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We employ the Bogoliubov approximation to study how the quantum geometry of the helicity states affects
the superfluid properties of a spin-orbit-coupled Bose gas in continuum. In particular we derive the low-energy
Bogoliubov spectrum for a plane-wave condensate in the lower helicity band and show that the geometric
contributions to the sound velocity are distinguished by their linear dependences on the interaction strength;
that is, they are in sharp contrast to the conventional contribution which has a square-root dependence. We
also discuss the roton instability of the plane-wave condensate against the stripe phase and determine their
phase-transition boundary. In addition we derive the superfluid density tensor by imposing a phase twist on the
condensate order parameter and study the relative importance of its contribution from the interband processes
that is related to the quantum geometry.
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I. INTRODUCTION

Recent studies have shown that the quantum geometry of
the Bloch states can play important roles in characterizing
some of the fundamental properties of Fermi superfluids (SFs)
[1,2]. The physical mechanism is quite clear in a multiband
lattice: the geometric effects originate from the dressing of the
effective mass of the SF carriers by the interband processes,
which in return controls those SF properties that depend on
the carrier mass. Besides the SF density and weight, the list
includes the velocity of the low-energy Goldstone modes
and the critical Berezinskii-Kosterlitz-Thouless temperature
[1–8]. On the other hand, the intraband processes give rise to
the conventional effects. It has been established that depend-
ing on the band structure and the strength of the interparticle
interactions, the geometric effects can become sizable and
may even dominate in an isolated flat band [1]. Furthermore,
such geometric effects on Fermi SFs can be traced all the way
back to the two-body problem in a multiband lattice in vacuum
[9,10].

Despite the growing number of recent works exposing the
role of quantum geometry in Fermi SFs, there is a lack of un-
derstanding of the bosonic counterparts which are much less
studied [11–13]. For instance, Julku et al. considered a weakly
interacting Bose-Einstein condensate (BEC) in a flat band and
showed that the speed of sound has a linear dependence on
the interaction strength and a square-root dependence on the
quantum metric of the condensed Bloch state [11,12]. They
also showed that the quantum depletion is dictated solely by
the quantum geometry and the SF weight has a quantum-
geometric origin.

Motivated by the success of analogous works on spin-
orbit-coupled Fermi SFs [3–5,7], here we investigate the SF
properties of a spin-orbit-coupled Bose gas from a quantum-
geometric perspective. Our work differs from the existing

literature in several ways [15–17]. In particular we derive the
low-energy Bogoliubov spectrum for a plane-wave conden-
sate in the lower helicity band and identify the geometric
contributions to the sound velocity. The geometric effects
survive only when the single-particle Hamiltonian has a σz

term in the pseudospin basis that is coupled with a σx (and/or,
equivalently, a σy) term. In contrast to the conventional con-
tribution that has square-root dependence on the interaction
strength, we find that the geometric ones are distinguished
by linear dependence. Similar to the fermion problem in
which the geometric effects dress the effective mass of the
Goldstone modes, here one can also interpret the geometric
terms in terms of a dressed effective mass for the Bogoliubov
modes. We also discuss the roton instability of the plane-
wave ground state against the stripe phase and determine the
phase-transition boundary. All of these results are achieved
analytically by reducing the 4 × 4 Bogoliubov Hamiltonian
(which involves both lower and upper helicity bands) down to
2 × 2 by projecting the system onto the lower helicity band.
The projected Hamiltonian works extremely well except for
a tiny region in momentum space around the point where the
helicity bands are degenerate. In addition we derive the SF
density tensor by imposing a phase twist on the condensate
order parameter and analyze the relative importance of its
contribution from the interband processes [13].

The rest of this paper is organized as follows. We be-
gin with the theoretical model in Sec. II: the many-body
Hamiltonian is introduced in Sec. II A, and the noninteracting
helicity spectrum is reviewed in Sec. II B. Then we present
the Bogoliubov mean-field theory for a plane-wave conden-
sate in Sec. III: the four branches of the full Bogoliubov
spectrum are discussed in Sec. III A, and the two branches
of the projected (i.e., to the lower helicity band) Bogoliubov
spectrum are derived in Sec. III B. Furthermore, by analyzing
the resultant Bogoliubov spectrum in the low-energy regime,
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we find closed-form analytic expressions for the Bogoliubov
modes in Sec. III C and for the roton instability of the plane-
wave condensate against the stripe phase in Sec. III D. Finally,
we derive and analyze the SF density tensor and condensate
density in Sec. IV. The paper ends with a summary of our
conclusions in Sec. V.

II. THEORETICAL MODEL

In order to study the interplay between a BEC and spin-
orbit coupling (SOC) and having cold-atom systems in mind,
here we consider a two-component atomic Bose gas that is
characterized by a weakly repulsive zero-range (contact) in-
teraction in continuum. It is customary to refer to such a
two-component bosonic system as the pseudospin- 1

2 Bose gas.

A. Pseudospin- 1
2 Bose gas

In particular, by making use of the momentum-space rep-
resentation, we express the single-particle Hamiltonian in the
usual form,

H0 =
∑

k

�
†
k

[(
εk + εk0

)
σ0 + dk · σ

m

]
�k, (1)

where k = (kx, ky, kz ) is the momentum vector with h̄ = 1
and �

†
k = (a†

↑k a†
↓k ) is a two-component spinor with the cre-

ation operator a†
σk for a pseudospin-σ particle in state |σk〉 =

a†
σk|0〉. Here σ = {↑,↓} labels the two components of the

Bose gas, and |0〉 is the vacuum state. The first term εk =
k2/(2m) is the kinetic energy of a particle, where εk0 is a
convenient choice of an energy offset (k0 is defined below)
and σ0 is an identity matrix. The second term is the so-called
SOC, where σ = (σx, σy, σz ) is a vector of Pauli spin ma-
trices and dk = (dx

k, dy
k, dz

k ) is the SOC field with linearly
dispersing components di

k = αiki. Here we choose αi � 0 and
αx � {αy, αz} without the loss of generality.

Similarly, a compact way to express the intraspin and in-
terspin interaction terms is

HU = 1

2V

∑
σσ ′

k1+k2=k3+k4

Uσσ ′a†
σk1

a†
σ ′k2

aσ ′k3 aσk4 , (2)

where V is the volume and Uσσ ′ � 0 is the strength of the
interactions. Here we consider a sufficiently weak U↑↓ in
order to prevent competing phases that are beyond the scope
of this paper. See Sec. III D for a detailed account of the
stability analysis. In addition we include a chemical poten-
tial term Hμ = −∑

σk μσ a†
σkaσk in the total Hamiltonian

H = H0 + HU + Hμ of the system and determine μσ in a
self-consistent fashion.

