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Large-scale quantum devices provide insights beyond the reach of classical simulations. However, for a
reliable and verifiable quantum simulation, the building blocks of the quantum device require exquisite bench-
marking. This benchmarking of large-scale dynamical quantum systems represents a major challenge due to
lack of efficient tools for their simulation. Here, we present a scalable algorithm based on neural networks
for Hamiltonian tomography in out-of-equilibrium quantum systems. We illustrate our approach using a model
for a forefront quantum simulation platform: ultracold atoms in optical lattices. Specifically, we show that our
algorithm is able to reconstruct the Hamiltonian of an arbitrary sized bosonic ladder system using an accessible
amount of experimental measurements. We are able to significantly increase the previously known parameter
precision.
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I. INTRODUCTION

Quantum simulators are at the forefront of quantum tech-
nologies and allow for the simulation of complex many-body
Hamiltonians using direct control and manipulation of ex-
isting quantum systems. A quantum simulation is generally
tailored towards studying a specific type of phenomena, typi-
cally one which is hard to simulate numerically on a classical
computer. One particularly relevant example of such phe-
nomena is out-of-equilibrium physics. Quantum simulations
have been successfully implemented in a range of platforms:
trapped ions [1–4], superconducting qubits [5–8], semicon-
ductor quantum dots [9], and ultracold atoms [10–17]. Many
of these currently available experimental systems are reaching
sizes that are prohibitive for their classical exact simulation
[3,11]. This fact raises a challenge of the verification of
quantum simulators: While it is true that quantum simulators
are able to address the issue of exploring physics that is
intractable otherwise, the experimental control has intrinsic
precision limits that lead to both errors and finite precision of
the quantum simulation. We therefore need to develop tools to
verify the performance of quantum simulations to ensure that
the correct physics is implemented.

Recent progress has been made in reconstructing generic
local Hamiltonians from measurements on single eigenstates
and steady states of closed and open systems [18–27] as well
as in the development of more specialized approaches tailored
to concrete models [28–35]. An area of research that poses
specific challenges for numerical methods and thus Hamil-
tonian tomography is out-of-equilibrium physics [36–39].
While many ground states and steady states of quantum sys-
tems can be readily captured by a range of approximate
methods [40–42], out-of-equilibrium behavior of quantum
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systems proved to be significantly more challenging. Indeed,
the verification of large-scale quantum out-of-equilibrium dy-
namics provide a readily available path towards quantum
computational advantage [43,44].

An additional difficulty in the verification of the imple-
mented underlying Hamiltonian arises in the presence of
imperfect measurement outcomes caused by statistical aver-
aging or measurement errors. Machine-learning methods have
been shown to provide reliable predictions in the presence
of experimental noise, even when trained on theoretical data
[30,45]. Furthermore, the short timescale and low computa-
tional cost of evaluating a pretrained neural network model
compared with more traditional methods such as Bayesian
parameter estimation is compatible with most relevant exper-
imental timescales.

In the present work, we introduce a scalable method to
learn the Hamiltonian governing out-of-equilibrium quantum
simulations. We develop a neural-network-based Hamilto-
nian learning technique that enables the reconstruction of the
dynamics of large-scale quantum systems from experimen-
tally accessible measurements with ultrahigh precision at low
computational cost. We exemplify our approach by learning
Hamiltonian parameters governing the dynamics of quenched
ultracold bosons in a ladder geometry (quasi one dimensional)
of optical lattice.

This paper is organized as follows: In Sec. II we present our
algorithm and exemplify its practical implementation on an
out-of-equilibrium bosonic system on a ladder. In Sec. III we
present results of the Hamiltonian reconstruction for experi-
mentally relevant parameter regimes. In Sec. IV we compare
with a minimal Bayesian estimation benchmark in order to
contextualize the obtained estimation errors. In Sec. V we
address how to experimentally scale our approach to arbitrary
lattice sizes. Finally, in Sec. VI we present the discussion and
the outlook of our results.
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II. HAMILTONIAN LEARNING

The central goal of our method is to reconstruct the Hamil-
tonian governing the dynamics of a quantum system, or, in
other words, to find a set of parameters required to fully
characterize the dynamics of the system under consideration.
Additionally, we wish to reconstruct the Hamiltonian with
a maximum possible accuracy from a practically accessible
amount of experimental measurements. Our protocol relies
on postprocessing the measurement outcomes and using the
so-obtained accessible and efficient representation of the rele-
vant information to train and evaluate neural networks for the
parameter estimation.

Many practically and experimentally relevant Hamilto-
nians have a local structure, i.e., they are sums of terms
that only act on sites with a finite separation. This struc-
ture does not prevent long-range correlations to arise in the
system, but it largely simplifies their verification: Since our
goal is to reconstruct Hamiltonians, not wave functions, we
may take advantage of this local structure and reconstruct
the Hamiltonians from studying the physics of a subsystem
of the experimentally relevant system. We show below that
Hilbert spaces of these local subsystems become nearly or
completely numerically manageable. Additionally, while the
associated parameter space for the Hamiltonian of interest is
not tractable, we show how to effectively approximate it in a
scalable manner.

We explain our method on a concrete example of out-of-
equilibrium quantum simulations with bosons in an optical
lattice on a ladder. The neutral bosonic atoms are trapped in an
optical lattice formed by laser beams through the coupling of
the dipole moment of the atom with an incoming light [46,47].
This system has recently emerged as an excellent platform to
explore out-of-equilibrium physics [13,14].

We study the Bose-Hubbard Hamiltonian [46,48] on a lad-
der,
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where the first term corresponds to particle hopping between
neighboring sites and the coefficients Ji j correspond to the
hopping amplitudes between site i and site j. The second
term corresponds to on-site interaction and the coefficients Ui

denote the strength of this interaction (in our case repulsion).
The third term represents an on-site energy μi. We model
here the main source of imperfection as offsets in the hop-
ping parameters, on-site repulsions, and chemical potentials.
As a consequence, we are now tasked with determining the
most probable values of the parameters θ = {Ji j,Ui, μi} con-
ditioned on the outcome of obtained measurements. Following
state-of-the art experiments with ultracold atoms, other de-
coherence sources and imperfections are strongly suppressed
with respect to the modeled offsets in the Bose-Hubbard
Hamiltonian [14]. We provide a more detailed explanation of
the sources of imperfections in Appendix A.

