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Scattering of an intense laser beam by atomic systems
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A nonrelativistic quantum approach is adopted to describe the scattering of an intense laser beam from a
simple atomic system. Two forms of the corresponding transition amplitude (TA) are derived, one involving the
kinetic momentum operator of the electron and the other involving the force operator. The spectral and angular
distribution of the scattered radiation is expressed in terms of TA by a relation recalling the classical one. The
formalism is applied to the scattering of radiation by an electron (free or bound) with the absorption of two
photons from the incident laser beam. Analytic and numeric results are presented for the distributions of the
emitted photons in the case of the nonlinear Compton scattering from a hydrogenic atom in the ground state.
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I. INTRODUCTION

According to classical theory an electron in accelerated
motion emits radiation [1]. When the acceleration is caused by
an external electromagnetic radiation beam, the emitted radi-
ation is identified with the scattered radiation. The properties
of the scattered light follow from the law of motion r(t ) of the
electron. Based on Eqs. (14.65) and (14.64) in Ref. [1], we
express the energy of the radiation emitted in the solid angle
d� around the observation direction n, with the frequency in
the spectral interval dω and with polarization sλ (orthogonal
to n), as follows:

d2W (cl)
λ = 1

(2π )2

e2
0

c

∣∣A(n,λ)
cl (ω)

∣∣2
dω d�, (1)

with e0 ≡ e/
√

4πε0, where e is the electron charge. The
classical amplitude A(n,λ)

cl (ω) is defined conveniently as the
component along sλ of the negative of the integral appearing
in Eq. (14.64) of the quoted paper; see also Appendix A,
Eq. (A1). The nonrelativistic approximation of this amplitude,
taken in the first order of βcl(t ) ≡ v(t )/c = ṙ(t )/c, is given by

A(n,λ)
cl (ω) = 1

c

∫ ∞

−∞
dt eiω(t−n·r(t )/c)

× s∗
λ · [acl + (n · βcl ) acl + (n · acl ) βcl], (2)

where acl = cβ̇cl = v̇ is the electron acceleration. For the
scattering problem one needs to know r(t ) for the electron
exposed to the laser beam (and, possibly, to another external
force field), then to evaluate the quantities entering the above
equation. The acceleration of the electron appears explicitly
in Eq. (2) and the amplitude Acl vanishes with it.

In quantum theory, the scattering is described in terms of
photons: the electron (bound or free initially) absorbs one or
more photons from the laser field and spontaneously emits
one photon of a frequency different from that of the laser
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photons—having much lower probabilities, the processes with
the emission of more photons are disregarded in the following.
At low intensity of the laser, the scattering is linear, it being
dominated by the absorption of one laser photon by the elec-
tron, a process having a rate proportional to the laser intensity.
At higher laser intensity the number of absorbed photons
is not defined anymore and the dependence of the emitted
radiation on laser intensity becomes nonlinear. Nevertheless,
in the emitted radiation spectrum one can distinguish approx-
imately the contributions corresponding to various fixed net
numbers of absorbed photons. When the radiation scatter-
ing (linear or nonlinear) is accompanied by the scattering
of the electron (free or bound initially), the process is of
Compton type. Nonlinear processes of Raman or Rayleigh
types are also possible for intense laser scattering by bound
electrons.

Besides intensity, the frequency of the laser strongly in-
fluences the features of the scattering. For example, if the
laser intensity overcomes the atomic intensity I0 ≈ 3.51 ×
1016 W/cm2 by a factor of the order 103, the electron dynam-
ics is relativistic and the scattering is highly nonlinear for an
incident frequency in the infrared range. For the description
of the nonlinear Compton scattering (NLCS) in this regime a
nonperturbative fully relativistic framework is required—see,
for example, Refs. [2–8]; the electron is considered as being
initially in a state of definite momentum with few exceptions,
for example, Ref. [9] where the initial state of the electron is a
wavepacket (continuous superposition of states with different
momenta). We note here that the attribute ”nonperturbative”
is used in this paper solely with reference to the interaction
of the electron with the laser modes (the laser field is usually
described in classical theory, a treatment justified at high laser
intensities). On the other hand, for a free electron laser in the
keV range and having an intensity of the same order as above
(103 I0), the scattering is dominantly linear, the processes with
the absorption of more than one photon having relatively
reduced rates. In these conditions the electron dynamics is
essentially nonrelativistic and a perturbative approach is of
interest in order to describe NLCS. A nonrelativistic (NR)
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treatment is also justified for the case of low (or intermedi-
ate) frequencies, for not very high intensities. The relativistic
nonperturbative studies above cited make extensive use of the
so-called Volkov solutions (exact solutions of the Dirac equa-
tion for an electron interacting with an intense laser pulse).
An earlier NR example for the application of the Volkov
solutions in the case of NLCS by free electrons is found in
Ref. [10]. It is to be mentioned that NR Volkov solutions are
frequently used in the description of two related strong field
processes, above-threshold ionization (ATI) and high-order
harmonic generation (HHG); see, for instance, Ref. [11] and
references therein. Successful NR approaches of these pro-
cesses, investigating the interaction of intense laser fields with
bound electrons, are mainly based on the so-called strong-field
approximation (SFA). In the simplest SFA one fully neglects
the influence of the potential force (usually the Coulomb
force electron-nucleus) on the process duration, the electron
being treated as moving solely under the influence of the
Lorentz force. It is remarkable that SFA, initially formulated
in dipole approximation, can be improved in order to take into
account magnetic and nondipole (MND) effects. This objec-
tive is attained by the construction of Volkov-type solutions
appropriate for different field configurations—two significant
recent examples are Refs. [12,13], aiming, respectively, to de-
scribe ATI for spatially structured laser fields (twisted fields,
in particular) or to extend the description of HHG to the case
of atoms exposed to a superposition of noncollinear beams
(with the purpose to control the role of the magnetic field).

Apparently, the connection between the emission of radi-
ation and the accelerated motion of the electron is lost when
passing from classical to quantum theory. The primary aim
of this paper is to show how the quantum description of the
radiation scattering can be formulated in order to reestablish
this connection. This is achieved in Sec. II, where we treat
the laser field classically and make the operator associated
to the force exerted on the electron appear explicitly in the
formal description of the scattering. The angular and spectral
distribution of the energy emitted by the electron during its
interaction with the laser pulse is expressed with the help
of a transition amplitude (TA), for which one first infers a
formula, Eq. (10), involving the kinetic momentum operator
of the electron in the laser field. Then, in tight analogy with
the treatment of the radiation emission in classical electro-
dynamics, an alternative form of TA is deduced, Eq. (17),
relying on the total force operator. We mention that for the
derivation of Eqs. (10) and (17) the interaction electron laser
is treated nonperturbatively. A part of the formalism pre-
sented in Sec. II, referring to the photon emission, is similar
in particular to that used in the recent theoretical papers
Refs. [14,15]. The approaches proposed in these papers for
the study of the radiation scattering off bound electrons are
based on the time dependent Schrödinger equation (TDSE),
thus being inherently nonperturbative. In the present paper
the formalism, also relying on TDSE, is further developed in
order to remove its dependence on the quantization volume
and to obtain closed analytic equations relating the transition
amplitude to the states of the electron in the laser field.

References [14,15] are mainly motivated by the results
presented in Ref. [16], an experimental paper reporting the ob-
servation of photons with energy around 18 keV, which is the

double of the energy of photons of a free electron laser beam
sent on a beryllium target. The results concerning the photon
spectra in this energy range were interpreted in Ref. [16] as
describing the “concerted” scattering of two photons absorbed
from the laser beam, producing one higher-energy photon. A
large redshift of the NLCS peak versus the peak for linear
Compton scattering (LCS) of the second laser harmonics was
observed and not understood up to now. The theoretical inves-
tigations in Refs. [14,15] seem to not confirm the experiment
and lead to the conclusion that the atomic binding of the
electron could not be the cause of the NLCS shift seen in
Ref. [16]. Two other possible causes of the redshift are inves-
tigated in Ref. [15], mainly by two-dimensional simulations.
These are the electron-electron Coulomb interaction and the
linear scattering of a laser photon by a photoelectron (which
absorbs another laser photon). It is found that their inclusion
does not significantly alter the scattering profile for NLCS,
in particular its position, and thus it is unlikely that these are
causing the redshift.

