoms of dysprosium
[1–3] and erbium [4] have prepared one or several self-
bound quantum droplets that cohere, even in the absence
of any external confinement (see also subsequent nondipo-
lar droplets [5,6]). These quantum droplets occur in the
dipole-dominated regime, where the short-ranged s-wave in-
teractions are weaker than the DDIs [7,8] and the overall
two-body interactions are attractive. In this regime the ef-
fects of quantum fluctuation corrections become important
[9–11] and stabilize the droplets against mechanical collapse
[12–15]. An important effect of the DDIs is that the droplets
take a filament shape—elongating in the direction that the
dipoles are polarized—to minimize the DDI energy. Due to
the long-ranged and anisotropic character of the DDI and
the highly elongated droplet shape, quantitative calculations
for the droplet states and their excitations are a challenging
numerical problem.

Here we develop an infinite droplet theory. In this theory
we consider the idealized case of a droplet that is an infinitely
long filament (along the direction of the dipole orientation) of
specified linear density n (see Fig. 1). This idealization should
be a good approximation to a finite droplet with sufficiently
many atoms N that it is highly elongated. Such droplets, often
referred to as macrodroplets, have been prepared with N ∼
2 × 104 atoms [4] and can persist as self-bound droplets even
in the absence of any confinement [3].

We present results for the infinite droplet using numerical
solutions and a variational approximation we develop. We
explore the character of the infinite droplet excitations and
show that the recently identified “antiroton” effect [16] plays
an important role in the spectrum of a droplet. We consider
a mapping to compare the infinite droplet results to a finite
droplet, and we use this to make a comparison to the excitation
spectrum of a finite droplet. We find that often the infinite
droplet is not mechanically stable, with long wavelength axial

modes being dynamically unstable. In these cases the axial
speed of sound of the infinite droplet is imaginary. However,
as these instabilities only manifest at wavelengths that are
much longer than the length of the finite droplet, they can
be considered inconsequential, and the corresponding finite
droplet is stable. Finally, we consider taking a finite droplet to
the thermodynamic limit by letting N → ∞, which is differ-
ent than the infinite dipolar droplet.

II. FORMALISM

A. EGPE theory

It is now well-established (e.g., see Refs. [2–4,7,8,14,15]1)
that the coherent atomic field ψ (r) = 〈ψ̂ (r)〉 of a quantum
droplet is governed by the extended Gross-Pitaevskii equa-
tion (EGPE) that includes the effects of beyond-mean-field
quantum fluctuations. The EGPE takes the form Lψ = μψ ,
where μ is the chemical potential and

L ≡ − h̄2∇2

2M
+ Vtr +

∫
dr′U (r − r′)|ψ (r′)|2 + γQF|ψ |3,

(1)

Vtr = 1
2 Mω2

ρ (x2 + y2) (2)

are the EGPE operator and trapping potential, respectively,
with M being the mass of the atom. Here only transversal har-
monic confinement is considered with the angular frequency
ωρ , although many of our results are for the free-space case
of ωρ = 0. The two-body interactions are described by the
interaction potential

U (r) = gsδ(r) + 3gdd

4πr3

(
1 − 3z2

r2

)
. (3)

1Alternative theories to the EGPE have been developed, e.g., see
Refs. [17,18].
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FIG. 1. (Left) Density isosurface of a finite free-space droplet
with N = 2.5 × 104 164Dy atoms, add = 130.8a0, and as = 80a0.
(Right) Schematic of a section of the infinite dipolar droplet we
develop here.

Here gs = 4πash̄
2/M is the short-ranged coupling constant,

where as is the s-wave scattering length. The atoms have
magnetic dipoles of moment μm aligned along the z axis by an
external bias field. The DDIs between the atoms are character-
ized by the coupling constant gdd = 4π h̄2add/M, where add =
μ0μ

2
mM/12π h̄2. The quantum fluctuations are described by

the higher-order local nonlinear term with the coefficient (see
Refs. [10,11,15])

γQF = 32

3
gs

√
a3

s

π

(
1 + 3

2
ε2

dd

)
, (4)

where εdd = add/as.