B. Helicity bands

Let us first discuss the single-particle ground state. The
eigenvalues of the Hamiltonian matrix shown in Eq. (1) can
be written as

ξsk = εk + εk0 + s
dk

m
, (3)

FIG. 1. Helicity bands ξsk (in units of α2
x /2m) are shown for αx =

2αz and αy = 0 at ky = 0. The upper red and lower blue bands touch
at k = 0. The single-particle ground state is doubly degenerate at
k = (±αx, 0, 0).

where s = ± label, respectively, the upper and lower
bands and dk = |dk| is the magnitude of the SOC field.
Therefore, the single-particle (helicity) spectrum exhibits
two branches due to SOC. In the pseudospin basis |σk〉,
the corresponding eigenvectors (i.e., helicity basis) |sk〉 =
a†

sk|0〉 can be represented as |+, k〉 = (uk vkeiϕk )
T

for

the upper helicity band and |−, k〉 = (−vke−iϕk uk )
T

for
the lower helicity band, where uk = √

(dk + dz
k )/(2dk ), vk =√

(dk − dz
k )/(2dk ), ϕk = arg(dx

k + idy
k ), and T denotes the

transpose. Alternatively,(
a↑k
a↓k

)
=

(
uk −vke−iϕk

vkeiϕk uk

)(
a+,k
a−,k

)

is the transformation between the annihilation operators for
the pseudospin and helicity states.

For notational convenience, the lower helicity state |−, k〉
is denoted as |φk〉 in the rest of the paper. Then the
single-particle ground state |φk0〉 is determined by setting
∂ξ−,k/∂ki = 0, leading to either ki = 0 or α2

i = dk. Here we
choose k0 = (αx, 0, 0) without the loss of generality [18–20],
for which case the single-particle ground-state energy ξ−,k0 =
0 vanishes (see Fig. 1) and the single-particle ground state

|φk0〉 = (−1/
√

2 1/
√

2)
T

admits a real representation. Note
that the ground state is at least twofold degenerate with the

opposite-momentum state |φ−k0〉 = (1/
√

2 1/
√

2)
T
, and

we highlight its competing role in Sec. III D. Having intro-
duced the theoretical model and discussed its single-particle
ground state, next we analyze the many-body ground state
within the Bogoliubov mean-field approximation.

III. BOGOLIUBOV THEORY

Under the Bogoliubov mean-field approximation, the
many-body ground state is known to be either a plane-
wave condensate or a stripe phase depending on the relative
strengths between the intraspin and interspin interactions
[18–22]. See Sec. III D for a detailed account of the stability
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analysis. Assuming that U↑↓ is sufficiently weak, here we
concentrate only on the former phase.

A. Bogoliubov spectrum

In order to describe the many-body ground state |φk0〉 that
is macroscopically occupied by N0 particles, we replace the
annihilation and creation operators in accordance with aσk =

σ

√
V δkk0 + ãσk. Here the complex field 
σ = √

n0〈σ |φk0〉
corresponds to the mean-field order parameter for the conden-
sate with condensate density n0 = N0/V , δi j is a Kronecker
delta, and the operator ãσk denotes the fluctuations on top
of the ground state. Following the usual recipe, we neglect
the third- and fourth-order fluctuation terms in the interaction
Hamiltonian. Then the excitations are described by the so-
called Bogoliubov Hamiltonian

HB = 1

2

′∑
q

�†
q

(
Hpp

q Hph
q

Hhp
q Hhh

q

)
�q, (4)

Hpp
q =

(
K↑q U↑↓
↑
∗

↓
U↑↓
∗

↑
↓ K↓q

)
+ dk0+q · σ

m
, (5)

Hph
q =

(
U↑↑
2

↑ U↑↓
↑
↓
U↑↓
↑
↓ U↓↓
2

↓

)
, (6)

where �†
q = (ã†

↑,k0+q ã†
↓,k0+q ã↑,k0−q ã↓,k0−q) is a

four-component spinor and Kσq = εk0+q + εk0 − μσ +
2Uσσ |
σ |2 + U↑↓|
−σ |2, with the index −σ denoting
the opposite component of the spin. The other terms are
simply related via Hhh

q = (Hpp
−q)∗ and Hhp

q = (Hph
q )†. The

prime symbol indicates that the summation is over all
of the noncondensed states. In this approximation, μσ is
determined by setting the first-order fluctuation terms to
zero, leading to μσ = Uσσ |
σ |2 + U↑↓|
−σ |2. Note that

↑ = −
↓ = −√

n0/2 are real for our particular choice for
the ground state |φk0〉.

The Bogoliubov spectrum En
sq is determined by the eigen-

values of τzHq [11,12], i.e.,

τzHq
∣∣χn

sq

〉 = En
sq

∣∣χn
sq

〉
, (7)

where τz is a Pauli matrix acting only on the particle-hole
sector, Hq is the 4 × 4 Hamiltonian matrix shown in Eq. (4),
and |χn

sq〉 is the corresponding Bogoliubov state. Here n = ±
label, respectively, the upper and lower Bogoliubov bands,
and s = ± label, respectively, the quasiparticle and quasihole
branches for a given band n, leading to four Bogoliubov
modes for a given q. The Bogoliubov states are normal-

ized in the usual way; that is, if we denote |χn
sq〉 = (|χ

n
sq〉1

|χn
sq〉2

),
then 1〈χn

sq|χn
sq〉1 − 2〈χn

sq|χn
sq〉2 = s. While the Bogoliubov

spectrum exhibits En
sq = −En

−s,−q as a manifestation of the
quasiparticle-quasihole symmetry, Eq. (7) does not allow for
a closed-form analytic solution in general, and its characteri-
zation requires a fully numerical procedure.

In order to gain some analytical insight into the low-energy
Bogoliubov modes, we assume that the energy gap between
the lower and upper helicity bands near the ground state |φk0〉
is much larger than the interaction energy. This occurs when
the SOC energy scale is much stronger than the interaction
energy scale. In this case the occupation of the upper band is

negligible, and the system can be projected solely to the lower
band as discussed next.

B. Projected system

The total Hamiltonian H of the system can be projected
to the lower helicity band as follows [18]. Using the identity
operator σ0 = ∑

s |sk〉〈sk| for a given k, we first reexpress
aσk = ∑

s〈σ |sk〉ask and discard those terms that involve the
upper band, i.e., aσk → 〈σ |φk〉a−,k. This procedure leads to

h0 + hμ =
∑

k

(ξ−,k − μ)a†
−,ka−,k, (8)

hU = 1

2V

∑
k1+k2=k3+k4

f k3k4
k1k2

a†
−,k1

a†
−,k2

a−,k3 a−,k4 , (9)

f k3k4
k1k2

=
∑
σσ ′

Uσσ ′ 〈φk1 |σ 〉〈φk2 |σ ′〉〈σ ′|φk3〉〈σ |φk4〉, (10)

where μ = (μ↑ + μ↓)/2 is the effective chemical
potential and f k3k4

k1k2
= U↑↑vk1vk2vk3vk4 ei(ϕk1 +ϕk2 −ϕk3 −ϕk4 ) +

U↓↓uk1 uk2 uk3 uk4 + U↑↓vk1 uk2 uk3vk4 ei(ϕk1 −ϕk4 ) is the effective
long-range interaction for the projected system. We note
that the long-range nature of the effective interaction plays
a crucial role in the Bogoliubov spectrum as discussed in
Sec. III D.