Since the Hamiltonian in Eq. (1) has a local structure where
the operators act at most on a pair of neighboring sites, we
consider whether we can reconstruct all the required parame-
ters by measurements on a smaller, more tractable subsystem.

FIG. 1. Schematic plot of a subsystem of a ladder (quasi one
dimensional) optical lattice with bosons. Each square corresponds
to a lattice site with the system parameters indicated. This system
constitutes the building block of our estimation algorithm.

Additionally, we expect the parameters to be reconstructed
with higher precision on a smaller subsystem because the
number of parameters dictating the system’s behavior and thus
the measurement outcomes is reduced. We emphasize here
that we aim to estimate parameters of the Hamiltonian, not
the wave function of the quantum system. As a consequence,
while quantum correlation patterns in the wave function of
a large quantum system can be qualitatively different than
those of small subsystems, the Hamiltonian of the large sys-
tem is still built by local terms. Thus, the validity of the
estimation scheme presented here relies on the locality of
the Hamiltonian and not on the wave-function correlations.
In an experimental setup with ultracold atoms, it is very well
suitable to create smaller subsystems by locally blocking hop-
ping between specific sites and thus isolating a number of
selected particles into the preselected area of the lattice [49].
In particular, projecting high-resolution optical potentials with
holographic beam shaping has become an established tech-
nique in quantum gas experiments [50]. Since the optical
potentials routinely reach a precision of <10−4, it is possi-
ble to create box potentials with negligible influence on the
system site potential offsets. More concretely, the parameters
Ji j , Ui, and μi, sufficiently distant from the border, will reflect
their values in the extended system. As a consequence, one
may faithfully estimate the parameters of the global Hamil-
tonian by measurements solely on the experimentally created
subsystems for this setting.

We consider an experimental setup similar to [13,14], con-
sisting of a 2×L ladder geometry, with L being the system
length. We then propose to isolate and examine a 2×4 sites
subsystem, as shown in Fig. 1. For four bosons, the Hilbert
space size is 330 and thus the system is tractable via exact di-
agonalization. We use this tractable system of eight wells with
four particles as the basic building block for the training of
our algorithm. We consider the following out-of-equilibrium
experimental sequence: the system is initialized in an easily
prepared state with a trivial Hamiltonian followed by a quench
of the Hamiltonian, i.e., a rapid change of the system param-
eters out of the Mott-insulating phase. After a time evolution
for a time T we perform a set of measurements on the system.
While the specific measurement performed depends on the
concrete experiment, in the case of cold atoms we have access
to quantum gas microscopy [51,52] that allows for direct
visualization of the occupation number in each well of the
optical lattice. In other words, we have the ability to project
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onto the number states of the system after the conducted
time evolution. One such Fock-state projection we denote as
a “measurement snapshot.” A set of measurement snapshots,
corresponding to effective Monte Carlo sampling of the state,
is obtained by repeatedly preparing the same initial state and
performing the time evolution for the time T . A concrete
possible experimental sequence is detailed in Refs. [13,14].
The practically achievable number of snapshots is on the
order of 104, introducing a statistical error to all inferred
quantities and the reconstruction of the output probability dis-
tribution [13,14]. From these measurements we want to infer
the Hamiltonian governing the time evolution as precisely
as possible. In particular, we assume that the parameters of
the Bose-Hubbard Hamiltonian are unknown and we aim to
estimate the values of the parameters as precisely as possible.
As a consequence of the restriction on the amount of experi-
mentally feasible measurements, we not only want to estimate
the Hamiltonian with the maximum possible precision, but at
the same time we need to be able to achieve that with as little
data as possible.

We note here that a uniform chemical potential only yields
a global phase factor and is thus not detectable within the
closed system with a constant number of atoms. Instead, we
reconstruct the fluctuations of the chemical potentials by con-
sidering the quantities μdiff,i := μi − μ1, i � 2. Thus, we aim
to estimate the set of in total 25 parameters {Ji j,Ui, μdiff,i}
fully characterizing the system’s dynamics.

In the following we explain how to design a computation-
ally efficient machine-learning algorithm for the Hamiltonian
reconstruction. Additionally, we use the well-established but
computationally costly Bayesian parameter estimation [53,54]
as a benchmark to assess the quality of the presented
neural-network-based Hamiltonian tomography process. Neu-
ral networks are, in general, capable of approximating an
arbitrary function and once the network is trained it is possible
to evaluate it on new input at low computational cost. Recent
results suggest that classical machine learning is in general
powerful in the analysis of quantum systems [55–59]. Our
goal is to approximate the map from postprocessed experi-
mental measurements M to the set of parameters that fully
specify the Hamiltonian.

Neural networks are trained using datasets of example
data instances, the more examples the network sees the more
general models we are able to build. Additionally, accurate
results are more readily obtained when the function we wish
to approximate has a low level of complexity. To reduce the
complexity of the function mapping the measurement out-
comes to the respective Hamiltonian parameters, we take two
measures: First we postprocess the measurement outcomes
such that the relevant physics are encoded in a more acces-
sible manner. As the postprocessing represents a compression
of the measurement data, it yields the additional advantage
of significantly reducing the training set size resulting in a
tractable computational training cost. Second, we factorize the
problem by training a separate model for each parameter we
wish to estimate.

The postprocessing of the measurement data is based on
calculating a set of relevant density correlators capturing the
necessary information about the set of Bose-Hubbard parame-
ters. Specifically we calculate the average occupation number

〈ni〉, i = 1, . . . , 8 for each well. Given that the densities are
particularly sensitive to the on-site repulsions and fluctuations
of the chemical potentials, relevant information for the esti-
mation of those parameters is compressed here. Correlators
of the density between any two 〈nin j〉, three 〈nin jnk〉, and
four 〈nin jnknl〉 wells yield more complete information be-
cause they are also highly influenced by the values of the
hopping amplitudes between wells. Additionally, we calculate
the correlators 〈ni(ni − 1)〉 in order to emphasize multiple
occupancies. Given that we are using four particles in eight
wells, any higher-order correlations are negligibly small. This
construction results in 171 correlation values that can be orga-
nized into a one-dimensional (1D) vector �n, which presents
a much more compact representation of the original mea-
surement dataset. We provide detailed information on the
construction of the vector �n in Appendix C.