B. Infinite droplet state

Here we develop a model for a droplet that is infinitely long
and translationally invariant along the z axis, i.e.,

ψ (r) = √
nχ (ρ), (5)

where n is the specified linear density and χ (ρ) is the unit
normalized transverse mode. Here we have utilized cylindrical
symmetry to reduce the dependence of the transverse mode to
the radial coordinate ρ =

√
x2 + y2. A decomposition similar

to Eq. (5) was explored previously in Ref. [16] (also see
Ref. [19]) as a model of a dipolar condensate in an elongated
tube trap. Here we extend this theory to include quantum fluc-
tuations and hence the droplet regime which occurs when the
DDI interactions dominate over the contact interactions (i.e.,
εdd > 1). In this regime the droplet can exist (as a transversally

localized state) even in the absence of any transverse con-
finement, i.e., can become self-bound. Using (5), the EGPE
simplifies to

L⊥χ = μχ, (6)

where

L⊥ ≡ − h̄2

2Mρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ Vtr + n(gs − gdd )|χ (ρ)|2

+ n3/2γQF|χ (ρ)|3. (7)

Notice that for the infinite droplet state the two-body inter-
actions appear as an effective contact interaction. We can see
this from the k space form of the interaction potential, (i.e.,
the Fourier transform of Eq. (3), see Ref. [20])

Ũ (k) = gs + gdd

(
3k2

z

k2
− 1

)
, (8)

which approaches the constant value gs − gdd in the kz → 0
limit appropriate to the infinite droplet state.

Because Eq. (7) does not involve an explicit long-range
interaction term, it avoids many of the technical issues that
normally arise in solving the EGPE with DDIs. Thus, the
transverse profile of the infinite droplet state can be solved
for using standard packages for solving the Gross-Pitaevskii
equation adapted to include the higher-order local nonlinearity
of the quantum fluctuation term.

C. Excitations of the infinite droplet

Bogoliubov theory provides a description of the quasipar-
ticle excitations of the droplet [12,21]. These excitations can
be obtained by linearizing the time-dependent GPE, ih̄∂tψ =
Lψ , about the stationary state,

√
nχ , using the ansatz

ψ (r, t ) = e−iμt

{
√

nχ (ρ) +
∑

kz,m, j

[
ckzm jukzm j (ρ)eimφ+ikzz−iEkz m jt/h̄

− c∗
kzm jv

∗
kzm j (ρ)e−imφ−ikzz+iE∗

kz m jt/h̄]}, (9)

where φ is the azimuthal angle. Here {ukzm j, vkzm j} are the
quasiparticle modes with respective eigenvalues {Ekzm j}, and
{ckzm j} are (small) c-number amplitudes. The z components of
linear and angular momentum of the quasiparticle are given by
h̄kz and h̄m, respectively, and the quantum number j charac-
terizes the transverse (vibrational) mode. The quasiparticles
are obtained by solving the Bogoliubov–de Gennes (BdG)
equations

Ekzm j

(
ukzm j

vkzm j

)
=

(
Lkzm − μ −Xkzm

Xkzm −(Lkzm − μ)

)(
ukzm j

vkzm j

)
, (10)

where Lkzm ≡ L⊥ + εkz − h̄2m2

2Mρ2 + Xkzm, εkz = h̄2k2
z

2M is the free-
particle dispersion relation, and the exchange term is

Xkzm f ≡ nχeimφF−1{Ũ (kρ + kzẑ)F{χ f e−imφ}}
+ 3

2γQFn3/2|χ |3 f , (11)

with F denoting the planar Fourier transform in ρ = (x, y),
and kρ = (kx, ky, 0) being the reciprocal space vector. The
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excitations explicitly depend on the k-space interaction poten-
tial, and care needs to taken to deal with finite grid size effects
in numerical calculations (e.g., using a cutoff interaction, see
Refs. [22–24]).

