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Interspecies interactions in an ultracold dipolar mixture
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We experimentally and theoretically investigate the influence of the dipole-dipole interactions (DDIs) on
the total interspecies interaction in an erbium-dysprosium mixture. By rotating the dipole orientation we are
able to tune the effect of the long-range and anisotropic DDI, and therefore the in-trap displacements of the
erbium and dysprosium clouds. We present a theoretical description for our binary system based on an extended
Gross-Pitaevskii theory, including the single-species beyond mean-field terms, and we predict a lower and
an upper bound for the interspecies scattering length a12 = 105[−65, +162]a0. Our work is a step towards
the investigation of the experimentally unexplored dipolar miscibility-immiscibility phase diagram and the
realization of quantum droplets and supersolid states with heteronuclear dipolar mixtures.
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I. INTRODUCTION

The ability to tune the interparticle interactions, the geom-
etry and dimensionality of the system, and the possibility of
adding complexity in a controlled manner, has made ultra-
cold atomic gases a great platform for studying a plethora
of physical phenomena that would be otherwise hard to
achieve [1]. Combining two atomic species gives even further
opportunities for investigating the effects arising from the
interplay between the intra- and interspecies interactions, as
polarons [2,3], heteronuclear quantum droplets [4–6], soli-
tons [7], and ultracold molecules [8].

Heteronuclear mixtures are typically realized by com-
bining contact-interacting atomic species (see alkali-alkali
mixtures [9–15], alkali-alkaline-earth mixtures [16], and
alkali-alkaline-earth-like mixtures [17–19]). Recently, experi-
ments were able to produce novel types of ultracold mixtures
where either one or both mixture components are long-range
interacting (lanthanide) atomic species [20,21]. In particular,
the realization of Er-Dy dipolar quantum mixtures is attract-
ing great interest, driven by the possibility of creating new
quantum phases even more exotic than the one achieved in
contact-interacting mixtures [1] or in single-species dipolar
gases [22]. Several theoretical works reported on the study
of miscibility in dipolar condensates [23–26], vortex lattice
formation [27,28], and on binary quantum droplets realized
with dipolar mixtures [29–31].

In heteronuclear dipolar Bose-Bose mixtures, the phenom-
ena mentioned above rely quite strongly on the miscibility-
immiscibility conditions. These conditions define whether
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the two components mix together with the center of masses
overlapping at the trap center or whether they are in a phase-
separated state where the two centers of mass are pushed away
from each other. The miscibility-immiscibility phase diagram
depends on the contact intraspecies scattering lengths a11, a22

and dipolar lengths add,1, add,2, and the interspecies scattering
lengths a12 and dipolar lengths add,12. While add,12 can be
calculated analytically, a12 is unknown and its determination
relies on experimental measurements.

In this paper, we prepare ultracold degenerate mixtures
of erbium and dysprosium, and experimentally investigate
the effect of the mean-field dipole-dipole interactions on
the total interspecies interaction by tracing the center-of-
mass displacement for different dipole orientations. We
present a theoretical description for our system, including
the single-species beyond mean-field terms, which reproduces
qualitatively well the experiment. By matching theory and
experiment, we define a lower and upper bound for the in-
terspecies scattering length a12.

II. THEORY

Here, we consider a binary mixture of dipolar condensates
of 164Dy and 166Er atoms confined in a harmonic potential, in
the presence of a magnetic field B aligned along an arbitrary
direction in space. The system can be described in terms of
an extended Gross-Pitaevskii energy functional E = EMF +
Edd + ELHY with.