The factorization of the classification problem is performed
as follows: instead of building a single model that predicts a
vector of 25 parameters for each measured dataset, we choose
to build separate models for each parameter, i.e., 25 models in
total.

We use 25 feed-forward neural networks trained using su-
pervised learning. In all instances the input is the correlator
vector �n and the output is a single real number predicting
the value of the given parameter. The networks consist of
one input layer with 171 neurons (one neuron for each ex-
pectation value) and five fully connected hidden layers with
300, 400, 300, 150, and 100 neurons, respectively. To train
the networks, we create 150 500 training examples. Each of
these training examples consists of a pair of inputs and labels
J label, U label, μlabel

diff , where the labels (“true” values) corre-
spond to one parameter configuration chosen randomly within
the experimental uncertainty. The input vector �n is obtained
by using exact diagonalization to simulate the time evolution
and taking measurement snapshots of the system. The time
evolution and initial state of the simulated system can be
chosen as experimentally feasible. In particular, we choose an
initial state with four atoms with an atom on every second site
and the time evolution T = 200/〈Ji j〉. Testing with smaller T
did not show any significant difference in precision, therefore
the neural network may be trained for a specific experiment
by using the most experimentally suitable time evolution T .
The correlators �n are then calculated as expectation values of
the simulated measurements. The training examples are used
to train 25 networks minimizing the objective cost function

C(X ) = |X pred − X label|2. (2)

Here, we use X as placeholder for the parameter to be es-
timated. This choice of cost function allows for accurate
estimation of continuous parameters, representing a large
advantage to discrete, more conventional such methods as
standard Bayesian parameter estimation models. We provide
further detailed information on the architecture and training in
Appendix C.

III. RESULTS

The trained networks can then be applied to estimate
parameters in an experiment. We simulate the experimen-
tal sequence by using exact diagonalization. We show the
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FIG. 2. Precision of the neural-network estimation scheme for
2500 measurement snapshots: Panel (a) shows the size of the estima-
tion errors regarding the respective positions of the on-site repulsion
(blue circles) and the neighboring site hopping (orange connections).
Panel (b) [(c)] shows the error distribution independent of the spatial
location for the hopping amplitudes (on-site repulsion) parameters
over 500 parameter configurations {Ji j,Ui, μi}, each evaluated using
2500 snapshots. Dashed gray lines denote the standard deviation of
the error.

results of the neural-network estimation in Fig. 2 for the
case of 2500 simulated measurement snapshots. Figure 2(a)
shows the average errors for the hopping amplitudes �Ji j =
|Jcorrect

i j − Jestimated
i j | and the on-site repulsion potentials �Ui =

|U correct
i − U estimated

i | in their spatial location. We denote here
as “correct” parameters the parameters used to simulate the
system, which are typically unknown in an experiment. In
particular, here we simulate those experimental conditions
by choosing a set of correct parameters Jcorrect

i j , U correct
i , and

μcorrect
i within an interval of 1% (±0.5%) around the average

values J ≈ 1, U ≈ 2, and μ ≈ 1. The absolute uncertainty
interval of the chemical-potential differences μdiff,i is by con-
struction twice the uncertainty of the chemical potentials μi.
The blue circles in Fig. 2 represent on-site repulsion errors
and their red connections represent the intersite hopping er-
rors of the neural-network estimation. Figures 2(b) and 2(c)
show the distribution of the errors for hopping amplitudes and
on-site repulsion, respectively. Gray dashed lines indicate the
standard deviation of the distributions. The shown data have
been averaged over the test set consisting of 500 measure-
ment sets (2500 measurement snapshots each). We observe
that the absolute error is around 0.1×10−2 for hopping am-
plitudes, 0.35×10−2 for the on-site repulsion and 0.3×10−2

for the chemical-potential differences, therefore significantly
improving over the prior precision for all parameters. We
elaborate in Appendix E on the dependence of the estimated
precision with respect to the experimentally known uncer-
tainty.

The precision of the estimation depends on the accuracy of
the computed correlator expectation values. The main source
of error is the statistical error arising from a finite amount of

FIG. 3. Absolute estimation error as a function of number of
measurement snapshots (left) and as a function of the probability p
to not place an atom on the intended site during the preparation of
the initial state (right). The estimation error is taken for neighboring
sites hopping amplitudes (orange triangles), on-site repulsion (blue
circles), and chemical potential differences (green squares). The av-
erage is taken over a test set of 500 data sets, each set corresponding
to a parameter configuration {Ji j,Ui, μi}.

measurement snapshots, as discussed above. In particular, we
have shown the precision for 2500 measurement snapshots in
Fig. 2, i.e., a relatively low number. We therefore examine
the scaling of the absolute error �X with X ∈ {J,U, μdiff}
as a function of measured snapshots with the error averaged
over all hopping amplitudes, on-site repulsions, and chemical-
potential differences in Fig. 3. More concretely, examining
the errors �X for the hopping potentials, on-site repulsions,
and chemical-potential differences, we see that, in the most
experimentally demanding case of 20 000 snapshots, the av-
eraged estimated absolute error is <0.1×10−2, <0.3×10−2,
and <0.25×10−2 for J , U , and μdiff, respectively, translating
into a relative error of <0.1% (<0.15%) for J (U ). When
the number of snapshots is decreased, the error begins to
slowly increase. The experimentally least demanding case
of 1000 snapshots per experimental realization results in an
averaged estimated relative error of <0.15% (<0.25%) for J
(U ). Although the accuracy of the estimation increases with
decreasing statistical error, the low absolute estimation error
for 2500 measurement snapshots may be explained with the
excellent resilience neural-network approaches typically show
with respect to noise. The higher value of the absolute error for
the on-site repulsion and the chemical-potential differences
can be explained with the known experimental precision. In
particular, the absolute experimentally known precision in-
terval is here set to be 0.02 for both the on-site repulsions
as well as the chemical-potential differences, whereas it is
of half the size for the hopping parameters. When rescaling
the absolute errors through division with the experimental
precision, the obtained errors (relative improvements of the
known precision) are of similar magnitude for all parameters,
see Appendix E.