Given the complexity of the analyzed process and of the
implied TDSE calculations, independent approaches of it are
highly desirable. In particular, an approach based on lowest-
order perturbative theory (LOPT) should be a good choice
for conditions like in the experiment in Refs. [16], where the
measured NLCS signal has a quadratic dependence of the
laser intensity. We remark that perturbative studies treating
directly NLCS with the absorption of two photons are rela-
tively few—two such examples are found in Refs. [17,18].
Reference [17] considers the nonlinear scattering by a He
atom for a rather low incident photon energy (500 eV). The
LOPT calculation of the transition amplitude is made man-
ageable by an approximate treatment of a part of the terms
corresponding to the Feynman diagrams of the process. The
terms neglected in Ref. [17] were shown in Ref. [14] to be
important at that photon energy and of decreasing significance
at higher energies (in the keV range). Reference [18] studies
the scattering by free electrons of defined momenta, with two
photons absorbed from a low intensity incident field. The
QED calculation of the angular photon distribution gives a
result which, up to a factor accounting for correlations of
photon pairs, agrees in the Thomson limit (where the photon
momenta are negligible) with those given by the semiclassical
[2] and classical theories [19].

As discussed in Ref. [14], for scattering by bound electrons
in conditions similar to those of Ref. [16], there could exist
good reasons to prefer the NLCS investigation by nonpertur-
bative against perturbative calculations—the main argument
resides in the increasing difficulties to obtain in these con-
ditions accurate results for NLCS in perturbation theory.
Nevertheless, we appreciate that in the actual stage it is also
of interest to consider simplified models based on LOPT (em-
bodying supplementary approximations) and to analyze the
measure in which the NLCS features known at the present
(from experiment or more accurate theoretical simulations)
can be explained by these models. Going on this direction,
the formalism from Sec. II is specialized in Secs. III and IV
to the nonlinear Compton scattering in a perturbative regime.
It is then applied in conditions close to those of Ref. [16]. Our
treatment, describing NLCS perturbatively with respect to the
interaction electron-laser beam, can be regarded as comple-
mentary to that used in Refs. [14,15]. In Sec. III we derive two
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formulas, Eqs. (38) and (39), for the distribution fully charac-
terizing, respectively, the scattering of a monochromatic plane
wave by a free electron in a general state and by a bound
electron in a stationary state—we note that supplementary
approximations are adopted in order to make the calculations
feasible or to simplify the form of the equations. These ap-
proximations are formulated relative to the matrix elements
from the expressions of the transition amplitude, Eqs. (24)
and (26).

In Sec. IV we consider NLCS from a hydrogenic atom
in the ground state. For the distribution in frequency and
emission direction of the scattered radiation we present two
expressions, one in impulse approximation (IA) and the other
based on exact descriptions of the initial and final states of the
electron in the Coulomb potential. Their derivation implies
the integration over the final momentum of the electron, per-
formed as in the case of the usual Compton scattering—see,
for example, Refs. [20,21]. Numerical results characterizing
the spectral and angular distribution of the scattered radiation
are presented for values of the parameters of the incident
laser in the ranges of those used in the experiment [16], then
analyzed in relation with existing experimental and theoretical
results. The main features of the spectra presented in Ref. [16]
are reproduced qualitatively, with the notable exception of the
above-mentioned redshift. Finally, we refer to the (integrated)
angular distribution of the scattered radiation. In its case, the
IA results for scattering on bound electrons are compared with
those corresponding to free electrons (the equations for the
latter case are included in Appendix C) and with the results
presented in Ref. [15].

II. THE AMPLITUDE OF THE RADIATION SCATTERING

For simplicity, as an atomic system we consider an electron
moving in an attractive potential V . The Hamiltonian operator
[22] of the system is Ha ≡ P2/2me + V , where P is the kinetic
momentum operator and me the mass of the electron. We
first allow the atomic system to interact solely with the laser
beam, assumed to be of the type of a pulse introduced at a
time moment t0 and removed at t1, thus having a duration
τ = t1 − t0. Working in the Coulomb gauge, we describe the
laser field with the help of a vector potential AL(r, t ), the
corresponding electric and magnetic fields being given by
the well-known relations E = −∂AL/∂t and B = ∇ × AL. In
these conditions the evolution of the atomic system on the
time interval (t0, t1) is governed by the TDSE correspond-
ing to the Hamiltonian operator HaL ≡ �2/2me + V , where
� ≡ P − eAL is associated to the kinetic momentum pkin of
the electron in the laser field. The state of the atomic system,
evolving from an initial state |ψ0〉 (arbitrary at this stage),
is described by a state vector |ψi(t )〉 satisfying this TDSE
and the initial condition |ψi(t0)〉 = |ψ0〉. The range of the
values for pkin which matter for the process we investigate is
required to satisfy the condition pkin � mec, or β � 1, where
β ≡ pkin/mec. The same symbol is used below to denote the
operator associated to pkin/mec:

β = 1

mec
� = 1

mec
(P − eAL ). (3)

In order to describe the radiation scattering we let now the
atomic system interact with a more general electromagnetic
field, the superposition AL(r, t ) + AX (r) of the classical laser
field AL(r, t ), and of a quantized one. To the latter we asso-
ciate in the Coulomb gauge the vector potential operator

AX (r) =
∑
kλ

√
h̄

2ε0ωV
(sλ eik·r akλ + s∗

λ e−ik·r a†
kλ), (4)

where V is the quantization volume. The wave vector k and
the polarization vector sλ(k) are orthogonal, s∗

λ · k = 0, and
define a general plane-wave mode of the radiation which we
simply call the kλ mode. The operators akλ and a†

kλ annihilate
and create, respectively, a photon of the mode kλ, with an
energy h̄ω (ω = ck) and a momentum h̄k. The Hamiltonian
operator H of the composed dynamical system (electron and
radiation) can be written as the sum of an “unperturbed”
Hamiltonian H0, equal to HaL plus the energy operator of the
quantized field, and of a Hamiltonian describing the interac-
tion between the atomic system moving in the laser field and
the quantized field. This interaction Hamiltonian contains a
term linear in AX , H′

1 ≡ −(e/me)AX · �, and a quadratic one,
e2A2

X /2me, neglected in the following. We treat the interaction
electron-quantized field in the first order of perturbation the-
ory, applied for the interaction H′

1. This term is responsible (in
the first order) for processes involving either the absorption
or the emission of a single photon. If the quantized field is
initially in the vacuum state |0〉 (our case), only the sponta-
neous emission of a photon can appear. Implicitly, adopting
this treatment, processes with two or more photons of the
quantized field are systematically disregarded.

The possible final states of the radiation are then the
vacuum state and the photon number states of the type
|1kλ〉, having one photon present in the mode kλ (and zero
photons in all the other modes). It follows that the state
vector |�〉 of the composed system can be approximated by
the sum |� (0)〉 + |� (1)〉, where the first term describes the
evolution of the unperturbed system from the initial state
|ψ0〉 ⊗ |0〉, and has the form |� (0)(t )〉 = |ψi(t )〉 ⊗ |0〉. The
second one can be represented conveniently as |� (1)(t )〉 =∑

kλ |ψ (1)
λ (k, t )〉 ⊗ |1kλ〉e−iωt , where the equations for the

components |ψ (1)
λ (k, t )〉 follow from the inhomogeneous

equation satisfied by |� (1)〉, ih̄ (∂|� (1)〉/∂t ) = H0|� (1)〉 +
H′

1|� (0)〉. Imposing effectively the latter equation one finds
that the vectors |ψ (1)

λ (k, t )〉 can be searched in the form

∣∣ψ (1)
λ (k, t )

〉 = − e

me

√
h̄

2ε0ωV
∑

j

s∗
λ j (k)|φ j (k, t )〉, (5)

where j is a Cartesian index. The ket vectors |φ j (k, t )〉, three
for each k, satisfy the inhomogeneous TDSE

ih̄
∂|φ j〉
∂t

= HaL|φ j〉 + eiωt e−ik·r  j |ψi〉, (6)

and vanish at the initial time moment t0. We note that an
equation of the same type appears in Ref. [15], where it plays
a central role; unlike there, we work here with vectors defined
such the inhomogeneous term [the last one in Eq. (6)] is inde-
pendent of the volume V and of sλ—this is very convenient in
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order to take the formal limit V → ∞ and to perform the sum
over polarizations.

Putting together the above findings we have

|�(t )〉 = |ψi(t )〉 ⊗ |0〉

− e

me

∑
kλ j

√
h̄

2ε0ωV
s∗
λ j (k)|φ j (k, t )〉 ⊗ |1kλ〉e−iωt .

(7)

The extraction of the electron and photon distributions
from the state vector |�(t1)〉 of the composed system at the
end of the laser pulse—even assuming the vectors |φ j (k, t1)〉
are known—is not a trivial operation. This task simplifies
if |φ j (k, t )〉 are decomposed in terms of a complete system
of states {|ψ ′

m(t )〉} satisfying homogeneous TDSE and taken
such to evolve to a complete system of eigenvectors |um〉 of
Ha, at the end of the laser pulse, i.e., |ψ ′

m(t1)〉 = |um〉. The
completeness property of the set {|ψ ′

m(t )〉}, inherited (as also
the orthonormalization property) from that of the set {|um〉},
allows one to expand |φ j (k, t )〉 in the form

|φ j (k, t )〉 =
∑

m

cm j (k, t )|ψ ′
m(t )〉. (8)

By imposing Eq. (6), it follows that the expansion coefficients
at t = t1, denoted simply cm j (k), are given by

cm j (k) = 1

ih̄

∫ t1

t0

dt eiωt 〈ψ ′
m(t )|e−ik·r  j (t )|ψi(t )〉. (9)

The generalized matrix element under integral (9) is built with
TDSE solutions of two kinds, |ψi(t )〉 and |ψ ′

m(t )〉, evolving,
respectively, from an initial state |ψ0〉 and to a final state |um〉.