EMF =
2∑

i=1

∫ [
h̄2

2mi
|∇ψi(r)|2 + Vi(r)|ψi(r)|2

]
dr

+
2∑

i, j=1

gi j

2

∫
ni(r)n j (r)dr, (1)

Edd =
2∑

i, j=1

Cdd
i j

2

∫∫
ni(r)Vdd(r − r′)n j (r′)drdr′, (2)
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and the single-species Lee-Huang-Yang (LHY) correction for
the two components

ELHY = 256
√

π

15

2∑
i=1

h̄2a5/2
ii

mi

(
1 + 3

2
ε2

dd,i

) ∫
ni(r)5/2dr, (3)

where ni(r) = |ψi(r)|2 represents the density of each con-
densate, Vi(r) = (mi/2)

∑
α=x,y,z ω2

α,ir
2
α + migz includes the

harmonic trapping and gravity potentials, gi j = 2π h̄2ai j (mi +
mj )/(mimj ) is the contact interaction strength, Vdd(r) = (1 −
3 cos2 θ̄ )/(4πr3) the (bare) dipole-dipole potential, Cdd

i j ≡
μ0did j its strength, di the modulus of the dipole moment d i

of each species, εdd,i = μ0d2
i /3gii [32], r the distance be-

tween the dipoles, and θ̄ the angle between the vector r and
the dipole axis, cos θ̄ = d · r/(dr) [33]. In the following we
identify species 1 with the Er condensate, and species 2 with
the Dy condensate (we have also omitted the reference to the
mass number, for ease of notations). As described later on, the
orientation of the magnetic dipoles is varied along arbitrary
directions through an external magnetic field B.

Then, for each set of parameters the ground state of
the system is obtained by minimizing the energy functional
E [ψ1, ψ2] by means of a conjugate algorithm (see, e.g.,
Refs. [33–35]). In the numerical code the double integral
appearing in Eq. (2) is mapped into Fourier space where it
can be conveniently computed using fast Fourier transform
(FFT) algorithms, after regularization (see Appendix B). The
LHY correction in Eq. (3) is obtained from the expression
for homogeneous three-dimensional (3D) dipolar condensates
under the local-density approximation [32,36]. For the sake
of simplicity, here we do not include the interspecies LHY
correction as it would require a much more complicated treat-
ment [29,30], which is not essential when the system is stable
against the mean-field collapse driven by the interspecies in-
teractions, as in the present analysis.

Finally, we remark that the intraspecies scattering lengths
are given as the input to the theory and, whereas the value for
Er has been measured with high accuracy to be a11 = 83(3)a0

at the magnetic field we are working at [37], the scattering
length for Dy, a22, still lacks an accurate determination. Sev-
eral works have reported different values ranging from 60a0

to 100a0 [38,39]. As in the present work no signs of super-
solid or droplet states have been observed [40], we set a22 to
the minimal value for which Dy is stable against mean-field
collapse (without LHY), namely a22 = 95a0. This guarantees
that the ground state is an unmodulated BEC, for our atom
numbers and trap frequencies. Note that, since a11 > add,1

while a22 � add,2, with add,i = Cdd
ii mi/(12π h̄2) the dipolar

length, we expect Eq. (3) to be more relevant for Dy than for
Er. Indeed, when dropping this term for Er, we observe no
changes in the behavior. Instead, for Dy, the system would
collapse for a22 < 95a0 for B perpendicular to the gravity
direction.

III. EXPERIMENT

Our experiment starts with a degenerate mixture of 166Er
and 164Dy, similar to Ref. [21]. In brief, after cooling the
atomic clouds in a dual-species magneto-optical trap [41], we
start the evaporative cooling by loading the mixture into a

(a)

(b)

(c)

FIG. 1. Trap geometry, ground-state column density, and dipole
potential. (a) Illustration of the geometry of our 164Dy (red ellipse)
and 166Er (blue ellipse) mixture. The orientation of the magnetic field
is defined by the angles φ and θ . The imaging beam propagates
in the horizontal plane, at an angle of 45◦ with respect to the y
axis (not shown). (b) Ground-state column density for an imbal-
anced mixture with NDy = 1.3 × 104, NEr = 4.9 × 104, a12 = 100a0.
Dashed and solid lines show the isodensity contour levels for Dy
and Er, respectively. For comparison, the in-trap displacement due
to the gravitational sag for a noninteracting mixture is also shown
(black dashed lines). We set z = 0 at the center of the gravitational
sag. (c) Heat map of the dipole potential produced by the Dy con-
densate (parameters below), ṼDy(r) ≡ ∫