A second-order error on the computed expectation values
is given by faulty prepared initial states. The initial state
is prepared with an accuracy of ≈99% per atom [14]. We
modeled this imprecision with a probability p, that a single
atom is not placed on the dedicated site but at one of its
neighboring sites. An accuracy of 99% per atom thus corre-
sponds to p = 1%. Figure 3 demonstrates the dependence of
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the absolute reconstruction error |�X | on the probability p for
2500 measurement snapshots. As the probability to prepare a
faulty initial state increases, due to the flexibility of the neural-
network approach only a small increase in the reconstruction
error |�X | is observed. For the experimentally expected value
p ∼ 1%, we are therefore still able to reduce the initial experi-
mental error (±0.5% around the average values J ≈ 1, U ≈ 2,
μ ≈ 1) by half an order of magnitude.

IV. BAYESIAN ESTIMATION

To assess the quality of the results provided by the neural-
network algorithm explained above, we aim to establish a
reliable benchmark. In particular, we make a comparison with
Bayesian parameter estimation. We note that a Bayesian clas-
sifier is provably optimal for classification problems [60] and
we expect similarly that Bayesian parameter estimation will
make optimal use of the measurement data. However, as we
explain below, as a consequence of the size of the parameter
space, we cannot use the full potential of the Bayesian esti-
mation due to the arising computational challenges. We can,
however, still perform a Bayesian estimate for a slightly less
complex problem in order to have a guiding threshold for the
size of the estimation error.

Bayesian inference can be used to obtain the set of most
likely parameters θ associated with measurement outcomes
M. More specifically, this goal is achieved by connecting the
probability distribution over the parameter space � with the
experimental observations via Bayes’ theorem. In particular,
for a measurement outcome M and a parameter θ ∈ � we
have

P(θ | M ) = P(M | θ )P(θ )

P(M )
, (3)

where the likelihood P(M | θ ) is the conditional probability to
observe M given the underlying parameter θ , while P(θ | M )
corresponds to the probability that the underlying parameter
is θ given the measurement outcome M. P(θ ) is the prior
knowledge about the probability distribution of θ and P(M )
is the probability for M and serves as normalization constant.
Note that P(M | θ ) can be obtained by analyzing the statistics
of the experimental outcomes for a range of parameters θ , and
Bayes’ rule (3) allows us to determine the most probable θ

given experimental outcomes. Let us now discuss how this
applies to our example.

The key simplification we have to make in comparison
to the neural network is the discretization of the parameter
space. When we train the machine-learning model, we pick
values of the Hamiltonian parameters randomly during the
training from the desired confidence interval and the model
then interpolates over the continuous interval. Bayes’ rule, on
the other hand, allows us to calculate likelihood for a set of
candidate parameter values and choose the one that best fits
with the measurement data. To find which parameter combi-
nation results in maximum likelihood, we need to evaluate the
model on a finite grid.

We restrict ourselves to the estimation of hopping am-
plitudes and on-site interaction terms. On the basic building
block subset of 2×4 sites, this yields 18 parameters to esti-
mate. If we were to select the optimal values from only five

FIG. 4. Comparison of the performance of the neural network
(left) and Bayesian method (right). The occurrences of the differ-
ence between estimated hopping and correct value are plotted as
histogram for a set of 20 data sets each containing 2500 measurement
snapshots (upper two panels) and 20 data sets each containing 20 000
measurement snapshots (lower two panels). The standard deviation
of the error is indicated via gray dashed lines.

candidates per parameter, the number of parameter combi-
nations to evaluate would be 518 ≈ 1012. As a consequence,
we would need to perform an intractable number of these
simulations to find which specific parameter combination best
fits to the experimental observation.

Since we cannot test every point of the large parameter
space probability distribution in a reasonable computational
time, we factorize this distribution as detailed in Appendix D.
Essentially, we only estimate a small number of parameters
at once, keep the rest fixed at the mean values of confi-
dence interval and iterate until all estimated parameters have
converged. The factorization reduces the number of quench
simulations we need to perform to around 105. We consider
a grid of 13 (21) candidates for each J (U ) and estimate all
parameters with relative error <0.25% for the experimentally
most challenging case of 20 000 snapshots. This number could
be further explored by using a finer candidate grid. However,
this estimate comes already at a very high computational
cost: When implemented with highly parallelized code [61],
each instance of the Bayesian estimation takes approximately
24 hours per measurement set when running the algorithm
on 36 cores. Additionally, there is no training and evaluation
phase, the whole algorithm is rerun for each obtained mea-
surement set—further adding to the computational demands
over time.

We compare the performance of the neural-network-based
method with the results obtained via the Bayesian inference
benchmark described here, see Fig. 4. We show the distribu-
tion of estimation errors over 20 measurement sets for both
the neural network and Bayesian estimation for 2500 and
20 000 measurement snapshots. We observe that the machine-
learning algorithm shows a narrower error distribution and is,
thus, firmly in the regime of errors comparable to Bayesian
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Effec�ve parameters: 

FIG. 5. Scaling of the protocol for the lattices of an arbitrary
size. The black squares indicate the lattice with the dashed blue edge
indicating a suppressed hopping term that defines a 2×4 subsystem.
The shaded boxes and the thick red edges correspond to the repulsion
and hopping terms, respectively.

estimation while requiring only a fraction of the computa-
tional cost once trained. Additionally, we observe that, with
increasing number of measurement snapshots, Bayesian esti-
mation approaches the neural-network error distribution. The
neural-network estimator does appear to suffer significantly
less from error distribution broadening when decreasing
number of measurements, thus outperforming the Bayesian
estimation benchmark.

All code needed to recreate these results as well as a min-
imal Hamiltonian reconstruction demonstration can be found
in Ref. [61].

V. SCALING

In the previous sections we have shown that we are able
to estimate parameters with relative error ≈0.1% (≈0.15%)
for J (U ) from as little as 2500 measurement snapshots on
a small subsystem of four bosons in eight lattice sites of a
bosonic ladder lattice. The question remains how to experi-
mentally scale the method up to larger systems while keeping
the computational cost low. We first want to stress that the
key ingredient of our scaling scheme, creating subsystems,
is experimentally practical. Optical potentials can be pro-
jected with high resolution using holographic beam shaping
[50]. Despite the influence on system-site potentials being in
principle negligible due to the high-precision state-of-the-art
optical potentials reach, to achieve a thorough validation we
additionally account for the possibility of potential offsets on
the subsystems boundaries induced by the projected optical
potentials. For the following analysis, we therefore assume the
parameters close to the introduced boundaries to be affected
by the projected potential. Using the site numbering intro-
duced in Fig. 1, this concerns the hopping amplitude between
sites 1 and 5 (as well as 4 and 8) and the effective on-site
interaction in these sites. We therefore develop a strategy
of “shifting” our subsystem window such that we can take
advantage of subsystem structure while capturing the whole
system using as few measurements as possible.