Replacing the vectors (8) in Eq. (7) taken at t = t1, and
changing the index m into f (more suggestive for indicating
“final” states), one finally expresses the sum over radiation
modes from |�(t1)〉 as a linear combination of the vectors
|u f 〉 ⊗ |1kλ〉.

According to the rules of quantum theory, the probability
to find the electron in the final state |u f 〉 and a photon of the
mode kλ to be emitted is equal to the squared modulus of
the coefficient of |u f 〉 ⊗ |1kλ〉 from the expansion of |�(t1)〉.
Multiplying this probability by the photon energy h̄ω and tak-
ing the limit of V covering the whole physical space, one can
infer the energy d2W ( f )

λ emitted in the spectral interval dω and
in the solid angle d� centered on the direction n ≡ k/k. We
conveniently define the amplitude of the electron transition
i → f , with the emission of a photon kλ:

A(kλ)
i→ f ≡ −i

ω

mec

∫ t1

t0

dt eiωt

×〈ψ ′
f (t )|e−ik·r s∗

λ(k) · �(t )|ψi(t )〉. (10)

With the help of this dimensionless amplitude, differing from
s∗
λ(k) · c f (k) by the factor h̄ω/mec, the emitted energy distri-

bution can be written as

d2W ( f )
λ = 1

(2π )2

e2
0

c

∣∣A(kλ)
i→ f

∣∣2
dω d�. (11)

We now notice that the distribution we have obtained has the
same form as the classical one in Eq. (1), with the important

difference that the electron can be finally found in various
quantum states. We also remark that the form (10) is not
the direct quantum counterpart of the expression (2) for the
classical amplitude A(n,λ)

cl ; instead, it is related to another form
of A(n,λ)

cl ; see Eq. (A2) from Appendix A.
Equations (10) and (11), as they stand, implicitly contain

an approximation: one neglects the emission of radiation in
the absence of the laser pulse. A better (and more general)
formula for the amplitude (10) is obtained, as in the classical
case [1], including under the integral a convergence factor
e−ε|t |, extending the interval (t0, t1) to (−∞,∞), and finally
taking the limit ε → 0. This “recipe” is understood in the fol-
lowing as applicable to all equations expressing the transition
amplitude.

We note that the above equations require some adaptations
for the scattering involving final or initial states of the electron
from the continuum. Also, in the case of a monochromatic
beam (of infinite duration), in place of d2W ( f )

λ we have to con-
sider the energy emitted per second (the power), d2W ( f )

λ /τ ,
with τ → ∞.

The expression (10) of the TA is not convenient in every
circumstance. In tight analogy with the classical treatment of
the radiation emission by an accelerated charge [1], an equiv-
alent form of TA can be derived. To this end it is preferable to
start from the symmetric expression

Ai→ f = −i
ω

2mec

∫
dt eiωt

×〈ψ ′
f |e−ik·r s∗ · � + s∗ · � e−ik·r |ψi〉, (12)

where we use the simplified notations s for sλ(k) and Ai→ f for
TA. Equations (12) and (10) are equivalent since the operators
e−ik·r and s∗ · � commute:

[s∗ · �, e−ik·r] = [s∗ · P, e−ik·r] = −h̄(s∗ · k)e−ik·r = 0,

(13)

the last equality being due to the orthogonality of the vectors
sλ(k) and k. For the derivation of another form of TA, de-
tailed in Appendix A, it is convenient to define in advance an
operator O̊ (“O ring”), associated to an arbitrary operator O
such that the time derivative of the matrix element 〈ψ ′

f |O|ψi〉
is equal to 〈ψ ′

f |O̊|ψi〉 (for any indices i and f ); see Eqs. (A4)
and (A5). In particular we have

�̊ = F, β̊ = 1

mec
F, (14)

where F is the self-adjoint operator corresponding to the total
force, i.e., the sum of the quantum Lorentz force in the laser
field and of the potential force,

F ≡ Fe + Fm + Fp, (15)

with

Fe ≡ eE, Fm ≡ e

2me
(� × B − B × �), (16)

and Fp ≡ −∇V .
In Appendix A it is shown that the transition amplitude

can be expressed (up to terms of an order in β higher than 1,
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negligible in the NR case) in the form

Ãi→ f = 1

2mec

∫
dt eiωt 〈ψ ′

f |e−ik·rs∗ · F̃ + s∗ · F̃e−ik·r |ψi〉,
(17)

where F̃ is the self-adjoint operator

F̃ ≡ F + 1
2 [(n · β) F + F (n · β)

+ (n · F) β + β (n · F)], (18)

equal to to the sum of the total force operator (15) and of an
auxiliary self-adjoint operator, linear in F and β. In the latter,
in order to obtain a consistent nonrelativistic expression, F is
replaced by Fe + Fp since the magnetic force is of the first
order in β. Setting aside (temporarily) the contribution of Fp

in Eq. (18), we get the explicit formula

F̃ ≡ Fe + Fm + 1

2mec
× [(n · �) Fe + Fe (n · �)

+ (n · Fe) � + � (n · Fe)]. (19)

To include the contribution of the potential force in the last
equation one replaces Fe by Fe − ∇V .

We note that the above expressions for TA are obtained
working in the Coulomb gauge (for both fields, classical
and quantized). In practice it might be of interest to solve
TDSE in a different gauge for the laser field, this raising
the problem to express TA in an arbitrary gauge G. One
easily verifies the gauge invariance of the matrix elements
that enter in Eq. (10) or (17) to a general gauge transfor-
mation, A → AG = A + ∇g and � → �G = � − ∂g/∂t (�
is the scalar potential; in the above equations for TA the
potentials are A = AL and � = 0), generated by an arbitrary
function g(r, t ). For verification one uses (i)the transformation
|ψ〉 → |ψG〉 = ei(e/h̄)g|ψ〉 of the states under a gauge transfor-
mation and (ii) the identity �|ψ〉 = e−i(e/h̄)g �G |ψG〉, where
� = P − eA and �G = P − eAG are the operators associated
to the kinetic momentum in the two gauges.

What happens in the classical limit with the above equa-
tions is almost transparent at the formal level. When in
Eq. (17), for example, the operators are replaced by the
quantities to which they are associated, one obtains the clas-
sical amplitude (2), with acl = [e(E + vcl × B) − ∇V ]/me,
multiplied by the constant scalar product 〈ψ ′

f (t )|ψi(t )〉 =
〈u f |ψi(t1)〉. The summation over the final electron states in
Eq. (11) then leads to the classical result for the emitted
energy, described by Eqs. (1) and (2).

For the validity of Eqs. (10) and (17), the interaction laser-
atomic system was not assumed as being small—thus they
are exact (or nonperturbative) with respect to this interaction.
Comparing the two expressions of the TA, Eqs. (10) and (17),
one sees that the former is simpler, while the latter clearly
shows that the radiation is emitted only on time intervals
where the motion of the electron is accelerated (i.e., the force
F is nonvanishing), this feature being attractive also for prac-
tical calculations.

We include here just a few considerations related to the
evaluation of Eqs. (10) and (17), leaving the problem in its
full complexity for a future analysis. In a concrete calculation,
the state vectors required under integrals (10) or (17) have
to be known as functions of time. The most natural way to

find them is to solve numerically TDSE using appropriate
methods. For simple systems the integration of TDSE is rather
easy in the case of low laser frequencies, where the dipole
approximation is successfully used. At higher frequencies
and high intensities, where the TDSE integration is much
more difficult, there were proposed alternative nonrelativistic
or semirelativistic formulations [23–25], seemingly computa-
tionally more efficient than the usual approaches based on the
minimal coupling for the light-matter interaction, and aiming
to ensure a smooth transition between the nonrelativistic and
relativistic descriptions.