Vdd(r − r′)nDy(r′)dr′, in the
x = 0 plane. Here, the magnetic field points along the z axis. The
dotted-dashed lines represent the isodensity contour levels of the Er
component, indicating that in this regime the interspecies dipolar
interaction is predominantly attractive.

single-beam optical dipole trap at 1064 nm, which propagates
horizontally (y axis); see the reference frame in Fig. 1(a).
After about 600 ms, the power of a second trapping beam,
propagating vertically along the direction of gravity (z axis),
is linearly ramped up to form a crossed optical dipole trap
(cODT). Here, the evaporation further proceeds for about
5 s. We perform the evaporation at a magnetic field of B =
2.028 G, pointing along the z axis, which allows an efficient
cooling of both species.

The final harmonic trap has a cigarlike shape,
axially elongated along the y axis, with frequencies
ωx,y,z = 2π × [96(1), 18(1), 150(5)] s−1, and ωx,y,z =
2π × [104(1), 18(1), 165(5)] s−1 for Er and Dy, respectively.
The trapping frequencies of the two species slightly differ.
This is due to the small difference in their mass and atomic
polarizability [42,43]. In a harmonic trap, each species
experiences a shift of its center-of-mass (COM) position
along the z axis due to gravity. This effect is known as
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FIG. 2. Experimental protocol. After preparing our Er-Dy mix-
ture with B ‖ z, the magnetic field is rotated to an arbitrary direction,
defined by θ and φ, in 120 ms. The atomic clouds are held in the
trap for 50 ms to reach equilibrium, before either of the species
is removed with resonant light. The remaining cloud is held for a
variable hold time th. The cloud is then released from the trap and
imaged with standard absorption imaging after a TOF expansion of
tTOF = 26 ms. We prepare imbalanced mixtures with condensed atom
numbers NC in the range [1–3] × 104 and [4–6] × 104 for Dy and Er,
respectively (see Appendix A).

gravitational sag [44–46]. For mixtures, the differential
gravitational sag between the components is given by
	zgrav = g(1/ω2

z1 − 1/ω2
z2), which for our Er-Dy mixture

is 	zgrav = 1.9(1) μm with Er shifted downwards more
than Dy; see Fig. 1(a). Such gravitational sag favors phase
separation along the z axis, reducing the interspecies overlap
density. In the presence of interspecies interactions, the
vertical distance of the clouds’ centers is not only determined
by the gravitational sag but also by their mutual mean-field
attraction or repulsion [13,15,47–49], quantified by the
mean-field shift 	zMF. For dipolar mixtures, 	zMF is
determined by the interplay between the dipolar and contact
interspecies interactions, as we will discuss later. The total
vertical in-trap displacement is thus 	z = 	zgrav + 	zMF.

Figure 1(b) shows exemplary calculations of the 2D
ground-state column density of an imbalanced mixture for
B ‖ z and a12 = 100a0. In this configuration, a COM shift is
clearly visible, which exceeds the gravitational sag, indicating
a total repulsive mean-field interaction between the compo-
nents. To understand the role of the DDI, it is interesting to
calculate the effective potential generated by one species (e.g.,
Dy), ṼDy(r) ≡ ∫

Vdd(r − r′)nDy(r′)dr′, felt by the other species
(e.g., Er). Such effective potentials are most relevant in the
region where the two species overlap (beside a long-range tail
from the DDI). As shown in Fig. 1(c), for our trap geometry
and dipole orientation, Er experiences a dominant attractive
DDI generated by Dy, which is however weaker than the
repulsive interspecies contact interaction for a12 = 100a0.