We show this strategy in Fig. 5. Each row corresponds
to one realization of the experiment, the blue lines denote
where the boundary should be risen and green squares and
red lines correspond to interactions and hopping amplitudes
respectively we want to infer. Our strategy is then the follow-

ing: Step 1: raise boundaries in the system. Step 2: Take a
projective measurement of the whole system and repeat for
the desired number of snapshots. Step 3: Use the relevant part
of the data to calculate expectation values for each subsystem
prepared this way. Step 4: Shift the boundary one site to the
left and repeat steps 2 through 4. As illustrated in Fig. 5, we
only need to repeat this process four times since the fifth shift
would lead to a system configuration that we have already
measured. In practice this means that for our ladder example,
we can cover a ladder geometry lattice of arbitrary size with
4×N snapshots. Note that overlapping of the boxes ensure that
we can propagate the reference site for the evaluation of the
chemical potential throughout the system. The final number
of required measurements depends on the desired precision as
decided according to the information provided in Fig. 3. For
instance, considering 2500 snapshots per boundary configu-
ration we find that we can fully learn the Hamiltonian of the
2×M ladder lattice for any size of M with 10 000 experimental
measurements.

Our algorithm and the scaling scheme are applicable in
quantum gas experiments. We follow the experimental setup
of Refs. [13,14] with respect to the choice of possible mea-
surements. The preparation of the initial state can be prepared
with about 99% per atom in state-of-the-art experiments by
isolating particles from a Mott insulator [14]. In addition,
optimal measurement fidelity is a result of the choice of the
2×N system. More specifically, the detection fidelity in quan-
tum gas experiments of 99% can be significantly improved
by postselecting measurements on the initial atom number.
Measurement errors can therefore be neglected in comparison
with the statistical error resulting from only measuring a finite
number of snapshots [14]. Cold atom experiments offer highly
controlled systems and exceptional isolation from the envi-
ronment. The coupling between subsystems is also negligible.
The next-nearest-neighbor hopping J ′ can be suppressed by
increasing lattice depth with respect to the nearest-neighbor
coupling J . A ratio of J ′/J ≈ 10−3 is achieved already at a
depth of Vr ≈ 20Er , where Er corresponds to the recoil en-
ergy. More shallow lattices can be addressed by including the
next-nearest neighbor coupling in the Hamiltonian. In lead-
ing order, this can be achieved by adding a single additional
parameter J ′ which can be assumed to be constant across the
system. We believe these facts make our scheme a potential
approach for the quantum simulation verification.

VI. DISCUSSION AND CONCLUSIONS

Precise and robust Hamiltonian learning techniques that
work reliably using only experimental data are key for the
verification of quantum simulators and the manifestation of
quantum advantage. The work presented here opens an avenue
towards achieving just that and is immediately applicable
to state-of-art quantum simulation experiments. In particu-
lar, we have developed a feed-forward neural-network-based
approach towards out-of-equilibrium Hamiltonian learning
of large-scale quantum simulators. By making use of the
local structure of simulated Hamiltonians we build up
a subsystem-based Hamiltonian learning method. We use
Bayesian estimation on a discrete parameter space as an
estimation benchmark. We show that the neural-network
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approach outperforms the guiding Bayesian learning bench-
mark at a fraction of the computational cost. We have
illustrated the effectiveness of our method on the Hamiltonian
reconstruction of an out-of-equilibrium bosonic system on a
ladder in an optical lattice. Our specific example concerned
the situation where the parameters can be relatively precisely
estimated from first principles. Our method is then able to
determine the parameters with a significantly higher precision
than the experimentally accessible level. We show further
examples of the usage of our algorithm in Appendix E.

When adapting our method to other systems the key chal-
lenge is the subsystem design. In the particular application
explained here, we were able to select the subsystem small
enough for us to be able to simulate the dynamics of the sub-
system exactly. To increase the number of particles and fully
capture a larger subsystem size, we may use a suitable approx-
imate method to simulate the quantum dynamics [42,62,63]
while approaching the factorization of the parameter space in
an analogous fashion as described in this work.
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APPENDIX A: EXPERIMENTAL
IMPERFECTION SOURCES

We detail here the influence of sources of imperfection
and decoherence beyond the parameter offsets modeled in the
Bose-Hubbard Hamiltonian (1).

Experiments tailoring ultracold atoms in an optical lattice
offer a high level of control and exceptional isolation from
the environment. The main imperfection source is modeled
by Hamiltonian (1). The next dominant term are next-nearest-
neighbor couplings J ′. Increasing lattice depth suppresses
next-nearest-neighbor coupling with respect to the nearest-
neighbor coupling J . A ratio of J ′/J ≈ 10−3 is achieved
already at a depth of Vr ≈ 20Er , where Er corresponds to
the recoil energy. More shallow lattices can be addressed by
including the next-nearest-neighbor coupling in the Hamilto-
nian. In leading order, this can be achieved by adding a single
additional parameter J ′ which can be assumed to be constant
across the system.

Additional error sources can be a result of decoherence.
Decoherence is mainly caused by quantum state collapse from
photon scattering at the optical potentials and atom lifetime,
which is limited by the vacuum pressure. We reasonably ne-
glect the decoherence, as each decoherence time exceeds 103

tunneling times and we consider a time evolution of the order
of a few tunneling times.

We therefore believe our method is not threatened by ex-
perimental imperfections.

APPENDIX B: MEASUREMENT SEQUENCE
AND SIMULATIONS

In the following, we provide detailed information about
the considered measurement sequence and its simulation. As

explained in the main text, the goal is to provide an estimation
of the parameters of the Bose-Hubbard Hamiltonian Eq. (1)
based on atom density measurements after a time evolution of
a prepared initial state. In particular, we choose an initial state
with four atoms, which constitutes the upper limit of bosons
on a 2×4 lattice that is still feasible for our approach because
it is fast to simulate via exact diagonalization. We have found
that the particular initial distribution of the four bosons on the
lattice plays a negligible role in the precision of the parameter
estimation and can therefore be chosen arbitrarily, or as a
distribution which is experimentally most feasible. The initial
state used exemplary here contains an atom on every second
site. Measurements are taken after a time evolution under the
Bose-Hubbard Hamiltonian (1) of T , where we here choose as
an example T = 200h̄ to be experimentally realizable. Testing
with smaller T did not show any significant difference in
precision, therefore the neural network may be trained for a
specific experiment by using the most experimentally suitable
time evolution T .