Under the Bogoliubov mean-field approximation that is
used in Sec. III A, we replace the creation and annihila-
tion operators in accordance with a−,k = √

N0δkk0 + ã−,k and
set the first-order fluctuation terms to zero. This leads to
μ = n0 f k0k0

k0k0
= (n0/4)

∑
σσ ′ Uσσ ′ , which is consistent with

μσ found in Sec. III A. The zeroth-order fluctuation terms give
−μN0 + n0 f k0k0

k0k0
N0/2. Then the excitations above the ground

state are described by the Bogoliubov Hamiltonian

hB = 1

2

′∑
q

ψ†
q

(
hpp

q hph
q

hhp
q hhh

q

)
ψq, (11)

hpp
q = ξ−,k0+q − μ + n0

2

(
f k0,k0+q
k0,k0+q + f k0+q,k0

k0+q,k0

+ f k0,k0+q
k0+q,k0

+ f k0+q,k0
k0,k0+q

)
, (12)

hph
q = n0

2

(
f k0,k0
k0+q,k0−q + f k0,k0

k0−q,k0+q

)
, (13)

where ψ†
q = (ã†

−,k0+q ã−,k0−q) is a two-component spinor and

the other terms are simply related via hhh
q = hpp

−q and hhp
q =

(hph
q )∗. The Bogoliubov spectrum εsq is determined by the

eigenvalues of τzhq, leading to two Bogoliubov modes for a
given q, i.e.,

εsq = hpp
q − hhh

q

2
+ s

√(
hpp

q + hhh
q

2

)2

− |hph
q |2, (14)

hpp
q = ξ−,k0+q − μ + n0

2

∑
σσ ′

Uσσ ′ |〈φk0+q|σ 〉|2

+ n0

∑
σσ ′

Uσσ ′ 〈φk0+q|σ ′〉〈σ ′|φk0〉〈φk0 |σ 〉〈σ |φk0+q〉, (15)

hph
q = n0

∑
σσ ′

Uσσ ′ 〈φk0+q|σ 〉〈σ |φk0〉〈φ∗
k0

|σ ′〉〈σ ′|φ∗
k0−q〉. (16)
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A. L. SUBAŞI AND M. ISKIN PHYSICAL REVIEW A 105, 023301 (2022)

FIG. 2. The Bogoliubov spectrum is shown as a function of qx

when qy = 0 = qz, U = U↑↑ = 2U↓↓ = 4U↑↓, αx = αy = 2/ξ with
the healing length ξ = 1/

√
2mnU and αz = 0. Here the total particle

density n ≈ n0 is set to na3 = 10−6, where a = mU/(4π ) is the
scattering length. The full spectrum (solid lines) is shown together
with the projected one (dotted lines) that is given by Eq. (14). In
addition the low-q expansion (20) is shown as dashed black lines
in the right inset. If one sets U↑↑ = U↓↓, then the band gap shown
in the left inset disappears; see Sec. III E for the analysis of the
spurious jumps at qx = ∓αx . If one sets U↑↓ = U↑↑ = U↓↓, then two
additional zero-energy modes appear at qx = ∓2αx; see Sec. III D for
the analysis of the roton instability.

Here s = ± label, respectively, the quasiparticle and
quasihole branches of the lower Bogoliubov band (i.e.,
n = −) discussed in Sec. III A. See Fig. 2 for their
excellent numerical benchmark except for the spurious jumps
at q = ∓k0 that are discussed in Sec. III E. The Bogoli-
ubov spectrum exhibits ε+,q = −ε−,−q as a manifestation
of the quasiparticle-quasihole symmetry. Note that when
Uσσ ′ = Uδσσ ′ , these expressions reduce exactly to those of
Refs. [11,12] with M = 2, where our hpp

q = ξ−,k0+q + Un0/2
and hph

q correspond, respectively, to their q2/(2meff ) + μ and
μα(q) provided that μ = Un0/2 in this particular case. Such
a reduction may not be surprising since the intraspin inter-
actions U↑↑ and U↓↓ play the roles of sublattice-dependent
on-site interactions UAA and UBB and the interspin interaction
U↑↓ plays the role of a (long-range) intersublattice interaction
UAB. Thus, our Uσσ ′ = Uδσσ ′ limit corresponds precisely to
the U = UAA = UBB and UAB = 0 case that is considered in
Refs. [11,12].

We can make further analytical progress through a low-
q expansion around the ground state and use the fact that
|〈σ |φk0〉|2 = 1/2 for both pseudospin components; that is, the
z component of k0 vanishes for the ground state.

C. Low-momentum expansion

Up to second order in q, the low-energy expansions around
the ground state |φk0〉 can be written as

hpp
q =1

2

∑
i j

qiq jM
−1
i j − μ + n0

2

∑
σσ ′

Uσσ ′ + 2n0

∑
iσσ ′

qiUσσ ′

× Re〈∂iφk|σ 〉〈σ |φk0〉 + n0

∑
i jσσ ′

qiq jUσσ ′

× (Re〈∂i∂ jφk|σ 〉〈σ |φk0〉 + 〈∂iφk|σ 〉〈σ |∂ jφk〉/2

+ 〈∂iφk|σ ′〉〈σ ′|φk0〉〈φk0 |σ 〉〈σ |∂ jφk〉), (17)

hph
q = n0

4

∑
σσ ′

Uσσ ′ + n0

2

∑
i jσσ ′

qiq jUσσ ′ (〈∂i∂ jφk|σ 〉〈σ |φk0〉

− 2〈∂iφk|σ 〉〈σ |φk0〉〈φ∗
k0

|σ ′〉〈σ ′|∂ jφ
∗
k〉), (18)

where the spectrum of the lower helicity band is expanded
as ξ−,k0+q = (1/2)

∑
i j qiq jM

−1
i j . Here M−1 is the inverse of

the effective-mass tensor whose elements are given by M−1
xx =

1/m, M−1
yy = 1/m − α2

y /(mα2
x ), and M−1

zz = 1/m − α2
z /(mα2

x )
and are zero otherwise. In addition Re denotes the real part of
an expression, and |∂iφk〉 stands for ∂|φk〉/∂ki in the k → k0
limit. By plugging these expansions in Eq. (14) and keeping
up to second-order terms in q, we obtain

εsq = 2n0

∑
iσσ ′

qiUσσ ′Re〈∂iφk|σ 〉〈σ |φk0〉 + s
√

Xq,

Xq = μ
∑

i j

qiq j

[
M−1

i j + n0

∑
σσ ′

Uσσ ′ (〈∂iφk|σ 〉〈σ |∂ jφk〉

+ Re〈∂i∂ jφk|σ 〉〈σ |φk0〉 + 2〈∂iφk|σ ′〉〈σ ′|φk0〉〈φk0 |σ 〉

× 〈σ |∂ jφk〉 + 2Re〈∂iφk|σ ′〉〈σ ′|φk0〉〈φ∗
k0

|σ 〉〈σ |∂ jφ
∗
k〉)