To experimentally study the interspecies mean-field shift,
we selectively remove either one of the two species and follow
the COM dynamics of the remaining species towards its new
equilibrium position in the trap [21]. Figure 2 illustrates our
protocol. After preparing our trapped Bose-Bose Er-Dy mix-
ture with B ‖ z, we first adiabatically rotate the magnetic field

(a)

(b)

FIG. 3. COM oscillations after removal of either one of the
species. (a) Vertical COM position of Dy after removing Er and
(b) vice versa. The vertical position Zi is recorded after a TOF
expansion of 26 ms, as a function of the holding time. The offset
zoff has been subtracted to facilitate comparison. The measurements
are repeated for two magnetic-field orientations: B ‖ z, θ = 0◦, φ =
0◦ (circles) and B ∈ xy, θ = 90◦, φ = 15◦ (diamonds). The atom
numbers are NDy = 1.3(2) × 104, NEr = 4.9(7) × 104 and NDy =
3.1(5) × 104, NEr = 4.7(5) × 104 for B ‖ z and B ∈ xy, respectively.
The error bars reported represent the standard error on the mean over
three experimental trials, and are mostly smaller than the markers.
We fit Eq. (4) to the data for B ‖ z (solid lines) and B ∈ xy (dotted
lines).

in 120 ms to the desired orientation (i.e., changing θ and φ)
and let the mixture equilibrate for 50 ms. We then selectively
remove either Er or Dy by shining a resonant light pulse, op-
erating on either of the two strong atomic transitions [401 nm
(421 nm) for Er (Dy)]. We have checked that this resonant
pulse of 3-ms duration does not affect the remaining species.
Finally, we hold the remaining species in trap for a variable
time th and probe the system with standard absorption imaging
after a time-of-flight (TOF) expansion of tTOF = 26 ms.

After the selective removal of either of the two species,
the remaining species is out of equilibrium and the cloud
COM starts to oscillate around its new equilibrium posi-
tion, given by the dipole-trap minimum in the presence of
gravity. Figure 3(a) [Fig. 3(b)] shows the vertical COM po-
sition Zi (see Appendix A), measured after TOF, for Dy
(Er) after removing Er (Dy) and for two different dipole
orientations.

The amplitude of the observed oscillation is directly
connected to the interspecies mean-field shift experienced
by the atoms in the trap. Within the assumption of
ballistic expansion, which is justified in the weakly interact-
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ing regime, Zi(th, tTOF) = zi(th) + żi(th)tTOF + gt2
TOF/2, where

zi(th) = 	zMF,i cos(ωith) + 	zgrav is the in-trap COM posi-
tion. The oscillation frequency ωi is the trap frequency along
the z axis.

By combining the previous equations, one gets the follow-
ing expression,

Zi(th, tTOF)=	zMF,i cos(ωith) − 	zMF,i ωi sin(ωith)tTOF+zoff,

(4)
where zoff = 	zgrav + gt2

TOF/2. We fit Eq. (4) to the exper-
imental data for the two magnetic-field orientations with
the mean-field shift 	zMF,i, ωi, and zoff being free fitting
parameters.

IV. RESULTS

Figure 3 shows important information on the interspecies
interactions. First, by comparing the dynamics of the two
species, we observe that the oscillations are counterphase. The
Dy cloud starts moving downwards towards the trap center,
whereas the Er one moves upwards, confirming a total repul-
sive interspecies interaction for this geometry. Second, we see
a clear difference in the oscillation amplitude between Dy and
Er. This is due to the fact that the mixture is imbalanced with
Er being the majority species, and therefore the mean-field
shift caused by Er on Dy is larger. Finally, for each species,
the oscillation amplitude strongly depends on the magnetic-
field orientation. This behavior cannot be simply explained
by the anisotropy of the DDI. For B ‖ z, the DDI is more
attractive over the interspecies overlap region than for B in the
xy plane, B ∈ xy. Hence, one would expect 	zMF,z < 	zMF,xy,
contrasting the observations.