We follow the experimental setup of Refs. [13,14] with
respect to the choice of possible measurements. In particular,
the measurements considered here on the time-evolved state
correspond to spatially resolved atom-number measurements.
Experimentally, such a measurement in a cold atom setup
can be performed by quickly ramping up the longitudinal
lattice potential to the Mott insulating phase and thereby
freezing the dynamics. The number of atoms per site can be
determined by using fluorescence imaging after letting the
atoms expand in transversal tubes to avoid parity projections
[13,14]. We note here that a different experimental plat-
form for quantum simulation requires a different experimental
sequence.

We simulate the time evolution and projective measure-
ments using exact diagonalization of the Bose-Hubbard
Hamiltonian (1). In particular, the measurement snapshots
correspond to projections of the time-evolved state on the
Fock state basis. Numerically, the projection is straightfor-
wardly taken by calculating the overlap between each Fock
state |i〉 and the time-evolved state |�(T )〉: The probability to
measure |i〉 (corresponding to an atom number distribution s)
is given by |〈i|�(T )〉|2. Repeating this simulated projection
N times on the state |�(T )〉 yields a collection of snapshots
(s1, . . . , sN ).

We calculate density correlation expectation values di-
rectly from the snapshots, i.e.,

〈n1..nl〉 =
N∑

i=1

si(1) · · · si(l ), (B1)

where si( j) returns the number of atoms on the jth site of
snapshot si. As a consequence, a statistical error as observed
in measurements is introduced into the simulation of the ex-
pectation values.

APPENDIX C: NEURAL NETWORKS

In the following, we provide a detailed description of the
neural-network-based Hamiltonian reconstruction scheme.
For each of the hopping amplitudes Ji j and on-site repulsions
Ui, a separate network is trained to estimate the parameter’s
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< n1 >

< n5n6n7n8 >

U1

J78

FIG. 6. Workflow of the neural-network-based algorithm: 1.
Measurement snapshots are experimentally taken or numerically
simulated. 2. Compute the set of relevant correlators. 3. The set of
correlators then serves as an input of 25 feed-forward supervised
networks, one for each parameter to be estimated.

value. We note here that estimating a set of parameters
together lowers the precision of the parameter estimation.
Separating the estimation into separate networks for each
parameter does not correspond to a factorization of the output
probability but is rather interpreted as a one-to-one map-
ping between a set of measurement outcomes and parameter
configurations. Each network takes as input postprocessed
measurement data and outputs the respective parameter value.
In particular, from N density snapshots conducted on the 2×4
lattice in a first step, a set of expectation values are calculated
in order to compress the data. More concretely, we calculate
the following expectation values:

(i) the single-site densities 〈ni〉 with ni being the number
of atoms on site i;

(ii) the two-point density correlation functions 〈nin j〉,
i < j;

(iii) the three-point density correlation functions 〈nin jnk〉,
i < j < k;

(iv) the four-point density correlation functions
〈nin jnknl〉, i < j < k < l;

(v) 〈ni(ni − 1)〉 counting multiple occupancies on site i.
For eight lattice sites, this yields a total of 171 expec-

tation values. This number, and consequently the network
input dimension, is independent of the number of conducted
measurement snapshots. For each parameter to be estimated,
a network is trained taking as input 171 expectation values
calculated from the experimental measurements to output the
respective parameter’s value. The parameter estimation work-
flow is depicted in Fig. 6.

We use a fully connected neural network with one input
layer with 171 neurons (one neuron for each expectation
value), five hidden layers with 300, 400, 300, 150, and 100
neurons, and an output layer with one neuron. The value of the
output neuron corresponds to the parameter to be estimated.
The network is trained using supervised learning and the
mean squared loss function C(X ) for continuous parameter
estimation is

C(X ) = |X pred − X label|2
NBatch

. (C1)

Here, we use X as placeholder for the parameter Ji j , Ui, or
μdiff,i to be estimated. X label corresponds to the correct value
whereas X pred is the neural-network prediction. The batch size
during training is given by NBatch.

We create a training set of 150 500 training examples, each
example consisting of the expectation values together with the

FIG. 7. Network training (light blue) and evaluation loss (dark
red) as a function of training steps for the network estimating the
hopping parameter J23 (upper panel) and the network estimating the
on-site repulsion U2 (lower panel).

respective parameter label. The time evolution and conducted
measurements are simulated via exact diagonalization. For
each of the training examples, the correct parameter values
are chosen randomly within the interval of confidence, here
Ji j = 1 ± 0.005, Ui = 2 ± 0.01, and μi = 1 ± 0.005. Using
the learning rate η = 10−5 and a batch size of NBatch = 50, the
training is conducted for a total of 2.1×106 training steps. The
training and evaluation loss for the two networks estimating
the parameters J23 and U2 using 2500 measurement snapshots
are shown in Fig. 7, where the evaluation set corresponds to a
set of 500 examples not used for training. The neural network
was trained using the library Tensorflow [64].

The accuracy of the neural-network prediction can be
quantified by the mean difference of the estimated values to
the correct parameter values used in the simulation,

�X = |X pred − X correct|, (C2)

where X ∈ Ji j,Ui, μi. We note the difference to the squared
loss function (C1). To determine the correlation between esti-
mation errors of different parameters within a measurement
sequence, we plot the estimation error �J/J vs �U/U in
Fig. 8, where J corresponds to the mean of all ten hop-
ping amplitudes, and U to the mean of all eight on-site
repulsions. Each point in Fig. 8 represents one experimental
measurement sequence consisting of 2500 measurement snap-
shots. If the parameter estimation errors were correlated, we
would expect the outcome to be distributed along the diagonal
(or antidiagonal for anticorrelated errors). Figure 8 shows no
such behavior. Thus we conclude that the hopping amplitudes
and on-site repulsions can be estimated with independent pre-
cision.
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FIG. 8. The relative parameter estimation error �J/J vs �U/U
for 2500 measurement snapshots.