]
(19)

for the low-energy Bogoliubov spectrum of the projected
system. In addition to the conventional effective-mass term
that depends only on the helicity spectrum, here we have the
so-called geometric terms that depend also on the helicity
states. The quantum geometry of the underlying Hilbert space
is masked by those terms that depend on |∂iφk〉 and |∂i∂ jφk〉
[11,12]. While most of these terms cancel one another, they
lead to

εsq = n0(U↓↓ − U↑↑)
αzqz

2α2
x

+ s

2

√
n0(U↑↑ + U↓↓ + 2U↑↓)

×
√√√√∑

i j

qiq jM
−1
i j + n0(U↑↑ + U↓↓ − 2U↑↓)

α2
z q2

z

4α4
x

,

(20)

manifesting explicitly the quasiparticle-quasihole symmetry.
When U↑↑ = U↓↓, Eq. (20) is in full agreement with the recent
literature on the reported parameters [18]. In addition see the
right inset in Fig. 2 for its numerical benchmark with Eq. (14).

Our work reveals that the linear term in αzqz that is outside
of the square root and the quadratic term in αzqz that is
in inside it have a quantum-geometric origin. Note that the
geometric terms that depend on αx and αy vanish altogether.
Thus, we conclude that the geometric effects survive only in
the presence of a finite σz coupling assuming a σx (and/or,
equivalently, a σy) coupling to begin with. See Sec. II B for
our initial assumption in choosing k0. Although we choose a
k0 that is symmetric in the y and z directions, the condition
|〈σ |φk0〉|2 = 1/2 breaks this symmetry in general for other
k0 values as it requires k0z = 0. The remaining geometric
terms can be isolated from the conventional effective-mass
term in the q → (0, 0, qz ) limit when αz ≈ αx, leading to

023301-4



QUANTUM-GEOMETRIC PERSPECTIVE ON … PHYSICAL REVIEW A 105, 023301 (2022)

qiq jM
−1
i j = 0. Therefore, this particular limit can be used to

distinguish the geometric origin of the sound velocity from
the conventional one; that is, unlike the conventional term that
has ∝ √

U dependence on the interaction strength, the geo-
metric ones have ∝ U dependence. The square-root vs linear
dependence is consistent with the recent results on multiband
Bloch systems [11,12]. We note that the geometric term that
is inside the square root can be incorporated into the con-
ventional effective-mass term, leading to a “dressed” effective
mass M−1

zz → M−1
zz + n0(U↑↑ + U↓↓ − 2U↑↓)α2

z /(4α4
x ) for the

Bogoliubov modes [11,12]. While this geometric dressing
shares some similarities with the dressing of the effective-
mass tensor of the Cooper pairs or the Goldstone modes in
spin-orbit-coupled Fermi SFs, their mathematical structures
are entirely different [4,5]. The latter involves a k-space sum
over the quantum-metric tensor of the helicity bands that
is weighted by a function of other quantities, including the
excitation spectrum.

We note in passing that when Uσσ ′ = Uδσσ ′ , our
Eq. (19) reduces exactly to that of Refs. [11,12]
with M = 2, for which case we obtain εsq = sεq,
with εq = [(Un0/2)

∑
i j qiq j (M−1

i j + Un0〈∂iφk|∂ jφk〉 +
2Un0

∑
σ Re〈∂iφk|σ 〉〈σ |φk0〉〈φ∗

k0
|σ 〉〈σ |∂ jφ

∗
k〉)]

1/2
. Fur-

thermore, using the fact that |φk0〉 is real for the
ground state, we find εq = [(Un0/2)

∑
i j qiq j (M−1

i j +
Un0〈∂iφk|∂ jφk〉 + Un0Re〈∂iφk|∂ jφ

∗
k〉)]

1
2 . In comparison

the quantum metric of the lower helicity band is defined
by gk

i j = Re〈∂iφk|(σ0 − |φk〉〈φk|)|∂ jφk〉, and it reduces to
gk

i j = 〈∂iφk|∂ jφk〉 only when |φk〉 is real for all k. This is
because 〈∂iφk|φk〉 = −〈φk|∂iφk〉 = −〈∂iφ

∗
k|φ∗

k〉 must vanish
when φk is real. Thus, we conclude that the geometric
dressing of the effective mass of the Bogoliubov modes can
be written in terms of gk

i j when |φk〉 is real for all k. This is
clearly the case when dy

k = 0 in two-band lattices and when
αy = 0 in spin-orbit-coupled Bose SFs.

Furthermore, when αz 
= 0, we find that the competition
between the linear term in qz that is outside of the square
root and the quadratic terms within the square root in Eq. (20)
causes an energetic instability (i.e., εsq changes sign and be-
comes ε±,q≶0) in the q → 0 limit unless

4U 2
↑↓ − (3U↑↑ − U↓↓)(3U↓↓ − U↑↑)

U↑↑ + U↓↓ + 2U↑↓
� 4α2

x

mn0

(
α2

x

α2
z

− 1

)
(21)

is satisfied. For instance, this condition reduces to 3U↓↓ �
U↑↑ � U↓↓/3 when αz = αx in the U↑↓ → 0 limit, revealing
a peculiar constraint on the strength of the interactions. Our
calculation suggests that the physical origin of this instability
is related to the quantum geometry of the underlying space
without deeper insight. In addition, when αz 
= 0, Eq. (20)
further suggests that there is a dynamical instability (i.e.,
εsq becomes complex) unless the quadratic terms within
the square root are positive, i.e., 1 − α2

z /α
2
x + mn0α

2
z (U↑↑ +

U↓↓ − 2U↑↓)/(4α4
x ) � 0. This condition is most restrictive

when αz → αx, giving rise to (U↑↑ + U↓↓)/2 � U↑↓ for the
dynamical stability of the system. Next, we show that the
dynamical instability never takes place because it is preceded

by the so-called roton instability, given that the geometric
mean of U↑↑ and U↓↓ is guaranteed to be less than or equal
to the arithmetic mean.

D. Roton instability at q = ∓2k0

The zero-energy Bogoliubov mode that is found at q = 0
is a special example of the Goldstone mode that is associated
with the spontaneous breaking of continuous symmetry in SF
systems. In addition to this phonon mode, the Bogoliubov
spectrum also exhibits the so-called roton mode at finite q.
This peculiar spectrum clearly originates from the long-range
interaction characterized by Eq. (10), and it is a remarkable
feature given the surge of recent interest in rotonlike spectra in
various other cold-atom contexts [23–27] that paved the way
for the creation of dipolar Bose supersolids [26,27]. Further-
more, the roton spectrum [28,29] along with some supersolid
properties [30,31] has also been measured with Raman SOC.
As a consequence of this outstanding progress, the roton spec-
trum is nowadays considered a possible route and precursor to
the solidification of Bose SFs.