The additional effect to account for is the magnetostric-
tion [50] of each species, i.e., a cloud elongation along the
magnetization direction caused by the single-species DDI.
For B ‖ z, the two clouds elongate along the z axis, thus
increasing the interspecies overlap density; see Fig. 1(b). This
increased overlap activates a backaction on the strength of the
repulsive contact interaction, which acquires a larger weight,
leading to an increased repulsion between the clouds. On the
contrary, for B ∈ xy, the clouds elongate horizontally, thereby
minimizing the overlap density and therefore the interspecies
repulsion. The slight difference in frequency observed for the
two magnetic-field orientations is due to the presence of small
residual magnetic-field gradients (see Appendix C).

To get further insight into the anisotropy of the interspecies
interactions, we repeat the above measurement for various
dipole orientations, set by the angles θ and φ. As before,
we perform two sets of measurements: We probe the out-
of-equilibrium dynamics of Dy after removing Er and vice
versa. To enhance the amplitude of the COM oscillations of
one species (Dy), we perform measurements with imbalanced
mixtures, where Er is the majority species with condensed
atom numbers in the range [4–6] × 104, while the Dy cloud
contains about [1–3] × 104 (see Appendix A).

Figure 4 summarizes our results. It shows both the mea-
sured and calculated mean-field shift 	zMF,i for each plane of
rotation for Dy (red points) and Er (blue points). We observe
that 	zMF,i has a maximum for B ‖ z and decreases when ap-
proaching the horizontal plane. The gray lines show the theory

(a) (b) (c)

FIG. 4. Mean-field displacement and theory prediction. Exper-
imental estimation of the mean-field displacement 	zMF,i for Dy
(red points) and Er (blue points), as a function of the magnetic-field
orientation. (a) θ = [0◦, 90◦], φ = 0◦. (b) φ = [0◦, 90◦], θ = 90◦.
(c) θ = [0◦, 90◦], φ = 90◦. Theory prediction for an interspecies
scattering length a12 = 100a0 (gray lines). The gray shaded area
takes into account the experimental uncertainty on the estimation
of the atom number. The error bars in 	zMF,i correspond to the
statistical uncertainty from the fit. The mismatch between the data
points at θ = 0◦ in (a) and (c) is due to different atom numbers (see
Appendix A).

results for an interspecies scattering length a12 = 100a0 and
for our experimental parameters, i.e., atom numbers and trap
frequencies. We chose a12 = 100a0 as it describes best the
experimental data. The gray shaded area takes into account
the experimental uncertainty on the estimation of the atom
number.

The theory curves agree qualitatively with the experimental
observations. In particular, experiment and theory are in good
agreement for B ‖ z, while they start to deviate for B ∈ xy.
The small mismatch can be due to the presence of residual
vertical magnetic-field gradients, which are not taken into
account in the theory. These can cause a systematic shift
of the trap frequencies to higher values when going from
B ‖ z to B ∈ xy, thereby reducing the gravitational sag (see
Appendix C). Furthermore, while our Dy ground-state calcu-
lations predict the transition to a macrodroplet at a22 = 95a0

for B ‖ y, and a further reduction of the overlap density, in
the experiment we observe a stable Dy BEC. Previous works
have also shown a quantitative mismatch between theory and
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FIG. 5. Calculated mean-field displacement as a function of a12.
Calculated mean-field displacement for (a) Dy and (b) Er as a func-
tion of the interspecies scattering length a12. The red dashed line
and the red shaded area in (a) represent the Dy experimental mean-
field displacement and its error, respectively. The magnetic field is
oriented along the z axis. (c) In-trap density cut along y = 0 for Dy
(red) and Er (blue), for a12 = 30a0 (solid lines), a12 = 100a0 (dashed
lines), and a12 = 200a0 (dotted lines). Here, NDy = 0.8 × 104 and
NEr = 5.9 × 104.

experiment in predicting the macrodroplet transition, suggest-
ing the need for refined models and an accurate determination
of a22 [36,37,51].