In close relation with the values of the parameters relevant
for scattering, the approximation methods could present a
high interest (see also Sec. I). In particular, the choice of SFA
can be taken in consideration for laser intensities such that
the effect of the Lorentz force becomes dominant versus that
of the potential force (usually the Coulomb force electron-
nucleus). In the spirit of SFA (as it is used in the study of ATI
or HHG) the states from the matrix element in Eq. (10) or (17)
are expressed using the evolution operators UaL(t, t ′) (t ′ = ti
or t f ) for which one inserts the SFA equations (in the latter the
potential V is treated perturbatively) [26]. For low to moderate
laser intensities, the methods based on perturbation theory
can represent the appropriate choice (see also the discussion
from Sec. I), especially in the case the laser field is close to a
monochromatic one. The transition amplitude is then approx-
imated replacing the electron states in the matrix elements
from Eq. (10) or (17) by their perturbation series in the field
strength [27]. As discussed in Sec. III, even if Eq. (10) is
simpler to apply for PT calculations, Eq. (17) is also attractive
to this end due to the more intuitive aspect of the involved
relations. An advantage of Eq. (17) versus Eq. (10) manifests,
for example, when the potential force −∇V vanishes or has a
negligible effect—in this case the application of Eq. (17) for
a given process requires TDSE solutions in a PT order lower
(by one unit) than in the case of Eq. (10). In fact, if additional
approximations are used for the PT corrections of the state
vectors, both equations could be necessary for consistency
reasons. We mention here that a different approach might be
tried for independent checkings of the PT results, based on an
extension of the TDSE treatment used in Refs. [28,29], where
the studied process is the stimulated Compton scattering—
NLCS could be partially simulated by a two-color Compton
scattering in the appropriate perturbative regime, with one
color corresponding to the incident laser and the other to a
scattered radiation mode.

III. SCATTERING WITH ABSORPTION
OF TWO LASER PHOTONS

We apply the formalism from Sec. II to the scattering of a
monochromatic laser beam, in the perturbative regime for the
interaction laser-atomic system. The application is centered
on the simplest nonlinear process of this type, the scattering
with the absorption of two laser photons. The laser field is
modeled by a plane electromagnetic wave, monochromatic
and linearly polarized, described by the vector potential

AL(r, t ) = 1
2 A0 s0 ei(k0·r−ω0t ) + c.c., s0 · k0 = 0. (20)
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The wave is polarized along s0 and propagates in the direc-
tion n0 = k0/k0 of the wave vector k0. The amplitude A0 is
assumed to be such that the parameter

ξ ≡ |e|A0

mec
(21)

satisfies the condition ξ � 1, for which the relativistic effects
are negligible for an electron quivering in the laser field (20).
This classical condition has to be complemented by a quantum
one, requiring that the energy h̄ω0 of a laser photon is much
smaller than the rest energy of the electron or, equivalently,
that the momentum of the laser photon in mec units, κ0 ≡
h̄k0/mec, is much less than 1. Recalling that the wave intensity
is given by I = ε0 c E2

0 /2, where E0 = ω0A0, one finds that in
the keV spectral range (such that the incident photon energy is
much less than mec2 ≈ 511 keV) the condition ξ � 1 is satis-
fied even for intensities much exceeding the atomic intensity
I0, as in the experiment [16].

The scattering with the absorption of m laser photons and
emission of a photon kλ is accompanied by the transfer, from
the laser beam to the atomic system, of a momentum Qm and
of an energy �m, given by

Qm ≡ mh̄k0 − h̄k, �m ≡ mh̄ω0 − h̄ω. (22)

For the scattering by a free electron having an initial momen-
tum equal to zero [the system termed below as a free electron
“at rest” (FER)], the spectrum of the emitted frequencies is
reduced to a single line for each scattering angle θ (the angle
between n and n0), the position of which is given by the
relation

ωm ≡ mω0

1 + mκ0(1 − cos θ )
, (23)

a consequence of the relativistic laws expressing the conser-
vation of the momentum and energy. If the NR conservation
laws are used one obtains an approximation ω̃m differing
from ωm by a term of the order κ

3
0 , negligible in the present

conditions—below we do not make a distinction between ω̃m

and ωm. The line is replaced by a true distribution of the
emitted frequencies in the case the initial momentum of the
electron is not defined.

In the following we concentrate on the nonlinear Compton
scattering with the absorption of m = 2 laser photons by (1) a
free electron initially in a nonstationary state (a wave packet)
and (2) an electron moving in a nonvanishing potential V ,
initially in a stationary or a nonstationary state. Taking into
account the practical difficulties of the exact perturbative cal-
culations in case 2 (for some of the involved terms), we adopt
below some other simplifications and approximations—some
of them are extended also to case 1. Details for each case are
given after the identification of the dominant contributions to
the transition amplitude. For the calculation of TA we apply
Eqs. (10) and (17) (for consistency reasons they are both used,
see below) for the monochromatic plane wave (20). We first
transcribe Eq. (10) in the simplified form

Ai→ f = 1

mec

∫
dt eiωt M f i, (24)

where

M f i ≡ −iω〈ψ ′
f |e−ik·r s∗ · �|ψi〉, (25)

and s is the polarization vector of the emitted photon. The
expression (17) of the amplitude can be put in a form similar
to Eq. (24):

Ãi→ f = 1

mec

∫
dt eiωt M̃ f i, (26)

with

M̃ f i ≡ 1
2 〈ψ ′

f |e−ik·r s∗ · F̃ + s∗ · F̃ e−ik·r|ψi〉, (27)

where F̃ is given by Eq. (19).
In order to treat perturbatively the considered process, we

keep from the expansion of M f i or M̃ f i in powers of A0

the terms quadratic (in A0) contributing to the absorption of
two laser photons. We first consider the matrix element M̃ f i,
Eq. (27). The main simplification we adopt in case 2 is to set
aside the contribution of all the terms involving the potential
force, thus the operator s∗ · F̃ is the same in the two cases
and contains terms of the first and second order in A0. These
are obtained replacing the expressions for Fe, Fm, and � in
Eq. (19). Then we may write

F̃ = F̃(1) + F̃(2), (28)

where

F̃(1) ≡ eE + e

2me
(P × B − B × P) + e

2mec

× [(n · P) E + E (n · P) + (n · E) P + P (n · E)],

(29)

and

F̃(2) = F̃(2)
a + F̃(2)

b , (30)

with

F̃(2)
a ≡ − e2

me
AL × B, (31)

and

F̃(2)
b ≡ − e2

mec
[(n · AL ) E + (n · E) AL]. (32)

We note that for the wave (20) F̃(2)
a is along n0 while F̃(2)

b
has the direction s0. The perturbative approximation (in the
lowest order) of M̃ f i is then obtained by combining properly
the terms of s∗ · F̃ with the zeroth-order approximation or
PT correction of the first order for the states |ψi(t )〉 and
|ψ ′

f (t )〉. The notations |ψ (0)(t )〉 and |ψ (1)(t )〉 are used below
to indicate, respectively, the zeroth-order approximation and
the first-order correction of a TDSE solution |ψ (t )〉, either
|ψi(t )〉 or |ψ ′

f (t )〉. The (unperturbed) final states are naturally
taken of stationary type and we denote by E f a possible final
energy of the electron. For the initial state we consider first the
stationary case, and denote by Ei the corresponding energy.
Then the implications for the nonstationary case are pursued.

We proceed with the explicit enumeration of the dominant
contributions to M̃ f i, using case 2 as reference. The simplest
one, which we denote M̃(2)

f i , originates from s∗ · F̃(2). In the

expansion of M̃ f i, the quantity s∗ · F̃(2) (more precisely its
positive frequency part) has to be coupled with the unper-
turbed states |ψ (0)

i (t )〉 and |ψ ′(0)
f (t )〉. When it is explicitly
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written, one finds that M̃(2)
f i is given by a factor proportional

to e−2iω0t , multiplying the matrix element 〈ψ ′(0)
f |eiQ2·r/h̄|ψ (0)

i 〉
of the exponential operator eiQ2·r/h̄.

Another contribution, denoted M̃(1)
f i , is obtained coupling

the terms of the first order in A0, s∗ · F̃(1), with the first-order
correction of the initial or final state (and zeroth-order ap-
proximation of the other one). From this category we only
keep the terms due to the electric force, s∗ · (eE) (its posi-
tive frequency part), dominant versus the others, which are
giving corrections of a higher order in β or κ = h̄ω/mec.
We address first the case of a stationary initial state, for
which one obtains that M̃(1)

f i reduces, up to a factor pro-

portional to e−2iω0t , to the matrix element 〈ψ ′(0)
f |O|ψ (0)

i 〉
of an operator O ≡ ei(k0−k)·rG(Ei + h̄ω0)eik0·rs0 · P + s0 ·
Peik0·rG(E f − h̄ω0)ei(k0−k)·r, where G(z) ≡ (z − Ha)−1 is the
resolvent operator of argument z, attached to Ha. The regime
where the energies Ei and E f are small (versus the energy
h̄ω0 of a laser photon) is of high interest, it allowing a simple
approximate treatment of the matrix element, favored by the
presence in O of the exponential operators involving photon
momenta. The approximation consists in the replacement of
the resolvent operators (Ei + h̄ω0 − Ha)−1 and (E f − h̄ω0 −
Ha)−1 with the constant operators 1/h̄ω0 and −1/h̄ω0—this
is equivalent to keeping only the contribution of the inter-
mediate states of energies Ej such that |Ej − Ei, f | is much
lower than h̄ω0 (thus one neglects the contribution of the
high-energy states), and to setting |Ej − Ei, f | = 0. Then it
follows that O reduces to [eiQ2·r/h̄, s0 · P]/h̄ω0 = (1/c)(s0 ·
n)(ω/ω0)eiQ2·r/h̄. The result one obtains this way for M̃(1)

f i
keeps the same analytic form in the case the initial state
is nonstationary: this can be understood if one represents
|ψ (0)

i (t )〉 as a packet of stationary states and one approximates
the resolvent operators as above (by constants independent on
the involved energies) in all the terms of M̃(1)

f i corresponding
to the components of the packet.