Depending on the interaction parameters, our numerics
show that an additional pair of zero-energy modes at fi-
nite q may appear when the roton gap vanishes. See also
Refs. [15,17,19,20,22,32] for related observations. It turns out
they always appear precisely at opposite momenta q = ∓2k0
when the local minimum (maximum) of ε±,q touches the
zero-energy axis with a quadratic dispersion away from it. For
instance, the roton minimum and its gap are clearly visible in
Fig. 2 at qx = ∓2αx.

Given this numerical observation, we evaluate Eqs. (15)
and (16) at q = ∓2k0, leading to, e.g., the quasiparticle-
quasiparticle element hpp

−2k0
= (U↑↑ + U↓↓ − 2U↑↓)n0/4,

quasihole-quasihole element hhh
−2k0

= ε3k0 + (U↑↑ +
U↓↓ + 2U↑↓)n0/4, and quasiparticle-quasihole element
hph

−2k0
= (U↓↓ − U↑↑)n0/4. Then, by plugging them into

Eq. (14) and noting that the stability of the Bogoliubov theory
requires the local minimum (maximum) of the quasiparticle
(quasihole) spectrum to satisfy ε±,∓2k0 ≷ 0, we obtain the
following condition:(

2α2
x

mn0
+ U↑↑

)(
2α2

x

mn0
+ U↓↓

)
>

(
2α2

x

mn0
+ U↑↓

)2

. (22)

This condition guarantees the energetic stability of the many-
body ground state that is presumed in Sec. II B, and it is
in full agreement with the previously known results. For in-
stance, it reduces to

√
U↑↑U↓↓ > U↑↓ in the absence of SOC

when αx = 0, and it reduces to U > U↑↓ for equal intraspin
interactions U↑↑ = U↓↓ = U when αx 
= 0 [18,21]. In general
Eq. (22) suggests that while the ground state is energeti-
cally stable for all αx values when

√
U↑↑U↓↓ > U↑↓, it is

stable for sufficiently strong SOC strengths αx > αc when√
U↑↑U↓↓ < U↑↓ < (U↑↑ + U↓↓)/2. Here αc = [mn0(U 2

↑↓ −
U↑↑U↓↓)/(2U↑↑ + 2U↓↓ − 4U↑↓)]1/2 is the critical threshold.

Both the appearance of an additional pair of zero-energy
modes at q = ∓2k0 and the associated instability of the
many-body ground state that is caused by ε±,q ≶ 0 can be
traced back to the degeneracy of the lower helicity band
ξ−,k discussed in Sec. II B. For instance, when αx � {αy, αz},
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our single-particle ground state |φk0〉 is at least twofold
degenerate with the opposite-momentum state |φ−k0〉. Note
that the relative momentum between these two particle (hole)
states is exactly ∓2k0. Then Eq. (22) suggests that while our
initial choice for a plane-wave condensate that is described
purely by the state |φk0〉 is energetically stable for sufficiently
weak U↑↓, it eventually becomes unstable against competing
states with increasing U↑↓. Since this instability also occurs
precisely at q = ∓2k0, it clearly signals the possibility of an
additional condensate that is described by the state |φ−k0〉.
Thus, when Eq. (22) is not satisfied, we conclude that the
many-body ground state corresponds to the so-called stripe
phase that is described by a superposition of two states with
opposite momenta, i.e., |φk0〉 and |φ−k0〉 [15–17,21,22,32].
Indeed, some supersolid properties of the stripe phase have
already been observed with Raman SOC [30,31].

We would like to emphasize that this conclusion is immune
to the increased degeneracy of the helicity states when the
SOC field is isotropic in momentum space. For instance, de-
spite the circular degeneracy caused by a Rashba SOC when
αx = αy, the zero-energy modes still appear at q = ∓2k0, and
therefore, the stripe phase again involves a superposition of
two states with opposite momenta.

E. Spurious jumps at q = ∓k0

As shown in Fig. 2, there is an almost perfect agreement
between the Bogoliubov spectrum of the 4 × 4 Hamiltonian
and that of the 2 × 2 projected one except for a tiny region in
the vicinity of a peculiar jump at q = ∓k0. In order to reveal
its physical origin, here we set αz = 0 for its simplicity and
expand the Hamiltonian matrix at q = −k0 + δ for a small
δ = (δ, 0, 0). We find that

hpp
δ

= ξ−,δ + n0

4
[U↑↑ + U↓↓ + 2U↑↓ cos(ϕδ)],

hph
δ

= n0

4
[U↑↑ − U↓↓ + 2U↑↓ cos(ϕδ)],

where the phase angle ϕk was defined in Sec. II B, leading
to cos(ϕδ) = sgn(δ). This analysis shows it is those coupling
terms U↑↓ cos(ϕδ) between the ↑ and ↓ sectors in the Bogoli-
ubov Hamiltonian that are responsible for the spurious jump
at δ = 0 upon the change in sign of δ. Note that our initial
motivation in deriving the projected Hamiltonian in Sec. III A
is the assumption that the energy gap between the lower and
upper helicity bands near the single-particle ground state |φk0〉
is much larger than the interaction energy. While the validity
region of this assumption in k space is not limited to the
ground state, it clearly breaks down in the vicinity of k = 0,
where the s = ± helicity bands are degenerate (see Fig. 1). For
this reason our projected Hamiltonian becomes unphysical
and fails to capture the actual result in a tiny region around
q = −k0.

Having presented a detailed analysis of the Bogoliubov
spectrum, next we determine the SF density tensor and com-
pare it to the condensate density of the system.

IV. SUPERFLUID VERSUS CONDENSATE DENSITY

In this paper we define the SF density ρs by imposing
a so-called phase twist on the mean-field order parameter

[33–36]. When the SF flows uniformly with the momentum
Q, the SF order parameter transforms as 
σ → 
σ eiQ·r, and
the SF density tensor ρi j is defined as the response of the
thermodynamic potential �Q to an infinitesimal flow, i.e.,

ρi j = m

V
lim
Q→0

∂2�Q

∂Qi∂Qj
. (23)

Here the derivatives are taken for a constant 
σ and μσ ;
that is, the mean-field parameters do not depend on Q in the
Q → 0 limit. We note that the SF mass-density tensor mρi j is
a related quantity, and it corresponds to the total mass involved
in the flow.