The overall behavior shown in Fig. 4 can be explained by
the effect of the magnetostriction on the interspecies over-
lap density. In fact, as discussed earlier, for magnetic-field
orientations in the horizontal plane, the clouds are elongated
horizontally along the direction of B, thereby minimizing the
density overlap and the interspecies repulsion, whereas when
orienting the magnetic field along the vertical direction, the
magnetostriction leads to an increase of the density overlap
and therefore of the interspecies repulsion, which overcomes
the attractive DDI. The system undergoes a transition to a state
where the two components are pushed aside, maximizing the
in-trap displacement [see Fig. 1(b)].

To study the behavior of the mean-field shift as a function
of a12, we consider a specific magnetic-field orientation. In
particular, for B ‖ z, we perform ground-state calculations
varying the interspecies scattering length a12 and calculate
the Er-Dy mean-field displacement as a function of a12. The
results are shown in Fig. 5. The mean-field displacement in-

creases with a12 owing to the fact that Dy [Fig. 5(a)] is pushed
away from Er [Fig. 5(b)]. Figure 5(c) shows the Dy (red)
and Er (blue) density cuts along y = 0, for a12 = 30a0 (solid
lines), a12 = 100a0 (dashed lines), and a12 = 200a0 (dotted
lines). The repulsive interaction between the species leads to
a decrease of the density overlap when going to higher a12. We
compare the theory results with the experimentally measured
mean-field shift at [θ = 0◦, φ = 90◦], and by performing a
χ2 analysis we are able to estimate the interspecies scatter-
ing length to be a12 = 105[−65,+162]a0 (see Appendix D).
From our ground-state calculations, when choosing a12 <

30a0 the repulsive contribution of the contact interactions to
the mean-field shift is not enough to overcome the attractive
contribution from the DDI [see Fig. 1(c)] leading to a collapse
of both species. In this regime, it might be necessary to include
the interspecies LHY term as done in Refs. [29,30].

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have experimentally investigated the
effect of the DDI on the total interspecies interaction by trac-
ing the mean-field in-trap displacement between the species.
We have presented a theoretical description for our Er-Dy
mixture, including the single-species beyond mean-field cor-
rections, which qualitatively describes well our system and
allows us to predict an interspecies scattering length on the
order of a12 = 100a0. By changing the magnetic-field ori-
entation from the horizontal plane to the vertical direction,
we were able to observe a transition to a state in which the
two components are pushed apart by the dominant mean-field
repulsive interaction. Future studies will focus on the use of
interspecies Feshbach resonances, recently reported in our
group [52], to reach the conditions in which one or both
components exhibit a phase transition to a quantum droplet or
supersolid regime. As an example, Fig. 6 shows that the onset
of a supersolid phase in the Dy component can be induced by
increasing the interspecies contact scattering length a12.
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(a)

(b)

FIG. 6. Calculation of an interaction-induced supersolidity.
Ground-state configurations for an imbalanced dipolar mixture with
the magnetic field pointing along the x axis, for two different val-
ues of the interspecies scattering length: (a) a12 = 100a0, (b)a12 =
150a0. Dashed and solid lines show the isodensity contour levels
for Dy and Er, respectively. Here, NDy = 1.2 × 104, NEr = 6 × 104,
a11 = 83a0, and a22 = 95a0.

APPENDIX A: ATOM NUMBER AND VERTICAL
COM POSITION

After each experimental sequence—described in Fig. 2—
we release the clouds and perform absorption imaging after
a TOF expansion of 26 ms. We measure the condensed atom
number for each species after subtracting the thermal part by
fitting a symmetric 2D Gaussian to the wings of the den-
sity distribution. We then fit an asymmetric Gaussian to the
remaining density distribution to extract the vertical COM
position Zi. Figure 7 shows the measured condensed atom
numbers NC of Dy (red points) and Er (blue points), related
to the results presented in Fig. 4 of the main text. These atom
numbers are given as input to the theory for each value of θ

and φ.