D. Variational theory

A variational approach can also be used to develop an
approximate description of the infinite droplet. Here we
approximate the transverse mode by a radially symmetric
Gaussian,

χvar(ρ) = e−ρ2/2l2

√
π l

, (12)

where the width l is considered as a variational parameter. The
energy density per particle of the variational state is (from
Ref. [16], but extended to include the quantum fluctuation
term)

E = h̄2

2Ml2
+ Mω2

ρ l2

2
+ n(gs − gdd )

4π l2
+ 4n3/2γQF

25π3/2l3
. (13)

The variational solution is determined by minimizing Eq. (13)
with respect to l .

The lowest (m = 0, j = 0) band of excitations can be
obtained from the variational theory under the same shape
approximation [16] (also see Ref. [19]), i.e., setting ukz00 and
vkz00 to be proportional to χvar. This yields the dispersion
relation (also see Ref. [25])

Evar
kz

=
√

εkz

[
εkz + 2nŨ0(kz ) + 3n3/2γQFγχ

]
, (14)

where γχ ≡ 2
5π3/2l3 , and

Ũ0(kz ) = gs − gdd

2π l2
− 3gdd

2π l2
Q2eQ2

Ei(−Q2), (15)

with Q2 ≡ k2
z l2/2 and Ei being the exponential integral.

The behavior of the effective interaction Ũ0(kz ) that ap-
pears in the variational theory is shown in Fig. 2 for a
system in the droplet regime, where gdd > gs. This empha-
sizes the limiting values of Ũ0(kz ), notably limkz→0 Ũ0 =
(gs − gdd )/2π l2 and limkz→∞ Ũ0 = (gs + 2gdd )/2π l2. In the
droplet regime these limits are attractive and repulsive, respec-
tively. We note that a comparison of Ũ0(kz ) to the effective
interaction obtained using a numerical solution of the GPE is
presented in Fig. 2 of Ref. [16], showing that the variational
approach provides a good approximation.

III. RESULTS

A. Dynamic structure factor of an infinite droplet

The zero-temperature dynamic structure factor within the
Bogoliubov theory is given by

S(kz, ω) =
∑

j

|δnkz j |2δ(ω − Ekz0 j/h̄), (16)

where δnkz j = ∫
dρ 2πρ[u∗

kz0 j (ρ) − v∗
kz0 j (ρ)]χ (ρ). Here we

have considered the dynamic structure factor for a wave vector
along z and in this case only the m = 0 excitations contribute.
The dynamic structure factor characterizes the structure of the
system and its collective excitations. In cold-gas experiments

repulsive

attractive

0 1 2 3 4 5 6 7 8
-10

0

10

20

30

40

FIG. 2. Variational theory effective interaction Ũ0(kz ) with the
low-kz and high-kz limits shown. Results for a 164Dy system with
n = 2.5 × 103/μm, as = 80a0, add = 130.8a0, and l = 0.383 μm.

the zero-temperature dynamic structure factor can be mea-
sured by Bragg spectroscopy (e.g., see Refs. [26–28]), and
this technique has been applied to dipolar condensates in the
roton [29] and the supersolid [30] regimes.

In Figs. 3(a)–3(c) we show the dynamic structure factor for
free-space droplets with various values of as. As as decreases
(εdd increases) the droplet is more tightly bound, as revealed
by the chemical potential becoming more negative. The BdG
energies are measured relative to the chemical potential, and
the excitations with Ekzm j < −μ are below threshold and are
thus bound to the droplet. Our results show that only one of
the m = 0 branches is bound and it joins up with a continuum
of transverse excitations when Ekz00 > εcont

kz
≡ −μ + εkz . The

bound excitation branch is only apparent in Figs. 3(b) and 3(c)
where μ is sufficiently negative.