Consequently, taking the sum M̃(2)
f i + M̃(1)

f i of the two
contributions above discussed, for the matrix element (27) one
derives the approximate result

M̃ f i = − i

4

e2A2
0

mec
ω0 (s∗ · u)

× 〈
ψ

′(0)
f

∣∣eiQ2·r/h̄
∣∣ψ (0)

i

〉
e−2iω0t , (33)

where the real vector u has to be replaced by

u2 ≡ n0 +
(

2 + ω

ω0

)
(n · s0) s0. (34)

The first term of u2 corresponds to s∗ · F̃(2)
a , and the second

corresponds to the sum of the contributions due to s∗ · F̃(2)
b and

s∗ · (eE) from above. In particular, for the emission along the
laser polarization (n = s0) only the contribution of the mag-
netic term s∗ · F̃(2)

a survives since in this case s∗ · u2 = s∗ · n0.
The matrix element M f i, Eq. (25), can be treated following

a procedure similar to that applied to M̃ f i, with s∗ · � = s∗ ·
P − s∗ · (eAL ) in place of s∗ · F̃. The calculation of the con-
tribution to M f i, corresponding to s∗ · P, becomes feasible if
we neglect the effect of the interaction term −(e/me)AL · P

from the Hamiltonian HaL and approximate the resolvent op-
erators G(Ei + 2h̄ω0) and G(E f − 2h̄ω0) (they are involved
in the PT corrections to the state vectors of the first order
in the interaction term e2A2

L/2me) by 1/2h̄ω0 and −1/2h̄ω0,
respectively. The other contribution, coming from s∗ · (eAL ),
is approximated as in the case of the term s∗ · (eE) from
above. For M f i one finally obtains the same form as for M̃ f i,
Eq. (33), where the vector u is now replaced by

u1 ≡ ω

2ω0

[
n0 + 2

ω

ω0
(n · s0) s0

]
. (35)

Comparing the corresponding expressions for the transi-
tion amplitude, Ai→ f [Eq. (24)] and Ãi→ f [Eq. (26)], one sees
that they differ (only) by factors of the type s∗ · u, where u is
given by Eq. (34) or (35). At this stage we remark that the
integrals from Eqs. (24) and (26) take significant values for
frequencies around ω2 [given by Eq. (23)], for which the ratio
ω/ω0 in Eqs. (34) and (35) is less than 2 by a term of the
order κ0 � 1. The inconsistency of the above results for TA is
then explainable since in their derivation there were neglected
terms of this order. The consistency is reached in zeroth order
for κ0, approximating ω/ω0 = 2 in Eqs. (34) and (35)—in
this case the vectors u1,2 reduce both to

u0 ≡ n0 + 4(n · s0) s0. (36)

In fact, a NR formula valid in the first order for κ0 and
suggested by Eq. (35) can be indirectly uncovered by the
examination of some results from the literature, for the scat-
tering by a free electron. Equation (4) in Ref. [18] indicates
that a factor of the form s∗ · u0 has to appear in Eq. (33).
Then a correction of the first order in κ0 can arise only from
the first factor seen in Eq. (35), ω/2ω0. This implication is
confirmed by Eqs. (3.36) and (3.42) in Ref. [2], which are
leading in the NR approximation to a correction factor for the
angular distribution equal to (ω2/2ω0)2. Guided by the above
arguments, we arrive to the same result for the matrix elements
M f i and M̃ f i, given by Eq. (33), by taking

u ≡ ω

2ω0
u0 = ω

2ω0
[n0 + 4(n · s0) s0], (37)

for which M f i = M̃ f i and Ai→ f = Ãi→ f .
We first specialize Eq. (33) for a free electron, case 1,

assumed to be initially in an arbitrary state |ψ0〉. The state
function in the momentum representation, at the initial mo-
ment, is ϕ(p0) ≡ 〈p0|ψ0〉, where |p0〉 is a state of a defined
momentum p0 (p0 is any real vector). The unperturbed state
evolving freely from |ψ0〉 is then given by the superpo-
sition |ψ (0)

i (t )〉 = ∫
dp0ϕ(p0)|p0〉 exp[−iE (p0)t/h̄]—for the

energy of a free electron of a momentum p we use the general
notation E (p) ≡ p2/2me. For the unperturbed final state we
take |ψ ′(0)

f (t )〉 = |p〉 exp(−iE (p)t/h̄), i.e., a state of a defined
momentum p and an energy E f = E (p). Using these states,
for the matrix element from the right-hand side of Eq. (33)
one obtains the simple result ϕ(p − Q2) exp{i[E (p) − E (p −
Q2)]t/h̄}. Replacing the corresponding amplitude, Eq. (24)
(with the notation for polarization restored), in Eq. (11)
(adapted for a continuum of final states |p〉), one obtains the
power d3Pλ ≡ d3Wλ/τ (in the limit τ → ∞) emitted in the
spectral range dω and solid angle d�, for a final electron
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momentum in dp. It can be expressed as follows:

d3Pλ = α

32π
ξ 4 (h̄ω0)2 |s∗

λ · u|2 |ϕ(p − Q2)|2

× δ(E (p) − E (p − Q2) − �2) dω d� dp, (38)

where α = e2
0/h̄c ≈ 1/137 is the fine-structure constant. Like

in the relativistic study [9], no interference effects can appear
between the contributions to the scattering of the different
components of the wave packet.

We next apply Eq. (33) in case 2, for an initial state of
stationary type. In the matrix element M̃ f i we use exact
unperturbed states for the electron in the potential V . The
unperturbed TDSE solution corresponding to the initial state
of energy Ei is |ψ (0)

i (t )〉 = |ui〉 exp(−iEit/h̄), where |ui〉 is an
eigenvector of Ha for the eigenvalue Ei. For the final state,
belonging to a continuum of states, the choice is |ψ ′(0)

f (t )〉 =
|p−〉 exp(−iE (p)t/h̄), where |p−〉 is a scattering state of in-
coming type [30], for the final energy E f = E (p). Proceeding
as above, we are led to the relation

d3Pλ = α

32π
ξ 4 (h̄ω0)2 |s∗

λ · u|2 |〈p−|eiQ2·r/h̄|ui〉|2

× δ(E (p) − Ei − �2) dω d� dp. (39)

The results obtained using this equation and its integrated ver-
sion are called below “exact”—the attribute “exact” is related
to the use of exact states in the matrix element, otherwise the
results are approximate (the treatment is in PT , some force
terms were ignored, and a supplementary approximation was
imposed).

We get a formula simpler than Eq. (39) working in IA, in
which the role of the binding potential V during the light scat-
tering is totally neglected—the electron being free, one can
now apply Eq. (38), with the appropriate choice of the initial
state, |ψ0〉 = |ui〉, usually the ground state of the electron in
the potential V ; we note that for the free electron this state
is of nonstationary type. For an easy comparison of the two
predictions (in IA and the exact one), we write the IA formula
as follows:

d3Pλ = α

32π
ξ 4 (h̄ω0)2 |s∗

λ · u|2 |〈p|eiQ2·r/h̄|ui〉|2

× δ(E (p) − E (p − Q2) − �2) dω d� dp, (40)

where 〈p|eiQ2·r/h̄|ui〉 = ϕ(p − Q2), with ϕ(p) ≡ 〈p|ui〉. One
sees that Eq. (40) differs from Eq. (39) by (a) the change of
the final state in the matrix element, from |p−〉 to |p〉, and
(b) the initial energy Ei from the argument of the δ function,
which is replaced by E (p − Q2).

If the electron is not observed, the relevant quantities are
the powers d2Pλ, obtained from Eq. (40) or (39) by in-
tegration over the final momentum p of the electron, and
d2P ≡ ∑

λ d2Pλ—the latter for the case the polarization of
the emitted photon is not detected.

IV. SPECTRAL AND ANGULAR DISTRIBUTIONS FOR
THE SCATTERING FROM A GROUND-STATE

HYDROGENIC ATOM

In the following we refer to the radiation scattering from a
ground-state hydrogenic atom. Rather simple expressions can
be derived for IA and exact integrated distributions, where

|ui〉 from the start formulas, (40) and (39), describes now
the ground state of the electron in the Coulomb potential of
the nucleus. In both cases, the integration in p can be done
analytically, like in the LCS case; see, for instance, Ref. [21]
and references therein.