APPENDIX B: FOURIER REPRESENTATION AND
REGULARIZATION OF THE DIPOLAR ENERGY

Here, we outline the method used for calculating the
double integral in Eq. (2), following the standard approach in-
troduced in Ref. [33]. As anticipated, we start by rewriting the
above integral in Fourier space. In particular, we make use of
the Parseval theorem [34],

∫
g(x)h∗(x)dx = ∫

g̃(k)h̃∗(k)dk,
where g̃(k) ≡ FT[g](k) and h̃∗(k) ≡ {FT[h](k)}∗. Then, by
defining f ≡ h∗ and recalling that FT[ f ∗](k) = f̃ ∗(−k), we
have h̃∗(k) = {FT[ f ∗](k)}∗ = f̃ (−k), so that

Edd = 1

2

∫
ñ∗

i (k)Ṽdd(k)ñ j (k)dk, (B1)

where we have used the fact that ni(r) is real, which implies
ñi(−k) = ñ∗

i (k) [53]. At this point it is worth recalling that
the use of the FT implicitly entails a periodic system, and
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FIG. 7. Condensed atom numbers as a function of the magnetic-
field orientation. Measured atom numbers in the BEC for Dy (red
points) and Er (blue points) related to the measurement shown in
Fig. 4 of the main text. The magnetic field is oriented (a) in the
XZ plane, (b) in the XY plane, and (c) in the Y Z plane. The error
bars reported represent the standard error on the mean over three
experimental trials.

this brings along an unwanted effect: The long-range dipolar
interactions can couple the system to virtual periodic replica.
Such a coupling is obviously unphysical, and it can be cured
by limiting the range of the dipolar interaction within a sphere
of radius R (contained inside the computational box of size
L), namely multiplying Vdd(r) by the Heaviside step function
�(R − r), with R � L/2. The corresponding FT is [33]

Ṽ cut
dd (k) = 4π

(
1 + 3

cos(Rk)

R2k2
− 3

sin(Rk)

R3k3

)(
cos2 α − 1

3

)
.

(B2)

APPENDIX C: ESTIMATION OF THE RESIDUAL
MAGNETIC-FIELD GRADIENT

To evaluate the residual magnetic-field gradient we mea-
sure the COM position of Er and Dy as a function of the
TOF and for different values of the magnetic field. In this
way, we are able to extract the correction to the gravitational
acceleration g due to residual magnetic-field gradients. When
B is oriented along the z axis we measure an increase in g of
about 2% for Dy and 1% for Er. The presence of these residual
magnetic-field gradients along the direction of gravity leads
to a slight decrease of the trap frequencies (see Fig. 3 in the
main text) when orienting B from the XY plane to the z axis.
The tensorial polarizability [42,54] could also cause a shift
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FIG. 8. χ 2 distribution of the mean-field shift. χ 2 distribution for
the Dy mean-field shift (black points). We estimate the interspecies
scattering length to be a12 = 105[−65, +162]a0, by locally doing a
Gaussian fit around the minimum of the distribution (gray line) and
by defining the lower and upper bounds as the values at which χ2 = 1
(black dashed lines).

of the trap frequencies when changing the orientation of the
magnetic field, but these are negligible in our case.

APPENDIX D: ESTIMATION OF THE INTERSPECIES
SCATTERING LENGTH

From the calculated mean-field shift as a function of the
interspecies scattering length, shown in Fig. 5 of the main
text, we can estimate the value of a12 that best represents
the experimental results and its confidence interval. Since Er
is the majority species, its mean-field displacement is less
sensitive to the change in interspecies scattering length [as
shown in Fig. 5(b)]. In particular, the change in mean-field
shift is within the experimental error. Therefore, we only take
Dy into account for our analysis. We perform a χ2 analysis
for the Dy mean-field shift at [θ = 0◦, φ = 90◦], with χ2 =
(	zMF,2 − 	zth

MF,2)2/σ 2
	zMF,2

, where 	zth
MF,2 is the theoretically

calculated in-trap mean-field displacement, and 	zMF,2 and
σ	zMF,2 the experimental value and its statistical error. By
fitting a Gaussian around the minimum of the distribution and
by defining its confidence interval as the range in which χ2 <

1 [55], we estimate a12 = 105[−65,+162]a0, see Fig. 8.
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