In Figs. 3(d)–3(f) we consider cases with the same pa-
rameters used for Figs. 3(a)–3(c), but with the addition of
transverse confinement. For the highest value of scattering
length [Fig. 3(d)] the chemical potential is positive and the
system cannot be considered as a self-bound droplet. The
observed behavior in this regime is similar to previous work
considering a dipolar condensate in an elongated trap (e.g., see
Fig. 3 of Ref. [16]2). A noticeable effect of the transverse con-
finement is that discrete excitation bands remain at all energy
scales (i.e., there is no continuum of transverse excitations).
These results also exhibit features that were collectively re-
ferred to as the “antiroton” effect in Ref. [16]. That work
considered a dipolar condensate in an elongated trap with the
dipoles polarized along the long axis of the trap. The features
of this effect were identified as (i) a rapidly rising, and upward
curving, lowest excitation band and (ii) the emergence of a
strong multiband response at high kz. These features arise

2We note that because Ref. [16] did not include quantum fluctua-
tions it was restricted to the regime as > add.
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FIG. 3. (a)–(c) The dynamic structure factor S(kz, ω) for an in-
finite droplet state of 164Dy atoms with n = 2.5 × 103/μm and for
(a,d) as = 115a0, (b,e) as = 100a0, and (c,f) as = 80a0. Cases (a)–
(c) are in free-space (ωρ = 0) and cases (d)–(f) are confined with
ωρ/2π = 150 Hz. The variational result for E var

kz
is shown with ma-

genta solid lines. The lower bound of the continuum εcont
kz

is shown
by the blue dashed lines in panels (a)–(c), and in panels (d)–(f)
the yellow dash-dot line shows the free-particle dispersion εkz . We
broadened the δ function in the dynamic structure factors by setting
δ(ω) = e−(ω/ωB )2

/
√

πωB, with ωB/2π = 15 Hz.

from the interactions becoming increasingly repulsive3 with
increasing kz. This situation arises in the droplet where the
kz → 0 interaction is attractive, allowing the droplet to bind
tightly, while as kz increases the interaction becomes strongly
repulsive (e.g., see Fig. 2). This causes a strong interaction
between the respective excitations and the droplet and is the
origin of the multiband response. In the multiband regime the
transverse profile of the lowest band of excitations changes
shape to reduce overlap (and hence interaction) with droplet.
For kz values where this reshaping occurs [e.g., kz ∼ 1/μm
in Figs. 3(d)–3(f)], the structure factor response weight [i.e.,
δnkz j] is transferred to higher excitation bands. The variational
approach for the lowest excitation band assumes these modes
to have the same transverse shape as the droplet and thus
fails to capture the multiband response. We also observe that
aspects of the antiroton effect carry over to the free-space
droplet. First, the ground band curves up rapidly. Second, the
multiband behavior becomes a region of stronger response in
the continuum of excitations [see Figs. 3(b) and 3(c)].

3cf. the roton effect where the interactions are attractive at high kz.

We note that in all free-space results [Figs. 3(a)–3(c)] and
the most strongly bound trap case [Fig. 3(f)] that the lowest
excitation band Ekz00 is imaginary for very small kz values
[e.g., Im{Ekz00} for the case in Fig. 3(c) is shown in the lower
inset to Fig. 6(a)]. We neglect the weight of these modes in
Fig. 3 and return to discuss them further in Sec. III C.

B. Excitation spectrum of a finite droplet

We now consider how to apply the infinite droplet theory
to characterize the excitation spectrum of a finite droplet.
A finite droplet configuration is specified by the parameters
{as, add, N}. Here we take the corresponding infinite droplet
to have a linear density identified with the linear density at the
center (z = 0) of the finite droplet, i.e.,

n =
∫

dρ|ψ (ρ, 0)|2, (17)

where ψ (ρ, z) is the wave function of the finite droplet. In
Figs. 4(a)–4(c) we compare aspects of the transverse density
profiles obtained using this mapping. Figure 4(e) shows the
linear density as a function of N obtained from finite droplet
calculations according to Eq. (17). This linear density is the
only additional input into the infinite droplet theory.