The NLCS power distribution can be generically expressed
in the form(

d2P
dω d�

)
NLCS

= α

32π

(
ω

2ω0

)2

× ξ 4 (h̄ω0)2 J (Q2,�2) (s · u0)2, (41)

where, for simplicity, the polarization vector is taken real and
the polarization index (of s and P) is omitted. Explicitly, the
last factor [see Eq. (37)] is

(s · u0)2 = [(s · n0) + 4(n · s0) (s · s0)]2. (42)

For the scattering geometry (close to that used in Ref. [16])
where the direction n is in the plane (s0, n0), the sum over
polarizations is reduced to a single term of the type (41) if
the vector s (orthogonal to n) is taken in the same plane. This
special geometry is characterized by the directions

s = cos θ s0 − sin θ n0, n = sin θ s0 + cos θ n0, (43)

where θ is the scattering angle. In its case

(s · u0)2 = (1 − 4 cos θ )2 sin2 θ, (44)

and with this value for (s · u0)2, Eq. (41) describes now the
power distribution summed over polarizations (for the actual
scattering geometry).

The function J (Q,�) is defined in IA by

J (IA)(Q,�) ≡ 8

3π

(b Q/me)5

[(E (Q) − �)2 + (b Q/me)2]3
, (45)

and depends also on the atomic number Z by the parameter
b ≡ h̄Z/a0 = αZmec. For the exact distribution, J (Q,�) is
replaced by

J (ex)(Q,�) ≡ 256

3

meb6Q2(b2 + 3Q2 + p2)

[(b2 + Q2 − p2)2 + 4b2 p2]3

× e−2νγ

1 − e−2πν
, (46)

with ν ≡ b/p and

γ ≡ arccos((b2 + Q2 − p2)/
√

(b2 + Q2 − p2)2 + 4b2 p2).

The asymptotic final momentum p is determined by the
energy conservation, p = √

2me(E1 + �), where the ground-
state energy E1 is conveniently expressed as E1 = −b2/2me.

For comparison we also need the results for the LCS distri-
butions. The equations corresponding to the differential LCS
distributions are presented in Appendix B. The integration of
Eqs. (B2) and (B3) with respect to the final electron momen-
tum leads to the generic relation(

d2P
dω d�

)
LCS

= α

8π

(
ω

ω0

)2

ξ 2 (h̄ω0)2 J (Q1,�1) (s · s0)2,

(47)

which has to be understood like above: the function J (Q1,�1)
is replaced according to Eq. (45) or (46) in order to describe
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FIG. 1. Spectral profiles of the emitted power for NLCS (upper
panel) and LCS (lower panel) by a hydrogenic atom with Z = 1. The
IA results are represented with lines, and the exact ones are repre-
sented by symbols. The laser frequency ω0 is 9 keV for NLCS and
18 keV for LCS. The values of the scattering angle θ are indicated
in the legend [which is common to Figs. 1(a), 1(b), 2(a), and 2(b)].
Vertical dashed lines are drawn for the frequencies ωm given by
Eq. (23).

the IA or exact distributions. For the geometry (43) we have
(s · s0)2 = cos2 θ .

We note that for ν � 1 the ratio of the functions (46)
and (45) is close to 1 for frequencies around the Compton
frequency (23), the latter being approximated in the nonrel-
ativistic case by the solution of the equation E (Qm) = �m

(m = 1, 2).
The distributions (47) and (41) differ by their orders in the

parameter ξ , ξ 2 ∝ I for LCS and ξ 4 ∝ I2 for NLCS. The total
power emitted in NLCS is then much smaller than in LCS for
ξ � 1. They also differ by the angular factors they contain.
In particular, the distribution (47) vanishes for emission along
laser polarization (θ = 90◦). In contrast, Eq. (41) gives a finite
result in this case, entirely due to the magnetic term F̃(2)

a —
this result is not affected in particular by the quality of the
approximations leading to the term proportional to (s · s0) in
Eq. (42).

In the following we present some numerical results which,
in our opinion, are of help to clarify in what measure the
results known from the literature, experimental [16] or based
on numerical simulations [15], can be understood using an
approximate description like that behind Eqs. (41)–(47). We
first describe and analyze comparatively the IA and exact
spectral and angular distributions, for NLCS and LCS. At the
same time and where possible, we discuss the relation of our
findings with results presented in Refs. [15,16].

We choose to work in conditions which are similar to those
used in Ref. [16]. In Figs. 1 and 2 the laser frequency ω0 is
9 keV for NLCS, and twice this value for LCS—the fre-
quencies are chosen for a comparison like that presented in
Fig. 2(a) in Ref. [16]. The parameter ξ [Eq. (21)] is taken as
10−3. In Figs. 1 and 2 we show IA results (with lines) and ex-
act results (with symbols) for NLCS (upper panels) and LCS

FIG. 2. Same as for Fig. 1, with Z = 4. The vertical solid lines
correspond to the maxima for the exact profiles.

(lower panels) from a hydrogenic target with Z = 1 and 4,
respectively. Four scattering directions satisfying Eq. (43) are
considered—the values of the scattering angle are indicated in
Fig. 1(a).

From Figs. 1 and 2 one sees that, for each scattering di-
rection, the two spectral profiles, in IA and the exact one, are
similar and almost coincide for Z = 1 (or b = 1 in a.u.)—we
note, however, that the exact distribution ends at a frequency
less than 2ω0, the maximum frequency being imposed by the
energy conservation at the threshold, E1 + �m = 0.

The maxima of both profiles are shifted to red from the
value mω0 (18 keV). The frequency corresponding to the
maximum of the IA profile for a given θ is well approximated
by ωm given by Eq. (23)—this is clearly seen in both figures,
the vertical dashed lines being drawn at the frequencies ωm.
In Fig. 1 the peaks of the exact profiles are almost at the
same frequencies, while in Fig. 2 (where they are indicated
by solid vertical lines) they are shifted slightly to frequencies
higher than ωm—a blueshift of the same kind was found in
Ref. [15] for NLCS simulated by TDSE calculations. The
magnitude of the relative blueshift in Fig. 2 (for Z = 4) is
greater in our case than in Ref. [15], apparently due to the
potential considered (pure Coulomb here, “soft” Coulomb in
Ref. [15]). Resuming the above discussion, the results indicate
that the shift of a Compton peak (from mω0, with m = 1, 2)
is approximated in IA by mω0 − ωm, and by this value plus a
small blueshift depending on the parameter b (=Z in a.u.) for
the exact profile. It increases in either case with the angle θ for
both types of scattering, LCS and NLCS. For a given θ , the
shifts for NLCS at a frequency ω0 and LCS at 2ω0 are prac-
tically the same. These findings clearly show that the impulse
approximation (in the current version, above formulated) is
not able to predict a supplementary redshift of the NLCS
peaks of the kind observed in Ref. [16]. The same is true
for the exact case since the blueshifts for NLCS and LCS are
comparable (or negligible). We note, however, that the peak
value of the NLCS distribution is finite at θ = 90◦, in accord
to the persistence of the NLCS signal seen in Ref. [16] for
photons emitted along the laser polarization. We also remark
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that the increase with θ of the height of the NLCS peak,
seen in Fig. 2(a) from Ref. [16] (on the interval 89◦–131◦),
is qualitatively confirmed: the present calculations predict in
fact that the peak height (regarded as a function of θ ) has a
maximum around θ = 130◦, where the last factor of Eq. (41)
reaches its maximum value—the weak angular dependence of
J (Q2,�2) does not change significantly the position of the
maximum.

We might be inclined to assume that the absence of an ad-
ditional redshift of the NLCS peaks in the present calculations
is a consequence of the approximations made in the derivation
of Eqs. (40) and (39), like for example [if one takes as starting
point Eq. (24)] the neglect of the contribution of the terms
involving the potential force or the approximate treatment of
the intermediate states in the matrix element M̃(1)

f i . However,
it is rather unlikely that this is the right explanation if we
take into account that the TDSE calculations of Ref. [15],
not implying these approximations, are leading to the same
(negative) conclusion about the redshift. We also remark that
the agreement between IA and exact results for the examined
distribution is similar in the two cases, NLCS and LCS; see
also Refs. [20,21] for in-depth discussions of the subject in
the context of the usual Compton scattering. Large deviations
are expected to appear for NLCS, like in the LCS case [21],
if the comparison would refer to distributions of the emitted
photons and scattered electrons.