APPENDIX D: BAYESIAN ESTIMATION

Bayesian inference is a statistical inference method for the
calculation of the probability for a certain hypothesis based
on available information [65–67]. Specifically, let us consider
a machine, where a hypothesis corresponds to a parameter
configuration θ . Different machines specified by different θ

also differ in the probability distribution of their measurable
outcome S. The goal is to find which hypothesis (parameter
configuration θ ) is most probable given the measurement S.
The relation of the internal parameters θ and accessible ob-
servables S is specified by Bayes’ rule:

P(θ | S) = P(S | θ )P(θ )

P(S)
, (D1)

where
(i) θ can be any set of parameters specifying the machine.

Our task is to determine which θ is most probable according
to the measured data S.

(ii) P(θ ) is the so-called prior probability. It contains our
initial knowledge about the probability distribution of the
parameters θ before taking into account the data S.

(iii) P(θ | S) is the posterior probability specifying the
conditional probability of a specific parameter configuration
θ given the measured data S.

(iv) P(S | θ ) is the so-called likelihood: the probability of
observing S given θ .

(v) P(S) = ∑
θ P(S | θ )P(θ ) is the normalization factor.

In our specific case the parameters θ correspond to all the
unknown hopping amplitudes and on-site interactions θ =
{ �J, �U }, and S corresponds to quantum gas microscope mea-
surement M (snapshots).

Note that in our case we do not only have a single obser-
vation S but many thousands of them. For the case of many
observations Bayes’ rule generalizes as follows: For {S} =
(s1, s2, . . . , sn), where each observation si is independent and
identically distributed (i.i.d.), we can formulate the Bayes’

theorem as [68,69]

P(θ | {S}) = P({S} | θ )P(θ )

P({S})
, (D2)

where the combined likelihood of a set of observations is
given by the product of likelihoods for each individual ob-
servation,

P({S} | θ ) =
∏

i

P(si | θ ). (D3)

In our case the observations {si} correspond to all the pos-
sible Fock states one can obtain by occupational projections.
The likelihood function P({S}|θ ) is calculated according to
Eq. (D3), given by the product of probabilities for measuring
the corresponding Fock states:

P({S} | θ ) =
∏

i

P(si | θ ) =
∏

i

P(|i〉 | θ ). (D4)

As for the prior, we consider a uniform distribution over the
all the possible parameter configurations

P(θ ) = 1

np
, (D5)

where np is the number of candidate parameter configurations.
Consider the system shown in Fig. 1, we have np ≈ 1018

when we assign ten candidates for each J and U . This pa-
rameter space size exceeds the capacity of any contemporary
computer. Therefore we need to further factorize the pa-
rameter estimation process. We estimate a small group of
parameters each time and update the values, iterating over all
parameter groups. We begin with ten hopping amplitudes J ,
then move on to eight on-site repulsions U and consequently
we come back to re-estimate J and U . The hopping amplitudes
J and on-site repulsions U are in addition factorized in smaller
subgroups accordingly to their spatial location. The details
of this factorization process are shown in Fig. 9. We prepare
eight groups of U and three groups of J .

We discretize the parameter space accordingly to the
experimentally known uncertainty. In particular, for the ex-
perimental precision of ±0.5%, the correct values of the
parameters lie within the intervals [0.995,1.005] for J ,
[1.99,2.01] for U , and [0.995,1.005] for μ and we choose 13
parameter candidates for J and 21 candidates for U as equally
spaced within these intervals. During the estimation process,
the simulations are performed by using the mean value of the
chemical potential within the known precision, i.e., μ = 1. As
the correct value may differ, an error is introduced by this
choice. The accuracy of the estimation process might increase
by including the estimation of the chemical potential, we here
restrict ourselves to the estimation of J and U due to the
computational cost.

The iterative parameter estimation is performed as follows:
The estimation is based on N experimental snapshots which
are re-used in every iteration. As we factorized the parameter
estimation, we only estimate the parameters within a subgroup
at a time, while keeping the rest of the parameters fixed. In
particular, we initially set the values of the parameters outside
of the current subgroup to the mean values within the exper-
imental uncertainty (i.e., J = 1.0, U = 2.0) and update them
accordingly to their estimated values after each estimation.
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FIG. 9. Workflow of the Bayesian algorithm: due to the large
parameter space, we evaluate in groups while keeping the rest con-
stant according to the grouping scheme shown in the flowchart. One
iteration corresponds to evaluating all three (eight) subgroups of
J (U ).

We start the parameter estimation process by estimating
the hopping amplitudes. Concretely, we subsequently estimate
the Ji j per subgroup (three subgroups) and update the param-
eter values accordingly. Within each subgroup of the hopping
amplitudes, we estimate four hopping amplitudes at a time.
Using 13 parameter candidates for each hopping amplitude,
this yields a total dimension of 134 = 28 561 for the parameter
space. After the first estimation of all hopping amplitudes,
the on-site repulsions are estimated by subgroup. As each
subgroup here only contains two Ui to be estimated, we can
choose a finer grid (21 candidates), while keeping a feasible
parameter space dimension of 212 = 441. Estimating all on-
site repulsions completes the first iteration, and the process is
repeated. In total, we perform five iterations of the estimation
process.

In summary of this Appendix section, we employ Bayes’
rule in the following steps:

(1) Prepare “experimental” data: We initialize the system
in a selected Fock state, simulate unitary evolution under
a Hamiltonian with randomly selected correct parameters,
followed by a projective measurement. We repeat this process
by the number of times that corresponds to the selected num-
ber of snapshots, N . We only keep the measurements {S} for
the follow-up estimation.

(2) Simulated likelihood: We simulate the unitary evo-
lution under each Hamiltonian specified by all the possible
candidate configurations from the parameter space. We fac-
torize this process as shown in Fig. 9. For each candidate
parameter configuration θ , we take the final state (after time
evolution T ) and calculate the overlap with all the Fock basis
states respectively: {〈�final,θ |i〉}. This yields the ingredients
{P(|i〉 | θ )} we need to calculate the likelihood function as
shown in Eq. (D4).