These results show that the infinite droplet generally pro-
vides a good description of the radial profile except for
low-atom-number cases close to where the droplet unbinds
[see Figs. 4(a) and 4(c)]. This coincides with the finite droplet
having its smallest aspect ratio [Fig. 4(d)], where the approxi-
mation of the droplet being infinite is least appropriate. While
the infinite droplet theory is seen to work very well for large
N (i.e., the macrodroplet regime), the variational description
works less well in this regime. This is because the density
of the droplet saturates towards a maximum value,4 causing
the transverse density profile to develop a flat top that is not
well-described by a Gaussian.

Using our mapping we can provide an approximate de-
scription of the excitation spectrum of a finite droplet. Here we
compare to results presented in Ref. [21] for the spectrum of a
finite droplet, obtained using large-scale diagonalization pro-
cedures. Some results of that work are reproduced in Fig. 5.
In this regime the droplet is highly elongated (σz/σρ ≈ 30)
and acts as a waveguide for the low-energy collective modes.
The excitations appear as a set of bands labeled by their z
component of angular momentum.5 In Ref. [21] an approx-
imate dispersion relation, equivalent to our variational result
(14), was used to provide a qualitative description of the Ekz00

band. This variational result does not describe any of the
higher bands (see Fig. 5). In contrast the infinite droplet the-
ory [numerically solving Eqs. (10)] exhibits good quantitative
agreement with the finite droplet results for the m = 0, 1, and
2 bands of excitations presented in Ref. [21]. We also show the

4The maximum value arises from the balance of the attractive two-
body interactions and the repulsive quantum fluctuations.

5In a finite droplet, the z component of momentum is not a good
quantum number and in Ref. [21] an approximate mapping was de-
veloped by analyzing the approximate wavelengths of the individual
excitations.

023308-4



INFINITE DIPOLAR DROPLET: A SIMPLE THEORY FOR … PHYSICAL REVIEW A 105, 023308 (2022)

0.2

0.4

0.6 (c)

10

20

30 (d)

0 2 4 6 8 10
0

2

4 (e)

0 0.5 1 1.5
0

1

2

3

4

5

6

finite droplet
infinite droplet
variational

(a)

0 0.5 1 1.5

(b)

FIG. 4. Mapping and comparison of finite and infinite droplets.
The z = 0 transverse density profile for a finite droplet with (a) N =
2.5 × 103 and (b) N = 25 × 103 atoms compared to the infinite
droplet results. (c) Comparison of the 1/e-density half-width σρ in
the z = 0 plane as the number of atoms in the droplet varies (for the
variational theory this is l). The finite droplet (d) aspect ratio and (e)
linear density (17) as N varies. Here σz is the 1/e-density half-width
of the droplet on the z axis. These results are for a free-space droplet
of 164Dy atoms with add = 130.8a0 and as = 80a0. The droplet is
only self-bound for N exceeding the critical value of Nc ≈ 1899.

infinite droplet predictions for the m = 3 band (not calculated
in Ref. [21]), with the higher angular momentum bands lying
in the continuum (see the inset to Fig. 5). We note that the
finite droplet theory predicts that the Ekz00 band is imaginary
in the small-kz limit (well below where the first excitation
occurs in the finite droplet).

C. Axial speed of sound and long-wavelength instability of the
infinite droplet

The excitation spectrum of a dipolar condensate is known
to be anisotropic (e.g., see Refs. [31–35]) due to the
anisotropy of the DDIs. Here we explore the axial speed of
sound of a dipolar droplet—i.e., the speed of sound along
the long axis of the droplet. We identify the axial speed of
sound from the long-wavelength slope of the lowest excitation