Besides the doubly differential distribution of the emitted
radiation measured in the experiment [16], other types of
distributions are also of interest. Reference [15] compares the
TDSE calculated angular distributions (for LCS and NLCS)
for initially bound electrons with predictions based on known
analytical equations for free electrons, Klein-Nishina for LCS
[32], and Brown-Kible for NLCS [2], the latter in the NR
limit. The agreement obtained, remarkable for LCS and rather
good for NLCS, is surprising in some measure since in the
case of a FER the radiation spectrum is reduced to a Compton
line, which is replaced by a Compton peak in the case of
the bound electron. We extend below the comparison by the
inclusion of the IA results, this allowing us to make plausible
the explanation of the above-mentioned agreement as a con-
sequence of the validity of IA in the present conditions. The
comparison is done at the level of the cross sections of the
processes. To obtain the differential photon cross section of a
scattering process in the monochromatic case one divides the
corresponding radiation power to the energy h̄ω of the emitted
photon and to the photon incident flux (the ratio I/h̄ω0 of the
laser intensity I to the incident photon energy h̄ω0) [33]. In
particular, the doubly differential (in frequency and emission
direction) cross section (DDCS) is

d2σ

dωd�
= h̄ω0

I

1

h̄ω

d2P
dωd�

= ω0

ω

1

I

d2P
dωd�

. (48)

To express the various cross sections it is convenient to
employ the parameter η ≡ ξ/

√
2 (frequently used in the lit-

erature) in place of ξ , and the classical radius of the electron
r0 = e2

0/mec2.
In Appendix C we consider in some detail the FER case—it

is needed for comparison and is also useful to check some
equations from Sec. III and from the current section.

Using the IA formulas (41) and (47), and the definition
(48), we express the corresponding DDCS as follows:(

d2σ

dω d�

)(IA)

NLCS

= ω

2ω0

(
r0η

2

)2

h̄ J (IA)(Q2,�2) (s · u0)2

(49)
for NLCS and(

d2σ

dω d�

)(IA)

LCS

= ω

ω0
r2

0 h̄ J (IA)(Q1,�1) (s · s0)2 (50)

for LCS. One verifies that Eqs. (C1) and (C2) of the FER limit
are recovered by observing in Eq. (45) the behavior

J (IA)(Qm,�m) → δ(E (Qm) − �m), m = 1, 2, (51)

in the limit b → 0 (Z → 0).
The IA angular distributions are calculated integrating

Eqs. (49) and (50) in ω on the interval corresponding to the
NLCS or LCS peak (at fixed emission direction). It is useful
to express them with functions defined by the relation

Fm(ω0, θ ) ≡
∫

dω
ω

mω0
h̄ J (IA)(Qm,�m), (52)

where the integral is computed over the scattering peak and
m = 1, 2. Then(

dσ

d�

)(IA)

NLCS

= F2(ω0, θ )

(
r0η

2

)2

(s · u0)2 (53)

and (
dσ

d�

)(IA)

LCS

= F1(ω0, θ ) r2
0 (s · s0)2. (54)

The free-electron limit is easy to obtain: using Eq. (51) (valid
for b → 0) we have

Fm(ω0, θ ) →
(

ωm

mω0

)2

, (55)

yielding the first factors from Eqs. (C4) and (C5) of the FER
case.

We compare numerically the angular distributions above
defined, working in conditions chosen as in Ref. [15] (slightly
different from those of Figs. 1 and 2), ω0 = 9.25 keV and
a laser intensity I for which η ≈ 1.62 × 10−3. In Fig. 3 are
shown the results for dσ/d�, for LCS in the upper panel
and NLCS in the lower one. With lines are represented the IA
results based on Eqs. (54) (for LCS) and (53) (for NLCS). The
IA results are compared in Fig. 3(a) with those based on the
Klein-Nishina formula, Eq. (C6) (represented by symbols),
without or including the (less than 1) factor (ω1/ω0)2. In
Fig. 3(b) the comparison is made with the results calculated
with the Brown-Kible formula, Eq. (C4), without or with the
factor (ω2/2ω0)2. In both panels there is a clear agreement
between the results in IA and those for the free electron (both
including the correction factors), this indicating that the be-
havior (55) extends beyond the strict limit of the free electron.

We now compare the above results with those represented
in Figs. 8 and 9 of Ref. [15]. For LCS one sees that the
results including the factor (ω/ω0)2 (line and circles) from
Fig. 3(a) are practically the same (at visual level) with those
in Fig. 8 from Ref. [15]. For the NLCS case one first observes
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FIG. 3. Photon angular distributions for LCS (upper panel) and
NLCS (lower panel). Lines represent the IA results for a ground-state
hydrogenic atom with Z = 1, computed using Eq. (54) for LCS and
Eq. (53) for NLCS. The results shown by symbols are based on
Klein-Nishina (upper panel) and Brown-Kible (lower panel) formu-
las, Eqs. (C6) and (C4) (see other details in the text). The laser
frequency ω0 is taken to be 9.25 keV (≈340 a.u., the same value
for both panels), and the field amplitude E0 = 107 a.u. (the latter
matters for NLCS only). The emitted photon direction is in the laser
polarization-propagation plane (s0, n0).

that the angular distributions from Fig. 3(b) and Fig. 9 of
Ref. [15] are similar [34]. The discrepancy seen in this case in
Ref. [15] between TDSE results and those for the free-electron
case is likely to be caused mainly by the use of the Brown-
Kible formula in the NR limit, without the correction factor
(ω2/2ω0)2 (this explanation for the discrepancy is mentioned
also in Ref. [15] as possible)—around the dominant maximum
of dσ/d� in Fig. 3(b) this factor is of the order of 10%, which
is the same as the discrepancy level found in Ref. [15].

In light of the above findings, the agreement of the angular
distributions for bound and free electrons seen in Ref. [15]
gets a rather simple explanation if one assumes the validity
of the impulse approximation at the level of DDCS—this
explanation is strengthened by the similarity of the scattering
profiles from Fig. 7 in Ref. [15] and the IA profiles from
Figs. 1 and 2. However, a direct quantitative comparison of
the TDSE and IA profiles makes sense solely if they are
obtained in the same conditions and for the same atomic
potential. It seems promising to follow this comparison versus
the scattering angle θ , in particular the value θ = π/2 could
prove interesting. This case, not investigated in Refs. [14,15]
but observed in Ref. [16], deserves some attention since, as
discussed in the context of Eq. (34), NLCS is here mainly of
magnetic origin in IA and the comparison with results based
on TDSE would give an indication about the validity of the
approximate treatment leading to this finding.

V. CONCLUSIONS

Two forms of the transition amplitude for the scattering of
an intense laser beam from a simple atomic system are derived

in the framework of the nonrelativistic quantum theory; differ-
ing by terms of the order β2, these are equivalent in the NR
approximation. The corresponding equations, (10) and (17),
are nonperturbative with respect to the interaction electron-
laser fields, involving exact TDSE solutions describing the
evolution of the atomic system in the presence of the exter-
nal electromagnetic field. The second form of TA, Eq. (17),
deserves a special interest, it showing that the emission of
radiation is possible, like in the classical case, for accelerated
motions only. The procedure used for its derivation is suitable
for relativistic generalization.

The application of the developed formalism, in the case of
the nonlinear Compton scattering with the absorption of two
photons from the incident laser beam, led us to nonrelativistic
approximations for the distribution of the power of the emitted
radiation, fully differential with respect to the attributes of the
scattered photons and electrons; see Eqs. (38) and (39) for the
scattering by a free-electron wave packet and, respectively, by
a bound electron in a stationary state.

Formulas describing the spectral and angular distribution
of the radiation (solely) scattered from a hydrogenic atom in
the ground state are then presented—they are obtained either
in impulse approximation or using exact descriptions of the
initial and final Coulomb states of the electron. The numeri-
cal results obtained evaluating these formulas for conditions
(regarding the incident laser and the scattering geometry)
similar to those of the experiment [16] reproduce a good part
part of the experimental observations. For the actual atomic
system and the adopted approximations, we find that there
is no redshift of the NLCS peak for a given laser frequency
relative to the LCS peak for a double incident frequency. This
finding disagrees with the main result of Ref. [16], remain-
ing compatible with the results from Refs. [14,15]. Further
investigations are required for the validation of the above
considered approximations and for a better understanding of
their impact on the properties of the nonlinear Compton peak.
Finally we consider the angular distribution of the scattered
radiation. After the derivation of the IA formulas for the cor-
responding NLCS and LCS cross sections, we examine their
relation to the analog quantities in the case of a free electron
initially at rest. The numerical results obtained for the angular
distribution (including the correction factors depending of the
frequencies) allow us to interpret the agreement observed in
Ref. [15] between results for bound and free electrons as a
consequence of the validity of the impulse approximation at
the level of DDCS.
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APPENDIX A: ALTERNATIVE EXPRESSIONS
FOR THE TRANSITION AMPLITUDE

The exact relativistic formula for the classical amplitude
[see Eqs. (14.64) and (14.65) in Ref. [1]] entering Eq. (1)
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is

A(n,λ)
cl (ω) = −s∗

λ ·
∫ ∞

−∞
dt

× eiω(t−n·r(t )/c) n × [(n − βcl ) × β̇cl )]

(1 − n · βcl )2
, (A1)

its nonrelativistic approximation being given by Eq. (2). It is
possible to express this amplitude [see also Eq. (14.67) from
Ref. [1]] in a more compact form,

A(n,λ)
cl (ω) = −iω

∫ ∞

−∞
dt eiω(t−n·r(t )/c) s∗

λ · βcl, (A2)

equivalent to Eq. (A1): one demonstrates the equivalence in-
tegrating by parts, using the identity d

dt eiω(t−n·r(t )/c) = iω(1 −
n · βcl ) eiω(t−n·r(t )/c) and the orthogonality relation s∗

λ · n = 0.
By analogy with the classical case, we are looking for an

equivalent form of the quantum transition amplitude (10). As
seen below, it is more advantageous to start from the symmet-
ric formula (12), transcribed here in the form

Ai→ f = − iω

2

∫
dt eiωt

×〈ψ ′
f |e−ik·r s∗ · β + s∗ · β e−ik·r |ψi〉, (A3)

involving the operator β defined by Eq. (3) and using the
simplified notation s in place of sλ(k).