Let us now calculate �Q in the low-Q limit. In the absence
of an SF flow when Q = 0, the thermodynamic potential �0
can be written as �0 = �zp + (T/2)

∑′
�q Tr ln G−1

0�q, where

�zp = −μN0/2 − ∑′
q (εq + μ)/2 is the zero-point contribu-

tion, T is the temperature with the Boltzmann constant kB =
1, Tr is the trace, and G−1

0�q = iω�σ0τz − Hq is the inverse of
the Green’s function for the Bogoliubov Hamiltonian that is
given in Eq. (4). Here ω� = 2π�T is the bosonic Matsubara
frequency, with � being an integer. In order to make some
analytical progress, we make use of the Bogoliubov states and
spectrum determined by Eq. (7) and define [11,12]

G0�q =
∑

ns

s
∣∣χn

sq

〉〈
χn

sq

∣∣
iω� − En

sq
. (24)

This expression clearly satisfies G−1
0�qG0�q = σ0τ0. In the pres-

ence of an SF flow when Q 
= 0, the thermodynamic potential
�Q can be obtained through a gauge transformation of the
bosonic field operators ãσq → ãσqeiQ·r. This transformation
removes the phases of the SF order parameters, and we ob-
tain the inverse Green’s function G−1

Q�q = G−1
0�q − �Q of the

twisted system. Its Q-dependent part has three terms, �Q =
�Q,1 + �Q,2 + �Q,3 [36]: while the SOC-independent terms

�Q,1 = Q2

2m σ0τ0 and

�Q,2 = σ0

m

[
(k0 + q) · Q 0

0 (k0 − q) · Q

]

are diagonal in both the spin and particle-hole sectors, the
SOC-induced term

�Q,3 = 1

m

(
dQ · σ 0

0 dQ · σ∗

)

is diagonal only in the particle-hole sector. These terms can be
conveniently reexpressed as �Q,1 = (1/2)

∑
i j QiQj∂i∂ jHq

and �Q,2+3 = ∑
i Qiτz∂iHq, where ∂iHq stands for ∂Hq/∂qi.

Since we are interested only in the low-Q limit of �Q,
we can use the Taylor expansion ln det G−1

Q�q = Tr ln G−1
0�q −

Tr
∑∞

l=1(G0�q�Q)l/l, and keep up to second-order terms in
�Q. This calculation leads to

ρi j = mn0M−1
i j − mT

2V

′∑
�q

[Tr(G0�q∂i∂ jHq)

+ Tr(G0�qτz∂iHqG0�qτz∂ jHq)]. (25)

Here the first term is due to the kinetic energy of the con-
densate in the presence of an SF flow; that is, there is an
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FIG. 3. The intraband (solid lines) and interband (dashed lines) contributions to the summation term in the superfluid-density tensor ρi j

are shown when T = 0 and U = U↑↑ = U↓↓ = 10U↑↓/9. Here the left, middle, and right columns correspond, respectively, to the diagonal
elements ρxx , ρyy, and ρzz (in units of n0 ≈ n), and all of the off-diagonal elements vanish. In the top row the diagonal elements are shown as
a function of αz for three values of αy when αx = 2/ξ is fixed. In the bottom row the diagonal elements are shown as a function of the SOC
strength α = αx = αy for three values of the αz/α ratio.

additional quadratic contribution (N0/2)
∑

i j QiQjM
−1
i j to �zp

coming from the low-Q expansion of
∑

k ξ−,k+Qa†
−,ka−,k

around k0. Thus, when the inverse of the effective-mass tensor
M−1

i j vanishes, ρi j is determined entirely by the Bogoliubov
Hamiltonian, i.e., the quantum fluctuations above the conden-
sate. The trace of the Green’s function in the second term is
related to the density of excited (noncondensate) particles ne

since its diagonal elements yield ne = −(T/V )
∑′

�q (G11
0�q +

G22
0�q)e−iω�0+

, or, alternatively, ne = −(T/V )
∑′

�q (G33
0�q +

G44
0�q)eiω�0+

. Thus, by performing the summation over the
Matsubara frequencies, we eventually obtain

ρi j = ntδi j − n0
α2

y δiy + α2
z δiz

α2
x

+ m

2V

′∑
nn′ss′q

ss′〈χn
sq

∣∣τz∂iHq

× ∣∣χn′
s′q

〉〈
χn′

s′q

∣∣τz∂ jHq|χn
sq

〉 fB
(
En

sq

) − fB
(
En′

s′q

)
En

sq − En′
s′q

, (26)

where nt = n0 + ne is the total density of particles in
the system and fB(x) is the Bose-Einstein distribu-
tion function. Here the partial derivative ∂ fB(En

sq)/∂En
sq =

−[1/(4T )]cosech2[En
sq/(2T )] is implied when the summation

indices coincide simultaneously (n = n′ and s = s′). In com-
parison to the SF density, the noncondensate density can be
written as

ne = 1

2V

′∑
nsq

s
[〈
χn

sq

∣∣χn
sq

〉
fB

(
En

sq

) + 2〈χn
sq

∣∣χn
sq

〉
2

]
(27)

= 1

2V

′∑
nsq

[
s
〈
χn

sq

∣∣χn
sq

〉
fB

(
En

sq

) − 1/2
]
. (28)

We checked that both expressions yield the same numerical
result. Note that n0

e = [1/(2V )]
∑′

nq(−1 + 〈χn
−,q|χn

−,q〉) is the
so-called quantum depletion of the condensate at T = 0.

As an illustration, in the case of a single-component
Bose gas, there is a single Bogoliubov band with
the usual quasiparticle-quasihole symmetric spectrum
Esq = sEq, where Eq = √

εq(εq + 2Un0), and by
plugging 〈χsq|τz∂iHq|χs′q〉 = (sqi/m)δss′ into Eq. (26),
we recover the textbook definition ρi j = ntδi j +
[1/(mV )]

∑′
q qiq j∂ fB(Eq)/∂Eq of ρs [37]. This shows

that ρi j = ntδi j at zero temperature and that the entire gas is
SF. Similarly, by plugging 〈χsq|χs′q〉 = (εq + Un0)/Eq into
Eq. (28), we recover the textbook definition of ne = n0

e + nT
e ,

where n0
e = [1/(2V )]

∑′
q[−1 + (εq + Un0)/Eq] is the

quantum depletion and nT
e = (1/V )

∑′
q(εq + Un0) fB(Eq)/Eq

is the thermal one [37].
We note in passing that Eq. (26) is consistent with the

so-called SF weight that is derived in Refs. [11,12] for a
multiband Bloch Hamiltonian (see also [13]). Unlike our
phase-twist method, they define the SF weight as the long-
wavelength and zero-frequency limit of the current-current
linear response. In particular our expression for a continuum
model is formally equivalent to their Ds

1,μν + Ds
2,μν + Ds

3,μν

with the caveat that Ds
2,μν is canceled by the interband con-

tribution of Ds
1,μν . This is similar to the cancellation that they

observed for the kagome lattice. Furthermore, Eq. (26) can
also be split into two parts, ρi j = ρ intra

i j + ρ inter
i j , depending
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FIG. 4. Quantum depletion of the condensate density is shown as
a function of SOC parameters when T = 0 and U = U↑↑ = U↓↓ =
10U↑↓/9. The fraction of the depletion is plotted (a) as a function of
αz for three values of αy when αx = 2/ξ is fixed and (b) as a function
of the SOC strength α = αx = αy for three values of the αz/α ratio.

on the physical origin of the terms [11,12]: the intraband
(interband) processes give rise to the conventional (geometric)
contribution. This division is motivated by the success of a
similar description with Fermi SFs [3,7].