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2
0

0.5

1

FIG. 5. Excitation spectrum of a free-space droplet of N =
105 164Dy atoms with as = 80a0. The BdG excitation energies of
a finite droplet are plotted as × symbols against a z-wave-vector as-
signment (these results are from Ref. [21] and assignment details are
discussed therein). Results are sorted by the z component of angular
momentum of the excitation [blue (m = 0), red (m = 1), green (m =
2), and black (m = 3)]. Solid lines give the infinite droplet results for
comparison using the linear density n = 4231.6/μm. Black dash-
dotted lines give the variational result, Eq. (14), and the black dashed
line shows εkz for reference. The inset shows the infinite droplet
result including the continuum excitations that develop at higher
energies. Note that the Ekz00 band (blue dots) becomes imaginary for
kz � 0.04 μm−1.

band as

cz = 1

h̄

∂Ekz00

∂kz

∣∣∣∣
kz=0

. (18)

The Ekz00 excitation band was observed in Figs. 3 and 5 to
have novel behavior arising from the antiroton effect, notably
a rapid rising and upwardly curving shape. These features
make identifying the speed of sound difficult from a visual
inspection of the results. Furthermore, in the previous sub-
sections we noted that the lowest band can be dynamically
unstable at very low kz, which corresponds to cz being imagi-
nary (i.e., Mc2

z < 0).
The variational spectrum in Eq. (14) neglects any change

in the transverse profile for long wavelength excitations and
thus does not provide a good estimate of the speed of sound.
So for the variational approach it is better to use the result
Mc2

z = n(∂n/∂μ) for the inverse (axial) compressibility:6

Mc2
var = n

(
∂2E
∂n2

)
, (19)

= nŨ0(0)

(
1 − n

l

dl

dn

)
+ 3n3/2γQFγχ

2

(
1 − 6

5

n

l

dl

dn

)
, (20)

6Note we can also use this result to obtain Mc2
z directly from the

EGPE rather than calculating the BdG excitations. We have verified
that the results are identical from these two approaches.
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FIG. 6. (a) Mc2
z [16] as a function of as for fixed linear density

n = 2.5 × 103/μm from EGPE (blue lines) and variation (red line)
calculations. Results are shown for infinite free-space droplets (solid
line), transversally confined infinite droplets (dashed line) and a
transversally confined condensate with γQF = 0 (dashed-dotted line).
The upper inset shows how k∗

z varies with n for as/a0 = 75 (black
line, top), 80 (red line, middle), and 85 (blue line, bottom). The
lower inset shows the imaginary part of the Ekz00 spectrum for a
free-space droplet with as = 80a0. (b) The radial 1/e-density widths
of the states. These results use add = 130.8a0, and for trapped cases
ωρ/2π = 150 Hz is used.

where Ũ0(0) = (gs − gdd )/2π l2 [from Eq. (15)], and

n

l

dl

dn
= nŨ0(0) + 9

5 n3/2γQFγχ

3h̄2

ml2 + ml2ω2
ρ

2 + 3nŨ0(0) + 24
5 n3/2γQFγχ

. (21)

In Fig. 6(a) we plot Mc2
z as a function of as for infinite

droplets in free-space and with transverse confinement. For
reference, we also show the behavior of a transversally con-
fined system without quantum fluctuations, where Mc2

z → 0
(and the system collapses) as as → add from above. Compar-
ing the trapped results we observe that inclusion of quantum
fluctuations causes a significant increase in Mc2

z . However,
even including quantum fluctuation effects Mc2

z becomes neg-
ative for sufficiently low values of as (i.e., as � 90a0). For the
infinite free-space droplet at all values of as where a localized
droplet state is obtained, we find that Mc2

z < 0.
A negative value of Mc2

z , i.e., when cz is imaginary, in-
dicates that the long wavelength modes of the system are

dynamically unstable. The lower inset to Fig. 6(a) shows
the imaginary part of the spectrum for an infinite free-space
droplet with as = 80a0. Here the Ekz00 excitation band is
purely imaginary for kz < k∗