In order to prepare the integration by parts of Eq. (A3)
we first express the time derivative of the matrix element
〈ψ ′

f |O|ψi〉, where O is a general operator (possibly time de-
pendent) and the two states |ψi〉 and |ψ ′

f 〉 evolve in time
according to the same TDSE, corresponding to the Hamilto-
nian HaL = �2/2me + V . Consequently, we can write

d

dt
〈ψ ′

f |O|ψi〉 = 〈ψ ′
f |O̊|ψi〉, (A4)

where the symbol O̊ (O ring) is defined by

O̊ = D(O) ≡ ∂O

∂t
+ 1

ih̄
[O,HaL]. (A5)

The operator O̊, alternatively denoted D(O) to indicate the
result of an operation D done on O, has the usual proper-
ties of a derivative (for operators), in particular D(O1O2) =
O̊1O2 + O1O̊2. Important examples are here the operators �̊

and β̊, given by Eq. (14). In the case of the exponential from
Eq. (A3) the calculation leads to the result

D(e−ik·r ) = − iω

2
(n · β e−ik·r + e−ik·r n · β). (A6)

The partial integration in Eq. (A3) using the equality
iωeiωt = deiωt/dt , the properties of D(O), and Eq. (A6) gives
the result

Ai→ f = − iω

4

∫
dt eiωt 〈ψ ′

f |e−ik·r � + � e−ik·r |ψi〉

+ 1

2

∫
dteiωt 〈ψ ′

f |e−ik·r s∗ · β̊ + s∗ · β̊ e−ik·r |ψi〉,
(A7)

where � ≡ (n · β)(s∗ · β) + (s∗ · β)(n · β) is of the order β2.
Performing another partial integration, now for the first inte-
gral from this equation, and neglecting the terms originating

from D(e−ik·r ) [their contribution is the order β2 relative to
Eq. (A3)], one deduces the formula (we use a slightly different
notation for TA)

Ãi→ f = 1

2

∫
dt eiωt 〈ψ ′

f |e−ik·r (s∗ · β̊ + �̊/2)

+ (s∗ · β̊ + �̊/2) e−ik·r |ψi〉. (A8)

The operator �̊ can be expressed in terms of β and β̊:

�̊ = (n · β̊)(s∗ · β) + (s∗ · β̊)(n · β)

+ (n · β)(s∗ · β̊) + (s∗ · β)(n · β̊). (A9)

Replacing it in Eq. (A8), then using Eq. (14) for β̊, one finally
obtains Eq. (17).

We remark here that other forms of the amplitude, equiva-
lent to Eq. (17) in the nonrelativistic regime, can be found as
above if one starts from Eq. (10) or the same equation with
commuted operators inside the matrix element—these forms
are more compact but less symmetric than Eq. (17).

APPENDIX B: DIFFERENTIAL DISTRIBUTIONS FOR LCS

For checking and reference purposes we collect here a part
of the equations specific to LCS, analogous to those for NLCS
in Sec. III. They are equivalent with formulas derived long
ago, working in the so-called A2 approximation [20]. One
recovers simply these formulas if in Eq. (25) one neglects the
contribution of the operator s∗ · P. The approximation of the
matrix element describing LCS (proportional to A0) is

M f i = i

2

ω

ω0
eA0 ω0 (s∗ · s0)

× 〈
ψ

′(0)
f

∣∣eiQ1·r/h̄
∣∣ψ (0)

i

〉
e−iω0t . (B1)

We note that if we start from Eq. (27) and keep only the
contribution of the electric force (dominant versus the other
terms), F̃(1) = eE, we get the same result excepting the factor
ω/ω0—in order to recover this correction factor one has to
consider the effect of the neglected terms.

Using the matrix elements (B1) and reasoning as in Sec. III
we get the relations analogous to Eqs. (40) and (39), describ-
ing the power distribution of the emitted radiation in IA,

d3Pλ = α

8π

(
ω

ω0

)2

ξ 2 (h̄ω0)2 |s∗
λ · s0|2 |〈p|eiQ1·r/h̄|ui〉|2

× δ(E (p) − E (p − Q1) − �1) dω d� dp, (B2)

and the exact power distribution:

d3Pλ = α

8π

(
ω

ω0

)2

ξ 2 (h̄ω0)2 |s∗
λ · s0|2 |〈p−|eiQ1·r/h̄|ui〉|2

× δ(E (p) − Ei − �1) dω d� dp. (B3)

The formula (B2) applies also in the case of a free electron,
initially in an arbitrary state (a wave packet) |ui〉—in this case
the matrix element which it contains reduces to ϕ(p − Q1),
with ϕ(p) ≡ 〈p|ui〉 .
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APPENDIX C: CROSS SECTIONS FOR SCATTERING
BY A FREE ELECTRON AT REST

In this Appendix we apply the formulas (38) and (B2)
in the FER case, then we deduce the corresponding (double
and single) differential cross sections. The distribution of the
momentum p0 of a free electron having a definite momentum
equal to zero is δ(p0). Then, setting |ϕ(p − Q2)|2 = δ(p −
Q2) in Eq. (38), integrating over the final momentum p of
the electron, and using the definition (48), one obtains the
result

(
d2σ

dω d�

)(FER)

NLCS

= ω

2ω0

(
r0η

2

)2

(s · u0)2 h̄ δ(E (Q2) − �2).

(C1)

Similarly, for linear Compton scattering, replacing in Eq. (B2)
the squared matrix element from its right-hand side by |ϕ(p −
Q1)|2 = δ(p − Q1) and integrating over p, one obtains

(
d2σ

dω d�

)(FER)

LCS

= ω

ω0
r2

0 (s · s0)2 h̄ δ(E (Q1) − �1). (C2)

The argument of the function δ(E (Qm) − �m) (with m = 1, 2)
vanishes for the frequency ω̃m = ωm [see Eq. (23)], where
the last equality is valid in NR approximation. In the same
approximation

h̄ δ(E (Qm) − �m) = ωm

mω0
δ(ω − ωm). (C3)

Then the integration in frequency is immediate and for the
angular distributions we get the simple results(

dσ

d�

)(FER)

NLCS

=
(

ω2

2ω0

)2 (
r0η

2

)2

[s · n0 + 4(n · s0)(s · s0)]2

(C4)
and (

dσ

d�

)(FER)

LCS

=
(

ω1

ω0

)2

r2
0 (s · s0)2. (C5)

We note that the result (C4) coincides, up to notations and
if we set aside the first factor, with that given in Ref. [2],
Eq. (3.44)—the latter was obtained for low laser intensi-
ties and in the NR limit of a semiclassical calculation. The
more direct approach in Ref. [18] is leading in the so-called
Thomson limit to a result [Eq. (5) in Ref. [18]] identical
to Eq. (C4) for the actual scattering geometry (up to a fac-
tor, equal to the degree of coherence of the laser beam).
It is worth mentioning that equations of the same form
are obtained in classical theory: up to the factor depend-
ing on the frequencies, Eq. (C5) is the Thomson differential
cross section while Eq. (C4) describes the classical angu-
lar distribution of the second harmonic (in the lowest order
of η2) [19].

Comparing now Eq. (C5) with the relativistic (Klein-
Nishina) formula for LCS,(

dσ

d�

)
KN

= r2
0

4

(
ω1

ω0

)2 (
ω1

ω0
+ ω0

ω1
− 2 + 4(s · s0)2

)
,

(C6)
one sees that they coincide in the NR domain—the expression
from the last bracket in Eq. (C6) is equal to 4(s · s0)2 plus a
negligible term of the order O(κ2

0 ).
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