FIG. 10. Comparison of the performance of the neural network
(left) and Bayes’ method (right). The occurrences of the difference
between estimated on-site repulsion and correct value are plotted as
histogram for a set of 20 data sets each containing 2500 measurement
snapshots (upper two panels) and 20 data sets each containing 20 000
measurement snapshots (lower two panels). The standard deviation
of the error is indicated via gray dashed lines.

(3) Select the most likely parameters: The parameter can-
didates θ for which the set {P(|i〉 | θ )} can maximize the
likelihood (D4) is most likely to generate the same physics
observed in the experiment.

(4) Update: Update the current values of the parameters in
the current group by the Bayesian estimated values.

We have shown the comparison between the neural-
network based estimation and the Bayesian inference in Fig. 4
for the estimation of hopping amplitudes, where the neural
network outperforms the Bayesian estimation. We show in
addition the results for the comparison between the estimation
of the on-site repulsions provided by the neural network and
using Bayesian inference in Fig. 10. While the neural network
still yields more accurate results, the difference is less striking
compared with the hopping amplitude estimation in Fig. 4.

APPENDIX E: ADDITIONAL PARAMETER REGIMES

In the following, we examine the dependence of the param-
eter estimation accuracy for varying parameter regimes. We
start by analyzing the dependence on the size of the parameter
confidence interval, i.e., the previously known experimental
precision. In the main text, all simulations are done with a
previously known parameter precision of 1% (±0.5%) and the
neural-network estimation improves this precision by half an
order of magnitude.

The initially known precision might vary from this choice.
In particular, we consider parameter precisions up to ±2.5%
and examine the relative improvement in precision obtained
after applying the neural-network Hamiltonian reconstruc-
tion scheme. For each interval, we retrain neural networks
with training data within the experimentally known preci-
sion. The relative improvement of the initial precision P, i.e.,
the ratio �X/P is shown in Fig. 11 for X = J,U . Using
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FIG. 11. The ratio of the parameter estimation error of the on-site
repulsion �X = �U and the hopping strengths �X = �J divided
by the experimental precision Pexpt as a function of Pexpt. The gray
dashed line indicates the ratio Pexpt/Pexpt = 1 to emphasize the im-
provement with respect to the experimental precision. We use here
the neural-network-based parameter estimation with 5000 snapshots.

5000 snapshots, we obtain a significant gain in precision
which does not notably increase within the interval P ∈
[0.5%, 2.5%].

We examine in addition how the parameter estimation pre-
cision varies with respect to the ratio of the on-site repulsion U
to the hopping strength J . In particular, we vary the (average)
strength Umean = 0.5, . . . , 70 of the on-site repulsion Ui =
Umean ± 0.01 while keeping the hopping amplitudes fixed
(Jmean = 1.0) in the interval Ji j = Jmean ± 0.005. The absolute
precision of U is unchanged for varying Umean in order to
ensure a meaningful comparison of the obtained parameter es-
timation precisions. The absolute parameter estimation errors

�U = 1

8

∑

i

∣∣U pred
i − U label

i

∣∣, (E1)

�J = 1

10

∑

〈i j〉

∣∣J pred
i j − Jlabel

i j

∣∣ (E2)

FIG. 12. The absolute parameter estimation errors of the on-site
repulsion �X = �U and the hopping strengths �X = �J as a func-
tion of the ratio Umean/Jmean. We use here the neural-network based
parameter estimation with 5000 snapshots.

FIG. 13. Estimation error of the neural-network estimation
scheme for the chemical-potential differences μi,diff = μi − μ1 for
2500 measurement snapshots as a function of the spatial location i,
averaged over 500 data sets.

are plotted in Fig. 12 as a function of Umean/Jmean using 5000
snapshots. Here, the sum in the second line runs over all
nearest-neighbor bonds.

Figure 12 shows an increasing absolute error in estimat-
ing the value of the on-site repulsion for increasing ratio
Umean/Jmean. At the same time, the estimation error of the hop-
ping amplitudes slightly decreases for increasing Umean/Jmean.
We can understand this result by examining the interplay
of the on-site repulsion and the hopping strengths. More
specifically, the timescale of the atom movement between the
different sites is set by the hopping strength Jmean. The on-
site repulsion might be roughly understood as influencing the
“direction” of hopping: The stronger is the on-site repulsion,
the more the probability of measuring a configuration with
several atoms on a site is reduced. As our simulations take
place with four atoms on eight lattice sites, the configuration
is sufficiently sparse such that double occupancies may be
avoided. For very large ratio Umean/Jmean, the probability to
measure a double occupancy becomes increasingly small and
therefore unlikely to be observed with a finite number of mea-
surement snapshots. Small changes in the on-site repulsion
strength are therefore expected to be increasingly difficult to

FIG. 14. Estimation error of the neural-network estimation
scheme for the chemical-potential differences μi,diff = μi − μ1 for
20 000 measurement snapshots as a function of the spatial location i,
averaged over 500 data sets.
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detect because the effect of the on-site repulsion manifests
itself mainly in the occurrence of multiple occupancies of
lattice sites. This behavior is shown in Fig. 12. A more dense
configuration of atoms (i.e., a more than half-filled lattice)
might show a different behavior, as the probability of multiple
occupancies is not suppressed in the same way compared with
a sparse atom configuration.

APPENDIX F: ESTIMATING CHEMICAL
POTENTIALS: DETAILS

As we are considering only states with a constant total
atom number (in particular, we use N = 4 atoms), a uniform
chemical potential μ yields only a global phase factor e−i/h̄μN .
Thus, a uniform chemical potential does not affect the sys-

tem’s dynamics and is as a consequence not detectable within
the closed system. Relevant and measurable effects are instead
induced by a nonuniform chemical potential. We can quantify
the deviations of the chemical potential by considering, e.g.,
the differences μdiff,i := μi − μ1, i � 2.

When estimating the parameters {Ji j,Ui, μdiff,i}, we vary
all parameters within a percent, i.e., μ = 1 ± 0.005 (and J =
1.0 ± 0.005, U = 2.0 ± 0.01). As a consequence, the differ-
ences μdiff,i = μi − μ1 take the values μdiff,i = 0 ± 0.01. We
show the obtained estimation error

�μdiff,i = ∣∣μlabel
diff,i − μest.

diff,i

∣∣ (F1)

and their spatial dependence in Figs. 13 and 14 for 2500 and
20 000 measurement snapshots, respectively.
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