z and real thereafter. For the finite-
sized droplet the longest wavelength excitation has a wave
vector of approximately kz,min ≡ π/σz (cf. the first m = 0
excitation marked by a symbol in Fig. 5), where σz is the
1/e-density half-width introduced earlier. Thus the finite axial
extent of the droplet prevents the unstable modes being ac-
cessed, and so the dynamical instability cannot manifest. The
upper inset to Fig. 6(a) shows results for how the maximum
unstable wave vector k∗

z changes with as and n. For larger
finite droplets, where n is higher, k∗

z gets smaller, possibly
indicating that the instability cannot manifest even in very
large droplets. This is consistent with the observations in
Ref. [21] where the lowest energy m = 0 mode of a finite
droplet appears to asymptotically approach 0 as N increases.

The width σρ of the infinite free-space droplet diverges
with increasing as [see Fig. 6(b)], as the droplet unbinds and
evaporates. Using the variational theory we can solve for the
evaporation transition, i.e., where a stationary state solution
(i.e., dE/dl = 0) occurs with E = 0, giving

1
2 + n(as − add ) = 0. (22)

For the free-space droplet case in Fig. 6 this result predicts
evaporation to occur at as = 127a0. Because the radial width
diverges as we approach the transition we have not been able
to numerically explore the infinite droplet EGPE predictions
for the transition in detail. For a finite droplet, as σρ increases
the infinite droplet becomes a poor approximation, since it re-
quires σz � σρ . Thus, condition (22) is not a useful predictor
of the transition in a finite droplet.

D. Thermodynamic limit droplet of a free-space droplet

Finally we consider the thermodynamic limit of a free-
space dipolar droplet. We take the thermodynamic limit by
allowing N to increase towards infinity in a finite free-space
droplet. We find (e.g., from fits in Fig. 4(c)–4(e), also see
Ref. [21]) that the following approximately scaling behavior
holds:

σρ ∼ N1/4, (23)

σz ∼ N1/2, (24)

n ∼ σ 2
ρ ∼ N1/2, (25)

for the width, length, and linear density of the droplet, respec-
tively. Thus, in the thermodynamic limit all of these quantities
are infinite. Hence, the thermodynamic limit does not corre-
spond to the infinite droplet theory developed in this paper, in
which σz is infinite, but σρ and n are both finite.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have developed a theory to describe an
infinitely long dipolar droplet, as an idealization of the long-
filament-shaped droplets prepared in experiments. Our focus
has been on the excitation properties, which are difficult to
calculate accurately for finite droplets. Our results in Fig. 5
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demonstrate good quantitative agreement to one of the few
detailed studies of excitations of a finite dipolar droplet in the
literature. In the excitation spectrum, a number of interesting
features arise, collectively called the antiroton effect [16].
These features appear in our results for the dynamic structure
factor of an infinite droplet, which could be measured in
experiments by performing Bragg spectroscopy along the long
axis of a large droplet.

We have also examined the nature of the axial speed of
sound in a droplet. For the infinite droplet theory we find that
Mc2

z < 0 for free-space droplets and in confined droplets with
sufficiently low values of as. The kz → 0 limit used to identify
the speed of sound is problematic for finite droplets due to
prominent finite-size dependence arising from the antiroton
effect (i.e., the rapid change in the effective interaction with
kz near kz = 0). Indeed, finite dipolar droplets appear to be
stable because the unstable modes occur at wavelengths that
are too long to be accommodated. Increasing N to make the
droplet longer also causes n to increase (the droplet gets

wider), and our results show that this leads to unstable wave-
lengths becoming even longer. Thus, it is possible that these
instabilities never manifest in finite droplets, and certainly this
is consistent with calculations we have performed for finite
droplets over a wide parameter regime. This also raises the
question: what is the appropriate axial speed of sound for
a finite droplet? In practice a result reflecting the finite size
of the system may be necessary, e.g., replacing kz = 0 with
kz → 1/σz in Eq. (18). Whether such an identification is use-
ful in understanding the effective compressibility or critical
velocity of a finite droplet is an interesting direction for future
research.
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