In order to provide further evidence for its geometric ori-
gin, in Fig. 3 we compare the interband contribution with
that of the intraband one coming from the summation term
in Eq. (26). Here we set T → 0. First of all, Fig. 3 shows
that the total contribution from the summation term decreases
with the increased strength and isotropy of the SOC fields,
i.e., when αy → αx in Figs. 3(a)–3(c) and when αz → α in
Figs. 3(d)–3(f). Thus, ρxx always decreases from nt with SOC.
However, depending on the value of αy and αz, the remaining
contribution ne + n0(α2

x − α2
y δiy − α2

z δiz )/α2
x to ρyy and ρzz in

Eq. (26) may compete with or favor the contribution from
the summation term. More importantly, Fig. 3 shows that
not only does ρzz have the largest interband contribution but
also its relative weight is predominantly controlled by αz 
= 0.
These findings support our Bogoliubov dispersion given in
Eq. (20), whose quantum-geometric contributions are fully

controlled by αz 
= 0. For completeness, in Fig. 4 we present
the quantum depletion n0

e as a function of SOC parameters
when U = U↑↑ = U↓↓ = 10U↑↓/9. Figure 4 shows that n0

e
increases with the increased strength and isotropy of the SOC
fields [18], i.e., when αy → αx in Fig. 4(a) and when αz → α

in Fig. 4(b). This is clearly a direct consequence of the in-
creased degeneracy of the single-particle spectrum. However,
since n0

e � n even for moderately strong SOC fields, the Bo-
goliubov approximation is expected to work well in general.

V. CONCLUSION

To summarize here we considered the plane-wave BEC
phase of a spin-orbit-coupled Bose gas and reexamined its
SF properties from a quantum-geometric perspective. In order
to achieve this task analytically, we first reduced the 4 × 4
Bogoliubov Hamiltonian (which involves both lower and up-
per helicity bands) down to 2 × 2 by projecting the system
onto the lower helicity band. This was motivated by the as-
sumption that the energy gap between the lower and upper
helicity bands near the single-particle ground state is much
larger than the interaction energy. Then, given our numerical
verification that the projected Hamiltonian provides an almost
perfect description of the lower (higher) quasiparticle (quasi-
hole) branch in the Bogoliubov spectrum, we exploited the
low-momentum Bogoliubov spectrum analytically and iden-
tified the geometric contributions to the sound velocity. In
contrast to the conventional contribution that has square-root
dependence on the interaction strength, we found that the
geometric ones are distinguished by linear dependence. It may
be important to emphasize that these geometric effects are not
caused by the negligence of the upper helicity band. Similar
to the fermion problem where the geometric effects dress
the effective mass of the Goldstone modes [5,6], here one
can also interpret the geometric terms in terms of a dressed
effective mass for the Bogoliubov modes. We also discussed
the roton instability of the plane-wave ground state against
the stripe phase and determined the phase-transition boundary.
In addition we derived the SF density tensor by imposing a
phase twist on the condensate order parameter and analyzed
the relative importance of its contribution from the interband
processes that is related to the quantum geometry. Looking
forward, we believe it will be worthwhile to do a similar
analysis for the stripe phase.
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1001-118F359.

[1] S. Peotta and P. Törmä, Superfluidity in topologically nontrivial
flat bands, Nat. Commun. 6, 8944 (2015).

[2] L. Liang, T. I. Vanhala, S. Peotta, T. Siro, A. Harju, and P.
Törmä, Band geometry, Berry curvature, and superfluid weight,
Phys. Rev. B 95, 024515 (2017).

[3] M. Iskin, Exposing the quantum geometry of spin-orbit-coupled
Fermi superfluids, Phys. Rev. A 97, 063625 (2018).

[4] M. Iskin, Quantum metric contribution to the pair mass in
spin-orbit-coupled Fermi superfluids, Phys. Rev. A 97, 033625
(2018).

023301-8

https://doi.org/10.1038/ncomms9944
https://doi.org/10.1103/PhysRevB.95.024515
https://doi.org/10.1103/PhysRevA.97.063625
https://doi.org/10.1103/PhysRevA.97.033625


QUANTUM-GEOMETRIC PERSPECTIVE ON … PHYSICAL REVIEW A 105, 023301 (2022)

[5] M. Iskin, Geometric contribution to the Goldstone mode in
spin-orbit-coupled Fermi superfluids, Phys. B (Amsterdam,
Neth.) 592, 412260 (2020).

[6] M. Iskin, Collective excitations of a BCS superfluid in the
presence of two sublattices, Phys. Rev. A 101, 053631 (2020).

[7] A. Julku, L. Liang, and P. Törmä, Superfluid weight
and Berezinskii-Kosterlitz-Thouless temperature of spin-
imbalanced and spin-orbit-coupled Fulde-Ferrell phases in
lattice systems, New J. Phys. 20, 085004 (2018).

[8] Z. Wang, G. Chaudhary, Q. Chen, and K. Levin, Quantum
geometric contributions to the BKT transition: Beyond mean
field theory, Phys. Rev. B 102, 184504 (2020).

[9] P. Törmä, L. Liang, and S. Peotta, Quantum metric and effective
mass of a two-body bound state in a flat band, Phys. Rev. B 98,
220511(R) (2018).

[10] M. Iskin, Two-body problem in a multiband lattice and the
role of quantum geometry, Phys. Rev. A 103, 053311 (2021).
See also Effective-mass tensor of the two-body bound states
and the quantum-metric tensor of the underlying Bloch states,
arXiv:2109.06000 [Phys. Rev. A (to be published)].

[11] A. Julku, G. M. Bruun, and P. Törmä, Quantum Geometry and
Flat Band Bose-Einstein Condensation, Phys. Rev. Lett. 127,
170404 (2021).

[12] A. Julku, G. M. Bruun, and P. Törmä, Excitations of a Bose-
Einstein condensate and the quantum geometry of a flat band,
Phys. Rev. B 104, 144507 (2021).

[13] Recently, we became aware of an independent study [14] in
which the SF density tensor is derived for a two-dimensional
system using the linear-response theory. The results seem to
agree with ours when there is an overlap.

[14] L. Yang, Quantum-fluctuation-induced superfluid density in
two-dimensional spin-orbit-coupled Bose-Einstein conden-
sates, Phys. Rev. A 104, 023320 (2021).

[15] Y. Li, G. I. Martone, and S. Stringari, Bose-Einstein conden-
sation with spin-orbit coupling, Annual Review of Cold Atoms
and Molecules, Vol. 3 (World Scientific, 2015), Chap. 5, pp.
201–250.

[16] H. Zhai, Degenerate quantum gases with spin-orbit coupling: A
review, Rep. Prog. Phys. 78, 026001 (2015).

[17] Y. Zhang, M. E. Mossman, T. Busch, P. Engels, and C. Zhang,
Properties of spin-orbit-coupled Bose-Einstein condensates,
Front. Phys. 11, 118103 (2016).

[18] X. Cui and Q. Zhou, Enhancement of condensate deple-
tion due to spin-orbit coupling, Phys. Rev. A 87, 031604(R)
(2013).

[19] T. Ozawa and G. Baym, Stability of Ultracold Atomic Bose
Condensates with Rashba Spin-Orbit Coupling against Quan-
tum and Thermal Fluctuations, Phys. Rev. Lett. 109, 025301
(2012).

[20] G. Baym and T. Ozawa, Condensation of bosons with Rashba-
Dresselhaus spin-orbit coupling, J. Phys.: Conf. Ser. 529,
012006 (2014).

[21] C. Wang, C. Gao, C.-M. Jian, and H. Zhai, Spin-Orbit Cou-
pled Spinor Bose-Einstein Condensates, Phys. Rev. Lett. 105,
160403 (2010).

[22] R. Barnett, S. Powell, T. Graß, M. Lewenstein, and S. Das
Sarma, Order by disorder in spin-orbit-coupled Bose-Einstein
condensates, Phys. Rev. A 85, 023615 (2012).

[23] L. Santos, G. V. Shlyapnikov, and M. Lewenstein, Roton-
Maxon Spectrum and Stability of Trapped Dipolar Bose-
Einstein Condensates, Phys. Rev. Lett. 90, 250403 (2003).

[24] S. Saccani, S. Moroni, and M. Boninsegni, Excitation Spectrum
of a Supersolid, Phys. Rev. Lett. 108, 175301 (2012).

[25] T. Macrì, F. Maucher, F. Cinti, and T. Pohl, Elementary
excitations of ultracold soft-core bosons across the superfluid-
supersolid phase transition, Phys. Rev. A 87, 061602(R) (2013).

[26] J.-N. Schmidt, J. Hertkorn, M. Guo, F. Böttcher, M. Schmidt,
K. S. H. Ng, S. D. Graham, T. Langen, M. Zwierlein, and T.
Pfau, Roton Excitations in an Oblate Dipolar Quantum Gas,
Phys. Rev. Lett. 126, 193002 (2021).

[27] F. Böttcher, J.-N. Schmidt, J. Hertkorn, K. S. H. Ng, S. D.
Graham, M. Guo, T. Langen, and T. Pfau, New states of mat-
ter with fine-tuned interactions: Quantum droplets and dipolar
supersolids, Rep. Prog. Phys. 84, 012403 (2021).

[28] M. A. Khamehchi, Y. Zhang, C. Hamner, T. Busch, and P.
Engels, Measurement of collective excitations in a spin-orbit-
coupled Bose-Einstein condensate, Phys. Rev. A 90, 063624
(2014).

[29] S.-C. Ji, L. Zhang, X.-T. Xu, Z. Wu, Y. Deng, S. Chen, and
J.-W. Pan, Softening of Roton and Phonon Modes in a Bose-
Einstein Condensate with Spin-Orbit Coupling, Phys. Rev. Lett.
114, 105301 (2015).

[30] J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. C.
Top, A. O. Jamison, and W. Ketterle, A stripe phase with
supersolid properties in spin-orbit-coupled Bose-Einstein con-
densates, Nature (London) 543, 91 (2017).

[31] A. Putra, F. S.- Cárcoba, Y. Yue, S. Sugawa, and I. B. Spielman,
Spatial Coherence of Spin-Orbit-Coupled Bose Gases, Phys.
Rev. Lett. 124, 053605 (2020).

[32] Y. Li, G. I. Martone, L. P. Pitaevskii, and S. Stringari,
Superstripes and the Excitation Spectrum of a Spin-Orbit-
Coupled Bose-Einstein Condensate, Phys. Rev. Lett. 110,
235302 (2013). See also the more recent analysis by G. I.
Martone and S. Stringari, Supersolid phase of a spin-orbit-
coupled Bose-Einstein condensate: A perturbation approach,
SciPost Phys. 11, 092 (2021).

[33] Y.-C. Zhang, Z.-Q. Yu, T. K. Ng, S. Zhang, L. Pitaevskii, and S.
Stringari, Superfluid density of a spin-orbit-coupled Bose gas,
Phys. Rev. A 94, 033635 (2016)

[34] X.-L. Chen, J. Wang, Y. Li, X.-J. Liu, and H. Hu, Quantum
depletion and superfluid density of a supersolid in Raman spin-
orbit-coupled Bose gases, Phys. Rev. A 98, 013614 (2018).

[35] E. Taylor, A. Griffin, N. Fukushima, and Y. Ohashi, Pairing
fluctuations and the superfluid density through the BCS-BEC
crossover, Phys. Rev. A 74, 063626 (2006).

[36] L. He and X.-G. Huang, BCS-BEC crossover in three-
dimensional Fermi gases with spherical spin-orbit coupling,
Phys. Rev. B 86, 014511 (2012).

[37] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, New York, 1971).

023301-9

https://doi.org/10.1016/j.physb.2020.412260
https://doi.org/10.1103/PhysRevA.101.053631
https://doi.org/10.1088/1367-2630/aad891
https://doi.org/10.1103/PhysRevB.102.184504
https://doi.org/10.1103/PhysRevB.98.220511
https://doi.org/10.1103/PhysRevA.103.053311
http://arxiv.org/abs/arXiv:2109.06000
https://doi.org/10.1103/PhysRevLett.127.170404
https://doi.org/10.1103/PhysRevB.104.144507
https://doi.org/10.1103/PhysRevA.104.023320
https://doi.org/10.1088/0034-4885/78/2/026001
https://doi.org/10.1007/s11467-016-0560-y
https://doi.org/10.1103/PhysRevA.87.031604
https://doi.org/10.1103/PhysRevLett.109.025301
https://doi.org/10.1088/1742-6596/529/1/012006
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevA.85.023615
https://doi.org/10.1103/PhysRevLett.90.250403
https://doi.org/10.1103/PhysRevLett.108.175301
https://doi.org/10.1103/PhysRevA.87.061602
https://doi.org/10.1103/PhysRevLett.126.193002
https://doi.org/10.1088/1361-6633/abc9ab
https://doi.org/10.1103/PhysRevA.90.063624
https://doi.org/10.1103/PhysRevLett.114.105301
https://doi.org/10.1038/nature21431
https://doi.org/10.1103/PhysRevLett.124.053605
https://doi.org/10.1103/PhysRevLett.110.235302
https://doi.org/10.21468/SciPostPhys.11.5.092
https://doi.org/10.1103/PhysRevA.94.033635
https://doi.org/10.1103/PhysRevA.98.013614
https://doi.org/10.1103/PhysRevA.74.063626
https://doi.org/10.1103/PhysRevB.86.014511

